

Service Service

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-4

UNLIMITED DISTRIBUTION

National Defence Research and Development Branch Défense Nationale Bureau de Recherche et Développment

> TECHNICAL MEMORANDUM 85/217 September 1985

AD-A162 030

SWATM2: A COMPUTER PROGRAM FOR THE PREDICTION OF SWATH SHIP MOTIONS IN REGULAR AND IRREGULAR WAVES

W.C.E. Nethercote - S.D. Piggott M.W. Savory

DEFENCE RESEARCH ESTABLISHMENT ATLANTIC

ومواجبة ومعادية والمتعاد والمعادية والمعاد والمعاد والمعاد والمعاد والمعاد والمعاد والمعاد والمعاد والمعاد وال

9 GROVE STREET

P.O. BOX 1012 DARTMOUTH, N.S. BZY 327

TELEPHONE 1902) 426-3100

CENTRE DE RECHERCHES POUR LA DÉFENSE ATLANTIQUE

9 GROVE STREET

.

2012

15

្វេះស្

t ÷ ţ ł.

And a second second

6

.

.

- - -

<u>, 1</u>

. .

C.P. 1012 DARTMOUTH, N.E 82Y 327

UNLIMITED DISTRIBUTION

National Defence Research and Development Branch

Défense Nationale Bureau de Recherche et Développment

SWATM2: A COMPUTER PROGRAM FOR THE PREDICTION OF SWATH SHIP MOTIONS IN REGULAR AND IRREGULAR WAVES

W.C.E. Nethercote - S.D. Piggott M.W. Savory

September 1985

Approved by B.F. Peters A/Director/Technology Division

DISTRIBUTION APPROVED BY

trane 0/10

TECHNICAL MEMORANDUM 85/217

Defence Research Establishment Atlantic

Centre de Recherches pour la Défense Atlantique

Canadä

i

ABSTRACT

The FORTRAN computer program SWATM2 enables calculation of five degree-of-freedom motions for SWATH ships. It is a development of an earlier DREA computer program with the added capability of predicting performance in long or short irregular crested seas with a variety of sea spectra. A worked example demonstrates satisfactory agreement between calculated and experimental results. Later Sp 2. 55 16

)

.

The second of the

RESUME

-1. 1

Le programme d'ordinateur en FORTRAN SWATM2 permet de calculer les mouvements des navires SWATH à cinq degrés de liberté. Il s'agit d'un perfectionnement d'un programme d'ordinateur existant du CRDA dont la nouvelle caractéristique est la possibilité de prévision du rendement dans des mers à crêtes irrégulières longues ou courtes pour une diversité d'états de la mer. Un exemple auquel le programme a été appliqué démontre qu'il y a concordance satisfaisante entre les résultats calculés et expérimentaux.

TABLE OF CONTENTS

	ABSTRACT	ii				
	NOTATION	ĺv				
1.	INTRODUCTION	1				
2.	BASES FOR CURRENT WORK	1				
	2.1 Sea State Descriptions2.2 Short-Crested Seas2.3 Secondary Ship Responses	2 3 4				
3.	MODIFICATIONS TO PROGRAM	7				
4.	PROGRAM 'OFFSET'	7				
5.	DISCUSSION 8					
6.	CONCLUDING REMARKS 9					
7.	ACKNOWLEDGEMENT	9				
	FIGURES	11				
	APPENDICES:					
	 A. List of Program Units B. SWATM2 User Guide C. Sample Input for SWATM2 D. Sample Output for SWATM2 E. OFFSET User Guide F. Sample Input for Offset G. Sample Output for Offset 	17 19 35 39 57 59 61				
	DEFERINCES	63				

REFERENCES

NOTATION

A	constant in ITTC Spectrum
A _{kj} (ω')	(k,j) coefficient of S _R '(ω')
A _{ij}	added mass coefficient in the ith mode due to motion in the jth mode.
В	constant in ITTC Spectrum
B _{Ci}	box clearance of ship at station i
B _{ij}	damping coefficient in the ith mode due to motion in the jth mode.
E	area under the wave energy spectrum
Fi	freeboard of ship at station i
н	significant wave height
н _о	average wave height of Gospodenetic - Miles wave sample
Η _x (ω)	frequency response of a linear ship response, x, in unidirectional seas
H _x (ω,ν _i)	frequency response of a linear ship response, x, in short-crested seas
h	period of operation, hours
k	slamming pressure form factor
^m n	n^{th} spectral moment = $\int_{0}^{\infty} \omega^n S(\omega) d\omega$
N _{BI}	number of box impacts per hour
N _{DW}	number of deck wetnesses per hour
N _{KE}	number of keel emergences per hour
P(BI)	probability of box impact
P(DW)	probability of deck wetness
P(KE)	probability of keel emergence

iv

Ph	most probable slamming pressure in h hours
P _h (α)	extreme slamming pressure in h hours with probability of exceedence, α .
S _ζ (ω)	wave displacement power spectral density function
s(ω,ν)	short-crested sea spectrum
S _B (ω,Τ,Η)	Bretschneider sea spectrum
s _I (ω,Τ,Η)	ITTC sea spectrum
s _R '(ω,Τ,Η)	normalized polynominal regression spectrum (Gospodnetic-Miles)
т	average wave period = T(-1) or T(1)
To	average wave period of Gospodnetic - Miles wave sample
T(-1)	$2\pi(m_{-1}/m_0)$, energy averaged period
T(1)	$2\pi(m_0/m_1)$, modal period
τ _D	draft
tf	human tolerance weighting factor
W(v)	wave energy spreading function
a	angular spacing between discrete wave directions, v_i , or probability of exceedence, depending on context.
ß	predominant wave direction
ρ	mass density
σ	root mean squared (RMS) value of a wave record
$\sigma_{\mathbf{A}}$	RMS vertical acceleration
σ _{RMi}	RMS relative motion at station i
$\sigma_{\rm RV}$	RMS relative velocity
σ _{sx}	RMS value of a linear ship response, x, in short-crested seas

3

Ĉ

)

v

σ _x	RMS value of a linear ship response, x, in unidirectional seas
ν	wave direction
vi	i th wave direction
ν _s	one-half the total angular spread between the minimum and maximum values of V _i
ω	wave circular frequency
ω '	normalized frequency = $\omega T/2\pi$
ωe	circular frequency of encounter

1. INTRODUCTION

a second s

This report describes the computer program SWATM2, (SWATH Ship Motions, Modification 2). A user's manual is included together with sample input and output, and a description of an input data preparation program, OFFSET.

A theoretical model of SWATH ship motions, proposed by C.M. Lee¹ was incorporated in two computer programs² at the David W. Taylor Naval Research and Development Center (DTNSRDC). One program, MOT35, predicted heave and pitch motions while the other, MOT246, predicted sway, roll and yaw motions. At DREA, the two DTNSRDC programs, MOT35 and MOT246, were modified and combined to form the program SWATMO, predicting five degree of freedom motions in regular waves. The version of the program reported herein, SWATM2, is essentially an extension of the earlier DTNSRDC and DREA work, with the added capability of irregular seas calculations.

The theoretical basis of the computer program is adequately described in Reference 1 and will not be referred to here except where warranted by alterations or extensions of program capability. Details of alterations are described in Sections 2 and 3 and the user's manual is given in Appendix B. Section 4 describes the offset data preparation program, OFFSET. Section 5 presents a number of correlations of SWATM2 with model experiment results and with results obtained by use of the original DTNSRDC programs, MOT35 and MOT246. The agreement is satisfactory.

Users manuals, together with sample input and output cases, are given for SWATM2 and OFFSET in the Appendices.

2. BASES FOR CURRENT WORK

In its first form, SWATMO, the program predicted the vertical motion responses, heave and pitch; and the lateral motion responses, sway, roll, and yaw, for a SWATH ship moving in a regular wave train of arbitrary heading. These motions were obtained by solving the equations of motion which were formulated as linear second-order differential equations. The hydrodynamic coefficients in the equations of motion were divided into three categories:

(1) The coefficients which could be obtained under the potential-flow assumption for a non-lifting body. These coefficients were obtained by strip theory based on the solution of the two-dimensional hydrodynamic problem of cylinders oscillating on the free surface where the wave exciting coefficients were obtained by the Haskind relation³.

- (2) The hydrodynamic coefficients associated with the viscous nature of the fluid. These were obtained by the cross-flow approach for slender bodies with moderate angle of attack.
- (3) The hydrodynamic coefficients contributed by the control surfaces. These were obtained by slender body theory for low-aspect ratio wing-body combinations.

Motions in irregular seaways are calculated by linear superposition of the regular wave response and the wave energy spectrum in the conventional manner, viz:

$$\sigma_{\mathbf{x}}^{2} = \int_{0}^{\infty} |\mathbf{H}_{\mathbf{x}}(\omega)|^{2} \mathbf{S}_{\zeta}(\omega) \, d\omega \tag{1}$$

$$H_{\mathbf{x}} = (\int_{0}^{\infty} |H_{\mathbf{x}}(\omega)|^{2} S_{\zeta}(\omega) d\omega)^{1/2}$$
(2)

RMS

$$\simeq (\sum_{\substack{\omega_1 \\ \omega_1}}^{\omega_n} |H_{\mathbf{x}}(\omega)|^2 S_{\zeta}(\omega) \Delta \omega)^{1/2}$$
(3)

where σ_x^2 is the variance of a response

 H_x is a response

 $S(\omega)$ is the wave energy spectral density.

2.1 Sea State Descriptions

A number of wave energy spectrum formulations are in common use for irregular wave calculations:

 (1) The Gospodnetic-Miles quadratic regression spectrum is a two-parameter spectrum derived from data obtained at Station India in the North Atlantic. The parameters are significant wave height, H, and energy-averaged wave period, T. The normalized regression spectrum takes on the form

$$S_{R}'(\omega',T,H) = \sum_{k=0}^{M} \sum_{j=0}^{M-k} \sum_{k=0}^{k} \sum_{j=0}^{k} \sum_{k=0}^{j} \sum_{j=0}^{k} \sum_{k=0}^{j} \sum_{j=0}^{k} \sum_{k=0}^{j} \sum_{j=0}^{j} \sum_{j=0}^{$$

where H_0 and T_0 are the average H and T values of the measured spectra used to compute the regression. It has been determined⁴ that $H_0 = 4.016$ m and $T_0 = 9.159$ s. Thus, the polynominal coefficients, A_{kj} , are functions of ω '. These coefficients, A_{kj} , can be found in SUBROUTINE REGRES of the program. The energy-averaged period, T, based on spectral moments is defined by the formula

$$T = T(-1) = 2\pi (m_{-1}/m_0)$$
(5)

where $m_n = n^{th}$ spectral moment $= \int_{0}^{\infty} \omega^n S_{\zeta}(\omega) d\omega$

(2) The Bretschneider two-parameter spectrum, with the parameters significant wave height and modal wave period as extracted from program PHHS5⁵, is represented by the equation

$$S_{R}(\omega, T, H) = \alpha H^{2} / [\omega^{3} T^{*} exp(\beta / (\omega T)^{*})]$$
(6)

where α = 487.0626 and β = 1948.2444 with significant wave height, H, being in feet. The modal wave period, T, is defined as

$$T = T(1) = 2\pi (m_0/m_1).$$
(7)

The modal wave period used with the Bretschneider spectrum is different from the energy-averaged period used with the quadratic regression spectrum. The two periods are not interchangeable.

(3) The ITTC spectrum⁵, in which the parameters are significant wave height and modal wave period (or average zero-crossing period), is defined by

$$S_{I}(\omega,T,H) = \frac{A}{\omega^{5}} \exp(-B/\omega^{4})$$
(8)

where A and B are constants as given by

A =
$$\frac{4\pi^{3}H^{2}}{T^{4}}$$
 and B = $\frac{16\pi^{3}}{T^{4}}$.

Note that the wave period, T, in this case is the modal wave period.

$$T = T(1) = 2\pi (m_0/m_1)$$

The ITTC spectrum differs trivially from the preceding Bretschneider formulation; the two have been included in the present program to offer the option of agreement with existing DREA programs or with the widely used ITTC spectrum.

(4) Where correlation of theory and experiment is undertaken there is often a need to predict responses from measured spectra which often differ markedly from the formulations just described; therefore, SWATM2 also accepts ordinates to arbitrary spectra as inputs.

2.2 Short-Crested Seas

The spectral formulations and root mean squared responses just described refer to one-dimension (long-crested) waves. In considering the short-crested (multi-directional) sea case the application of a cosine-squared spreading function is most common:

$$S(\omega, v) = W(v)S(\omega)$$

(9)

where $S(\omega)$ is the point spectrum and $W(\nu)$ the spreading function.

$$W(v) = (\alpha/v_s)(\cos[90(v - \beta)/v_s])^2$$
(10)

where α is the angular spacing between the discrete wave directions ν , and ν_S is half the total angular spread. α , β , ν , ν i and ν_S are all expressed in degrees. Typically, in numerical analysis (and as adopted as in the default valve in SWATM2) angular spread might be 120°, so $\nu_S = 60°$, with

 $\beta - \nu_S \leq \nu \leq \beta + \nu_S$

divided in n discrete wave directions spaced α degrees apart,

 $n = 2v_S/\alpha + 1$

Expanding equation (1) for variance of response in long-crested waves to short-crested seas gives

$$\sigma_{sx}^{2} = \sum_{i=1}^{n} W(v_{i}) \sum H_{x}(\omega, v_{i}) + S_{\zeta}(\omega) \Delta \omega$$

$$= \sum_{i=1}^{n} W(v_{i}) \sigma_{xi}^{2}$$
(11)
(12)

where σ^2_{xi} is the variance at heading v_i in unidirectional seas. Again,

$$H_{sx} = (\Sigma^{n} W(v_{i}) \sigma^{2} x_{i})^{1/2}$$
(13)
$$RMS = 1$$

2.3 Secondary Ship Responses

There are other seakeeping data of interest besides absolute body motions.

(1) The vibration ride quality index (VRQI):

The vibration ride quality index proposed by Payne⁷ is used to quantify human tolerance to vertical ship motions and is defined as

$$VROI = \sigma_{A} t_{f}^{1/2}$$
(14)

where σ_A is RMS vertical acceleration and t_f is a "tolerance weighting factor". Payne's proposed VRQI limits are:

Limit	Description	VRQI	Must	Be	Less	Than
A	Severe, less than one hour		0	. 5		
В	Tolerable, less than one hour		0	• 2		
С	Long-term, severe		0	• 2		
D	Long-term, tolerable		0	.1		

At low frequencies (below 0.2 Hz) tolerance to vertical accelerations increases significantly with decreasing frequency; however, Payne's low frequency model does not reflect this trend. To account for this increased tolerance at very low frequencies, Mackay and Schmitke⁵ have proposed multiplying the root mean square vertical acceleration by a "tolerance weighting factor" such that the long term severe limit of VRQI follows the 50% motion sickness incidence curve. This "tolerance weighting factor" represented by t_F in the VRQI formula, is defined as

$$t_{\rm F} = \frac{\left\{1 + \left(\frac{2\omega_{\rm e}}{1.571}\right)^2\right\}}{\left\{1 - \frac{\omega_{\rm e}}{1.571}\right\}^2 + \left\{\frac{2\omega_{\rm e}}{1.571}\right\}^2}$$
(15)

where ω_e is encounter frequency.

(2) Deck wetness:

4

The probability of deck wetness, that is the probability of bow down relative motion being greater than the freeboard, at station i is given by

$$P(DW) = \exp - \frac{F_i^2}{2\sigma^2_{RM_i}}$$
(16)

where F is freeboard, and σ_{RM} is root mean square relative motion. The number of deck wetnesses per hour is simply

$$N_{DW} = \frac{3600}{T} P(DW)$$
 (17)

where T is the average wave period in seconds.

(3) Keel emergence:

The probability of keel emergence at station i may be determined by

$$P(KE) = \exp(-\frac{T_{D}^{2}i}{2\sigma^{2}RM_{i}})$$
(18)

where ${\tt T}_{\rm D}$ is draft. Again, keel emergences per hour may be calculated by

$$N_{KE} = \frac{3600}{T} P(KE)$$
 (19)

(4) Box impacts:

Similarly, if box impact occurs when relative motion, bow down, exceeds box clearance, then the probability of its occurrence at station i will be given by

$$P(BI) = \exp\left(-\frac{B_{Ci}^{2}}{2\sigma^{2}_{RM_{i}}}\right)$$
(20)

where ${\rm B}_{\rm C}$ is box clearance above the still waterline. Box impacts per hour may be determined from

$$N_{BI} = \frac{3600}{T} P(BI)$$
 (21)

(5) Box slamming pressures:

Box slamming is of greater importance than hull bottom slamming for SWATH ships because typically draft is significantly greater than box clearance; but fortunately, the usual monohull algorithms for bottom slam pressure prediction can be used for the box bottom. Schmitke⁸ outlines various methods for monohull slam pressure prediction and defines algorithms suitable for the frequency domain.

The most probable slam pressure in a period of h hours (in SWATM2, h = 20) is given by

$$P_{h} = \rho_{k}\sigma_{RV}^{2} \ln \left\{ \frac{3600 h \sigma_{RV}}{2\pi\sigma_{RM}} P(BI) \right\}$$
(22)

where ρ is water mass density, k is slam pressure form factor, σ_{RM} is rms relative motion, and σ_{RV} is rms relative velocity.

In practice, the most probable pressure is unsuitable for design purposes because of its high probability of exceedence. A better measure of design slam pressure, is the extreme pressure, $P_b(\alpha)$, whose probability of exceedence in h hours is α .

$$P(\alpha) = \rho_k \sigma_{RV}^2 \ln \left\{ \frac{3600 h \sigma_{RV}}{2\pi \alpha \sigma_{RM}} P(BI) \right\}$$
(23)

A commonly used measure⁸, P_{20} (0.01), is adopted by SWATM2.

