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ABSTRACT

An algorithm to solve linear programming problems is presented

which is based on Karmarkar's projective method. The algorithm

includes a practical method to project a general linear programming

problem onto a unit simplex and eliminates the a priori need to know

the optimal value of the objective function. The implementation

conserves sparsity. The key part of the implementation is the solution

of a linear least-squares problem to find an improving direction: a

direct and an iterative method are implemented to solve this problem.

The direct method employs the minimum-degree heuristic to reorder the

system of normal equations, and thus conserve sparsity during the

following Cholesky factorization. The iterative method uses the incom-

plete Cholesky factor of the normal equation matrix as a preconditioner

for conjugate gradient iterations which are performed implicitly on the

preconditioned matrix. The study concludes with implementation

remarks, and computational results.
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I. INTRODUCTION

In recont papers Karmarkar [Refs. 1,2] has presented a new

method for the solution of linear programming (LP) problems. His new

solution technique moves from some feasible starting point across the

interior region of a polytope that is defined by the problem constraints.

He shows that the number of steps to find an optimal solution with his

technique is polynomially bounded.

In contrast, the simplex algorithm which, is widely used for the

solution of LP problems finds an optimal solution by moving from vertex

to vertex on the polytope. This is known, in the worst case, to require

an exponential number of steps [Ref. 3].

The polynomial bound of the projective algorithm makes the new

solution technique very appealing to researchers. The theory of the

new algorithm seems to be widely accepted among experts, while

* Karmarkar's claim that his algorithm is 50-100 times faster than the

simplex method has met skepticism [Ref. 4].

In this study a variant of the projective method is implemented,

anc some well known test problems are solved.

-. A. THE BASIC PROJECTIVE METHOD

Following Karmarkar [Ref. 1: p. 4], the number of steps of the

algorithm depends on R/r, where R is the radius of the sphere

circumscribing the polytope, and r the radius of the inscribed sphere.

Assume a general LP of the form

-- -Nfin e x

s.t. A x b (LP 1)
-x >0

With the assumption that the sum of its variables has an upper bound,

and with the proper scaling of variables, a convexity constraint

8
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can be added to LP1. This transformation maps the LP onto a unit

simplex S whose center is at ao = (1/n,... ,l/n). Then, a transforma-

tion is performed such that a feasible interior starting point is mapped

onto a0 .

If B(aor) is the largest sphere with center ao that can be

inscribed into the simplex S, and B(aoR) is the smallest sphere

circumscribing S, then

R/r n. (1.2)

By restricting a solution x to remain inside the largest inscribed sphere

B(ao, r), the method achieves in one iteration a reduction in the differ-

ence between the current objentive value and the optimal :.bjective value

by a factor of (1 - 1/n). Following Shanno [Ref. 51 a simple proof is:

Let

min c x, x e S, Ax b, (1.3)

S= min cTx, x E B(aor), Ax = b, 1Tx = 1, (1.4)

S min cTx, x E B(aoR), Ax b, 1Tx = 1 (1.5)

Then,

cTao  f < cTao - f < cTao - f, (1.6)

and with equation 1.2

cTao = n(cTao  _ (1.7)

From that

(f_- f')(cTao - f') < (1 l/n).

9
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If a linear objective function could be maintained at each iteration,

it follows that an upper bound on the number of steps required to find

an optimal solution is of 0(n). Unfortunately, the projective transfor-

mations needed to continue the algorithm result in a nonlinear objective

function.

B. DERIVATION OF THE ALGORITHM

1. The Canonical Form

Suppose we have a linear programming problem of the form

LP1. Karmarkar's method requires that this LP be transformed into the

following canonical form,

Min cTx

s.t. A x = 0 (LP2)
iTx = 1

X - 0,

where the optimal solution value is zero. With the assumption that the

sum of the variables of an LP is bounded above and subsequent scaling

by this bound, a convexity constraint (equation 1.1) can be added to

LP1. In practice this can be a problem because choosing too large an

upper bound may cause numerical problems.

LP2 requires that the nonhomogeneous system of equations

Ax = b be made homogeneous. Karmarkar [Ref. 1: p.34] proposes a

transformation that would transform the i-th equation aiTx bi to

.- (aij bi)x j  0. (1.9)

This transformation has the disadvantage that when b is dense the

sparsity of A will be lost. Karmarkar requires the optimal solution

value to LP2 to be zero together with a special stopping criterion

(equation 1.26), to prove the polynomial bound. To achieve the zero

objective value the optimal objective function value f of the

10
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untransformed LP has to be known in advance, and the foflowing trans-

formation made

c - = c - f:lTX (C -f:1)Tx . (1.10)

Karmarkar concludes [Ref. 2: p. 387] that if the minimal objective value

determined by the projective algorithm is not equal to zero, the original

problem must be either infeasible or unbounded. Another method for

making the transformation from LP1 to LP2 is discussed in

Chapter II.B.

2. The Projective Transformation

Let x ° > 0 be a known feasible solution to LP2. The invertible

projective transformation

D-lx (1.11)y1

1TD x

maps any x, such that 1Tx 1 and x > 0, onto y such that
Ty =1 and y > 0. D is a diagonal matrix whose entries are

(X ° ... Xn °0 ) .

