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¥ ABSTRACT o o -
i d ‘

+ Evidence {s presented for the presence of a "shakedown"”

satellite near threshold in the C(KVV) Auger spectrum of

. graphite. 1Its origin is shown to be an electron in a

. relatively long-lived valence/core excitonic level

< {populated as a result of dynamic core-hole screening) which

participates in the Auger decay. Modeling the shakedown
contribution considerably improves agreement in the

- threshold region between the experimental lineshape and a
simple one-electron model.

3supported by :he U. S. Dept. of Energy under contract number ' i
DE-AC04-76DF00789.

bSupported by the Office of Naval Research.
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Auger lineshapes are usually interpreted in the context e
of a two-step.model involving the creation of a fully- e

relaxated core-hole state followed by Auger decay from this fo~;1 ffuu:1
state [11. However upon creation of a core hole, the R R
dynamic screening response can lead to shakeup or shakeoff ' G 5 f{j
processes leaving locally excited core-hole states. Auger Lo -_~i5f3ﬂ

decay involving these states can result in intensity above
or near the high-energy threshold giving rise .c features
known as “"shakedown" satellites; their presence indicating a
breakdown of the two-step model. Here we pre:sznt evidence
for a relatively long lived valence/core excitonic state
which produces shakedown structure in the C{KVV) lineshape
of graphite. -

Figure la shows the C(KVV) lineshape from amorphous
graphite after careful data reduction. An extensive
discussion of the sample preparation, data acquisition, and

data manipulation is presented elsewhere [(2]. The
experimental lineshape is compared to a model consisting of
the self-fold of the empirically determimed graphite one-
electron density of states (DOS) modulated by symmetry-
determined, atomic Auger matrix elements (21. Siqgnificant e -
differences between the lineshapes are apparent with the TR
model missing intensity near threshold (284.6 eV) and in the
region below the principal maximum (~265 eV). The
differences in the region below the principal maximum are
discussed elsewhere [2] and are effectively independent of

those near the threshold. . ' ‘

To establish that intensity near the threshold results ’ )
from a shakedown mechanism, we will show that shakeup into a _- i St
relatively long-lived state occurs simultaneously with the
C(ls) hole creation in graphite and that this can produce
Auger intensity of the proper lineshape and energy.

The existence of a core-excitonic state in graphite has
been established using Electron Energy Loss Spectroscopy
(EELS) £3]. 1t exists in the presence of the core hole and
can be resonantly populated to reveal a sharp set of levels
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centered ~1.0 eV above the Fermi level (FWHM ~1.0 eV).
Auger decay from this state could lead to intensity in the
threshold region but the lineshapes resulting from
excitation by electrons (which can give rise to resonant

punping as seen in the EELS results [£3]1) and nonresonant
photons (negligible resonant pumping) are identical [2].
The contrast between electron and nonresonant photon
excitation is often used to identify the shakedown
contributions in Auger [4]. With a measured lifetime
broadened width of ~1.0 eV, the core exciton apparently is
too short lived to participate significantly in the Auger or
X-ray Emission Spectroscopy (XES) decay process whose
lifetime widths are 0.06 and 0.0002 eV, respectively (S5].
X-ray Photoemission Spectroscopy (XPS) data involving
the C(ls) excitation [6] reveals a Doniach-Sunijic C71
lineshape indicating significant valence electron-hole pair
formation during core hole creation. This distorted
lineshape is suggested to arise from shakeup of valence
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electrons into an excitonic level just above the Fermi level
€6l1. In contrast to the core exciton, this state contains
two positive holes -- one in the core level and one in the
valence band -- and an electron in an excitonic level [61. .
We refer to this excited configuration as a valence/core
excitonic state and we will show that it does contribute to
the Auger process.

The shakedown intensity was modeled by assuming that the
valence/core exciton had p symmetry and could be represented

as a delta function at the Auger threshold energy. Its ?f?j;f. o
effective electron occupancy was then varied to obtain a 7 ' ’
“best fit" to the leading edge of the experimental \

lineshape. The distribution of electrons excited from the
valence band was assumed to be broad and featureless and to
leave the shape of the DOS upchanged. With these
assumptions, the shakedown contribution to the model
lineshape consists of a convolution of the delta function at
the threshold energy (two final-state holes in the excitonic
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level) and a convolution of the delta function with the
S total DOS (one final-state hole in the valence band and one
% in the excitonic level). The former contribution will be
shown to be sufficiently small so as to be ignored.
Inclusion of the latter contribution with the one-
electron model is shown in Fig. 1lb where excellent agreement
with the experimental spectrum in the threshold region is
apparent. The function used for the total shakedown
contribution, A(v/c), is given by,