The specification of form factor, k, presents the greatest difficulty in calculating slam pressures. Experimental data for slamming of flat plates in waves show considerable scatter due to varying air entrapment and impact angle (the angle between the plate and the plane tangential to the wave surface at the impact point). Unfortunately neither of these parameters can be modelled in a linear frequency domain program. For present purposes, a default value of form factor, k=20, has been derived by an analysis of Reference 9; however, given the limited data in Reference 9, pressure predictions should be used with caution.

3. MODIFICATIONS TO PROGRAM

The most significant modification made to program SWATMO was the addition of irregular sea calculations; however, this addition required further changes in the basic program structure.

SWATMO calculated motions of a SWATH ship in regular waves. The amplitudes and phases of these motions were given as functions of encounter frequency, with encounter frequency ranges being specified in the program input. It is generally more convenient to prepare input data for seakeeping programs in terms of wavelength or absolute wave frequency. Thus, the input specifications of SWATMO were changed such that the range of wavelengths was required instead of the individual encounter frequencies. This form of input is consistent with other seakeeping programs at DREA.

SWATMO originally calculated added mass and damping coefficients at the encounter frequencies specified in input, these frequencies being the same for all headings, in one computer run. With the alteration of input to wavelength a difficulty arose: each of the different headings and speeds specified in the input would generate new encounter frequencies with the consequential increase in execution time being proportional to number of headings and speeds. In addition, the added mass and damping coefficient calculations are the most time-consuming part of the program.

Thus, an interpolation method was adopted to circumvent the problem. SWATM2 calculates the extreme encounter frequency values for each speed-heading combination input, and from these selects the overall range of encounter frequency required for calculations. The input parameter NWE (less than or equal to 30) then specifies the number of evenly spaced encounter frequencies at which added wave and damping coefficients will be calculated. The results of the calculation are stored in an array. For each speed-heading combination, the required coefficients are derived by quadratic interpolation from the stored array. Comparisons of the results of calculations both before and after incorporation of the interpolation routine suggests that no appreciable errors are introduced by interpolation.

In extending the program to irregular sea predictions, subroutines employed in the monohull program SHIPMO¹⁰ were used where possible in order to ensure the consistency of predictions. The methods employed correspond to those given in Section 2.

4. PROGRAM "OFFSET"

The preparation of geometric input data for SWATM2 is laborious, particularly with respect to section offsets. A preparative program, OFFSET, was written to ease preparation of offset data.

4.1 Capabilities and Method

This program is capable of computing offsets for three hull configurations:

- (1) hull section with strut,
- (2) hull section without strut, and
- (3) hull section with strut of zero thickness (i.e. stations 0 and 20).

Figure B2, Appendix B, illustrates the three section types.

Trignometric relations are used to calculate offsets as x and y coordinates. For hull sections with struts, 13 offset points are generated; for bare hull sections and hull sections with strut thickness equal to zero, 9 offset points are generated.

The OFFSET User's Guide is given in Appendix E.

5. DISCUSSION

With the alterations inherent in the development of SWATM2 from SWATMO it was necessary to test the results against the "parent" programs, MOT35 and MOT246². Additionally, comparisons were made with experimental data included in Reference 1. The computer program comparison was quite extensive and only extracts will be given herein.

Figures 1 to 4 illustrate comparable non-dimensional added mass and damping coefficients, where the subscripts refer to motions as follows:

Index	Motion
2	sway
3	heave
4	roll
5	pitch
6	yaw

While there are differences between the results for the parent program and SWATM2, they are not considered significant. For example, whereas the added mass coefficient, A_{33} , shows the largest discrepancy between SWATM2 and MOT 35; the result is only a three percent difference in total mass in the vertical plane, with an even smaller impact on predicted motions (also note Figure 6).

Motions predictions for both the parent program and SWATM2 are compared to experimental results¹ in Figures 5, 6, 7 and 8. Only for roll is there notable difference between programs, but in this case SWATM2 is more conservative.

Predicted motions correlate well with experimental results in the vertical plane for heave and relative bow motion, Figure 9, but only reasonably for pitch (Figure 5). Lateral motions, roll and yaw, are not modelled as well, a situation typical of many seakeeping programs. Fortunately vertical motions are generally of greatest importance in the early stages of ship design, and for SWATH ships at least, lateral motions are of small enough magnitude to present no serious risk to performance.

6. CONCLUDING REMARKS

A SWATH ship seakeeping performance prediction program, SWATM2, has been described. SWATM2 allows prediction of the performance of single or tandem strut SWATH ships in either regular or irregular seas. In irregular seas, either long- or short-crested spectral formulations may be employed.

It has been demonstrated that the results of use of SWATM2 correspond to results obtained from use of the two programs, MOT35 and MOT246, from which it was derived. A limited comparison with experimental data indicated that vertical plane motions are predicted satisfactorily, but that there are greater discrepancies between prediction and experiment for lateral motions. Fortunately, vertical plane motions are of most importance in the early design stages and SWATH ship lateral motions are generally of small enough magnitude to represent no serious risk to ship operation.

Nonetheless, future developments of SWATH seakeeping programs should address the improvement of lateral motions predictions. The addition of an active motion control fin modelling capability also would be valuable. Finally, SWATH box slamming experiments should be used to obtain more reliable form factor estimates than given herein.

7. ACKNOWLEDGEMENT

The box slamming algorithms were incorporated in the program by Dr. R.W. Graham and F.R. Crummey.

FIGURE 1: COMPARISON OF PITCH (A55) AND HEAVE (A33), ADDED MASS COEFFICIENT PREDICTIONS FROM SWATM2 AND MOT 35

E

Ĺ

•

)

F

FIGURE 3: COMPARISON OF HEAVE (B₃₃), HEAVE-PITCH (B₃₅), AND PITCH-ROLL (B₅₃) DAMPING COEFFICIENT PREDICTIONS FROM SWATM2 AND MOT 35

FIGURE 4: COMPARISON OF YAW-ROLL (B₆₄), SWAY-ROLL (B₂₄), AND ROLL SWAY (B₄₂) DAMPING COEFFICIENT PREDICTIONS FROM SWATM2 AND MOT 246

3

Ļ

r

.

FIGURE 5: COMPARISON OF PITCH TRANSFER FUNCTIONS FROM SWATM2 AND MOT 35 WITH EXPERIMENTS

FIGURE 6: COMPARISON OF HEAVE TRANSFER FUNCTIONS FROM SWATM2 AND MOT 35 WITH EXPERIMENTS

FIGURE 7: COMPARISON OF ROLL TRANSFER FROM SWATM2 AND MOT 246 WITH EXPERIMENTS

FIGURE 8: COMPARISON OF YAW TRANSFER FUNCTIONS FROM SWATM2 AND MOT 246 WITH EXPERIMENTS

I

Ĺ

FIGURE 9: COMPARISON OF RELATIVE BOW MOTION TRANSFER FUNCTION FROM SWATM2 WITH EXPERIMENTS

APPENDIX A

LIST OF PROGRAM UNITS

FUNCTION

BRETS	calculates	the	Bretschneider	two-parameter	wave	elevation	spectrum
-------	------------	-----	---------------	---------------	------	-----------	----------

CFTRP performs a quadratic interpolation

NAME

- DAVID returns the two-dimensional frequency-dependent velocity potential and its normal derivatives on the body due to a pulsating source of unit strength
- FINIT returns the logarithmic terms in the expression of a pulsating source of unit strength
- FRANK returns the added mass, damping, and complex amplitudes of exciting forces and moments for each specific hull section
- GAUSS solves a set of complex matrix equations using Gaussian elimination
- PAGE writes the heading and page number on each page of output
- PGM1 returns the geometric and hydrostatic properties of the ship
- PGM1B returns absolute and relative motions, velocity, and acceleration as a result of the ship's motions in both regular and irregular seas
- PGM2 returns the added mass and damping coefficients
- PGM2B returns the cross-flow viscous damping contributions to the damping coefficients and wave exciting forces
- PRESS returns the pressures on the cross-section contours
- REGRES calculates Gospodnetic-Miles quadratic regression spectrum
- SEAOUT returns the probabilities of deck wetness, keel emergence, and box impact in irregular seas and outputs irregular sea calculations
- SHORT returns root mean square motions in short-crested seas
- SIMPUN evaluates an integral of a nonequidistant function by Simpson's rule
- SITTC calculates the ITTC wave spectrum

NAME	
------	--

FUNCTION

SOLVE	sets	up	equations	of	motion	and	solves	them	Ъy	applying	Cramer'	S
	rule	to	complex ma	itri	ices							

- SPLINE performs spline curve-fitting calculation used in short-crested sea calculations
- SWATM2 main program: reads in input and, as a check, writes out input for verification; sets constants to be used in later calculations according to the system of units specified; initiates execution

TAN returns the tangent of an angle

XMAX returns the maximum value of a specified array

XMIN returns the minimum value of a specified array

APPENDIX B

SWATM2 USER GUIDE

SWATM2 is structured for operation on a DEC-20 computer and may require modification for use on other machines. For example, the DEC-20 does not require initialization of arrays, unlike CDC computers.

The fundamental structure of SWATM2 is illustrated by the block diagram given in Figure Bl. There are four main computational blocks:

- hydrostatic calculations;
- hull added mass, damping and exciting force calculations: done for each station over a sufficiently wide frequency range and stored in large arrays;
- frequency response calculations: computation of viscous damping terms, setting up of system matrix, solution of the equations of motion;
- irregular sea calculations: computation of root mean square values of pitch, heave, sway, roll, and yaw in specified seaway spectra.

The computer code for program SWATM2 consists of a main program plus a number of subroutines. The main program handles input and initiates execution while the subroutines are each called to perform appropriate calculations. A description of the computations performed by the individual program units is contained in Appendix A.

B.1 Input

Program input consists of an alphanumeric title and records of numerical data, the records being in free format. The program reads the input from the disk file SWATM2.DAT. A sample input is given in Appendix B.

Detailed descriptions of the input records are given below.

Record (1), 1 alphanumeric string (FORMAT 10A5)

TITLE alphanumeric title of any length up to a maximum of 100 characters.

Record (2), 6 integers

IFIN indicates whether or not the ship has fins. IFIN = 0 = > no fins IFIN = 1 = > fins present

NUN	specifies the system of units used for input/output data. NUN = $1 = >$ British units NUN = $2 = >$ Metric units
ICO	<pre>control integer for program output of added mass coefficients. ICO = 0 = > suppress output of added mass coefficients ICO = 1 = > allow output of added mass coefficients</pre>
IEQ	<pre>control integer for program output of equations of motion solved, excited forces, and damping coefficients. IEQ = 0 = > suppress output of equations of motion solved solved, exciting forces, and damping coefficients IEQ = 1 = > allow output of equations of motion solved, exciting forces, and damping coefficients</pre>
IREG	control integer for program output of regular wave responses. IREG = 0 => suppress output of regular wave responses IREG = 1 => allow output of regular wave responses
ICHECK	<pre>control integer governing program execution with respect to verifying input data. ICHECK = 0 = > allow program to execute ICHECK = 1 = > suppress execution of program such that the output consists solely of input data. The purpose of this is to permit the user to verify the input data before the program is actually run.</pre>
	Note: (1) If IFIN = 0, Records (11) and (12) are not read.
Record (3), 7 integers
NFR	number of wave frequencies for which ship motions are to be calculated (rad/sec). maximum = 30
NBTA	number of principal sea directions to be considered with respect to ship héading (degrees). maximum = 8
NFN	number of Froude numbers for which motions are to be calculated. maximum = 4
NWE	number of encounter frequencies for which the hull sectional potentials, added mass, and damping are calculated (rad/sec)

Ď

- NSTR number of positions at which relative and absolute motions are to be computed for seakeeping calculations. maximum = 10
- NOS number of stations for which hull/strut offset information is input. maximum = 30
- NLOOP maximum number of iterations for determination of non-linear viscous damping effects. A value of 3 should be adequate.
- <u>Notes:</u> (1) A principal sea direction is meant to be the principal direction of wave advance relative to the ship velocity vector.

REPRODUCED AT GOVERNMENT EXPENSE

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

- (2) For each principal sea direction, the ship responses for regular and irregular seas are determined.
- (3) For a short-crested sea spectrum, the spreading function is centered about this angle. A curve-fitting routine (SPLINE) is used to allow motions to be computed over the range determined by the spreading function by interpolation. Thus, for irregular sea calculations, NBTA must be at least 3.
- (4) The tables of sectional potentials, added mass, and damping are generated, as a function of encounter frequency, before ship motions are computed. From these tables, particular values are interpolated as necessary, since a given wave frequency, sea direction, and ship speed will define the frequency of encounter. Thus, it is necessary to ensure that the tables adequately cover the required encounter frequency range.
- (5) The hull and submerged portion of the strut are represented by stations such that Station 0 occurs at the leading edge of the strut and Station 20 at the trailing edge of the strut. The distance between these stations, which is exactly EL, is divided into even intervals. The hull section forward of Station 0 is divided into evenly spaced stations having negative station numbers while the hull section aft of Station 20 is represented by evenly spaced stations having station numbers of value greater than 20.
- (6) One record (19) must be input for each of the NOS stations.

Record (4), 2 reals

WLMIN lowest value of wavelength nor dimensionalized by ship length. WLMAX highest value of wavelength non-dimensionalized by ship length.

<u>Notes:</u> (1) The frequency range for which ship motions are to be calculated is determined by the equation:

 $\omega = \frac{2\pi g}{\lambda}$ where ω has units rad/sec

Thus, the lowest wave frequency for which ship motions are to be calculated will occur at WLMAX while the highest wave frequency will occur at WLMIN.

(2) The increment in wave frequency between the minimum and maximum wave frequency is determined in the program by dividing the frequency range by the number of wave frequencies at which ship motions are to be calculated less one (NFR - 1). (3) Wave encounter frequencies are calculated for each ship speed, heading angle, and wave frequency. The range of wave encounter frequencies is computed by determining the minimum and maximum of all the encounter frequencies with the increment being determined by dividing the difference by the number of wave encounter frequencies less one for which the hull sectional potentials, added mass, and damping are to be calculated (NWE-1).

Record (5), NBTA reals

- WANG(I) principle sea directions to be considered relative to the ship velocity vector (degrees). There must be NBTA values.
- Note: (1) WANG(I) = 0° for following seas. WANG(I) = 180° for head seas.

Record (6), NFN reals

- FN(I) Froude numbers for which calculations are desired. There must be NFN values.
- Note: (1) F_n = CV/ gEL where EL = strut length (station 0 to 20) V = forward velocity of ship (knots) C = conversion factor if British units used: C = 1.689 if Metric units used: C = 0.5144

Record (7), 1 real

SD one-half the distance between the centerlines of the two hulls (i.e. one-half the hull spacing) (m or ft).

Record (8), NSTR reals

- RBMST(I) station number of position I where calculations are to be done. There must be NSTR values.
- Note: (1) The station numbering convention for RBMST(1) must be consistent with the numbering of the hull; i.e. Station 0.0 is at the leading edge of the strut and Station 20.0 is at the trailing edge of the strut.

Record (9), NSTR reals

RBMHT(I) vertical coordinate (z-coordinate) of position I relative to the calm waterline (m or ft). There must be NSTR values. Note: (1) The value of RBMHT(I) must be given as the distance from the calm waterline to the point of interest (in the same dimensional unit as EL), with a positive sign indicating a point below. In the program, this vertical coordinate system is changed to become relative to CG.

Record (10), 7 reals

EL	strut length (i.e. distance between Station 0.0 and Station $20,0$) (p. or ft)
GYR	pitch and vaw radius of gyration (non-dimensionalized by EL).
GYRT	roll radius of gyration (non-dimensionalized by EL).
GCB	longitudinal center of bouyancy given in terms of station numbers as measured from Station 0.0.
VCG	vertical center of gravity referenced to the waterline, with a positive sign indicating below the waterline and a negative sign indicating above (m or ft).
GMT	transverse metacentric height (m or ft).
DEPCAT	vertical distance (a positive number) between waterline and maximum breadth point of hull (m or ft).
<u>Notes</u> : (1)	The value of EL is used for non-dimensionalization in the program and should be used in defining the input variables GYR, GYRT, RN(I).
(2)	By defining GCB = 0, GCB will be calculated in the program.
(3)	By defining GMT = 0, GMT will be calculated in the program.
Records (11)	and (12) are not to be input if IFIN = 0. Records (11) and

(12) describe the geometry of the allowable arrangement of fins, one pair, A in Record 11, with the second pair, B, in Record 12.

Record (11), 8 reals

longitudinal distance from Station 0.0 to quarter chord of the
transverse distance between centerline of the ship and the
centroid of the fin (m or ft).
vertical distance between waterline and mean depth of the fin (m or ft).
chord of the fin (m or ft).
geometric span of the fin (m or ft).
maximum thickness of the fin (m or ft).
lift-curve slope of the fin (rad^{-1}) .
drag coefficient of the fin.

Notes: (1) If the fin is full-span (i.e. spans the entire distance between hulls), then SPNA is defined as one-half that distance.

- (2) XZFA may be approximated by 1.2, the value for a flat plate attached to a wall in a uniform flow normal to the plate.
- (3) CLFA can be calculated as follows:

Lift Curve Slope for Fins¹¹

CLFA = lift curve slope =
$$\frac{1.8^{\pi}A_{e}}{1.8 + (A_{e})^{2} + 4}$$
per radian

where $A_e = \frac{r_o - r^2/r^2_o}{avg. chord}$

where r - radius of submerged hull cross-section at which the fin is attached.

 r_o - is the transverse distance from the centre line of the hull to the tip of the fin.

A_e - effective aspect ratio.

Record (12), 8 reals

FBL FBY DEPB CHRDB SPNB THKB CLFB XZFB

Notes: (1) These are the data for Fin B.

(2) The descriptions are the same as for the input of Record (11).

Record (13), 2 reals

XZFO	hull cross-flow drag coefficient.	
X7.VI.	hull viscous-lift coefficient.	

Note: (1) For a SWATH with circular hull cross sections, XZFO is defined as 0.5 and XZVL is defined as 0.07.