The transformation maps the LP2 unit simplex in x-space onto

another unit simplex in y-space. The point x ° is mapped onto

Y b = 1/n 1T , the center of the unit simplex in y-space. The inverse of

the transformation (equation 1.11) is given by

D y (1.12)
- - X

1TD y

After the transformation, LP2 can now be restated as

11
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CTDy

s t. A D y = 0 (LP3)
y = 1

?::-y >0.

Strictly speaking LP3 is not a linear program because its objective

function is a rational function of y. Karmarkar [Ref. 1: page 18ff]

shows that it is sufficient to consider a linear approximation to the

objective function of LP3, which leads to

~Min "cDy

s.t. A D y = 0 (LP4)
1T y = 1

i .. .Y > 0 .

3. Optimization Over a Sphere

A solution to LP4 is now restricted to lie within a sphere with

center at yO and radius ar, where

2. r = 1i(n(n-1)) - 1/ 2  (1.13)

r is the radius of the largest sphere that can be inscribed into the unit

simplex, and a is a constant such that O<a<l. a provides a margin

which ensures that the algorithm doesn't select a point outside the

sphere due to round-off error. By convexity, an optimal solution will

occur at the boundary of the sphere. Thus, the additional constraint

can be stated as an equality. Now we have-the following version or the

LP:

12
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A.Min eTD y

s.t. A D y = 0 (LP5)
1Ty = 1

(y.yo)T(yyo) 2r

Before the problem can be solved, one more transformation

that moves the center of the sphere to the origin is useful. Let

y = + yo, and eliminate the constant terms ADy ° z 0, 1 Tyo = 1 and

cTDyo. For convenience, define B by

B -AD 
(1.14)

1T

and the gradient 6 of the objective function of LP5 by

= CTD . (1.15)

Then LP5 can be restated as,

Min d

s.t. B = 0 (LP6)Y T g %2r2

In order to solve LP6, note that an initial feasible solution to

LPG is = 0 (which corresponds to y = yO in LP5). This is also the

center of the sphere T= a2 r 2 . An optimal solution to LP6 can be
obtained by finding a direction of maximum rate of ascent c that is

feasible with respect to By = 0, and moving in direction -8 (maximnum

rate of descent) a distance ar from = 0 to the boundary of the

sphere.

A feasible direction of maximum ascent is found by orthogo-

nally projecting U onto the null space of B (see [Ref. 1: page 17] ),

i.e., the following problem has to be solved in terms of c

13
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Min T_ 2Tc+ T = Min (ii 2

Mp Cc (1.16)
Cp p

s.t. Bcp = 0

Define the Lagrangian L(cp, X ) by

+A T0  - p. (1.17)

First-order optimality conditions for the Lagrangian yield

-2? + 2c BTX =0, (1.18)

p

and

Bc 0. (1.19)
p

After multiplying by B and dropping 2Bcp=0 (equation 1. 19) we get

-2B? = BBTx. (1.20)

Assuming (BBT)- 1 exists, we can solve for A

'= -2(BBT)-BU. (1.21)

Substituting equation 1.21 into equation 1.18 gives

Cp - B(BBT)-BU. (1.22)

The direction of maximum rate of ascent is then

.= C p/II cpI . (1.23)

Thus, the optimal solutions to LP6 and LP5 are

O ... :(1.24)

14
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T- -. and

0i==== =i r8 (1.25)

respectively.

Finding cp is the key part of Karmarkar's method because it

involves the major portion of the computational work. Solving equation

1.22 for c can be viewed as solving a linear least-squares problem

(see Chapter II.C.).

With the optimal solution to LP5 in y-space, the method

proceeds by transforming that solution back into x-space by use of

equation 1.12. Next it defines a new matrix D and iterates until it

reaches the stopping criterion [Ref. 1: p. 14]

(cTxk)/cTx ° ) < 2-q (1.26)

where q is a termination parameter. Note that cTx = 0 at optimality.

Table 1 shows an outline of Karmarkar's basic method.

15



TABLE 1

ALGORITHM 1

Input Problem Size ................ n

Coefficient Matrix......... A
e~T

Cost Function ...............

Initial Feasible Solution ...x

Termination Parameter ....... q

Feasibility Parameter.......

Begin k = 1

x =-X

fo = cTx0

f = 00

r = 1/(n(n-1)) -1/2

While (f/fo > 2 -q)

A D = diag (x)

y = (D-1 x)/(1 TD- x) =
= cTD

B'= [ A D

p= C BT(BBT) - BU

C = cp/[Cp1I

y = y-arc

x = (Dy)/(1TDy)
= T
f c x

k = k + 1

End( While)

End

Output Solution ................... x

Objective Function Value... f
Iteration Count ............ k

S"16
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II. A VARIANT OF THE PROJECTIVE METHOD

A. INTRODUCTION

The following sections outline a variant of the projective method

that was proposed by Wood [Ref. 6]. It has a practical method of

bringing an LP into the canonical form, and uses the non-linear objec-"

tive function of LP3 to find a gradient c' which corresponds to c of

equation 1. 16. Similar to the simplex method, the proposed algorithm

uses a ratio test to determine a feasible step length.

