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ABSTRACT

Evidence is presented for the presence of a "shakedown"
satellite near threshold in the C(KWI Auger spectrum of
graphite. Its origin is shown to be an electron in a
relatively long-lived valence/core excitonic level
(populated as a result of dynamic core-hole screening) which
participates in the Auger decay. Modeling the shakedown
contribution considerably improves agreement in the
threshold region between the experimental lineshape and a
simple one-electron model.

aSupported by -he U. S. Dept. of Energy under contract number

DE-AC04-76DF00789.

bSupported by the Office of Naval Research.

: -1-



N

Auger lineshapes are usually interpreted in the context

of a two-step.model involving the creation of a fully-

relaxated core-hole state followed by Auger decay from this

state [1]. However upon creation of a core hole, the

dynamic screening response can lead to shakeup or shakeoff

processes leaving locally excited core-hole states. Auger

decay involving these states can result in intenrity above

or near the high-energy threshold giving rise t.c features

known as "shakedown" satellites; their presence indicating a

breakdown of the two-step model. Here we pre',ient evidence ,

for a relatively long lived valencelcore excitonic state

which produces shakedown structure in the C(KW) lineshape

of graphite.

Figure la shows the C(KiW) lineshape from amorphous

graphite after careful data reduction. An extensive

discussion of the sample preparation, data acquisition, and

data manipulation is presented elsewhere (2]. The

experimental lineshape is compared to a model consisting of

the self-fold of the empirically deterlimed graphite one-

electron density of states (DOS) modulated by symmetry-

determined, atomic Auger matrix elements E21. Significant

differences between the lineshapes are apparent with the

model missing intensity near threshold (284.6 eV) and in the

region below the principal maximum (-265 eV). The
differences in the region below the principal maximum are

discussed elsewhere E23 and are effectively independent of

those near the threshold.

To establish that Intensity near the threshold results

from a shakedown mechanism, we will show that shakeup into a

relatively long-lived state occurs simultaneously with the

C(ls) hole creation in graphite and that this can produce

Auger intensity of the proper lineshape and energy.

The existence of a core-excitonic state in graphite has

been established using Electron Energy Loss Spectroscopy " ',

(EELS) E33. It exists in the presence of the core hole and

can be resonantly populated to reveal a sharp set of levels
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centered -1.0 eV above the Fermi level (FWI* -1.0 eV).

Auger decay from this state could lead to intensity in the

threshold region but the lineshapes resulting from

excitation by electrons (which can give rise to resonant

pumping as seen in the EELS results (33) and nonresonant ' ,

photons (negligible resonant pumping) are identical (23.

The contrast between electron and nonresonant photon

excitation is often used to identify the shakedown

contributions in Auger E43. With a measured lifetime

broadened width of -1.0 eV, the core exciton apparently is

too short lived to participate significantly in the Auger or

X-ray Emission Spectroscopy (XES) decay process whose

lifetime widths are 0.06 and 0.0002 eV, respectively (53.

X-ray Photoemission Spectroscopy (XPS) data involving

the C(1s) excitation (63 reveals a Doniach-Sunjic (73

lineshape indicating significant valence electron-hole pair

formation during core hole creation. This distorted

lineshape is suggested to arise from shakeup of valence

electrons into an excitonic level just above the Fermi level

[63. In contrast to the core exciton, this state contains

4 two positive holes -- one in the core level and one in the

valence band -- and an electron in an excitonic level [63.

We refer to this excited configuration as a valence/core

excitonic state and we will show that it does contribute to

the Auger process.

The shakedown intensity was modeled by assuming that the

valencelcore exciton had p symmetry and could be represented

as a delta function at the Auger threshold energy. Its

effective electron occupancy was then varied to obtain a

"best fit" to the leading edge of the experimental

lineshape. The distribution of electrons excited from the

valence band was assumed to be broad and featureless and to

leave the shape of the DOS unchanged. With these

assumptions, the shakedown contribution to the model

lineshape consists of a convolution of the delta function at

the threshold energy (two final-state holes in the excitonic

-3-
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level) and a convolution of the delta function with the

total DOS (one final-state hole in the valence band and one

in the excitonic level). The former contribution will be

shown to be sufficiently small so as to be ignored.