Record (14), 1 integer

ISPEC	<pre>control integer specifying the seaway spectrum to be used for motion calculations in irregular seaways. ISPEC = 0 = > no irregular sea calculations desired ISPEC = 1 = > Quadratic regression spectrum (Gospodnetic-Miles) ISPEC = 2 = > Bretschneider two parameter spectrum</pre>
	<pre>ISPEC = 3 = > ITTC sea spectrum ISPEC = 4 = > seaway spectrum must be input</pre>
Notes: (1)	If motions in irregular seas are not desired, set ISPEC = 0. If ISPEC = 0, no Records (15) - (19) are read.
(2)	If unique spectrum is desired (i.e. ISPEC = 4), the wave energy spectrum values (S(ω)) must be read in for each corresponding wave frequency (ω). These are input as Record 16.
Records (15)	, (16), (17), (18), (19) are not input if ISPEC = 0
Record (15),	<u>l integer</u>
NSEA	number of seaways for which motions are to be computed maximum = 10.
<u>Note</u> : (1)	For NSEA > 0, one record (18) is required for each seaway.
Record (16)	is input only if ISPEC = 4.
Record (16),	NFR reals
SW(N,I)	wave energy value obtained from the unique sea spectrum corresponding to the i th wave frequency used in the program. There must be NFR values.
<u>Note</u> : (1)	Record (16) is repeated NSEA times, once for each seaway.
Record (17),	<u>l real</u>
ANGLE	spreading angle to be used in a short-crested sea spectrum analysis (degrees). If ANGLE \leq 0.0, no short-crested analysis is carried out.
<u>Note</u> : (1)	If ANGLE > 0.0, a short-crested sea spectrum is considered by applying a spreading function about the principal sea direction, with motions computed over a range of angles, in 5° steps, from WANG - ANGLE to WANG + ANGLE.
	where WANG \neq principal sea direction (read from Record (5)).

ANGLE = specified spreading angle.

For example, by specifying WANG = 90° and ANGLE = 15° , a spreading function is applied to responses computed at sea directions of 75° , 80° , 85° , 90° , 95° , 100° , 105° . Naturally, as the value of ANGLE is increased, computation time will increase.

Record (18), 2 reals

1

HSW(I)	significant wave height of seaway I (m or ft).
TSW(I)	average wave period of seaway I (sec).
	ISPEC = 1: energy-averaged period of seaway I (sec)
	ISPEC = 2: modal wave period of seaway I (sec)
	ISPEC = 3: average zero-crossing period of seaway I (sec)
	ISPEC = 4: energy-averaged period of seaway I (sec)

- Notes: (1) If guidance is required in selecting modal wave period, Table B1 provides the probability distribution of seastate parameters for the North Atlantic. Alternatively, standard TSW/HSW formulations may be used, such as the following: ISPEC = 1, 2, 4 => TSW = 6.17 + 5(HSW/g)^{1/2} ISPEC = 3 => TSW = 1.96 HSW^{1/2}
 - (2) For the ITTC spectrum only, the following relationships may be used:

 $\begin{array}{rcl} T_{\rm o} &=& 1.406 & T_{\rm Z} \\ T_{\rm 1} &=& 1.087 & T_{\rm Z} \\ T_{\rm o} &=& 1.166 & T_{-1} \end{array}$

(3) Record (18) is repeated NSEA times, once for each seaway.

Record (19), 3 reals

FREEB(I)	freeboard at position I (m or ft).						
BXCL(I)	box clearance at position I (m or ft).						
FFACT (I)	box slam pressure form factor at position I.						
<u>Note</u> : (1	 Record (19) is repeated NSTR times, once for each desired position. The default value of form factor, k= 20.0, is set if FFACT(I) = 0.0 						
Record (20)	, 1 real, 2 integers						
ST(I)	station number of the I th displacement station of the ship						
MN(I)	number of offset points used to describe the I th station.						

 $3 \le NM(1) \le 20$

indicates location of parallel middle body.
MPS(I) = 2 => first station of parallel middle body
MPS(I) = 1 => each station, following the first station of
parallel middle body, that is part of the parallel middle body
MPS(I) = 0 => station is not part of the parallel middle body

- Notes: (1) The stations corresponding to ST(1), ST(I) = 0., ST(I) = 10., ST(I) = 20., and ST(NOS) must be given.
 - (2) ST(I) = 0. is located at the leading edge of the strut while ST(I) 20. is located at the trailing edge of the strut. Thus, the distance between ST(I) = 0. and ST(I) = 20. corresponds to the distance EL (i.e. the strut length). The value of ST(I) will be negative if the station is forward of Station 0 and greater than 20.0 if the station is aft of Station 20.
 - (3) The stations should be evenly spaced between Station 0 and Station 20. The stations at the nose (forward of Station 0) and at the tail (aft of Station 20) need not have the same spacing as between Station 0 and Station 20. They should be given as, at least, pairs of even intervals.
 - (4) MPS(I) is used to avoid costly repetition of the calculation of added mass and damping coefficients.
 - (5) Record (20) is repeated NOS times, once for each station.

Record (21), NM reals

MPS(I)

É

X(I,J) values of the X-coordinates of the offsets of the immersed cross-sectional contour (i.e. horizontal offsets) at Station (I) (m or ft). $1 \le I \le NOS$ $1 \le J \le NM$

Record (22), NM reals

- Y(I,J) values of the Y-coordinates of the points corresponding to X(I,J) (i.e. vertical offsets of Station (I)) (m or ft). Refer to Figures B2 to B4 in reading the following notes. $1 \le I \le NOS$ $1 \le J \le NM$
- <u>Notes</u>: (1) The origin of the X-Y coordinate system is at the point of maximum draft at the longitudinal centerplane of one hull.
 - (2) The vertical offsets are input as heights above the hull baseline.

(3) All offsets must be input in a counter-clockwise direction. There are basically three different transverse section configurations: (1) completely submerged hull cross-section;
(2) hull cross-section with attached strut; and (3) hull cross-section with overhanging strut.

<u>Configuration 1</u>: Completely submerged hull cross-section (no strut present). The first offset point must be at the intersection of the longitudinal plane of symmetry of the hull with the station contour closest to the surface (i.e. at the point where the y-coordinate is maximum). The last offset point must also be this point in order to close out the curve.

<u>Configuration 2</u>: Hull cross-section with attached strut. The first offset point must be at the intersection of the station contour at starboard with the design waterline, while the last offset point must be at the intersection of the design waterline with the station contour at port. Note that the program will close out the curve so that the areas can be determined.

Configuration 3: Hull cross-section with overhanging strut (i.e. strut not attached to the hull at the station). The first offset point must be at the intersection of the overhanging strut contour at starboard with the design waterline. Offsets are then read in counter-clockwise around the strut contour until it intersects with the longitudinal centerplane of the strut. Next, offsets are input down the longitudinal centerplane until it intersects with the hull contour. Offsets are then input counter-clockwise around the hull contour until the first offset on the hull is reached again. Next, offsets are read up the longitudinal centerplane (i.e. the same points as before) until it intersects with the overhanging strut contour. Finally, the strut offsets are input counter-clockwise around the strut up to the point where it intersects the design waterline on port. This is the last offset point.

Refer to Figure 2 and to Section 5.

(4) Records (21) and (22) are repeated NOS times once for each station. Note that all the x-coordinates for Station (I) are input followed by all the corresponding y-coordinates for Station (I); that is, the offsets are not read in coordinate pairs.

B.2 Output

This section describes the output in order of appearance on the printout. This may be compared with the sample output given in Appendix C.

- (a) Input data. First, information is given regarding input records (1) to (20). Following this, the hull offsets are listed according to each station. These input data are printed for checking purposes.
- (b) Hydrostatic calculations. Beam, draft, area coefficient, and critical encounter frequency are given for each station followed by the hydrostatic data for one hull. These data include the ship's strut length, beam and draft at midships, displacement, block coefficient, longitudinal and vertical center of buoyancy, longitudinal center of flotation, radius of gyration, and the transverse metacentric height. Also calculated and displayed here are the heave/pitch restoring coefficients, the moment of inertia, and the projected area of the submerged hull.
- (c) Regular Wave Calculations. This portion of the output begins with a reference table which describes scaling factors used by the program. If the control variable ICO is set equal to 1, the added mass coefficients are listed along with the corresponding encounter frequencies. For each specified ship speed (i.e. Froude number), the appropriate table of added mass coefficients is output. This output may be suppressed by setting ICO = 0. If the control variable IEQ is set equal to 1, the equations of motion solved are given for each ship speed and heading angle. This is followed by the damping coefficients and then the exciting forces, moments and phases for each ship speed and heading angle. Also listed are wave frequency, encounter frequency, and the ratios ship length divided by wavelength and the inverse, wavelength divided by ship length. This allows the user greater flexibility in choosing the appropriate base values for making plots. This section of output may be suppressed by setting IEQ = 0. If the control variable IREG is set equal to 1, the regular frequency responses (i.e. motion amplitudes and phases) are output for each ship speed and wave heading angle. Again, the same selection of base values are given to facilitate comparisons. Also output are the relative and absolute displacements, velocities, and accelerations at a specified height above the waterline for each desired station along the ship. This is repeated for each ship speed and for each heading angle. By setting IREG = 0, the output of the regular responses is suppressed.
- (d) Irregular Sea Calculations. The remainder of the output presents the results of irregular sea calculations. For each of the seaways specified and for each ship speed and principal heading angle, seakeeping data are given for unidirectional and short-crested seas. First, RMS values of ship translational

and rotational motions are given; specifically sway acceleration, heave displacement and acceleration, roll, pitch, and yaw. Next are listed the results of seakeeping calculations for each specified position along the ship at a particular height above the waterline. These include

- RMS absolute heave motion, velocity, and acceleration;
- RMS relative heave motion and velocity;
- vibration ride quality index;

Ē

- probability of deck wetness and number of deck wetnesses per hour;
- probability of keel emergence and number of keel emergences per hour;
- probability of box impact and number of box impacts per hour.
- most probable slam pressure in a 20 hour period of operation.
- extreme slam pressure with 1 percent probability of exceedence in a 20 hour period of operation.

	13.0												.1	
]	1.0											• 2	• 2	
	9.5										.1	• 2	•1	
	8.5									• 2	•5	• 2	.2	
_	7.5								.2	•6	• 6	• 3	• 2	
(H)	6.5								1.0	• 8	• 7	• 3	• 2	
ICHT	5.5							• 5	2.3	1.0	• 8	-4	• 2	
VEHE	4.5						•5	2.4	2.6	1.0	•8	•4	• 2	.1
IT WA	3.5					•6	3.5	3.0	2.6	1.1	• 8	• 5	• 3	.1
'ICAN	2.5				1.7	4.2	4.4	2.9	2.3	1.2	1.0	•6	• 3	.1
GNIF	1.5		• 2	3.0	5.1	4.2	4.1	2.8	2.6	1.2	1.3	• 7	• 4	.1
SI	0.5	•4	.3	4.2	4.3	3.0	3.7	2.0	2.0	.9	1.0	• 5	• 2	
		3.2	4.8	6.3	7.5	8.8	9.7	10.9	12.4	13.8	15.0	16.4	18.0	20.0

MODAL WAVE PERIOD (SEC)

TABLE B1: SIGNIFICANT WAVE HEIGHT BY MODEL WAVE PERIOD - ANNUAL PERCENTAGE
OCCURRENCE IN THE NORTH ATLANTIC (FROM REFERENCE 12)

FIGURE B1: SWATM2 BLOCK DIAGRAM

.

.

.

.

FIGURE B3: OFFSET TRIGONOMETRIC RELATIONSHIPS

FIGURE B4: ARRANGEMENT OF OFFSET COORDINATES

APPENDIX C

SAMPLE INPUT FOR SWATM 2

This input represents SWATH 6A in bow seas. For directional seas, it is necessary to specify a range of unidirectional headings, typically 0 to 180 degrees in steps of 30 degrees. This has not been done here to save space.

SWATH 6A 1 1 1 25 1 1.5 10 135. 0.4537 37.5	REGULAR W 1 1 0 1 25 1 0.0	AVE TEST C	ASE				
10.27278							
7.330					_		
172.3	0.315	0.223	0.0	7.44	15.00	19.17	
40.44	25.75	19.17	8.5	10.2	1.28	4.38	1.2
188.12	23.55	19.17	14.7	17.6	2.2	3.43	1.2
0.5	0.07						
-2 4	٥	0					
-2.4	9	0					
8	9	0					
0.0	9	0					
1.0	15	0					
2.0	15	õ					
3.0	15	Õ					
4.0	15	Ō					
6.0	15	2					
8.0	15	1					
10.0	15	1 -					
12.0	15	1					
14.0	15	1					
16.0	15	0					
17.0	15	0					
18.0	15	0					
19.0	15	0					
20.0	9	0					
21.5	9	0					
23.0	9	0					
23.8	9	0					
24.6	9	0					

0.	-3.44	-4.87	-3.44	0.	3.44	4.87	3.44
0.	10.94	7.50	4.06	2.63	4.06	7.50	10.94
12.37	10.74	/	4000	2000			
0.	-4.23	-5.98	-4.23	0.	4.23	5.98	4.23
0.	70	7 60	2 27	1 5 2	2 27	7 50	11 73
13.48	11./3	1.50	3.21	1.52	3.21	7.50	1 1 0 / 3
0.	-4.70	-6.65	-4.70	0.	4.70	6.65	4.70
14.15	12.20	7.50	2.80	0.85	2.80	7.50	12.20
14.15	-5.06	-7.16	-5.06	0.	5.06	7.16	5.06
0. 14.66	12.56	7.50	2.44	0.34	2.44	7.50	12.56
14.66	1 06	1 06	-1.06	-/ 89	-7 47	-5 28	· 0.
-1.00	-1.00	-1.00	-1.06	-4.89	-/.4/	1.06	••
26 67	22.74	18.82	14.89	13.14	7.50	2.22	0.03
20.07	7 50	13 14	14.89	18.82	22.74	26.67	
-2.17	+2.17	-2.17	-2.17	-4.47	-7.50	-5.30	0.
5.30	7.50	4.47	2.17	2.17	2.17	2.17	
26.67	22.67	18.68	14.68	13.52	7.50	2.20	0.
2.20	7.50	13.52	14.68	18.68	22.67	26.67	
-3.01	-3.01	-3.01	-3.01	-4.11	-7.50	-5.30	0.
5.30	7.50	4.11	3.01	3.01	3.01	3.01	
26.67	22.57	18.47	14.37	13.78	7.50	2.20	0.
2.20	7.50	13.78	14.37	18.47	22.57	26.67	
-3.41	-3.41	-3.41	-3.41	-3.92	-7.50	-5.30	0.
5.30	7.50	3.92	3.41	3.41	3.41	3.41	
26.67	22.51	18.34	14.18	13.90	7.50	2.20	0.
2.20	7.50	13.90	14.18	18.34	22.51	26.67	•
-3.63	-3.63	-3.63	-3.63	-3.81	-7.50	-5.30	0.
5.30	7.50	3.81	3.63	3.63	3.63	3.63	0
26.67	22.47	18.27	14.07	13.96	7.50	2.20	0.
2.20	7.50	13.96	14.07	18.27	22.47	20.0/	0
-3.63	-3.63	-3.63	-3.63	-3.81	-7.50	-3.30	0.
5.30	7.50	3.81	3.03	3.03	3.03	2 20	0
20.67	22.47	10.27	14.07	19.90	22 47	26 67	••
2.20	/•50	-2 63	-3 63	-3.81	-7.50	-5.30	0.
-3.03	-3.03	-2.02	-3.63	3.63	3.63	3.63	••
26 67	22 47	18 27	14.07	13.96	7.50	2,20	0.
20.07	7 50	13 96	14.07	18.27	22.47	26.67	
-3.63	-3.63	-3.63	-3.63	-3.81	-7.50	-5.30	0.
5,30	7.50	3-81	3.63	3.63	3.63	3.63	-
26.67	22.47	18.27	14.07	13.96	7.50	2.20	0.
2,20	7.50	13.96	14.07	18.27	22.47	26.67	
-3,63	-3.63	-3.63	-3.63	-3.81	-7.50	-5.30	0.
5,30	7.50	3.81	3.63	3.63	3.63	3.63	
26.67	22.47	18.27	14.07	13,96	7.50	2.20	0.

2.20	7.50	13.96	14.07	18.27	22.47	26.67	
-3.48	-3.48	-3.48	-3.48	-3.88	-7.50	-5.30	0.
5.30	7.50	3.88	3.48	3.48	3.48	3.48	
26.67	22.49	18.32	14.14	13.92	7.50	2.20	0.
2.20	7.50	13.92	14.14	18.32	22.49	26.67	
-3.12	-3.12	-3.12	-3.12	-4.05	-7.50	-5.30	0.
5.30	7.50	4.05	3.12	3.12	3.12	3.12	
26.67	22.55	18.43	14.32	13.81	7.50	2.20	0.
2.20	7.50	13.81	14.32	18.43	22.55	22.67	
-2.43	-2.43	-2.43	-2.43	-4.31	-7.42	-5.25	0.
5.25	7.42	4.31	2.43	2.43	2.43	2.43	
26.67	22.62	18.57	14.52	13.55	7.50	2.25	0.08
2.25	7.50	13.55	14.52	18.57	22.62	26.67	
-1.43	-1.43	-1.43	-1.43	-4.56	-7.21	-5.10	0.
5.10	7.21	4.56	1.43	1.43	1.43	1.43	
26.67	22.63	18.60	14.56	13.08	7.50	2.40	0.29
2.40	7.50	13.08	14.56	18.60	22.63	26.67	
0.	-4.81	-6.80	-4.81	0.	4.81	6.80	4.81
0.						7 50	1 2 21
14.30	12.31	7.50	2.69	0.70	2.69	/.50	12.31
14.30		5 0 7	(•	6 9 9	5 0 7	4 22
0.	-4.22	-2.9/	-4.22	0.	4.22	3.31	4.22
0.	11 70	7 50	2 29	1 5 2	3 7 9	7 50	11 72
13.47	11.72	7.30	3.20	1.55	3.20	/. 50	11.74
13.47	_2 22	-4 71	-3 33	0	3, 33	4.71	3, 33
0.		-4./1	-3.33	0.	5.55		
12.21	10.83	7.50	4.17	2.79	4.17	7.50	10.83
12 21	10.05	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
0.	-2.32	-3.28	-2.32	0.	2.32	3.28	2.32
0.				•••			
10.78	9.82	7.50	5.18	4.22	5.18	7.50	9.82
10.78							
0.	-1.06	-1.50	-1.06	0.	1.06	1.50	1.06
0.							
9.00	8.56	7.50	6.44	6.00	6.44	7.50	8.56
9.00							

Q

đ

APPENDIX D

SAMPLE OUTPUT FOR SWATM2

1

This output was generated using the input file in Appendix C, on a DEC 20-60 computer.