Other practical features of the proposed method include the relax-

ation of the requirement to know the optimal objective value in advance,

and exploitation of sparsity of A. The implementation is especially

concerned with controlling fill-in during the solution of the normal

equations.

B. DERIVATION OF THE MODIFIED ALGORITHM

Given an LP problem of the form LP1, we use a single artificial

variable xn+1 to attain initial feasibility:

Min (C ,M)(XXn+l )

s.t. Ax-(Ax°-b)xn+ 1  = b (LP7)
X,Xn+ 1  > 0

where M is the cost for the artificial variable and x o is the initial solu-

tion with

(X°,x n+l) = 1 T (2.1)

The transformation has added one more column to the problem.

To get a homogeneous right-hand side in LP7 we introduce an

additional variable, and apply the following projective transformation,

whose inverse is given by

17



(XXn+1 ) = (n+2) (x',X'n+1)/X'n+2, (2.2)

S(x',X'n+) = (n+ 2 )(x,xn+l)/(l (X,Xnl)+l) (2.3)

MI. T X (24
n+2= (n+2)/(1 (x,Xn+l)+l) (2.4)

Let the artificial column be denoted by a, i.e. a -(Ax°-b). The

transformed problem can now be restated, with the exception of the

objective function, in Karmarkar's canonical form,

(cT,M,0) (x',Xn+1 xn+2)°- -" Min ,I+2

. n+2

s.t. (A,a, -b) (X',X'n+l,X'n+2) = 0 (LP8)

1T( x ,Xn+l,x'n+2 ) = n+2

(X',X'n+l,X'n+2) > 0.

The above transformation adds yet another column to the problem, but

has the advantage that it doesn't change the sparsity of A, as opposed

to Karmarkar's proposal. Rather than projecting the LP problem onto a

unit simplex, it is projected onto an (n+2)-simplex. This is done to

improve numerical stability.

The projective transformation, equation 1. 12, is applied to LP8

which gives

",' MMin (cTM,0) D(y, yn~l,y+2)/dn+2yn+2

s.t. (A,a,-b)D(y,yn+lyn+ 2 ) = 0 (LP9)
'"( Y+2 = n+2

S "T(y,yn+lyn+ 2 ) _ 2 0

The gradient (compare with equation 1. 16) of the objective function of

LP9, evaluated at the initial feasible starting point y0 =T is propor-

tional to

18
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-F ji

(cld1, .... Cndn, Mdn+l, cTx). (2.5)

The step of normalizing cp in Algorithm 1 is replaced by a ratio

test. Let

jmax = argmax{(cP)j}. (2.6)

This allows the algorithm to make a step outside the inscribed sphere,

,* but maintains feasibility by restricting a solution to lie inside the

simplex. Then, the update of y becomes

'- =Y 1 - PCp/(Cp)jmax (2.7)P'- P p ja

where p is a parameter to maintain feasibility such that O<p<l. Table 2

shows the modified algorithm.

C. THE LINEAR LEAST-SQUARES PROBLEM

Computation of the projected gradient c p during every iteration

accounts for most of the computational workload in any algorithm based

on Karmarkar's method. Solving equation 1.22 can be viewed as solving

the following linear least-squares problem,

Min ( 11c' - BTMI 2)2 (2.8)

where BT is an (n+2)xm matrix with m<(n+2) assumed.

If rank(BT)=m, then the solution to (2.8) is given by the solution

to the system of normal equations

BBT? = Bc' . (2.9)

The projected gradient Cp is then the residual vector of the least-

squares problem (2.8), i.e.,

Cp =c' BTh (2.10)

19
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TABLE 2
ALGORITHM 2

Input Problem Size.....................n

Coefficient Matrix............ A

Cost Function.................. C

Initial Feasible Solution... x0

Termination Parameter......... t

Feasibility Parameter......... P

Be gin

k =1

x = 0

While (f 0  f(x) > t)

D -diag (x)

-o f(x)

y = (n+2)(Dlx)/(Tlx
C' x)( =x

C C'- BT(BBT)-lBc'

3 max -argmax(c )j

= 1 9 C /(Cpja

x - (n+2)(Dy)/( y

k k k 1

End( While)

End

Output Solution........................ x

Objective Function Value ... f

Iteration Count............... k

20



BBT is symmetric and positive definite, given that BT has full column

rank.

As Heath [Ref. 7: p. 499] points out, the ideal choice for solving

the normal equations, given full rank, is Cholesky factorization. If BT

is not of full column rank the cross-product matrix will be singular and

(BBT)-1 ceases to exist. BBT could become nearly singular if BT is

near rank degenerate. Shanno [Ref. 5: p. 25] shows that this will

happen if the optimal solution is degenerate, i.e. as the optimum is

approached numerical problems arise and Cholesky factorization is likely

to fail.

One problem that cannot be avoided when solving the normal equa-

tions is the fact that the P-condition number of BBT is the square of

that of BT [Ref. 8: p. 223], so that when BT is already ill-conditioned

it may be impossible to find an accurate solution to equation 2.9.

Another important consideration when computing BBT is that the

sparsity in BT will not automatically guarantee sparsity in BBT. In

fact, the addition of variables in LP7 and LP8 has added two possibly

dense bottom rows into BT. Thus, BBT will be completely dense.

