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INTRODUCTION

The effect of plasticity on the rate of growth of fatigue cracks is
significant for a wide range of problems associated with the damage tolerance
assessment of aerospace structures. The range of problems includes crack
growth from cold worked fastener holes, crack growth through plasticity due to
local notch stresses, crack driving force for thermal gradient fields and
welding residual strain fields, small flaw growth in high nominal stress
fields, and numerous related problems. These problems have, of course, been
analyzed using a variety of approximate analytical or numerical procedures.
However, as will be summarized within this report, many of these earlier
modeling approaches nave involvec errors which may significantly affect the
predicted fatigue crack growth life of the structure. The current research
nas resulted in some new and critical insights into this class of problems,
while providing a basis for imoroved modeling of these problems.

The current research makes use of the boundary integral equation (BIE)
method, as modified to account exactly for the elastic crack problem. The
usual BIE formulation for elastic problems reduces the numerical problem to
one of modeling the boundary data, while preserving the complete interior
solution of the field equations. In the elastic fracture mechanics problem,
the Green's function approach is used wherein the BIE is modified to account
for the presence of a stress free crack at an arbitrary location within the
structure. The use of the Green's function for the crack eliminates the need
to model the boundary of the crack, and provides a complete mathematical
description of the elastic strain field within the body, due to the crack.

*This clearly contrasts with the finite element method which requires that the
crack surface and the interior strains be modeled with some set of
interpolation functions.

The BIE method has been successfully modified to account for
elastoplastic response by a number of investigators. However, extension of5 the fracture mechanics model with the Green's function approach has not been
previously demonstrated. In order to account for elastoplastic response with
the BIE method one must numerically model the interior plastic strain field.
In all other ways the elastoplasticity solution uses the standard elastic BIE
formulation. The current work reports on the successful extension of the
special Green's function formulation for the fracture mechanics problem to the
elastoplasticity formulation. Not only has the work resulted in accurate
models of crack tip plasticity for a reference problem, but it has shown some

" important new analytical and numerical results for cracks growing in plastic
strain fields.