SWATNO SHIP NOTIONS OF SWATH 64 IRREGULAR WAVE TEST CASE SYSTEM OF UNITS USED : BRITISH

SWATH 64 IRREGULAR WAVE TEST CASE 1 1 25 1 1 1 1 0 1 22 3 25 1 1.50000 0.45370 37.50000 4.00000 50.00000 172.30000 40.44000 188.12000 10.00000 0.31500 25.75000 23.55000 0.07000 0.22300 19.17000 19.17000 0.00000 8.50000 14.70000 7.44000 10.20000 17.60000 13.00000 19.17000 1.28000 2.20000 4.38000 1.20000 0.50000 0.0000 18.0000 34.0000 -2.4000 -1.6000 -0.8000 2.0000 3.0000 4.0000 8.0000 10.0000 12.0000 14.0000 14.0000 15.0000 15.0000 20.0000 21.5000 23.8000 23.8000 24.6000 9.9100 20.00000 0.00000 000 ā ň 1 1 1 ò õ õ 0000000

SWATHO SHIP MOTIONS OF SWATH 64 IRREGULAR WAVE TEST CASE STATION -2.4000 -4.8700 7.5000 -3.4400 0.0000 3.4400 4.8700 3.4400 4.0600 7.5000 10.9400 0.0000 0.0000 -3.4400 STATION -1.6000 4.2300 5.9800 3.2700 7.5000 4.2300 11.7300 0.0000 13.4800 -4.2300 -5.9800 7.5000 0.0000 0.0000 -4.2300 -0.8000 4.7000 6.6590 2.8000 7.5000 STATION 4.700U 12.2000 0.0000 14.1500 0.0000 -4.7000 -6-6500 -4.7000 0.0000 14.1500 STATION 0.0000 -5.0600 0.0000 5.0600 7.1600 2.4400 7.5000 5.0600 12.5600 -5.0800 12.5600 -7.1600 0.0000 0.0000 14.6600 14.6600 STATION -4.8900 1.0600 13.1400 26.6700 1.0000 -7.4700 -5.2800 -1.0600 4.89G0 26.6700 13.1400 0.0000 -1.0600 -1.0600 -1.0600 5.2800 1.0600 22.7400 14.8900 1.0600 1.0600 7.5000 2.2200 0.0300 2.2200 7.5000 2.0900 -7.5000 -5.3000 -2.1700 4.4700 26.6700 13.5200 -2.1700 2.1700 22.6700 -2.1700 2.1700 18.6800 18.6800 -2.1700 2.1700 14.6800 22.6700 0.0000 5.3000 7.5000 7.5000 2.2000 0.0000 2.2000 7.5000 14.6800 STATION 3.0000 -7.5000 -5.3000 -3.3100 3.0100 18.4700 18.4700 -3.0100 a1.60 -1.0100 9.0000 5.3000 7.3000 3.0100 22.5700 14.3700 3.0100 14.3700 22.5700 +.1100 26.6700 13.7800 0.0000 7.5000 2.2000 1. 1444 2.2000 STATION -3.9200 3.4100 13.9000 26.5700 4.0000 +7.5000 -5.3000 1.3000 -3. +100 3.9200 26.6700 13.9000 -3.4100 3.4100 22.5100 14.1500 -3.4100 3.6100 18.3400 18.3400 -3.4100 3.4100 14.1800 22.5100 0.0000 5.3000 7.5000 2.2000 0.0000 2.2000 1.1000 STATION a. JOUU -3.8100 3.6300 13.9600 26.6700 +7.5000 -5.3000 -3.6300 3.8100 26.6700 13.9600 -3.6300 3.6300 22.4730 14.3730 -3.6300 3.6300 18.2700 18.2700 +3.6300 3.6300 14.0700 22.4700 J. JOUU 3.3000 7.5000 7.5000 2.2000 J. J000 2.2000 1.5000 STATION 8.0000 -7.5000 -5.3000 -3.8300 3.8100 26.6700 13.7600 -3.8100 3.6300 13.9600 26.6700 0.0000 5.3000 -3.8300 3.8300 12.4700 14.0700 -1.6300 -1.6300 3.6300 18.2700 3.6300 7.5000 2.2000 2...00 1. 20....

PAGE

.

SWATHO SHIP NOTIONS OF SWATH 64 IRREGULAR WAVE TEST CASE

4

Ê

10.0000 -7.5000 -5.3000 0.0000 5.3000 STATION -3.6300 -3.6300 -3.6300 -3.6300 3.8100 3.6300 3.6300 3.6300 26.8700 22.4700 18.2700 14.0700 13.9600 14.0700 18.2700 22.4700 -3.8100 3.6300 13.9600 26.6700 7.5000 7.5000 2.2000 0.0000 2.2000 7.5000 STATION # 12.0000 -7.5000 -5.3000 0.0000 -3.6300 3.6300 14.0700 22.4700 5.3000 7.5000 +3.6300 -3.6300 -3.6300 3.8100 3.6300 3.6300 26.6700 22.4700 18.2700 13.9600 14.0700 18.2700 -3.8100 3.6300 13.9600 26.6700 7.5000 2.2000 0.0000 2.2000 7.5000 STATION N 14.0000 -7.5000 -5.3000 -3.6300 3.6300 14.0700 22.4700 -3.6300 3.6300 18.2700 18.2700 -3.8100 3.6300 13.9600 26.6700 -3.6300 -3.6300 3.8100 3.6300 26.6700 22.4700 13.9600 14.0700 0.0000 5.3000 7.5000 2.2000 0.0000 2.2000 7.5000 STATION N 16.0000 -7.5000 -5.3000 0.0000 5.3000 -3.4800 3.8800 26.6700 13.9200 -3.4800 3.4800 14.1400 22.4900 -3.8800 3.4800 13.9200 26.6700 -3.4800 3.4800 22.4900 14.1400 -3.4800 3.4800 18.3200 18.3200 7.5000 7.5000 2.2000 0.0000 2.2000 7.5000 5.0000 STATION 17.0000 -4.0500 -7.5000 -5.3000 0.0000 3.1200 13.8100 7.5000 2.2000 0.00 22.6700 5.3000 7.5000 2.2000 1.5000 STATION 18.0000 -4.3100 -7.4200 -5.2500 2.4300 13.5500 7.5000 2.2500 25.6700 -2.4300 4.3100 26.6700 13.5500 -2.4300 -2.4300 2.4300 2.4300 22.6200 18.5700 14.5200 18.5700 -2.4300 2.4300 14.5200 22.6200 0.0000 5.2500 7.4200 0.0800 2.2500 7.5000 STATION -4.5600 1.4300 13.0800 26.6700 19.0000 -7.2100 -5.1000 -1.4300 -1.4300 -1.4300 4.5600 1.4300 1.4300 26.6700 22.6300 18.6000 13.0800 14.5600 18.6000 -1.4300 1.4300 14.5600 22.6300 0.0000 5.1000 7.2100 7.5000 2.4000 0.2900 2.4000 7.5000 20.0000 4.8100 6.8000 4.8100 0.0000 2.6900 7.5000 12.3100 (4.3000 STATION 0.0000 0.0000 -4.8100 -6.8000 7.5000 -4.8100 2.6900 STATION 0.0000 1.5300 21.5000 4.2200 5.9700 4.2200 0.0000 3.2800 7.5000 11.7200 13.4700 -4.2200 -5.9700 11.7200 7.5000 -4.2200 3.2800 0.0000 STATION 0.0000 2.7900 23.0000 3.3300 4.7100 3.3300 0.0000 4.1700 7.5000 10.8300 12.2100 0.0000 -3.3300 -4.7100 -3.3300 12.2100 10.8300 7.5000 4.1700

PAGE

 SWATHO
 SHIP NOTIONS OF SWATH 6A IRREGULAR WAVE TEST CASE
 P

 STATION
 23,8000
 0.0000
 2.3200
 0.0000
 0.0000
 1.32800
 0.0000
 0.0000
 1.32800
 0.0000
 1.32800
 0.0000
 1.32800
 0.0000
 1.32800
 0.0000
 1.32800
 0.0000
 10.7800
 1.07800
 1.07800
 1.07800
 1.07800
 1.07800
 1.07800
 1.07800
 1.07800
 1.07800
 1.07800
 1.07800
 1.07800
 1.07800
 1.07800
 1.07800
 1.07800
 1.07800
 1.07800
 1.07800
 1.07800
 1.07800
 1.07800
 1.07800
 1.07800
 1.07800
 1.07800
 1.07800
 1.07800
 1.07800
 1.07800
 1.07800
 1.07800
 1.07800
 1.07800
 1.07800
 1.07800
 1.07800
 1.07800
 1.07800
 1.07800
 1.07800
 1.07800
 1.07800
 1.07800
 1.07800
 1.07800
 1.07800
 1.07800
 1.07800
 1.07800
 1.07800
 1.07800
 1.07800
 1.07800
 1.07800
 1.07800
 1.078

PAG	2

PAGE

5

ATHO	SHIP	TOR	10#5	07	5 W	ATH	64	. 1		EGU	ILAR	WAVE	TEST	CASE
TATION	84	LAH	D	2.4.5	τ	ARE		:01	.,,	ICI	ENT			
-2.4000) 0.	000	0	9.7	400		0.8	131	6					
-1.6000) 0.	. 000	0 1	1.9	600		0.8	130	39					
-0.8000) 0.	. 000	0 1	3.3	000		0.8	132	26					
0.0000) 0,	.000	ο ι	4.3	200		ò.8	132	24					
1.0000	2.	120	0 Z	6.6	400		3.5	19	19					
2.0000) 4.	340	02	6.6	700		1.9	6	24					
3.0000) 5.	020	02	6.6	700		1.1	134	16					
4.0000) 6.	820	οz	6.6	700		1.1	15	72					
6.0000) 7.	260	0 2	6.6	700		1.1	15:	32					
8.0000) T.	260	οz	6.6	700	1	1.3	15:	32					
10.0000) 7.	260	0 2	6.6	700		ι. 1	15	32					
12.0000) 7.	260	οz	6.6	700	ł	1.3	15	32					
14.0000	7.	260	0 Z	6.6	700		1.1	S:	32					
16 .00	6.	960	ō ż	6.6	700		1.1	19	19					
17.0000	6.	240	0 2	6.6	700		1.4	2	38					
18.0000	4.	860	ō ż	6.S	900		1.7	8	36					
19.0000	2.	860	o z	6.3	800		2.6	•0:	34					
20.0000) O.	. 000	0 1	3.6	000		٥. ٥	13:	39					
21.5000) a.	. 000	01	1.9	400		0.8	13:	28					
23.0000) 0.	.000	0	9.4	200		0.8	13:	31					
23.8000) O.	.000	0	6.5	600		0.8	13:	38					
24.6000) 0.	. 000	0	3.0	000		0.4	133	23					

SWATHO

CRITICAL	ENC.	FREO.	FOR	STATION	-2.4000		0.0000
CRITICAL	ERC.	TREO.	FOR	STATION	-1.6000	٠	0.0000
CRITICAL	ENC.	FREO.	708	STATION	-0.8000	•	0.0000
CRITICAL	EXC.	TREG.	701	STATION	0.0000	•	0.0000
CRITICAL	FHC.	FREG.	701	STATION	1.0000		15.9790
CRITICAL	ENC.	7120.	POR	STATION	2.0000		11.1679
CRITICAL	FMC	THEA	-	STATION	1 0000		9 4874
CRITICAL		FRFA	100	STATION	1 0000	1	
CRITICAL		TREQ.	100	STATION	6 0000		8 4 3 4 7
CRITICAL	ENC.	FREQ.	101	STATION		2	4 4 1 4 7
CRITICAL		TARO.	101	STATION	10.0000	2	6.034/
CRITICAL	LAG.	FEEQ.	FUR	STATLON	10.0000		8.034/
CRITICAL	ENG.	FREQ.	FOR	STATION	12.0000		8.034/
CRITICAL	tag.	FREQ.	FUR	STATION	14.0000		8.034/
CRITICAL	Eac.	PREQ.	FOR	STATION	18.0000	•	8.4189
CRITICAL	INC.	FREQ.	FOR	STATION	17.0000	•	9.3138
CRITICAL	ENC.	FREQ.	FOR	STATION	18.0000	•	10.5536
CRITICAL	ENC.	FREQ.	FOR	STATION	19.0000		13.7573
CRITICAL	ENC.	FREQ.	70 E	STATION	20.0000	٠	0.0000
CRITICAL	ENC.	FREO.	FOR	STATION	21.5000	٠	0.0000
CRITICAL	ENC.	FREG.	FOR	STATION	23.0000	•	0.0000
CRITICAL	ENC.	FREO.	FOR	STATION	23.8000		0.0000
CRITICAL	ENC.	FREO.	FOR	STATION	24.6000		0.0000

0.0000 DUE TO STATION 24.6000 INUM CRITICAL ENC. FRED.

SWATHO SHIP NOTIONS OF SWATH 64 IRREGULAR WAVE TEST CASE ***DATA FOR ONE HULL*** LENGTH BETWEEN PENPENDICULARS - 172.30000 PEET BEAM AT NIDSHIP - 7.26000 PEET DEATT AT NIDSHIP - 26.07000 PEET DISFLACEMENT - 1347.087 LONG TONS BLOCK COEFFICIENT - 1.44947 LONGITUDINAL CENTER OF BUOYANCY - 88.26141 FEET AFT OF F.P. LONGITUDINAL CENTER OF FUOTATION - 66.775318 FEET AFT OF F.P. LONGITUDINAL CENTER OF FIOTATION - 10.42509 STATIONS ' LEADING EDGE OF STRUT LONGITUDINAL CENTER OF FIOTATION - 16.03670 STATIONS ' LEADING EDGE OF STRUT VERTICAL CENTER OF FIOTATION - 0.31500 TRANSVERSE METACCENTRIC + 60.2722 LENGTH/BEAM - 23.73275 THE HEAVE-HEAVE RESTORING COEFFICIENT IS 3.00354 The Heave-Fitch Restoring Coefficient IS -0.03100 The Pitch-Pitch Restoring Coefficient IS 0.16731 PROJECTED AREA OF THE SUBMERGED HULL/L**2 + 0.1086218+00 Moment/L**3 + 0.1660098-02 Moment of Inertia/L**4 + 0.1400228-01

HULL SEPARATION/BEAM = 9.3306

SWATHO SHIP NOTIONS OF SWATH 6A IRREGULAR WAVE TEST CASE Othanic coefficients of the equations of notion

A22 AND A33 ARE SCALED BY M. A24,A26,A62,A53,AND A53 ARE SCALED BY MML. A44,A46,A64,A64,A64,AND A53 ARE SCALED BY MMLL. B22 AND B33 ARE SCALED BY MMSQRT(G/L). B24,B64,B64,B64,B64,AND B53 ARE SCALED BY MMSQRT(GML). B44,B64,B64,B64,ND B53 ARE SCALED BY MMSQRT(GML). (B44= IS B44 RICLUDING CROSS-FLOW DRAG CONTRIBUTIONS.)

EXCITING FORCE, MOMENTS AND PHASES

THE SWAT FORCE IS SCALED BT N°G°A. THE ROLL AND TAW NOMENTS ARE SCALED BY N°G°A. (*MOMENT DENOTES THE MOMENT SCALED BY N°G°A. (*MOMENT DENOTES THE MOMENT SCALED BY N°G°A. (*MOMENT DENOTES THE MOMENT SCALED BY THE FEATURE RESTORING FORCE C33 - RHO°G°A.*(WATERPLANE AREA). THE MOMENT AMPLITUDE IS SCALED BY THE PITCH RESTORING MOMENT C55 - RHO°G°A.*(MOMENT OF IMERIA OF VATERPLANE)/L. (*MOMENT DENOTES THE MOMENT AMPLITUDE SCALED BY L*(WAVE NUMBER)=C55.) NOTION AMPLITUDES AND PHASES THE SWAY AMPLITUDE AND THE HEAVE AMPLITUDE ARE SCALED BY A.

THE SWAY AMPLITUDE AND THE HEAVE AMPLITUDE ARE SCALED BY A. THE ROLL AMPLITUDE IS SCALED BY 2*A/B. THE YAW AMPLITUDE AND THE PITCH AMPLITUDE ARE SCALED BY 2*A/L. (*ROLL DEMOTES ROLL AMPLITUDE SCALED BY A*(WAVE NUMBER).) (*TAW DEMOTES TAW AMPLITUDE SCALED BY A*(WAVE NUMBER).) (*PITCH DEMOTES PITCH AMPLITUDE SCALED BY A*(WAVE NUMBER).)

N IS THE DISPLACED MASS.
 G IS THE ACCELERATION DUE TO GRAVITT.
 L IS THE DISTANCE BETWEEN PERPENDICULARS.
 A IS THE MAYE ANPLITUDE.
 B IS THE TOTAL HULL SEPARATION.
 REO IS THE MATER DEMSITY.
 PH IS THE MOUDE NUMBER - (FORWARD SPEED)/SQRT(G*L).
 BETA IS THE MAVERADING ANGLE IN DEGREES.
 (BETA-180-0 FOR MEAD SEAS.)
 OMEGA IS THE MATEROUTER FRQUEDEN NOM-DIMENSIONALIZED BY SQRT(G/L).
 THE BULL SEPARATION/BEAN RATIO IS THE DISTANCE BETWEEN
 THE BULLS DIVIDED BY THE BEAN OF OME NULL.
 THE BULLS IS MEADED IN DEGREES WITH RESPECT TO THE WAVE AT CG.
 L/LAR - L/(WAVE LENGTH).