However, one can cope with that by initially omitting the dense rows in

BT from the computation of BBT, and later updating the solution to
equation 2.9 using procedures similar to the ones described in

[Ref. 9: p. 58-65].

D. IMPLEMENTATION

Algorithm 2 has been implemented in FORTRAN H (Extended)

Opt(2) on an IBM 3033 AP under VM/CMS. All floating point arithmetic

is performed in double precision. The program is designed to accept
- -different solution modules from available software packages for solving

the linear least-squares problem.

Input data sets are in standard MPS format. The numerical v-"lues

of the non-zero elements of the constraint matrix A are stored column-

wise in a real array. For versatility a full set of pointers are defined:

. 1. IC column index

2. R row index

21
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3. AP location of first non-zero element in a column

4. RP location of last non-zero element in a row

5. LINK location of next non-zero element (backwards)

in a row.

Brameller, Allan and Hamam [Ref. 10: p. 104-110] give a comprehensive

discussion of sparse storage schemes.

The transformation of an LP problem into the canonical form adds

one dense row and two dense columns to the A matrix. The dense row

originates from the convexity constraint equation 1.1, the first dense

column stems from the single artificial variable that is needed to attain

initial feasibility, and the second dense column is added to make the

system of equations homogeneous (see LP8). The artificial column is

updated with the residual of the current solution as long as the total

infeasibility is above a specified threshold.

As mentioned earlier, dense rows in BT yield BBT completely

dense. With the following method, this problem can be alleviated. The

method applies to any number of dense rows in BT but in this study

we are only concerned about two dense rows, namely the ones that

result from the transformations that are performed to get from LP2, to

*. LP8 via LP7. Consider the projection problem of equation 1.16 in the

following form,

Mill ( [[' - c p 12)2 (2.11)

s.t. Bcp 0

Replace cp by z, and let

B = (B 1 ,B 2 ) (2.12)

c' (c' 1 ,c' 2 ) (2. 13)

Z = (Z1 , Z2 )
T  (2.14)

22
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where B1 is an (mxnl), B 2 an (rmxn 2 ) matrix, and n 2 is the number of

dense columns in B. Equation 2.11 now becomes

Min ( 11c' 2  Z2 11 2)2 + (1 c' 1  - Z1 11 2)2 (2.15)

s.t. Bz 1 =-B2z 2

and when separated, 2.15 becomes

S (IIC' 2  z2 11 2) + Mi C'l - z11 2)(2.16)'- .Min z 1

z2:', s.t. Bl 1z = -B2z 2

Solving the inner minimization first, the Kuhn-Tucker conditions yield

, ,c '1  - z 1  i T A ( 2 . 1 7 )

and

Bl 1z -B 2 z 2  (2.18)

Multiplying 2.17 with B 1 we get,

B.c. - B l1z = BiB1 T x . (2.19)

Substituting 2.18 into 2.19 gives

+Bc B2 z 2 = B1 B1TA' (2.20)

Let \ 0 solve

B = BIB 1 T (2.21)

and let A_ solve

(B2) j  B 1 B 1T , j = 1...,n 2  (2.22)

23
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. where (B 2 ) j is the j-th column of B2 , then 2.22 corresponds to solving

"' 'p'the matrix equation system

, B2 = BIBT A (2.23)

where X is an (mxn 2 ) matrix. Then, the solution to \ for the inner

minimization is,
p- ,,,

. = A0 + Az 2 . (2.24)

Substituting 2.24 into 2.17 gives
%rr rr
: BT ITA (225)

- Zl B X 0  B, z 2

To simplify notation, let h = B1T 0 and H = BTX

S- - Then equation 2.25 becomes

z 1 c' h - Hz 2  (2.26)

Substituting 2.26 into 2.15, the overall minimization then becomes

Min (I c' 2  z2 11 2 + (I1 h + Hz2 I1 2)2 (2.27)

z2

which is a simple least-squares problem. The first-order Kuhn-Tucker

optimality conditions yield,

c (I HTH)z2 (2.28)
hTH G ,H

which gives, solving for z2,

z2 = (I + HTH)-l(c' 2 - hTH) (2.29)

With the solutions to 2. 29 and 2. 26 we have the desired result,

cp = z = (Z,Z 2 )T (2.30)[ p 24



In practice the following procedure is followed:

- 1. compute BIB1 T

2. factor BIB 1
T , e.g. using Cholesky factorization

3. solve BIBITA = BITcY1 , the solution is A

4. compute h = BI A O

5. solve B1 B1 T\ = (B2 )1 , the solution is A1

6. solve BIBIT ? = (B2)2  the solution is A2

7. compute H = BITA

8. compute (I + HTH)-, (note that HTH is a 2x2

matrix if there are 2 dense rows in BT)

9. compute (c'2 - hTH)

10. compute z2

11. compute z1

The given procedure is efficient since the factorization of BBT is

- computed only once and the same system is solved three times using

- different right hand-sides each time.

- As a stopping criterion for the algorithm the following rule is

-.f used,

IF argmax (Ixk xj k-1) t STOP , (2.31)

where t is a real constant. The convergence criterion

T( Cp /C < t (2.32)

mentioned by Lustig [Ref. 4: p. 12] can also be used to terminate the

,.2 algorithm.
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III. SOLVING THE LINEAR LEAST-SQUARES PROBLEM

A. INTRODUCTION

In this study, the linear least-squares problem is solved by

explicitly computing and solving the normal equations. Although the

normal equation approach experiences problems when applied to ill-

conditioned or near rank deficient matrices, it behaves acceptably with

sparse and well-conditioned matrices [Ref. 11].