A(v/ic) = 2 BA nwc(Pksp Sp* os Pkpp(sp* op+ 8 * wp)) (1

where Pksp and Pkpp are the Auger matrix elements, "Glc i

PN Y P SO vy

the initial occupancy of the valence/core excitonic level, ?i??&‘f‘*
BA is the Auger branching ratio, LA °p' and wp are the '
occupied partial DOS, Sp indicates the excitonic state

having p symmetry and located at the Auger threshold (284.6

eV), and “»" denotes convolution [2]. Since the width of

the DOS is broad, the model is not very sensitive to the

precise position of the delta function (% 0.5 eV). Fronm

Fig. 1b, the relative intensity of the shakedown

contribution compared to the total C(KVV) intensity is about

7%. The total C(KVV) intensity is estimated to be ~15 e2

L2] while the parameters of eq. 1 yield an estimated

intensity of 10 “v/c BA ez. Therefore, relative to the

total intensity, the effective electron occupancy of the

valence/core excitonic state 1s given by, g;k'j~,,,‘ e
c BA = 0.11. (2)
The branching ratio in eqs. 1 and 2 takes into account

the percentage of electrons dn the valence/core excitonic N

state that decay by an Auger event and is determined from ‘

the relative lifetimes of these two processes by the

expression,
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BA - T /(T + rc) = ucl(wc +

v/e v/e v/c)’ (3n

where v, . (w, , .) and T, (w_ ) are the lifetimes (lifetime o .
broadened widths) for the valence/core excitonic state and . :I-ff  A

the core-hole state, respectively.

The initial occupancy for the valence/core exciton can
be estimated from the measured C(ls) lineshape [61].
Modeling the undistorted core-level lineshape by a
Lorentzian based on the shape of the high-energy side of the
experimental spectrum, we can subtract the model from the
distorted spectrum and compare the resulting area with that
of the total spectrum. This results in an estimated initial
occupancy ratio of ~0.5 which represents the fraction of XPS
events occurring in the presence of a valence/core exciton
(1.e., n;/c) giving an Auger branching ratio of 0.22. The
core-hole lifetime width 1s 0.06 eV [5] requiring, from eq.
3, a valence/core lifetime width of 0.21 eV. Although this s 3
is twice the width estimated in ref. 5, the agreement is ' ’
sufficiently close (given the model dependence in both) to
establish a connection between the two different
measurements of the same excited state. The increase in el :
lifetime of the valence/core excitonic state compared to the &%ﬁj@ﬁi@%f fﬁ%
core exciton presumably is due to the enhanced local bonding R '
resulting from the valence hole present in the former
configuration.

Since the Auger yield for carbon is near unity [5], and ‘
the core hole and valence/core exciton lifetimes are N
comparable, the valence/core exciton is expected to )
participate in the Auger process but not in the slower XES o
process. This fact makes it possible to distinguish the ' '
valence/core contribution to the Auger lineshape as the
difference between the model (which was determined in part
from XES data) and the experimental lineshape in Fig. la.

The experimental Auger spectrum has no detectable sharp
feature near threshold indicating that the probability of a
two-hole final state in the valence/core excitonic level is
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low. An effective occupancy of 0.11 electrons in Chig level
would give an intensity ratio of only 2% between the Auger
feature resulting from both holes compared to one hole in
this state (which is itself only 7% of the normal Auger
intensity). These two Auger final states are expected to
have a quadratic and linear dependence on the valence/core
exciton occupation, respectively. Both of these transitions
are observed in donor intercalated graphite [8] and they
show the expected linear and quadratic variation.

Alternate mechanisms could produce Auger intensity near
the threshold region. Such a feature in the L23VV lineshape
for Ti and V has been attributed to initial-final state
nonorthogonality C€9] and negative hole-hole correlation
£101.
DOS were determined empirically (if present,
nonorthogonality 1is already included in our model lineshape)

For graphite these effects can be ruled out since our

and only positive values of U have been observed C2].
Static initial-state screening, which could also produce
intensity in this region, has been shown to have a
negligible effect on our model lineshape C2].

In summary, evidence has been presented for the presence
of a shakedown contribution near the threshold energy in the
C{KVV) Auger lineshape of graphite. On the basis of
supporting evidence from EELS, XES, and XPS measurements,
this shakedown structure is shown to result from dynamic

core-hole screening involving valence electrons excited into
an excitonic state in the presence of a core hole, i.e., a
Although the nature of the excited
core-hole state which results from dynamic core-hole
screening will vary from material to material, we feel that
contributions to the threshold region of the Auger lineshape
from such states will occur in a broad range of materials.

valence/core exciton.
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FIGURE CAPTIONS

(a) A comparison of the loss-deconvoluted
experimental Auger lir.eshape [21 for POCO
graphite (solid) with a model lineshape (dashed)
calculated as the self-convolution of an
empirical DOS. The threshold level at 284.€ eV
(the C(ls) binding energy) is indicated by the
vertical line.

(b) A comparison of the experimental lineshape
(solid) with the model (dashed) obtained above
but now including the shakedown contribution
(dotted) from the valence/core exciton level
whose effective occupation is 0.11 electrons.
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