SWATHO SHIP NOTIONS OF SWATH 6A IRREGULAR WAVE TEST CASE

BARE HULL POTENTIAL FLOW ADDED MASS AND DAMPING COEPFICIENTS FN = .454

ABALS	A 1 3 4 1 7 8	-0.000	A33	A 1340A	833	833	833	
0.7742	0.4281/3	-0.092825	0.091015	0.1/0001	0.2002/2	0.133344	-0.193132	0.032/16
1.0941	0.419735	-0.075889	0.074362	0.158537	0.198207	0.189627	-0.191240	0.045408
1.1939	0.413678	-0.062306	0.060964	0.145709	0.193647	0.186921	-0.188450	0.039636
1.2938	0.409256	-0.051374	0.050164	0.135931	0.187304	0.184913	-0.186446	0.335120
1.3936	0.405649	-0.042481	0.041423	0.128164	J.179585	0.183209	-u.184877	0.031610
1.4935	0.401920	-0.034912	0.034150	0.121687	0.169756	0.181380	-0.181322	0.028704
1.5933	0.397144	-0.027367	0.027218	0.115006	0.142709	0.179086	-4.181283	1.125554
1.6931	0.393021	-0.017337	0.017997	0.111181	3.111629	0.177408	-0.179219	0.020219
1.7930	0.398735	-0.007181	0.007503	0.108368	0.052024	0.180566	-0.181146	3.013637
1.8928	0.408230	-0.004693	0.003770	0.106440	1. 131414	0.145369	-0.185059	0.011535
1.9927	0.412909	-0.004777	0.003007	0.104311	0.034064	0.147558	+0.187115	0.010932
2.0925	0.575365	-0.000870	0.005859	0.111930	1.132464	0.251204	-0.260881	4.009679
2.1974	0.580977	-0.000194	0.004918	0.109908	0.027181	0.263623	-0.263556	0.007757
2.2922	0.586792	0.000553	0.004006	0.108481	3.014998	0.266475	-0.266380	0.005516
2.3920	0.593342	0.001198	0.003235	0.107665	0.017842	0.266805	-0.269593	9.003.080
2.4919	0.600662	0.001635	0.002734	0.107398	0.007517	0.271839	-0.273202	0.001808
2.5917	0.434256	+0.007165	-0.001199	0.099969	0.00751	1. 196125	-0.198019	0.001260
2.6916	-0.423950	-0 022039	-0.02.0951	1. 16	0.0094466	-1.191659	.1 191034	0.001137
7 7 9 1 4	-0 108487	-0.015474	-0.011190	0.079613	0.000000		0.191034	0.004714
2	-0.108687	-0.013427	-0.0(1)70	0.077632	0.017308	-0.030903		0.004715
2.0713	0.110733	-0.011034	-0.007713		0.032474	0.032137	-9.033783	0.009107
4-9911	0.189/44	-0.010822	-9.003425	0.041487	1.333144	2.075105	-9. 175929	0.015183
3.0404	0.291501	-0.00904z	-0.001549	1.196204	0.378465	0.130372	-9.13+136	9.022594
3.1908	0.769419	0.000899	0.010383	0.111309).106407	0.347364	-0.350808	7.930204
3.2906	0.955689	0.004316	0.015592	0.115364).134562	J. 432154	-0.435038	0.038973
3.3905	0.630836	-0.003732	0.008914	J.102786	0.160206	0.285129	-1.247292	1. 345389

PAGE

PAGE

SWATMO - SHIP MOTIONS OF SWATH 6A IMREGULAR WAVE TEST CASE Bare Hull Potential Flow Added Mass Coepficients FN = -454

.

F

• . •) •	•							
OMEGA	A 2 2	A24=A42	A26	A 6 2	A44	446	A64	A06
0.9942	5.600134	0.316563	0.294221	-0.171648	0.038973	-3.749510	3.758366	1.571242
1.0941	5.486244	0.317702	0.377519	-0.239649	0.039480	-2.007013	2.016504	1.353912
1.1939	5.310254	0.315216	0.465960	-0.314815	0.039841	J.022446	-0.012232	1.178916
1.2938	5.079117	0.309102	0.549798	-0.389349	0.040029	0.027133	-0.010444	1.035135
1.3936	4.799450	0.299358	0.617763	-0.453693	0.040015	0.031380	-0.020525	0.907709
1.4935	4.482878	0.286278	0.660.0	-0.498544	0.339780	0.034625	-0.023950	9.797893
1.5933	4.147444	0.270603	0.674822	-0.518468	J.J39327	0.036515	-0.026303	0.702161
1.6931	3.813101	0.253335	4.682850	-0.513419	0.038679	0.037011	-11.327206	1. 52 1577
1.7930	3.493859	0.235001	0.631671	-0.487520	0.037858	0.036337	-0.027313	0.553162
1.3928	3.184416	0.210563	0.589548	-0.446412	0.036851	0.034845	-0.026210	10.498901
1.9927	2.861624	0.195059	U.544359	-0.394597	0.035530	0.032928	-0.024272	0.454695
2.0925	2.360476	0.160719	0.504707	-0.332417	0.033322	0.031096	-0.021455.	0.411525
2.1924	9.425164	0.569187	0.297659	-0.438164	0.057563	0.019160	-0.028263	0.803184
2.2922	4.189337	0.262287	0.378814	-0.258565	0.038568	0.023703	-0.018309	0.513578
2.3920	3.955677	0.242498	0.356899	-0.184562	0.036807	0.022012	-0.014326	0.520872
2.4919	4.231367	0.250307	0.341019	-0.103592	0.036589	0.020267	-0.004973	0.561560
2.5917	5.111566	0.287497	0.352010	0.014636	0.037942	0.019174	-0.003889	J.73451U
2.6916	8.135425	0.419861	0.541965	0.333286	0.044095	0.023004	0.01061A	1.271130
2.7914	20.106456	1.226431	-0.827983	-12.832919	3.1.5920	-0.045242	-0.596934	1.659617
2.8913-	30.846266	-1.634373	0.828915	-1.431489	-0.067729	0.051435	-0.082846	-2.149843
2.9911	-7.345828	-0.350295	0.232663	-0.450777	0.009371	0.016197	-0.026875	-0.565301
3.0909	-3.755988	-0.158165	0.175797	+0.313700	0.020673	0.012225	-0.019079	-0.275395
3.1908	-2.267791	-0.079060	0.149290	-0.249541	0.025368	0.010254	-0.015473	-0.149655
3.2906	-1.448932	-0.035706	0.131325	-0.209123	0.028057	0.008935	-0.013250	-0.079828
3.3905	-0.928642	-0.008385	0.117271	-0.179860	0.029877	U.U0795L	-0.011691	-0.035971

SUATHO SHIP NOTIONS OF SWATH 6A IRREGULAR WAVE TEST CASE

BARE HULL POTENTIAL FLOW DAMPING COEFFICIENTS FN = .454

ONEGA	822	824-842	826	562	844	B4 6	364	866
.9942	0.507512	-8.178995	-2.529944	2.551617	-0.319383	0.043922	0.331171	0.142825
-0941	0.814414	-5.307789	-2.471565	2.506653	-0.169632	-0.021315	0.266967	0.199742
. 1939	1.226539	0.054478	-2.382610	2.435914	0.002302	-0.141387	0.144639	0.267197
. 2938	1.732400	0.060384	-2.266463	2.342328	0.003592	-0.137842	0.142637	0.340559
. 3936	2.293293	0.111095	-2.127016	2.228005	0.005261	-0.132514	0.139123	0.412197
. 4935	2.849373	0.143978	-1.970972	2.096792	0.307240	-0.125625	0.134144	0.473389
. 5933	3.338426	0.175743	-1.808024	1.955367	0.009406	+0.117618	0.127927	0.517272
. 6931	3.716162	0.203511	-1.648272	1.811736	0.011620	-0.109039	0.120838	0.540967
.7930	3.965142	0.225503	-1.498422	1.671906	0.013766	-0.100308	0.113204	0.545568
. 8928	4.390408	0.241072	-1.357835	1.535697	0.015759	-0.091460	0.105050	0.534549
. 9927	4.108828	0.250307	-1.209503	1.387135	0.017533	-0.081534	0.095463	0.511954
2.0925	4.039503	0.253583	-0.984005	1.157891	0.019028	-0.065928	0.079908	0.481231
. 1924	3.897604	0.251223	-4.192463	4.359932	0.020170	-0.251340	J.265141	0.444730
. 2922	3.690665	0.243263	-1.821311	1.980094	0.020865	-0.112283	0.125716	0.403522
1.3920	3.414344	0.229140	-1.720915	1.868465	0.020988	-0.103586	0.116457	0.357067
1.4919	3.042554	0.206936	-1.853689	1.985854	0.020345	-0.107563	J. 119566	0.302072
1.5917	2.497416	0.170727	-2.265008	2.373228	0.018519	-0.125290	0.135585	0.221789
1.6916	1.666068	0.098886	-3.619702	3.762383	0.014012	-0.187779	0.193203	0.137803
1.79141	03.088629	4.737478	-42.610390-	24.365792	0.246514	-2.062523	-0.949680	18.444156
1.8913	20.823890	1.237062	13.995854-	-13.994048	0.080883	0.743468	-0.739563	1.564136
2.9911	6.738519	0.424683	3.384457	-3.281147	0.031195	0.163283	-0.15+576	0.529553
3.0909	5.153888	0.329598	1.743191	-1.644992	0.024441	3.076717	-0.066602	0.491757
3.1908	4.474937	0.288655	1.087541	-0.970253	0.020902	1.040889	-0.030850	0.→30179
3.2906	4.062657	3.264748	J.713747	-0.501913	0.0(451)	1.1211035	-0.011294	0.393076
3.3905	3.764183	0.248530	0.474894	-0.367755	0.019455	9-104504	1. 194900	1.300015

PAGE

PAGE 10

SWATNO - SHIP NOTIONS OF SWATE 64 IRREGULAR WAVE TEST CASE

.

ADDED MASS CORFFLUENTS AND DAMPING CORFFLUENTS EXCLUDING GRUSS-FLUW DRAG FY = .434

OMEGA	A33	A35	A 5 3	A 5 5	833	835	853	855
0.9942	0.512963	-0.055489	0.128350	0.214572	しょうりちきわつ	1.565173	J. 399711	U.341821
1.0941	0.504522	-0.038553	0.111698	0.198032	1.+04901	0.561408	0.103603	0.33+514
1.1939	0.496465	-0.024970	0.098299	0.182867	1.444341	J. 5587JU	J. 106393	0.328742
1.2938	0.494044	-0.014039	0.087500	0.171273	1.393997	0.556092	0.108397	0.324232
1.3936	0.490436	-0.005145	0.078759	0.162065	1.386279	0.554988	0.109966	0.320716
1.4935	0.486708	0.002424	0.071486	0.154427	1.376450	0.553159	0.111521	0.317810
1.5933	0.481931	0.009969	0.364553	0.147796	1.359403	J.55U865	0.113560	0.314663
1.6931	0.477809	0.019999	9.055332	J. 1 - 2184	1.318323	0.549187	9.115624	0.309325
1.7930	0.483523	0.030154	0.044839	0.138712	1.258718	0.552445	0.113697	0.302742
1.8928	0.493018	0.032643	0.041106	0.136266	1.240108	0.557148	0.109784	0.300640
1.9927	0.497697	0.032559	0.040343	0.133643	1.240757	0.559337	u.1u7727	3.300034
2.0925	0.660152	1.036466	0.043195	0.140830	1.239163	0.532983	J. J 3396 L	0.298745
2.1924	0.665765	0.037142	1. 14227	1.134454	1.211875	1.9154.12	1. 136287	1.294463
2.2922	0.671580	0.037888	0.041342	0.136717	1.225692	1.437854	0.128463	0.294622
2.3920	0.678130	0.038534	0.040570	0.135630	1.219536	0.640584	0.025250	0.292485
2.4919	0.685450	0.038971	0.340369	0.135123	1.214210	0.643018	0.021641	0.290914
2.5917	0.519044	0.035170	1. 335936	3.127481	1.212365	0.567804	0.096824	0.290368
2.6916	-0.339163	0.015297	0.016385	0.092311	1.215380	0.178120	0.485677	U. 291242
2.7914	-0.023899	0.021906	0.023945	0.106786	1.224202	0.320874	U.342560	0.293824
2.8913	0.203721	0.026297	0.029822	0.116556	1.239168	0.423936	0.239080	0.298212
2.9911	0.254531	0.026514	0.031908	0.118850	1.259880	0.446885	0.215923	0.304288
3.0909	0.376288	0.028294	0.035746	0.122945	1.285158	0.502151	0.160707	0.311700
3.1908	0.854207	0.038235	3.347718	0.137938	1.313101	0.719143	-0.055965	0.319875
3.2906	1.040477	0.041652).052928	0.141890	1.341256	0.803933	-0.140196	0.328079
3.3905	0.715624	0.033603	0.046249	0.129219	1.366899	0.656908	0.307550	0.335494

SWATHO SHIP MOTIONS OF SWATH 6A IRREGULAR WAVE TEST CASE

ADDED HASS COEFFICIENTS FN = .454

OMEGA	A22	A24=A42	A26	A62	A44	A46	A64	A66
0.9942	5.600134	0.316563	0.426506	-0.171548	0.040608	-3.738547	3.758366	1.570712
1.0941	5.486244	0.317792	0.486761	-0.239849	0.041114	-1.997960	2.016564	1.353474
1.1939	5.310254	0.315216	0.557695	-0.314815	0.041475	0.030049	-0.012232	1.178548
1.2938	5.079117	0.309102	0.627921	-0.389349	0.041664	0.033608	-0.016444	1.032822
1.3936	4.799450	0.299358	0.685093	-0.453693	0.041649	0.036960	-0.020525	0.907439
1.4935	4.482878	0.286278	0.719299	-0.498544	0.041414	0.039484	-0.023950	0.797658
1.5933	4.147444	0.270603	0.726333	-0.518468	0.040961	0.040784	-0.026303	0.701955
1.6931	3.813101	0.253335	0.708465	-0.513419	0.040313	0.040792	-0.027406	0.620394
1.7930	3.493859	0.235301	0.672347	-0.487520	0.039492	0.039708	-0.027313	0.552999
1.8928	3.188816	0.216563	0.626046	-0.446412	0.038485	0.037870	-0.026210	0.498755
1.9927	2.861624	0.195059	0.577291	-0.394597	0.037164	0.035658	-0.024272	0.454563
2.0925	2.360476	0.160719	0.534571	-0.332417	0.034956	0.033571	-0.021455	0.411405
2.1924	9.425164	0.569187	0.324865	-0.438164	0.059197	0.021420	-0.028263	0.803075
2.2922	4.189337	0.252287	0.403701	-0.258565	0.040202	0.025765	-0.018309	0.513478
2.3920	3.955677	0.242498	0.379753	-0.184562	0.038441	0.023906	-0.01-326	J. 529790
2.4919	4.231367	0.250307	0.362077	-0.103592	0.038223	0.022012	-0.009973	0.581+75
2.5917	5.111566	0.287497	0.371478	0.014038	0.039576	9.020787	-0.003689	1. 73++32
2.6916	8.135425	0.419861	9.560015	0.333286	0.045730	0.024500	3.313519	1.271.054
2.7914	20.106456	1.226431	-0.811201-	-12.832919	J. 107554-	-0.043851	-0.596934	1.659550
2.8913-	30.846266	-1.634373	0.844558	-1.431489	-0.066094	0.052731	-0.082846	-2.1-9906
2.9911	-7.345828	-0.350296	0.247279	-0.450777	0.011005	0.017409	-0.020875	-0.565360
3.0909	-3.755988	-0.158165	0.189484	-0.313700	0.022307	0.013359	-0.319079	-0.275450
3.1908	-2.267791	-0.079060	0.162134	-0.249541	0.027003	0.011318	-0.015473	-0.169707
3.2906	-1.448932	-0.035706	0.143401	-0.209123	0.029691	0.009936	-0.013250	-0.079876
3.3905	-0.928642	-0.008385	0.128647	-0.179860	0.031511	0.008893	-0.011691	-0.030019

PAGE 12

Ľ

SWATNO SHIP NOTIONS OF SWATH 64 IRREGULAR WAVE TEST CASE

6

EQUATIONS OF MOTION SOLVED EXCITING FORCE - INCUDDING FIN AND SODY LIFT CONTRESUTIONS.