The numerical methods for solving normal equations generally fall

into two classes, direct and iterative methods. One representative of

each class is considered in this study. Little can be said as to which

class of methods is better, except that direct methods are more attrac-
tive in terms of computational work, and iterative methods may require

less storage [Ref. 12: p. 11].

B. CHOLESKY FACTORIZATION

The method implemented is given in George and Liu [Ref. 12], and

uses Cholesky factorization with a minimum-degree ordering to solve a

large sparse positive definite system of equations. Since BBT is o,:-y

guaranteed to be positive semidefinite, a modification to the Cholesky

factorization algorithm is considered in Chapter IV.A.3. to accommodate

the semidefinite case.

The minimum-degree algorithm is a reordering heuristic which

attempts to reduce fill-in during the factorization phase. The reordering

phase is entirely symbolic; it amounts to a symmetric row and column

permutation of BBT which corresponds to reordering the columns in

BT. During this phase, BBT doesn't have to be computed numerically;

only its structure has to determined. Also, the factorization is first

performed symbolically, thus allowing a static data structure for the

Cholesky factor L. An outline of the phases of the algorithm is given

in Table 3. See also Heath [Ref. 7: p. 499].
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TABLE 3

I .MINIMUM-DEGREE ORDERING / CHOLESKY FACTORIZATION
ALGORITHM (MDOC)

1. Determine the nonzero structure of BBT.

2. Find a permutation matrix P such that PBBTPT

has a sparse lower triangular Cholesky factor

L.

3. Factor PBBTPT symbolically and set up the data

structure for L.

4. Compute PBBTPT numerically.

5. Factor PBBTPT = LLT numerically.

6. Solve Lz = PBb' (back substitution).

7. Solve LTy = z (forward substitution).

8. X T

I. The Minimum-Degree Ordering Heuristic

The heuristic finds an ordering of a symmetric matrix such

that fill-in is low when the matrix is being factored. The basic idea is,

at each (simulated) factorization step, to permute the part of BBT

remaining to be factored so that a column with the fewest nonzeros is in

the pivot position. The implementation consists of six subroutines that

are given in George and Liu [Ref. 12: pp. 124-137]. The subroutines

accept as input the adjacency graph associated with BBT represented

by an adjacency structure, and ieturn as output a symmetric permuta-

tion of BBT given as a permutation vector for the columns of BT.

Let G=(X,E) be the adjacency graph of BBT, where X is

the set of nodes, and E is the set of edges. Then, the nodes corre-

spond to the variables of the least-squares problem, i.e. the columns of

BT. Two nodes x and y are said to be adjacent if (xy} is an edge in

E. The adjacent set of Y, YcX is defined and denoted by

.7
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Adj(Y) (x E X-YI(x,y)EE for some yEY). (3.1)

An adjacency list for xEX is a list of all nodes in Adj((x)).

Finally, an adjacency structure for the graph G is the set of adjacency

lists for all xEX [Ref. 12: pp. 37-41]. The particular adjacency

structure used in the ordering heuristic stores elements in each adja-

cency list in contiguous locations. An entry point array to the first

element in each list allows access to the list.

The ordering heuristic is based on graph theory, and involves

the notion of elimination graphs, quotient graphs, reachable sets and

indistinguishable nodes. George and Liu [Ref. 12: pp. 92-124] may be

consulted for more details.

2. Factorization and Solution

The components of the lower triangular Cholesky factor L of

BBT are computed using the so called "inner product form" algorithm

[Ref. 12: p. 20]. The elements of L are given by,

jj= (e - k)  for j1,2 ... m (3.2)

lij= (eij - / ik Ljk)ljj for i=j+l,j+2,. .. ,m (3.3)

where the ei3 are the elements of BBT.

After the factorization has been computed, the following two

linear systems have to be solved (see also Table 3):

Lz Pb' (3.4)

and

LTy=z (3.5)
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Solving system 3.4 by back substitution involves the use of "inner

products" [Ref. 12: p. 25], defined by

zi  (b' I - likxk)/lii for i=1,2, ...,m (3.6)

where b'i stands for the i-th element of the right-hand side of (3.4).

For this case L must be accessed row-by-row.

System 3.5 is solved by forward substitution using "outer

products" [Ref. 12: p. 26], defined by

Yi =  zi/lii for i=1,2,...,m (3.7)
• ~(Zi+l,..,Zm) <- (Zi+l,..,Zm) - Yi(li+l,i ....Im,i)•

For the latter case, LT must be accessed row-by-row, or L column-by-

column instead.

C. INCOMPLETE CHOLESKY FACTORIZATION

This method is an implementation by Ajiz and Jennings [Ref. 13] of

the incomplete Cholesky conjugate gradient algorithm (ICCG), whose

theory is given in [Refs. 14,151. The algorithm requires that the
coefficient matrix of a set of simultaneous linear equations be symmetric

and positive definite. It consists of two distinct parts, one being the

Cholesky factorization, which can be complete or incomplete, and the

other a conjugate gradient iteration to solve a preconditioned linear

system, where the Cholesky factor serves as the preconditioner.