Inclusion of the latter contribution with the one-

electron model is shown in Fig. lb where excellent agreement

with the experimental spectrum in the threshold region is

apparent. The function used for the total shakedown

contribution, A(v/c), is given by,

A(v=c) 2 B n (P 8 a + P ( A o ) (1)
A v/c ksp p s kpp p p p p

where Pksp and Pkpp are the Auger matrix elements, n;/c is

the initial occupancy of the valencelcore excitonic level,

BA is the Auger branching ratio, a., Op, and v are the

occupied partial DOS, & indicates the excitonic state
p

having p symmetry and located at the Auger threshold (284.6

eV), and "*" denotes convolution E23. Since the width of

the DOS is broad, the model is not very sensitive to the

precise position of the delta function (t 0.5 eV). From

Fig. lb, the relative intensity of the shakedown

contribution compared to the total C(KW) intensity is about

7%. The total C(KW) intensity is estimated to be -15 
2

E23 while the parameters of eq. 1 yield an estimated

intensity of 10 nvlc BA e2 . Therefore, relative to the

total intensity, the effective electron occupancy of the

valence/core excitonic state is given by,

n,*/c BA = 0.11. (2)

The branching ratio in eqs. I and 2 takes into account

the percentage of electrons In the valence/core excitonic

state that decay by an Auger event and is determined from

the relative lifetimes of these two processes by the

expression,

-4-
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S=W /(W + (31ABA v/c v/c + C )  c c "V/c

where Tv/c (Wv/d) and -c (Wc) are the lifetimes (lifetime

broadened widths) for the valence/core excitonic state and

the core-hole state, respectively.

The initial occupancy for the valence/tore exciton can

be estimated from the measured C(ls) lineshape C6].

Modeling the undistorted core-level lineshape by a
Lorentzian based on the shape of the high-energy side of the

experimental spectrum, we can subtract the model from the

distorted spectrum and compare the resulting area with that 4.,j>

of the total spectrum. This results in an estimated initial

occupancy ratio of -0.5 which represents the fraction of XPS

events occurring in the presence of a valence/core exciton

(i.e., no) giving an Auger branching ratio of 0.22. Thev/c
core-hole lifetime width is 0.06 eV E53 requiring, from eq.

3, a valence/core lifetime width of 0.21 eV. Although this
is twice the width estimated in ref. 5, the agreement is
sufficiently close (given the model dependence in both) to

establish a connection between the two different

measurements of the same excited state. The increase in

lifetime of the valence/core excitonic state compared to the ....

core exciton presumably is due to the enhanced local bonding

resulting from the valence hole present in the former

configuration.

Since the Auger yield for carbon is near unity [53, and

the core hole and valence/core exciton lifetimes are

comparable, the valence/core exciton is expected to

participate in the Auger process but not in the slower XES

process. This fact makes it possible to distinguish the

valence/core contribution to the Auger llneshape as the

difference between the model (which was determined in part

from XES data) and the experimental lineshape in Fig. la.

The experimental Auger spectrum has no detectable sharp

feature near threshold indicating that the probability of a

two-hole final state in the valence/core excitonic level is

01
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low. An effective occupancy of 0.11 electrons in thit level

would give an intensity ratio of only 2% between the Auger

feature resulting from both holes compared to one hole in

this state (which is itself only 7% of the normal Auger

intensity). These two Auger final states are expected to

have a quadratic and linear dependence on the valence/core

exciton occupation, respectively. Both of these transitions

are observed in donor intercalated graphite (8] and they
show the expected linear and quadratic variation.

Alternate mechanisms could produce Auger intensity near

the threshold region. Such a feature in the L 3 W lineshape

for Ti and V has been attributed to Initial-final state

nonorthogonality [93 and negative hole-hole correlation

E103. For graphite these effects can be ruled out since our

DOS were determined empirically (if present.

nonorthogonality is already included in our model lineshape)

and only positive values of U have been observed E2].

Static initial-state screening, which could also produce

intensity in this region, has been shown to have a

negligible effect on our model lineshape E23.

In summary, evidence has been presented for the presence

of a shakedown contribution near the threshold energy in the

C(KVV) Auger lineshape of graphite. On the basis of

supporting evidence from EELS, XES, and XPS measurements,

this shakedown structure is shown to result from dynamic

core-hole screening involving valence electrons excited into

an excitonic state in the presence of a core hole, i.e., a

valence/core exciton. Although the nature of the excited

core-hole state which results from dynamic core-hole

screening will vary from material to material, we feel that

contributions to the threshold region of the Auger lineshape
from such states will occur in a broad range of materials.
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FIGURE CAPTIONS

Fig. 1 (a) A comparison of trne loss-deconivoluted
experimental Auger litrleshape (23 for POCO
graphite (solid) with a model 1±neshape (daehed)
calculated as the self-convolution of an
empirical DOS. The threshold level at 284.6 eV
(the C(ls) binding energy) is indicated by the
vertical line.

(b) A comparison of the experimental lineshape
(solid) with the model (dashed) obtained above
but now including the shakedown contribution
(dotted) from the valence/core exciton le~vel
whose effective occupation is 0.11 electrons.
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