EN 🗕	. 4 5 4					
BETA	+ 135.0					
44	¥E.	HEAVE	PHASE	PITCH	PHASE	5 A 1 / 6
0.343	0.430	1.19725	-3.J40	0.32268	-123.363	10.0000
0.365	0.46.	1.25936	-5.577	0.35496	-128.496	5.501+
0.388	0.499	1.33316	-9.431	0.38309	-134.951	7.8001
0.410	0.535	1.41197	-15.107	0.40212	-142.387	0.9706
0.433	0.572	1.47729	-23. 143	9.40409	-152.243	4.2421
0.455	0.4.)9	1.49509	-33.+69	0.37933	-102-426	5.0568
0.478	0.648	1.42900	-45.530	1.12412	+171.350	5.1350
3.501	0.687	1.27296	-57.692	0.25105	-175.362	
0.523	0.725	1.05819	-68.347	0.19158	-169.913	4.2368
0.546	0.767	0.85521	-73.868	0.16733	-159.030	3.9344
3.368	0.808	0.71054	-76.931	0.15301	-150.334	3.0325
3.591	0.850	0.59974	-79.294	0.14656	-143.933	3.3603
0.613	0.893	0.45036	-83.804	0.18852	-132.718	3.1175
0.636	0.936	0.36611	-85.358	0.19734	-130.102	2.9001
0.659	0.981	0.30236	-85.409	J.20028	-128.249	2.7047
0.681	1.026	0.24937	-85.253	0.20097	-127.555	2.5284
0.704	1.072	0.20409	-84.630	0.19978	-127.338	2.3688
3.726	1.118	0.18417	-83.740	0.18942	-124.439	2.2238
0.749	1.165	0.32995	-61.040	0.07764	-129-156	2.0917
0.772	1.213	0.18564	-79.341	0.15629	-116.169	1.9711
0.794	1.262	0.12525	-81.160	J.16950	-118.933	1.3606
0.817	1.312	0.09552	-60.498	1.16860	-119.379	1.7591
0.839	1.362	0.05880	-73.596	0.16599	-122.527	1.6638
0.862	1.413	0.04210	-65.287	0.15749	-123.761	L.5796
0.884	1.465	0.03441	-68.317	0.15246	-122.325	1.5000

SWATHO SHIP MOTIONS OF SWATH 64 IRREGULAR WAVE TEST CASE

EQUATIONS OF MOTION SOLVED USING 646 EXCLUDING VISCOUS EFFECTS

FH •	.454							
BETA	• 135.0							
WW	WE	SWAY	PHASE	ROLL	PHASE	YAW	PHASE	444/ -
0.343	0.430	0.23167	56.740	3.07376	-5.849	0.25251	145.564	10.0000
0.365	0.464	0.21629	56.863	0.10729	-5.744	0.25147	147.281	8.8014
0.388	0.499	0.35224	65.225	0.42057	15.726	J.32460	108.958	7.8061
0.410	0.535	0.51144	84.937	0.11868	151.610	0.09687	169.251	6.9706
0.433	0.572	0.51161	85.362	0.12694	144.792	0.10940	171.417	6.2623
0.455	0.609	0.50925	85.742	0.13452	139.090	0.12267	172.591	5.6508
0.478	0.848	0.50424	36.09L	0.14153	134.241	0.13634	173.178	5.1350
0.501	0.687	0.49699	86.438	0.14783	130.072	0.14993	173.505	4.6822
0.523	0.726	0.48833	86.825	0.15316	126.473	0.16300	173.734	4.2868
0.546	0.767	0.47961	87.322	0.15746	123.+21	0.17519	173.947	3.939.
0.568	0.808	0.47252	88.044	0.16109	120.972	0.18604	174.249	3.0326
0.591	0.850	0.47013	89.214	0.16491	119.299	U.19486	174.762	3.3603
0.613	0.893	0.55127	-261.729	0.19074	124.808	0.17501	175.101	3.1179
0.636	0.936	0.24142	75.261	0.11199	103.461	3.23548	166.290	2.9001
0.659	0.981	0.33243	83.327	0.13737	107.427	0.24003	173.642	2.7047
0.681	1.026	0.38332	67.749	0.15398	110.153	0.24316	177.437	2.5284
0.704	1.072	0.39630	89.318	0.16276	110.191	0.25264	-179.774	2.3688
0.726	1.118	0.40757	-259.967	0.17652	109.502	0.26895	-170.532	2.2230
0.749	1.165	3.37449	-269.530	1.19218	100.061	1.28084	174.726	2.0917
0.772	1.213	0.30275	-262.578	0.12270	25.271	0.33934	-178.010	1.9711
0.794	1.262	0.41319	49.347). J:)RA4	58.175).39379	-179.796	1.8606
3.817	1.312	0.43529	79.590	0.08939	94.124	9.51139	197.413	1.7591
0.839	1.362	0.40562	50.158	0.39286	75.677	J.50848	136.559	
3.862	1.413	0.30904	49.312	0.07229	67.839	0.31310	118.310	:.5*94
3.884	1.465	0.24474	+4.276	0.05875	65.26U	J. 19386	125.301	1.3000

PAGE 13

PAGE 14

SWATHO SHIP MOTIONS OF SWATH DA IRREGULAR WAVE TEST CASE

EQUATIONS OF NOTION SOLVED WITH VISCOUS CRUSS-FLOW DAMPING EFFECTS.

BETA	- 135.0					
WW .	WE	HEAVE	PHASE	PITCH	PHASE	LAR/L
0.343	0.430	1.19725	-3.040	0.32268	-123.063	10.0000
0.365	0.464	1.25936	-5.577	J.35496	-128.406	8.8014
0.388	0.499	1.33316	-9.431	0.38309	-134.951	7.8061
0.410	0.535	1.41197	-15.107	0.40212	-142.487	6.9706
0.433	0.572	1.47729	-23.383	0.40409	-152.243	6.2623
0.455	0.609	1.49509	-33.469	0.37933	-162.425	5.0568
0.478	0.648	1.42900	-45.530	0.32412	-171.460	5.1350
0.501	0.687	1.27296	-57.692	0.25105	-175.302	4.9822
0.523	0.726	1.05819	-68.047	0.19158	-169.010	4.2865
0.546	0.767	0.85521	-73.868	0.16731	-154.131	1.4144
0.568	0.808	0.71054	-76.931	0.15301	-150.334	3.6326
0.591	0.850	0.59974	-79.294	3.14660	-140.313	3.3403
0.613	1.393	0.45036	-43.804	1.13351	-131.715	3.1175
0.636	0.936	0.36611	-85.058	0.19734	-130-112	2.9441
0.659	0.981	0.30236	-35.409	J.20028	-125.49	2.7047
0.681	1.026	0.24937	-45.253	9.20097	-127.555	2.5284
0.704	1.072	0.20409	-84.630	0.19978	-127.038	2.3688
0.726	1.118	0.18417	-83.746	9.1945	-124.+39	2-2238
3.749	1.165	0.32995	-61.640)	-129.130	2.3917
3.772	1.213	0.18564	-79.541	0.15629	-116.169	1.9711
0.794	1.262	0.12525	-81.160	0.16960	-118.933	1.8608
0.817	1.312	0.09552	-80.498	0.16860	-119.374	1.7591
0.839	1.362	0.05880	-73.596	0.16599	-122.527	1.0658
0.862	1.413	0.04210	-65.287	0.15749	-123.761	1.5790
0.884	1.465	0.03441	-68.317	0.15246	-122.325	1.5000

SWATHO SHIP MOTIONS OF SWATH 64 IRREGULAR WAVE TEST CASE

PAGE 16

EQUATIONS OF NUTION SOLVED WITH CROSS-FLOW VISCOUS WARPING AND ROLL WAVE EXCITING NUMERT INCLUDED FN = .454

BETA	- 135.0							
	ΨE	SWAY	PHASE	ROLL	PHASE	YAW	PHASE	LAN/L
0.343	0.430	0.23124	56.645	0.07390	-5.859	0.25283	145.556	10.0000
0.365	0.464	0.21560	56.714	0.10757	-5.762	0.25191	147.265	8.0014
0.388	0.499	9.35022	54.905	3. 42579	15.598	0.32759	168.903	7.8061
0.410	0.535	0.50824	85.303	0.11701	134.851	0.10084	168.833	6.9706
0.433	0.572	0.50898	85.802	1.12252	129.671	0.11290	173.793	7.2723
0.455	0.609	0.50726	86.228	3.12822	125.618	0.12569	171.791	5.0568
0.478	0.548	0.50286	86.603	9.13407	122.154	0.13844	172.356	5.1350
0.501	0.687	0.49618	\$6.963	3.13967	119.349	0.15218	172.754	4.5822
0.523	0.726	0.48804	87.352	0.14460	115.798	0.16494	173.030	4.2555
0.546	0.767	0.47977	87.843	0.14865	114-617	0.17664	173.289	3.9394
0.568	0.808	0.47310	88.547	0.15205	112.925	0.18741	173.634	3.6326
0.591	0.850	0.47112	89.685	0.15555	111.974	J.19595	174.187	3.3603
0.613	0.893	0.55342	-261.408	0.17884	119.329	0.17680	174.582	3.1175
0.636	0.936	0.24136	77.216	0.10689	93.367	0.23609	167.387	5. 4001
0.659	0.981	0.33321	83.926	0.12991	100.101	0.24035	173.263	2.7947
0.681	1.026	0.38455	88.192	0.14511	104.120	0.24323	177.113	2.5284
0.704	1.072	0.39761	89.702	0.15340	105.034	0.25253	179.978	2.3688
0.726	1.118	0.40884	-269.600	0.16692	105.247	0.26873	-176.693	2.2238
0.769	1.165	0.37577	-269.145	0.18456	96.350	0.28075	174.652	2.0917
0.772	1.213	0.30395	-262.121	0.13056	21.172	0.33952	-178.559	1.9711
2.794	1.262	0.41506	89.778	0.01476	1.758	0.39414	-179.748	1.8606
0.817	1.312	0.43748	79.962	0.08242	88.951	0.51299	167.497	1.7591
0.839	1.362	0.40785	n0.502).38842	70.487	0.51141	136.573	1.6658
0.862	1.413	0.31093	50.241	3.06847	61.706	1.31543	118.105	1.5796
0.884	1.465	0.24653	44.568	0.15475	58.815	1.19471	124.+93	1.5000

SWATNO SHIP NOTIONS OF SWATH 64 IRREGULAR WAVE TEST CANE

EQUATIONS OF MUTION SULVED ATTENTIONS (COSH-FLOR DEMPINE OFFICES)

	- 4 5 4					
	135.0					
2010		MTAVE		NITCH		: 34/1
0 343	0 4 10	1 196 16	-3 116	0 12140	-121 1344	10.0000
0 165	0.444	1.75627	5 777	0.35155	-178.276	8.8016
0 188	0.499	1 12641	-9.649	0 17779	-114 665	7.8061
0.100	0.515	1 10010	-15 160	0 39404	-142 191	6.9706
0.411	0.572	1.45621	-21.279	0.39404	-151.391	6.2623
0.455	0.609	1.46419	-33.441	0.36863	-160.923	5.6564
0.478	0.648	1. 190 14	-45.073	0.31477	-168.847	5.1150
0.501	0.687	1.22985	-14.619	0.24641	+171.095	4-0827
0.521	0.726	1.00491	-66-163	0.19426	+163.052	4.2868
0.546	0.767	0.80662	-71.297	0.17217	-154.837	3.9394
0. 168	0.808	0.69206	-75.200	0.15450	-149.286	3.6326
0.191	0.830	0.59836	-77.782	0.15298	-140.451	3.3603
0.613	0.893	0.43635	-86.931	0.15188	+130.458	3.1175
0.616	0.936	0.36216	-85.588	0.18753	-129.066	2.9001
0.659	0.981	0.30226	-RA.745	0.19944	+127.970	2.7047
0.681	1.076	0.24976	-84.567	0.20073	-127.114	2.5284
0.704	1.077	0.20430	-84.298	0.19887	-126.609	2.3688
0.776	1.118	0.19291	-79.080	0.20253	+125.661	2.2238
0.749	1.165	0.37886	+37.545	0.20559	-126.430	2.0917
0.772	1.213	0.18178	-85.713	0.14153	-110.310	1.9711
0.794	1.262	0.12463	-64.218	0.16625	-118.008	1.8606
0.817	1.312	0.09556	-82.724	0.16747	-119.145	1.7591
0.839	1.362	0.05649	-78.552	0.16399	-122.329	1.6658
0.862	1.413	0.04255	-65.679	0.15813	-123.936	L.5796
0.884	1.465	0.03504	-68.098	0.15307	-122.385	1.5000

SWATHO SHIP MOTIONS OF SHATH 6A ERREGULAR HAVE TEST CASE

PAGE LO

EQUATIONS OF MOTION SOLVED JITH CROSS-FLOW VISCOUS DAMPING AND KOLL DAVE SECTIONS MORENT INCLUDED FN = 1434

BETA	- 135.0							
	WE .	SWAY	PHASE	ROLL	PHASE	YAW	PHASE	LAM/L
0.343	0.430	0.23121	\$6.627	0.07391	-5.854	0.25287	145.560	10.0000
9.365	0.464	0.21448	\$7.008	0.10757	-6.029	U.25187	147.084	8.8014
0.368	0.499	0.32131	67.712	0.43823	7.440	0.33655	162.975	7.3061
0.410	0.535	0.50027	85.414	J.16498	119.592	0.10710	170.949	6.9706
0.433	0.572	0.50879	85.833	0.12264	128.585	0.11315	170.600	6.2623
0.455	0.609	0.50700	86.265	0.12870	124.420	U.12598	171-754	5.6568
0.478	0.648	0.50256	86.648	0.13479	120.942	0.13927	172-350	5.1350
0.501	0.687	0.49585	87.018	0.14052	117.964	0.15254	172.715	4.6622
0.523	0.726	0.48773	87.415	0.14545	115.407	0.16530	1.2.98.	4.2868
0.546	0.767	0.47951	87.909	1.14943	113.285	3.17718	173.244	3.9394
0.568	0.808	0.47290	58.013	1.15265	111.709	0.13771	173.344	1.0126
0.591	0.850	0.47099	39.746	2.15600	110.915	J.19619	1762123	3. 150 1
0.613	0.893	0.55340	-261.361	3.17881	118.500	0.17699	174.537	3-1173
J.636	J.936	0.24119	77.298	0.107+5	92.395	3.23621	167.859	2.9001
0.659	0.981	0.33316	83.965	J.13004	99.550	J.2404L	173.6+6	2.7447
0.68L	1.025). 34458	88.206	1.14447	133.417	2.26323	177.03	2.324+
1.704	1.072	9.39771	59.094	1.15244	125-172	1.29248	178.941	2.3684
0.725	1.11#	0.40905	-269.037	J.16544	105.530	1.25466	-176.580	2.2238
0.749	1.165	0.37-86	-268.576	J.1492A	40.547	1.25199	174.361	2. 1917
0.772	1.213	0.12002	-166.497	0.135:7	-10.258	J.3416∠	-173.533	1.9711
0.794	1.252	0.41379	89.071	3.01300	23.047	U.39394	-179.751	L. Snun
0.817	1.312	0.+3801	79.749	0.08116	92.324	りょうしょりら	197.444	1.2346
3.439	1.362	3.40771	50.473	0.08860	70.927	9.51120	130.107	
0.862	1.413	0.31080	50.241	0.06885	01.042	3. 11518	118.127	1.5740
0.684	1.465	0.24644	44.380	3.35512	58.793	3-19-77	14517	6.5000
NUMBER OF	ITERATIONS	• 1						

PAGE 17

PAGE 19

PAGE 20

310.00

- . · ·

٠.

	BETA + 1	35.0		
ONEGA	833	835	853	855
0.9942	1.414205	0.565163	0.099701	0.342952
1.0941	1.414722	0.562033	0.102859	0.33730
1.1939	1.414015	0.559577	0.105324	0.332640
1.2938	1.412478	0.557657	0.107236	9.128496
1.3936	1.410325	0.556106	J.108775	0.325974
1.4935	1.407190	0.554705	0.110181	0.123671
1.5933	1.401016	0.353171	0.111776	9.321567
1.6931	1.386767	0.551325	0.113843	0.318921
1.7930	1.349964	0.549746	0.116204	0.31405
1.8928	1.290499	0.552413	0.114875	1. 307 352
1.9927	1.265079	0.554493	0.111109	1. 301467
2.0925	1.262127	0.552522	0.115570	0.303527
2.1924	L.260075	0.621518	0.047492	0.302307
2.2922	L. 254939	0.615831	0.033029	0.30.34
2.3920	1.246422	0.638284	0.030155	1. 14744
2.4919	1.238576	0.641031	1.126644	1. 195624
2.5917	1.232004	9.648430	0.018777	0.293625
2.6916	L.229254	0.578401	0.087431	3.29241
2.7914	1.231296	0.145351	1.476081	1.293546
2.4413	1.242464	0.343507	0.319630	0.246655
2.9911	1.251015	1.427768	0.235499	0.302137
3.3909	1.286990	0.452148	0.211711	0.309775
3.1908	1.314513	0.651406	0.012419	0.319052
3.2906	1.352149	0.806463	-0.140911	0.328881
3.3905	1.383377	U.657861	0.008503	0.337899

SWATHO SHIP NOTIONS OF SWATE 64 IRREGULAR WAVE TEST CASE

811 L THA				····						
3#A130	2415	NOTIONS	0₽	SWATH	5A	IRREGULAR	MAVE	TEST	CASE	

DAMPING COEFFICIENTS

-

ra -									
ONEGA	822	824-842	844 BETA = 135.0	366	826	862	845	364	8444
0.9942	0.795731	-8.155103	-0.269710	1.174941	- (1131.399	1. 350+53	1. 18 1. 15	1.111405	-1. : 11:55
1.0941	1.102633	-5.283902	-0.151924	0.231886	-2.472720	2.505499	-0.021572	9.266710	-0.12:1510
1.1939	1.514758	0.078364	0.005884	0.299341	-2.383765	2.434759	-0.141644	0.144383	0.051417
1.2938	2.020619	0.104270	0.052536	0.372703	-2.267618	2.341173	-0.138099	0.142380	0.052708
1.3936	2.581512	0.134981	0.053784	0.444341	-2.128170	2.226850	-0.132771	0.138867	0.054376
1.4935	3.137592	0.167864	0.055328	0.505533	-1.972127	2.095637	-0.125881	0.133888	0. 056355
1.5933	3.626645	0.199529	0.057125	0.549416	-1.809179	1.954212	-0.117874	0.127671	0.058521
1.6931	4.004381	0.227397	0.059104	0.573111	-1.649427	1-810581	+0.109295	0.120581	0.060736
1.7930	4.233361	0.249389	0.061167	0.577712	-1.499577	1.670751	-0.100565	0.112947	0.062882
1.8928	4.378627	0.264958	0.063217	0.566693	-1.358989	1.534342	-0.091716	0.104793	0.064874
1.9927	4.397047	0.274193	0.065177	0.544098	-1.210658	1.385980	-0.081790	0.095206	0.066649
2.0925	4.327722	0.277469	0.066980	0.513375	-0.985160	1.156736	-0.066185	0.079651	0.068144
2.1924	4.185823	0.275110	0.068571	0.476874	-4.193617	4.154777	-9.251597	0.264884	0.069285
2.2922	3.978884	0.267150	0.069854	0.435666	-1.822466	1.978939	-0.112540	0.125459	0.069981
2.3920	3.702563	0.253026	0.070644	0.349211	-1.722070	1.867311	-0.103842	0.116200	0.370104
2.4919	3.330773	0.230822	0.070958	0.334215	-1.354844	1.934099	-0.107819	0.119309	0.069460
2.5917	2.785635	0.194613	0.070435	0.25-1933	-2.265163	2.372073	-0.125546	0.135328	0.067635
2.6916	1.954287	0.122772	0.068615	0.169947	-3.620857	3.761228	-0.188036	0.192946	0.063127
2.7914	103.376848	4.761365	0.086136	18.476300	-42.611545-	24.366947	-2.062780	-0.949916	0.295629
2.8913	21.112109	1.260948	0.260880	1.600280	13.994699-	13.995203	0.743211	-0.739819	0.129998
2.9911	7.026738	0.448370	0.111616	0.661697	3.383302	-3.282302	0.163027	-0.154832	0.080310
3.0909	5.442107	0.353484	0.077804	0.523931	1.762036	-1.646147	0.07646L	-0.067058	0.073556
3.1908	4.763156	0.312342	0.072186	0.462323	1.086386	-0.971408	0.040633	-0.031107	0.070017
3.2906	4.350876	0.288635	0.069013	0.425220	0.712592	-0.602168	0.020649	-0.011551	0.067627
3.3905	4.052402	0.272716	0.066947	0.398760	0.473739	-0.368910	0.008251	0.000643	0.065970

49

1.1

SWATHO - SHEP NOTIONS OF SWATH 6A ERREGULAR WAVE TEST GANE.