Golub and Van Loan [Ref. 16: pp. 373-377] point out that precon-
ditioning is essential for obtaining good convergence rates with conju-

gate gradient methods. The convergence rate is closely linked to the

P-condition number, which is the ratio of the largest to the smallest

eigenvalue. It was mentioned earlier that the condition number of BBT

will be the square of the one of BT. Ill-conditioned problems have

large condition numbers, an~d hence slow convergence. Preconditioning

is a process of transforming a linear system so that its P-condition

number is improved [Ref. 17: p. 979].

219
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Consider again the original linear least-squares problem (2.9) with

a generic right-hand side b and x the unknowns,

BBTx b. (3.8)

Then, equation 3.8 can be preconditioned with a transformation matrix

L giving

L-1BBTL-Tx = L-lbt, (3.9)

or

L- 'BBTL-Ty =b, (3.10)

where y = LTx and b = L-lb'. According to Ajiz and Jennings

[Ref. 13: p. 950] the ideal choice of transformation matrix L is the

Cholesky factor of BBT since

L-lBBTL - T = I , (3.11)

provided one could perform exact arithmetic.

The objectives of the incomplete factorization phase of the algo-

rithm are to transform BBT as close as possible to I, and to reduce

fill-in in the factor L. This is accomplished by discarding some off-

-: diagonal coefficients during the factorization, whose magnitudes fall

*. ... below a preset threshold limit. The result of this operation is an incoin-

plete Cholesky factor L that must satisfy

BBT LLT - C (3.12)

where C is the matrix of elements omitted from the factorization.

Unfortunately, omission of elements from the factorization process can

destroy the positive definiteness property and hence lead to a break-

down of the process. Ajiz and Jennings [Ref. 13: pp. 950-951] have
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shown that introducing diagonal modifications in C will retain the posi-

tive definiteness property. The matrix C will be symmetric and will

have diagonal elements that are greater than or equal to zero. Thus, C

is a positive semidefinite matrix. Assuming BBT to be positive definite,

adding C will result in LLT also being positive definite.

Convergence of conjugate gradient iterations is only guaranteed

for the positive definite case. Thus, a modification to adapt the

Cholesky factorization to the positive semidefinite case as with the

direct method may cause slow convergence. The modification is consid-

ered in Section IV.A.3. Table 4 gives an outline of the ICCG

algorithm.

TABLE 4

INCOMPLETE CHOLESKY - CONJUGATE GRADIENT (ICCG)
ALGORITHM

1. Obtain L, an incomplete Cholesky factor of BBT.

2. Solve Lb = b' for b by forward substitution.

3. Solve L" BBTL-Ty = b for y by conjugate

gradient iteration.

4. Determine x by back substitution in LTX - y.

1. The Incomplete Factorization

The procedure presented here is given in Ajiz and Jennings

[Ref. 13: pp. 951-952], and Jennings and Malik [Ref. 14: pp.

310-313]. To see how the elements in column j of L are computed

consider the following. From matrix equation 3.12 a typical elemental

equation may be written as

I lij eij cij - i 1021) (3.13)
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where the subscripts for elements 1 refer to their positions in the lower

triangular factor L, and the eij are the elements of BBT. Let

e ij eij - 1 (3.14)

" Then, assuming the elements of L have been computed for columns 1 to

(j-1), all the e in column j can be computed. First consider the case
where all th e ij pas the rejection test, i.e., are to be retained.

Hence, by setting ci.=O in equation 3.13, we get

lij =e ij/l jj (3.15)

In case any e is to be rejected, 1 is set to zero, implying cij=-e ij"

The off-diagonal term cij implies diagonal additions cjj and cii to the

matrix C in order to have the positive semidefinitness property. The

matrix C doesn't have to be stored in memory; only the diagonal addi-

tions cjj are of further interest.

* Before any lij can be computed, ID has to be determined. With

all the diagonal additions c3j that resulted from rejections of e ij during

the computation of columns 1 to (j-1), an expression for Ij becomes
Ji

rn j (k)) 1/2 
( .6

ljj (e jj + I (3.16)

where e ji is defined by

,:, -* j-i
e jj ejj + X c..(k) - li , (3.17)

Pand c(k) is the diagonal addition to cjj resulting from deletion of e kj'
and c.. k) the diagonal addition to cii resulting from deletion of e"ik
adioldiotc

The rejection operation tests the magnitude of an element e"'.

in relation to the current values of the corresponding diagonal elements

*,-. jj and eii respectively, whose values are given by

ejj e.j + jj cjj(k) , (3.18)

I32

=_% °32



* . . . . . . .

where the index k refers to the rows for which rejections in column j
have had a bearing on ejj, and

eii = eli + Y  cii(k) (3.19)

In equation 3.19, k refers to the columns for which rejections in row i

have had a bearing on ei. An element e ij is rejected if

e ij < 12 ejjii (3.20)

where 4, is the preset rejection parameter. A choice of 4=0 will retain
all elements, thus leading to a complete Cholesky factorization. A choice

of p=1 will cause all off-diagonal elements to be rejected. Ajiz and

Jennings [Ref. 13: p. 952] recommend that the rejection parameter be

in the range 0.01<%<0.2 for effective incomplete factorizations.