The State in the Total State The State

1 (N) (N) (N) (N)

PAGE 21

EXCITING	FUNCE, 10	MENTS AND	PHASES					
BETA -	135.0							
	WE	L/LAN	FORCE	PHASE	TRAPOP	PHANE	 toneve 	
1.3425	0.4190	9.1090	9.41952	20.364	0.02474	95.400	0.04733	10.000
2.3651	3.4641	0.1136	3.79045	21.959	0.12295	35.111	0.17097	6.8014
0.3877	9	1.1241	1.77314	23.520	1.24942	24.314	0.10677	7.8051
3.4103	0.5352	0.1415	0.74900	25.929	0.39000	26.922	0.43247	5.97.10
0.4328	0.5719	0.1597	4.72692	26.402	0.55193	24.943	0.55009	5.252
2.4554	1. 2 144	3.1758	9.79114	27.5.14	1. 11.12	24. 175	1. 951 13	5. 1500
3.4730	1.6475	3.1947	1.67631	28.318	1. 44 17 3	23.453	0.77128	5.1350
9.5006	0.6866	0.2136	0.64065	24.5/4	1.17471	21. 127	1. 17 1 39	4. 111
3. 5232	0.7264	0.2111	0.58353	24.569	1.+2362	13.322	0.97129	4.2304
3.5457	1.7668	0.2536	0.51646	32.754	1.55092	11.111	1. 17240	3.9394
0.5683	0.8081	0.2753	9.49322	14.737	L. Anka Z.a	13. 654	3.41774	3. 3340
3.5909	0.8501	0.2976	0.43538	42.107	1.72300	16.899	J.92148	3. 300
0.6135	0.8929	0.3208	0.47189	43.737	1.49295	19.562	1.93421	3.1177
3.6360	0.9364	0.3448	0.45123	44.732	2.07712	21 29	1.95574	2.9901
0.6586	0.9807	0.3697	3.42578	45.436	2.25889	22.890	U.97238	2.7047
0.0012	1.0257	0.1955	0.39723	+5.934	2.43222	24.214	U.97874	2.5284
0.7038	1.0715	0.4222	0. 16678	+6.232	2.59941	25.544	1.37366	2.365
9.7264	1.1181	0.4497	0.33533	46.307	2.75097	26.943	0.97364	2.2238
0.7489	1.1656	0.4781	0.30275	46.156	2.89777	28.315	0.96469	2.0917
0.7715	1.2134	0.5073	0.27267	45.336	3.04751	29.808	0.95603	1.9711
0.7941	1.2623	0.5375	0.24328	43.752	3.19498	31.095	J. 94611	1.8606
0.8167	1.3118	0.5685	0.21536	41.046	3.33710	32.081	0.93431	1.7591
0.8193	1.3622	0001	0.18941	36.641	3.46769	32.668	0.91933	1.655
0.8618	1.4133	0.6331	0.16572	29.964	3.57505	32.818	0 49474	1.5740
3. 4844	1.4651	0.6667	0.14492	20.300	3.64777	32.605	0.87084	1.5000

5 W A	TMO 541P	MOTIONS O	P SWATH 6	A IRREGULA	ST SVAN R	ST CASE			PAGE	22		
	EXCITING	FORCE. NO	MENTS AND	PHASES								
	FM	434										
	SETA .	135.0										
	44	VE	L/LAM	SFORCE	PHASE	RMOMENT	28485	* SOMENT	TROMENT	PHASE	*NONENT	LAN/L
	0.3-25	3.4296	0.1000	2.99535	-98.410	0.13895	-103.607	0.22114	1.07420	177.310	1.70964	10.000
	0.3651	0.4641	0.1136	3.48017	-100.069	0.16518	-103.996	0.23138	1.13491	175.726	1.58977	8.801
	3.3877	0.4993	0.1281	3.99717	-101.725	0.19514	-104.712	0.24243	1.18487	173.753	1.47206	7.806
	3.4103	0.5352	0.1435	4.53144	+103.759	0.22554	-105.934	0.25022	1.21904	171.422	1.35240	6.970
	0.4328	0.5719	3.1597	5.06277	-106.061	0.25921	-107.510	0.25835	1.23246	168.832	1.22837	6.204
	3.4554	0.6094	0.1768	5.56935	-108.486	0.29376	-109.325	4.26447	1.22154	166.136	1.09976	5.656
	0.4780	0.6476	0.1947	6.03201	-110.853	0.32811	-111.206	0.26815	1.18485	163.522	0.96833	5.135
	0.3006	0.6866	0.2136	5.63795	-112.978	U.36134	-113.002	0.26927	1.12334	101.190	0.83712	4.682
	0.5232	0.726+	0.2333	6.78469	-114.666	0.39282	-114.548	0.26801	1.04028	159.362	0.70975	4.286
	0.5457	3.7668	0.2538	7.08407	-115.756	0.42250	-115.699	0.26490	0.94091	158.250	0.58993	3.939
	0.5683	0.8081	0.2753	7.3583(-116.147	0.45090	-116.354	0.26069	0.83066	158.078	4.48025	3.632
	3.5909	0.8501	0.2976	7.63807	-115.784	0.47901	-116.445	0.25618	0.71418	159.333	0.38196	3.360
	0.6135	0.8929	0.320#	7.96315	-114.946	3.50822	-115.937	0.25215	7.59674	191.453	0.29511	3.117
	2.6360	0.9364	0.3448	5.38802	-112.727	1.54220	-114.725	3.25026	0.47421	165.988	0.21884	2.900
	0.6586	3.9807	0.3697	4.44548	-119.025	1.54333	-112.714	0.25110	0.35284	174.321	0.15189	2.794
	2.6812	1.0257	3.3955	9.94133	-106.531	0.64090	-109.828	0.25790	J. 23258	-167.514	3.09359	2.528
	0.7038	1.0715	9.422?	11.54952	-102.205	0.73321	-105.844	3.27642	0.15845	-113.418	0.05989	2.368
	0.7264	1.1181	1.4497	14.75()2	- 44 . 7114	1.41156	-100.590	0.32262	0.36146	-50.080	0.12793	2.223
	3.7449	1.1854	0.4791	24.44217	+113.378	1.50058	-112.046	3.49955	4.21340	-9.377	1.40334	2.091
	2. 77: 5	1.2134	3. 3071	43.50293	-202.799	4.22923	161.153	1.32674	23.26679	-3.495	7.29208	1.971
	3.7941	1.2623	0.5375	52.84924	-254.917	3.13552	106.021	0.92850	2.40455	16.533	0.71204	1.860
	3.8167	1.3114	1.5645	13.11992	-247.068	0.75444	117.419	0.21123	0.28574	-25.689	0.08000	1.759
	0.8393	1.3622	0.6003	7.00258	-236.125	0.40645	132.324	9.10776	0.31322	-50.030	0.08104	1.005
	3. 3618	1.4133	7.6331	4.55073	+223.901	0.27726	1+7.361	0.06970	0.40042	-50.752	0.10067	1.574
	9.8844	1	0.5667	3.29828	-210.830	0.21508	160.387	0.05135	0.48667	-48.440	0.11019	1.500

SWATNO SHEP NOTIONS OF SWATH 64 IRREGULAR WAVE TEST CASE HOTION AMPLITUDES AND PHASES FN = .456 BETA = 135 -

BETA -	132.0							
	WE	L/LAN	HEAVE	PHASE	PITCH	PHASE	*PETCH	LAN/L
0.3425	0.4296	0.1000	1.19630	-3.115	9.32180	-123.088	1.02433	10.0000
0.3651	0.4641	0.1136	1.25738	-5.691	0.35348	-128.415	3.99030	5.4164
9.3477	3.4993	0.1281	1.32894	-9.591	4.38063	-134.915	9.94577	7.8061
0.4103	0.5352	0.1435	1.40346	~15.301	1.39818	-142.738	0.88347	6.9706
0.4328	0.5719	0.1597	しゅうしろう	-23.254	0.39814	-151.843	0.79504	6.2623
0.4554	0.6094	0.1768	1.47169	-33.450	9.37249	-101.542	0.67071	5.0366
0.4780	0.6476	0.1947	1.40164	~ \$5.154	1.31858	-169.457	0.52073	5.1310
3.3336	0.6456	9.2130	1. 149 13	*in,911	1 (51)	-173.044	1.37141	+. 5111
3.5232	0.7264	3. 1133	1.04275	-60.993	0.144 16	-166.333	J.26521	4.2864
0.5457	4.7442	0.2538	4.34792	-72.441	2.17:14	-15/.327	1.11.11	3. 3394
). \$6\$3	0.3081	0.2753	9.70511	-75.794	3-13062	-149.809	0.18110	3.6325
0.5909	0.8501	0.2975	0.59460	-78.246	1.14966	-143.854	0.16008	3.1603
0.6135	0.8929	0.3208	4.25167	-31.000	0.19124	-131.511	1.14412	5.1:75
).5357	0.9364	0.3448	0.36780	-84.239	U.19886	-129.941	0.14357	2.9001
0.6586	0.9807	0.3697	0.30416	-84.658	0.20165	-128.37l	0.17361	2.7047
3.6812	1.0257	0.3955	0.25114	-84.5el	9.20222	-127.484	1.15275	2.5244
0.7038	1.0715	0. + 222	0.20576	-83.994	0.20094	-126.973	0.15151	2.3688
0.7264	1.1181	0.4497	0.18578	-83.114	0.19019	-124.454	0.13476	2.2238
0.7489	1.1654	3.4781	0.32948	+60.818	0.08043	-130.431	0.05355	2.14 7
3.7715	1.2134	0.5073	0.18698	-78.767	0.15671	-116.508	U.09832	1.9711
0.7941	1.2623	0.5375	0.12655	-80.505	0.17013	-119.063	0.10076	1.8600
0.8167	1.3118	0.5685	0.09667	-79.897	0.16915	-119.474	0.09471	1.7591
0.8393	1.3622	0.6003	0.05967	-73.255	0.16670	-122.575	0.08839	L.6658
0.8618	1.4133	0.6331	0.04275	-65.146	0.15821	-123.812	0.07955	1.5796
0.8844	1.4651	0.6667	0.03504	-68.098	0.15307	-122.385	0.07308	1.5000

SWATHO	SHI	MOTIONS O	F SWATH 6	A IRREGULA	R WAVE TES	T CASE			PAGE	24		
MO	TION	AMPLITUDES	AND PHASE	s								
,	N	. 4 3 4		•								
1	ETA -	135.0										
4	W.	WZ.	L/LAR	SWAY	PHASE	ROLL	PHASE	*ROLL	TAN	PHASE	• 7 4 4	LAN/L
٥.	3425	0.4296	0.1000	0.23121	56.627	0.07391	-3.854	0.54050	0.25287	145.560	0.80491	10.0000
٥.	3651	0.4641	0.1136	0.21557	56.680	0.10761	-5.751	0.69259	0.23197	147.272	0.70592	8.8014
ō.	3877	0.4993	9.1281	0.15071	64.412	0.42514	15.784	2.43253	0.32773	169.042	0.81432	7.8061
ò.	4103	0.5352	0.1435	0.50825	85.114	0.11568	136.098	0.56966	9.19047	1 5 5 7 2 1	2.22442	6.9706
ō.	4328	0.5719	0.1597	0.50904	85.830	0.12122	129.110	0.55514	0.11297	170.508	0.22520	6.2623
ŏ.	4554	0.6094	0.1768	0.50735	86.252	0.12701	125.194	9.52560	0.12573	171.715	0.22638	5.6566
ō.	4780	0.6476	0.1947	0.50297	86.624	0.13296	121.934	0.49927	0.13895	172.327	0.22713	5.1350
ó.	5006	0.6866	0.2136	0.49630	86.981	0.13866	119.101	0.47477	0.15218	172.797	0.22681	4.6822
ò.	5232	0.7264	0.2333	0.48816	87.367	0.14369	116.600	0.45044	0.16493	172.992	0.22500	4.2868
0.	5457	0.7668	0.2538	0.47989	87.855	0.14783	114.436	0.42545	0.17683	173.258	0.22173	3. 9394
0.	5683	0.8081	9.2753	0.47322	88.557	0.15130	112,794	0.40193	0.18739	173.608	0.21868	3.0320
ó.	5909	0.8501	0.2976	0.47124	89.692	0.15484	111.871	0.38049	0.19592	174.166	0.20956	3. 160 .
ó.	6135	0.8929	0.3208	0.55361	-261.607	0.17775	119.298	0.40523	0.17675	174.553	0.17539	3.1175
à.	6360	0.9364	0.1448	0.24112	27.248	0.10701	93.002	0.22695	0.23613	167.876	0.21798	2.9001
0.	6586	0.9807	0.1697	0.11124	A1.919	0.12972	99.932	0.25657	0.24035	173.254	0.20693	2.7467
0.	6812	1.0257	0.1955	0.38461	88.197	0.14475	104.944	0.26764	0.24321	177.107	0.19574	2.5284
<u>.</u>	7018	1.0715	0.4/22	1.19764	89.705	0.13300	105.005	0.26542	0.23250	179.975	0.19039	2.3648
	7764	1.1181	0.4497	0.40892	-269.600	0.16649	105.271	9.27076	0.26871	-176-694	0.19021	2.2238
0.	7489	1.1654	1.4781	0.17582	-759.151	0.18429	96.419	0.28148	0.28074	174.053	1.14692	2.4917
0.	7715	1.2134	0.5073	0.10178	-262.109	0.11109	21.441	0.18895	0.33969	-178.558	9.11400	1. 3711
1.	7941	1.2623	0.5375	0.41501	89.804	0.01544	2.416	0.02101	0.39413	-174.743	3. 23342	1.4606
1.	8167	1.1118	3. 5645	0.61766	79.468	1.08747	48.455	0.10609	1.51799	147.344	9.28725	1.7591
	9391	1. 1622	0.6003	0.40773	60.505	0.04476	70.515	0.10812	0.51135	136.583	0.27115	1.0058
	8618	1.4133	1.6331	0.11081	50.249	0.06888	61.725	0.07910	0.31543	118.123	J. 15860	1.5790
	8844	1.4651	0.6667	0.24644	44.580	0.05512	58.793	0.06046	0.19477	124.510	0.09300	1.5000

PAGE 23

. مشدد ند •

.