The diagonal modifications in C which result from the rejection

of an element e ij are given by

cjj = e'"kj,(jj/5-k) (3.21)

and by

cii(k) 1ekI(eii/2kk)1 (3.22)

With the successive application of equations 3.14 in conjunction with the

rejection operation, 3.17, 3.16 and 3.15, all elements in column j of L

are determined.

2. The Conjugate Gradient Iteration

The conjugate gradient method of Hestenes and Stiefel

[Ref. 18] is applied to matrix equation 3.10. It uses the following

vectors, the letter k indicates the k-th iteration,

a) p(k) conjugate gradient vector

b) r(k) residual vector

33

.- ,...., h . . . ' . *. . . . . .. . . . .. . . . . ...AL



C) Y(k) solution vector

d) u(k) product of L-IBBTL
"T and p(k)

The initial values for k=O are y(O) = 0 and p(O) O)= b. The algo-

rithm for one iteration is as follows

u(k) = LlBBTLrTp(k)

CL = (r(k))Tr(k)/(p(k))Tu(k)

-(k+l) = y(k) + kp(k)

r(k+l) = r(k) _ ku(k)

9k  = (r(k+l))Tr(k+l)/(r(k))Tr(k)

S(k+l) = r(k+l) + Pkp(k)

The first step in the above algorithm is obtained without computing the

transformed matrix explicitly by the following three operations,

1. LTv(k) = p(k) (back substitution)

4, 2. W(k) = BBTv(k) (pre-multiplication)

3. Lu (k ) = W(k) (forward substitution).

The algorithm is terminated when

ir(k) Ibl < tolerance (3.23)

- where b equals the starting residual r(0 ) since y(O) was chosen to be

zero.
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IV. MODIFICATIONS AND COMPUTATIONAL RESULTS

-A. ALGORITHMIC MODIFICATIONS

1. Iterative Improvements

A provision to improve the solutions to equations 2.21 and

2.22 has been implemented, because their residuals are often unduly

high. The residuals are computed as

r = B1B 1 T T- b', (4.1)

where X stands for Ao, A, and X2 respectively and b' is generic for

B1Tcl' , (B 2 )1 and (B 2 )2 .

If Iri[> e for some i, where e is set to, say, 10-6, the

following systems are solved for X'

BB = -r. (4.2)

An improved solution is then obtained by adding X and X'

B 1B1T( A+ A') = r+b'+(-r) b'. (4.3)

The improvement can be repeated if the residuals of equation 4.3 are

still found to be too high. With this modification the direct method

(MDOC) has become a semi-iterative method.

2. Removal of the Artificial Column

The update of the artificial' column with the residuals of the

current solution

A(x',X'n+i) - bx'n 2  r (4.4)

Ax(k) b - Ax(k - l) - b - r/X'n+2 (k) (4.5)
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on each iteration has been augmented, such that the artificial variable

can be deleted from the problem when the infeasibility becomes small.

After the deletion, only one dense column remains in B, and the solu-

tion of the least-squares problem is simplified. The motivation for this

modification is to avoid some of the numerical problems that arise from

variables that approach zero.

3. Positive Semidefinite BBT

It can be shown that if, and only if a diagonal element ever

goes to zero in a Cholesky factorization, BBT is positive semidefinite,

not positive definite. Furthermore, all elements below the zero diagonal

element must also be zero and a nonunique solution to the normal equa-

tions can be obtained by setting the corresponding Xi to 0. This solu-

tion can be obtained by replacing the zero diagonal element with any

positive value and continuing with the factorization. Restated, if a

diagonal element l. in the partially computed Cholesky factor is less

. than or oqual to 10-6, set l, and lij=O for i=j+lj+2,...,m in equa-

• " tions 3.2 and 3. 3 respectively. This procedure is also useful to deal

with numerical problems which arise from degeneracy near optimality.

4. Weighted Homogeneity Variable

The initial solution (y°,y n+1,y n+2) 1 used to begin the

projective algorithm is arbitrary, and in some sense, the "homogeneity

variable" y0n+2 is fundamentally different than the other variables.

Consequently, a modification has been made to allow weighting the

starting solution Y n+2 differently from the other y0 i, i=1, .. . ,n+l. Let

0 s With 1TyO=n+2, the other y0 i are set equal,

"y i  = (ri 2-s)/(n~l), i=l,...,n~l. (4.6)

It is hoped that such a weighting might lead to lower iteration counts.
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B. TEST PROBLEMS AND COMPUTATIONAL RESULTS

At first, a small test problem (TEST1) was used to verify the

correctness of the source code. The two algorithms were then tested on

seven problems which have been also used for testing by Lustig

[Ref. 4: p. 19]. Table 5 shows some of the characteristics of the test

problems.

TABLE 5

TEST PROBLEMS

Name Rows Columns Logicals Nonzeros Density

TEST1 6 2 6 10 0.833

AFIRO 27 32 19 95 0.103

ADLITTLE 56 97 41 522 0.096

SHARE2B 96 79 83 901 0.119

ISRAEL 174 142 174 2529 0.102

BRANDY 193 249 54 2204 0.046

E226 223 282 190 2578. 0.041

BANDM 305 472 0 2659 0.018

Table 6 summarizes the computational results. All CPU times

represent the time in seconds to set up the .major part of the data

structure, solve the LP, and write out a few parameters on each itera-

tion and the solution. Times to read in the data from NIPS format are

not included.

The convergence criterion equation 2.31 is used with t=0.05 for all

test problems but TEST1 and SHARE2B, where t=0.001 and t=0.01

respectively. No solutions have been obtained for the problems AFIRO,

BRANDY and BANDM: the algorithm will not converge to the optimum.

The feasibility parameter p (equation 2.7) is set to 0.9995, giving

the best overall performance of the algorithm. Tests with p=0 . 9 9 9 9 and
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p=0. 9 9 9 9 9 on the data sets TEST1 and SHARE2B, indicate that with

these higher values the number of iterations necessary to attain feasi-

bility is reduced, but the total number of iterations remains about the

same. In addition, the accuracy of the solutions deteriorates.

An intermediate solution is declared feasible, i.e. the artificial

variable is removed from the problem, as soon as xn+lM is less than

* 10-1. The choice of 10- is arbitrary, and depends on the value of the

optimal solution. Using alternate values of 1.0 or 10-2 makes little

difference in the number of iterations necessary to attain feasibility.

TABLE 6

COMPUTATIONAL RESULTS

MDOC ICCG

Problem Iterations Time Iterations Time

feasible optimal feasible optimal

TESTi 1 6 0.03 1 6 0.04
I ADLITTLE 13 21 1.96 13 21 2.18

SHARE2B 6 27 5.04 7 37 5.31

ISRAEL 19 98 311 19 89 347

E226 8 49 107 9 49 130

Factorization failures plagued both algorithms before the modifica-

tion to accomodate a semidefinite BBT was implemented These failures

occured near the optimum, e.g. E226, or with the ICCG algorithm when

setting the rejection parameter to a value greater than zero. After

implementing the semidefinite modification these factorization problems

have been cured, but the ICCG algorithm now shows very slow conver-

gence. For example, a solution to SHAR-E2B is obtained only after

112.36 CPU seconds with %P=0.015 and all other parameters unchanged.

Thus, because storage is not at a premium, only complete factorizations
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are used. Satisfactory numerical results with the incomplete factoriza-

tion are obtained only with the trivial test problem TEST1; computation

times are always inferior.

The minimum-degree ordering works very well in practice.

Computational cost seems to be moderate, e.g., 0.25 seconds for

SHARE2B, and 3.12 seconds for BANDM. Table 7 gives densities of

BBT and the Cholesky factors with and without reordering. Substantial

reductions in storage requirements were achieved when doing the

reordering.

TABLE 7

DENSITIES

Re-ordered Not re-ordered

Nonzeros Nonzeros Nonzeros

Name in BB T Density in L Density in L Density

TEST1 20 0.952 20 0.952 20 0.952

AFIRO 62 0.177 107 0.305 194 0.553

ADLITTLE 384 0.241 411 0.258 816 0.512

SHARE2B 871 0.187 1021 0.219 1134 0.243

ISRAEL 11227 0.737 11433 0.751 13743 0.903

BRANDY 2853 0.152 3429 0.183 9760 0.521

E226 2823 0.113 3639 0.146 10735 0.430

BANDM 3724 0.080 4660 0.100 32090 0.688

The densities and number of nonzeros in L or BBT are relative

to a symmetric half of a matrix; the diagonal elements are not

included.

Computational results indicate that iterative improvements are not

always an absolute necessity. Residuals of a current solution tend to be

high at the start of iterations, probably due to a less than optimal
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choice of M. Doing a few (2 or 3) iterative improvements at this stage

stabilizes the computations until the algorithm gets close to the optimal

solution. Numerical problems near the optimum are so severe that even

allowing a prohibitively high number like 25 iterative improvements has

no apparent influence on the quality of the solution.

The mildest form of numerical difficulty near the optimum is slow

convergence, e.g. ISRAEL and E226. For SHARE2B, a high quality

solution is obtained with no numerical difficulty. This data set is chosen

to test the weighted homogeneity variable modification. S is given

several values in the range 1 to 100. Iteration counts range from 25 to

37. The quality of the solutions is sometimes reduced, however. Only

s=35 (27 iterations) and s=50 (28 iterations) give high quality solutions

with low iteration counts. Values of s greater than 75 creat conver-

gence failures.

C. CONCLUSIONS

The low iteration counts for some of the test problems are prom-

ising, although CPU times seem to tell the difference. These high CPU

times result from test problems having slow convergence near the

optimum, which is believed to be due to many variables going to zero.

Thus, a technique to drop variables going to zero from the LP could

well speed up convergence.

The ICCG algorithm does not perform very well onl thle test prob-

lems. Computational results are generally inferior to those obtained

with the MDOC algorithm. Thus, no further research into this method

seems warranted.

In view of the numerical problems encountered when solving the

least-squares problem with the normal equations approach and Cholesky

factorization, another method that does not use square roots should be

considered for implementation. A very promising candidate in this

respect is Givens rotation. See Gentleman [Ref. 19] and George and
-

Heath [Ref. 20].
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