SWATHO - SHIP HOTIONS OF SWATH 64 IRREGULAR WAVE TEST CASE

PAGE 25

A. 140. 141. 141. 14

RELATIVE AND ABSULUTE DISPLACEMENT, VELOCITY, AND ACCELERATION AT STATION 4-0000 AND HEIGHT 50-0000 FRET

SPEED = 20.0 KNOTS WAVE BEADING = 135.0 DEGREES

	**********	*************	ITCHANNABAN	********	***********SUAY-ROLL-YAU********				
ENC PER SEC	REL DISPL	ABS DISPL	VEL	ACCEL/G	ABS DISPL	VEL	ACCEL/G	WAVE L/1	
14.62	0.316	1.304	0.562	0.008	3.738	1.606	0.021	10.000	
13.54	0.415	1.389	0.645	0.009	5.427	2.519	0.036	8-801	
12.58	0.545	1.479	0.738	0.011	21.263	10.616	0.165	7.806	
11.74	0.708	1.567	0.839	0.014	5.408	2.895	0.048	6.9706	
10.99	0.898	1.629	0.932	0.017	5.646	3.229	0.057	6.262	
10.	1.091	1.626	0.991	0.019	5.908	3.600	0.068	5.6564	
9.70	1.245	1.524	0.987	0.020	6.186	4.006	0.081	5.1350	
9.15	1.325	1.325	0.910	0.019	6.459	4.435	0.095	4.682	
8.65	1.319	1.070	9.777	0.018	6.703	4.869	0.110	4.2864	
8.19	1.259	0.846	0.648	0.015	6.906	5.296	0.126	3.9394	
7.78	1.212	0.688	0.556	0.014	7.077	5.719	0.144	3.6326	
7.39	1.176	0.563	0.478	0.013	7.249	6.163	0.163	3.360	
7.04	1.101	0.385	0.344	0.010	8.307	7.418	0.206	3.1179	
6.71	1.063	0.295	0.276	0.008	5.080	4.757	0.138	2.900	
6.41	1.033	0.230	0.226	0.007	6.123	6.005	U.183	2.704	
6.13	1.009	0.180	0-185	0.00%	6.824	6.999	0.223	2.5284	
5.86	0.987	0.142	0.153	0.005	7.225	7.742	0.258	2.3681	
5.62	0.985	0.124	0.139	0.005	7.895	8.827	0.307	2.223	
5.39	1.050	0.316	0.368	0.013	8.806	10.262	0.372	2.091	
5.18	1.009	0.125	0.152	0.006	6.693	8.121	0.306	1.971	
4.98	0.971	0.079	0.100	0.004	1.085	1.370	U.054	1.8604	
4.79	0.955	0.069	0.091	0.004	3.637	4.771	0.195	1.759	
4.61	0.929	0.079	0.108	0.005	3.913	5.330	0.226	1.665	
4.45	0.921	0.085	0.120	0.005	3.032	4.285	0.188	1.5790	
4.29	0.923	0.080	0.118	0.005	2.468	3.615	0.145	1.5000	

SWATNO SHIP NOTIONS OF SWATH 6A ERREGULAR WAVE TEST CASE PAGE 26 ENS MOTIONS IN UNIDERECTIONAL SEAS SPEED = 20.0 KNOTS PROUDE NO = 0.454 SEA STATE = 6 SIG WAVE AT = 18.0000 FRET WAVE PERFOUND = 9.9100 SEC HEADING SWAY ACC NEAVE ARAVE ACC ROLL PITCH YAW

HEADING	SWAY ACC	NEAVE	HEAVE ACC	ROLL	PITCH	YAW
(DEG)	(G)	(F)	(G)	(DEG)	(086)	(DEG)
135.0	0.053	2.179	0.063	0.416	0.575	1.076

STATION = 4.0000 2 = 57.4400 F

HEADING	******	******	ADITES		******	1001	YAbe	PROB	DA PER	PROB	KS PKK	2 6 3 16	51 25 C	616 SG44 F	RESSURE
	TOP	VEL	ACC	REL. NOT	REL.VEI.		ACC	(u⊌)	HOUR	(XE)	HOUR	(\$1)	100	NOST PROM	SXTREME
DEG	*	F/SEC	G	¥.	F/SEC		G							25 L	421
135.0	2.311	1.410	3.054	4.953	5.053	0.062	0.068	0.0000	0.0	0.0000	0.0	0.0003	0.1	5.577	41.091

				_				
SWATH 6A	REGULA	R WAVE ' O	TEST CAS	E				
25 1	1 25	1 22	3					
1.5 1	0.0							
135.	,							
37.5								
10.27278	3							
7.330	-							
172.3	0.31	5 0.2	23 0	• 0	7.44	15.00	19.17	
40.44	25.	75	19.17	8.5	10.2	1.28	4.38	1.2
188.12	23.	55	19.17	14./	1/.6	2.2	3.43	1.2
0.5	0.	07						
-2.4	9	ļ	0					
-1.6	9		0					
8	9	1	0					
0.0	9		0					
1.0	15		0					
2.0	15		0					
3.0	15		0					
6.0	15	5	2					
8.0	15	i	1					
10.0	15	j	1					
12.0	15		1					
14.0	15		1					
18.0	15		0					
18.0	15		ŏ					
19.0	15	5	Ō					
20.0	9)	0					
21.5	9		0					
23.0	9	1	0					
23.8	9		0					
0.	-3.44	-4.87	-3.44	0.	3.44	4.87	3.44	
0.								
12.37	10.94	7.50	4.06	2.63	4.06	7.50	10.94	
12.37								
0.	-4.23	-5.98	-4.23	0.	4.23	5.98	4.23	
U. 13.48	11.73	7.50	3,27	1.52	3,27	7.50	11.73	
13.48	11.73	/•20	5.27	1052	5.2.	,,,,,,		
0.	-4.70	-6.65	-4.70	0.	4.70	6.65	4.70	
0.						_		
14.15	12.20	7.50	2.80	0.85	2.80	7.50	12.20	
14.15	-5 04	-7 16	-5 06	0	5.06	7 16	5.06	
0.	-1.00	-/.10	-2.00	•	2.00	/ • 1 0	2.00	
14.66	12.56	7.50	2.44	0.34	2.44	7.50	12.56	
14.66								

-1.06	-1.06	-1.06	-1.06	-4.89	-7.47	-5.28	0.
5.28	7.47	4.89	1.06	1.06	1.06	1.06	
26.67	22.74	18.82	14.89	13.14	7.50	2.22	0.03
2.22	7.50	13.14	14.89	18.82	22.74	26.67	
-2.1/	-2.17	-2.17	-2.17	-4.4/	-/.50	-5.30	0.
5.30	7.50	4.4/	2.1/	2.1/	2.17	2.17	•
20.07	22.67	18.08	14.68	13.52	7.50	2.20	0.
2.20	7.50	13.52	14.00	18.08	22.07	20.0/	0
-3.01	-3.01	-3.01	-3.01	-4.11	-7.50	~3.30	0.
2.30	7.50	4+11	3.01	3.01	3.01	3.01	0
20.07	22•J7 7 50	10.4/	14.37	10 47	22 57	2.20	0.
-3 41	-3 41	-2 41	-2 /1	-2 02	-7 50	20.07	0
- 3.41	-3.41	-3.41	-3-41	-3.92	-7.50	-3.30	V •
26 67	22 51	3.92	3+41	13 00	J.41 7 50	2.41	0
20.07	22•JI 7 50	13.00	14.10	10 2/	22 51	2.20	v .
-3 -6 3	-2 6 2	-2 6 2	14.10	-3 91	-7 50	20.07	0
- 3.03	-3.03	-3.03	-3.03	-3.01	-7.50	- 3. 50	0.
26 67	1.50	3.01	3.03	3.03	3.03	3.03	0
20.07	22.4/	10.27	14.07	13.90	7.50	2.20	U •
-2.20	-2 62	13.90	14.07	-2 91	22.4/	20.0/	0
-3.03	-3.03	-3.03	-3.03	-3.01	-7.30	-3.30	0.
2.30	7.50	3.81	3.03	3.03	3.03	3.03	0
20.07	22.47	10.27	14.07	13.90	7.50	2.20	0.
2.20	-2 6 2	13.90	14.07	10.27	22.4/	20.07	0
-3.03	-3.03	-3.03	-3.03	-3.01	-7.50	-2.30	0.
26 67	22 47	3.01	3.03	3.03	3.03	3.03	0
20.07	22.47	10.27	14.07	10 27	22 47	2.20	0.
-2.20	-2 63	13.90	14.07	10.2/	22.4/	20.07	0
- 3.03	-3.03	-3.03	-3.03	- 3 • 6 1	-7.50	-3.30	0.
26 67	22 / 7	J•01	3.03	12 04	3.03	2.03	0
20.07	7 50	13 06	14.07	19 27	22 47	2.20	V•
-3 63	-3 63	-3 63	-3 63	-3 81	-7 50	-5 30	Δ
5 20	- 3.03	3 91	- 3. 6 3	- 3. 61	-7.50	- 3 - 6 3	0.
26 67	22.47	18 27	14 07	13 96	7.50	2 20	0
2 2 2 0	7.50	13 96	14 07	18 27	22.47	26.67	••
-3.48	-3.48	-3.48	-3.48	-3.88	-7.50	-5.30	0
5.30	7.50	3.88	3.48	3.48	3.48	3.48	••
26.67	22.49	18.32	14.14	13.92	7.50	2.20	0.
2.20	7.50	13.92	14.14	18.32	22.49	26.67	•••
-3.12	-3.12	-3.12	-3.12	-4.05	-7.50	-5.30	٥.
5.30	7.50	4.05	3,12	3,12	3.12	3.12	••
26.67	22.55	18.43	14.32	13.81	7.50	2.20	0.
2.20	7.50	13.81	14.32	18.43	22.55	22.67	••
-2.43	-2.43	-2.43	-2.43	-4.31	-7.42	-5.25	0.
5.25	7.42	4.31	2.43	2.43	2.43	2.43	•••
26.67	22.62	18.57	14.52	13.55	7.50	2.25	0.08
2.25	7.50	13.55	14.52	18.57	22.62	26.67	
-1.43	-1.43	-1.43	-1.43	-4.56	-7.21	-5.10	0.
5.10	7.21	4.56	1.43	1.43	1.43	1.43	
26.67	22.63	18.60	14.56	13.08	7.50	2.40	0.29
2.40	7.50	13.08	14.56	18.60	22.63	26.67	

54

,

0.	-4.81	-6.80	-4.81	0.	4.81	6.80	4.81
0. 14.30	12.31	7.50	2.69	0.70	2.69	7.50	12.31
14.30	-4.22	-5.97	-4.22	0.	4.22	5.97	4.22
0. 13.47	11.72	7.50	3.28	1.53	3.28	7.50	11.72
13.47	-3.33	-4.71	-3.33	0.	3.33	4.71	3.33
0.	10.83	7.50	4.17	2.79	4.17	7.50	10.83
12.21	-2.32	-3.28	-2.32	0.	2.32	3.28	2.32
0.	0.92	7 50	5.18	4.22	5,18	7.50	9.82
10.78	1.06	1.50	_1 06	0	1.06	1.50	1.06
0.	-1.00	-1.50	-1.00	· · ·	1.00	7 50	8 56
9.00 9.00	8.56	7.50	0.44	0.00	0+44	7.30	0.30

APPENDIX E

OFFSET USER GUIDE

Record (1), 1 integer

Ċ

)

)

NOS the number of stations to be analyzed.

Note: (1) Non-integer stations should be given arbitrary integer station numbers, later to be corrected by editing the output file with the computer system editor.

Record (2), 2 reals

D(I) diameter of hull at Ith station.

- ST(I) strut thickness at Ith station.
- Note: (1) Record (2) must be repeated NOS times. D(I) and ST(I) must be entered as a pair.

Record (3), 1 real

- DWL the draft of the SWATH ship.
- Note: (1) DWL is given as distance from baseline to free surface.

Record (4), 2 reals

X01(I)	x-keel	coordinate	of	Ich	station.
Y01(I)	y-keel	coordinate	of	Ith	station.

Note: (1) XO1(I) and YO1(I) must be entered as a pair. Record (4) must be repeated NOS times.

5.3 Listings

Samples of input and output are given in Appendices F and G.

APPENDIX F

SAMPLE INPUT FOR OFFSET

This input represents a trivial case of two SWATH sections. The first section has a hull diameter of 15 feet with a strut 5 ft thick. The keel is on the baseline. The second section is forward of the strut, with a reduced diameter of 13 feet and the keel 1 foot above the baseline.

2	
15.0	9.0
13.0	0.0
28.0	
0.0	30.0
1.0	30.0

APPENDIX G

SAMPLE OUTPUT FOR OFFSET

This output was generated using the input file in Appendix D

-4.5000	-4.5000	-4.5000	-4.5000	-7.4665	-5.5481	0.0000	5.5481	7.4665
4.5000	4.5000	4.5000	4.5000					
28.0000	33.1667	38.3333	43.5000	38.2084	32.4534	30.0000	32.4534	38.2084
43.5000	38.3333	33.1667	28.0000					
0.0000	-4.5962	-6.5000	-4.5962	0.0000	4.5962	6.5000	4.5962	0.0000
43.0000	41.0962	36.5000	31.9038	30.0000	31.9038	36.5000	41.0962	43.0000

REFERENCES

1

- Lee, C.M.: "Theoretical Prediction of Motion of Small-Waterplane-Area, Twin-Hull (SWATH) Ships in Waves", DTNSRDC Report 76-0046, December 1976.
- McCreight, K.K. and Lee, C.M.: "Manual for Mono-Hull or Twin-Hull Ship Motion Prediction Computer Program", DTNSRDC Report SPD-686-02, June 1976.
- Haskind, M.D.: "Two Papers on the Hydrodynamic Theory of Heaving and Pitching of a Ship", Technical and Research Bulletin No. 1-12, The Society of Naval Architects and Marine Engineers, April 1953.
- 4. Gospodnetic, D. and Miles, M.: "Some Aspects of the Average Shape of Wave Spectra at Station 'India' (59°N, 19°W)", International Symposium on the Dynamics of Marine Vehicles and Structures in Waves, London, 1974.
- 5. Mackay, M. and Schmitke, R.T.: "PHHS, A Fortran Programme for Ship Pitch, Heave and Seakeeping Prediction", DREA Technical Memorandum 78/B, April 1978.
- 6. "Revised Draft Recommendations for the Seakeeping Committee", Proceedings of the 12th International Towing Tank Conference, Rome, 1963.
- 7. Payne, P.R.: "On Quantizing Ride Comfort and Allowable Accelerations", AIAA/SNAME Advanced Marine Vehicles Conference, September 1976.
- 8. Schmitke, R.T. "Inproved Slamming Predictions for the PHHS Computer Program". DREA Technical Memorandum 79/A, February 1979.
- Kallio, James A. "Seaworthiness Characteristics of a 2200 Ton Small Waterplane Area Twin Hull (SWATH)" DTNSRDC Report SPD-620-03, September 1976.
- Whitten, B.T. and Schmitke, R.T.: "SHIPMO A Fortran Program to Predict Ship Motions in Waves", DREA Technical Memorandum 81/C, September 1981.
- Lee, C.M. and Murray, L.O.: "Experimental Investigation of Hydrodynamic Coefficients of a Small-Waterplane-Area, Twin Hull Model", DTNSRDC Report SPD 747-101, January 1977.
- Bales, S.L., Lee, W.T. and Voelker, J.M.: "Standardized Wave and Wind Environments for NATO Operational Areas", DTNSRDC/SPD-0919-01, May 1980.

UNLIMITED DISTRIBUTION

		UNCLASSI	FIED	
RABILLEPHY ANN	1001 0474	<u></u>	scurity Classification	
DOCUMENT CON Security classification of title, body of abstract and indexing	TRUL DATA - g annotation must be	entered when the	ne overall document is cla	usufied)
ORIGINATING ACTIVITY		28. DOCUME	NT SECURITY CLASSIF	ICATION
		26. GROUP		
B DOCUMENT TITLE SWATM2: A Computer Program for the Regular and Irregular Waves	e Prediction	n of SWAT	H Ship Motion	s in
DESCRIPTIVE NOTES (Type of report and inclusive dates)	DREA Techr	nical Mem	orandum	
i. AUTHOR(S) (Last name, first name, middle initial)				
Nethercote, W.C.E., Piggott, S.D.	and Savory,	M.W.		
DOCUMENT DATE September 1985	7a. TOTAL NO	OF PAGES	76. NO. OF REFS	12
a. PROJECT OR GRANT NO.	Se. ORIGINAT	OR'S DOCUMEN	IT NUMBER (SI	
	DREA TEC	HNICAL M	EMORANDUM 85/	217
B. CONTRACT NO.	9b. OTHER DC assigned this	CUMENT NO.(S) (Any other numbers th	at may be
10. DISTRIBUTION STATEMENT				
SUPPLEMENTARY NOTES	12. SPONSORIA	ACTIVITY		
/J. ABSTRACT	·			
degree-of-froedom motions for SWATM	2 enables c	alculatio	on of five	
of an earlier DREA computer progra	n snips. I	t is a de	evelopment	
predicting performance in long or	short irreg	ular cros	sted sees	
with a variety of sea spectra. A	worked exam	ple demor	strates	
satisfactory agreement between cal	culated and	experime	ental results.	
		•		

13515 78-070

UNCLASSIFIED

.

		Security Classification
	KEY	WORDS
	SWATH Seakeeping Slamming Ship Motions	
1. 21.	INSTRUM ORIGINATING ACTIVITY. Enter the name and address of the organization issuing the document. DOCUMENT SECURITY CLASSIFICATION: Enter the overall security classification of the document including topology whereas	CTIONS 9b. OTHER DOCUMENT NUMBER(S): If the document has been essigned any other document numbers (either by the originator or by the sponsor), also enter this number(s). 10. DISTRUBUTION_STATEMENT: Eater any limitations on
2ь.	sectivity classification of the document including special warning terms whenever applicable. GROUP: Enter security reclassification group number. The three groups are defined in Appendix 'M' of the DR8 Security Regulations.	 DISTRIBUTION STATEMENT: Enter any limitations on further dissemination of the document, other than those imposed by security classification, using standard statements such as: "Qualified requesters may obtain copies of this
Э.	DOCUMENT TITLE: Enter the complete document title in all capital letters. Titles in all cases should be unclassified. If a sufficiently descriptive title cannot be selected without classifi- cation, show title classification with the usual one-capital-letter abbreviation in perentheses immediately following the title.	 42) "Announcement and dissemination of this document is not authorized without prior approval from originating activity."
4.	DESCRIPTIVE NOTES: Enter the category of document, e.g. technical report, technical note or technical letter. If appropri- ate, enter the type of document, e.g. interim, progress, summery, annual or final. Give the inclusive dates when a specific reporting period is covered.	 SUPPLEMENTARY NOTES: Use for additional explanatory notes. SPONSORING ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring the research and development. Include address.
5.	AUTHOR(S): Enter the name(s) of author(s) as shown on or in the document. Enter last name, first name, middle initial. (If military, show rank, The name of the principal author is an absolute minimum requirement.	13. ABSTRACT: Enter an abstract giving a brief and factual summery of the document, even though it may also appear elsewhere in the body of the document itself. It is highly desirable that the abstract of classified documents be unclassi- fied. Each oursearch of the abstract shell and with an
6. 7a.	DOCUMENT DATE: Enter the date (month, year) of Establishment approval for publication of the document. TOTAL NUMBER OF PAGES: The total para count should	indication of the security classification of the information in the persgraph (unless the document itself is unclassified) represented as (TS), (S), (C), (R), or (U).
	follow normal pagination procedures, i.e., enter the number of pages containing information.	The length of the abstract should be limited to 20 single-spaced standard typewritten lines; 7% inches long.
76. 8a	NUMBER OF REFERENCES: Enter the total number of references cited in the document. PROJECT OR GRANT NUMBER: If appropriate, enter the applicable research and development project or grant number	14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a document end could be helpful in cataloging the document. Key words should be selected so that no security classification is required, identifiers, such as equipment model designation, trade name, military project code
8 6 .	Under which the document was written. CONTRACT NUMBER: If appropriate, enter the applicable number under which the document was written.	name, geographic location, may be used as key words but will be followed by an indication of technical context.
35	ORIGINATOR'S DOCUMENT NUMBER(S): Enter the rile of document number by which the document will be identified and controlled by the originating activity. This number must be unique to this document.	