The second year of the contract effort will focus on the crack growth
problem. That is, the effect of crack tip plasticity on the subsequent crack
growth rate will be studied. The effects of crack tip overloads on retardation
or acceleration through closure and residual stress effects will be studied.
In addition, the elastoplastic BIE formulation will be more fully exploited
for problems of crack growth in residual strain and thermal strain fields. The
purpose of all of these studies will be to identify modeling shortcomings in
current practice for these problems as well as to provide some new results for
the small flaw problem.

~~~~~~~~~. .. . ... I.-.....-;... --- "- -•..... .. "
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RESEARCH OBJECTIVES

Generally speaking, advanced aerospace structures have been designed for
damage tolerance considerations using elastic fracture mechanics models.
Problems associated with residual plastic strains at notches, cold worked
fastener holes, weld residual strains, and thermal gradient loading have been
modeled using elastic superposition methods along with elastic fracture
mechanics models. Crack tip plasticity is involved in all fatigue crack
growth problems. Crack tip plasticity dominates the problem of predicting
crack growth under spectrum loading conditions where acceleration and
retardation effects are imoortant. Finally, the small flaw problem, wherein
crack growth rate is apparently accelerated relative to the large flaw
problem, cannot be currently explained by elastic fracture mechanics
considerations.

-. The development of improved models for the crack growth problem for the
full range of these problems is crucial to the damage Loierance assessment
needs for advanced aerospeace structures. The overall objective for the -

current research is to provide an improved basis for making damage tolerance
assessments through numerical modeling of crack tip behavior, including the
effects of plastic or other residual strains. The elastoplastic BIE method is
the basis for the current effort.

The first goal of the origina .ly proposed program is to extend an
existing planar elastic fracture mechanics analysis based on the BIE

. methodology to the analysis of plastic zones around cracks. The second
proposed goal is to establish fundamental results for crack tip elastoplastic
behavior, based on a numerical and analytical study of the elastoplastic BIE
formulation. The third proposed goal is to establish the credibility of the

* elastoplastic BIE formulation relative to the finite element method for
refined numerical analysis of the nonlinear fracture mechanics problem, and to
apply the capability to important problems of fatigue crack growth modeling
for advanced aerospace structures. The goal for the second year of the effort
is to extend the research to the problem of modeling crack extension under
elastoplastic conditions.

The specific objectives for the research effort as stated in the proposal
are as follows. Through basic research in the elastoplastic BIE method,
establish:

1. Cost effective and highly accurate computational method for planar
fracture mechanics models including inelastic effects near the crack tip.

2. Direct comparisons between the inelastic BIE fracture mechanics code
and an advanced finite element code.

3. Advanced computational procedure for investigating history
dependent fatigue crack growth processes.

4. Feasibility of the direct numerical analysis of elastic and
inelastic response to growing cracks: the results of this capability can shed
light on the plastic wake phenomena for growing fatigue cracks.

.
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All first year goals and objectives have been met. New understanding of
the problems associated with modeling crack growth problems has been
achieved. The next section summarizes these findings.

RESEARCH STATUS

Review of the Mathematics

A complete treatment of the elastic formulation for the Green's function
BIE model for cracked planar problems is given by Snyder and Cruse '11 and
Cruse [2]. The full development of the elastoplastic solution is given by
Cruse and Polch [3]. The following summarizes these developments:

The basic BET7 formulation for a crack problem, as illustrated in Figure
1. is given as follows

0
C jiu(P) + IT ji(PQ)ui(Q)ds Iji(P,Q)ui(Q)ds

5 .- (1)0

U(PQ)t.(Q)ds + fU *(,Q)ti(Q)ds
s ji' 1i 1

In (1) the ui, ti terms are the boundary displacement and traction vectors for

the modeled-problem. The kernel functions (or influence functions) U. *,ij
Tij*, are mathematical entities giving the displacement and traction that are

computed on S, r for the problem of an infinite body loaded at p(x), P(x)t by

a set of unit point loads in each coordinate direction. The star on the

kernel functions denotes the addition to the point load solution of the terms

"' necessary to provide for a traction free crack at a specified location and

orientation in the geometry.

The use of a Green's function for spec ul geometries is well developed in
potential theory, as discussed by Greenberg [4]. In the current application

* we seek to obtain fracture mechanics solutions for the case of traction free

cracks in finite planar bodies. The term with ti(Q) for Qcr in (1) is
. therefore zero, as shown. The use of the cracked body Green's function

results in the traction kernel also being zero on the crack, viz.
Ti *(P,Q) a O,Q cr, also as shown in (1).

Thus (1) constitutes the constraint equation that must be satisfied by
ui, ti on the uncracked portion of the surface. This equation can be reduced
to solvable, algebraic form through the use of suitable approximations to the

c

;"'" tLower case p(x)is an interior DOem:: upper case P(x) is a boundary point.
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boundary data ui, ti . In the current application we use the approximation of

piecewise linear interpolations of ui, ti as developed by Cruse [2].

The form of (1) for the interior displacement provides a means of direct
computation of interior strains, stresses, and stress intensity factors.
Simply stated, the interior quantities depend on the totality of boundary data
for ui, ti through integration of these quantities together with appropriate

kernel functions for the cracked plane.

Introduction of anelastic strains (e.g., residual strains due to welding,

thermal gradient strains, elastoplastic strains) EciiA to :he EIE formulation T7
results in a modification to (1)

- ii . ti

Ci u -: . (FQ)ui(Q)cs = Ui (PQ) (Q)ds

(2)
- *.
< z i (P,q)ij (q)dA

The addition of the volumetric (area in 2D) integral in (2) is seen as a
correction term to the elastic BIE, (1). The kernel function Z * in this

new integral consists of derivatives of the elastic displacement kernel U. *
and its form differs for plane stress or plane strain.[51

Equation (2) no longer provides a direct means for computing the ooundary
Adata, except when ci, (q) is specified. Thus, for elastoplastic response, an

additional relationship is needed to compute the plastic strains for (2). The
appropriate equation is the interior strain distribution, as written by Cruse
and Polch [3].

SiJ(P) :S mkiJ(PQ)tk(Q)ds +  DkD k j (p Q )u k (Q )d s

+ . (A * + E .A()
<A> im~j +  ijm,i 9Zm imj m

This equation (3) computes the interior total strain in terms of the
boundary data and the interior anelastic strains. For elastoplastic

solutions, the unknown data uj, ii ijA are solved for incrementally and

equations (2), (3) are coupled on an iterative basis. The interior anelastic

strains are modeled as piecewise constant over AA.area segments in the current

study. The full solution algorithm for the elastoplastic case is given in
Figure 2. The yield criterion has to be satisfied, giving the amount of total
strain that is plastic at each load level. The use of iteration as opposed to

''The dots on the variaoles denote an increment in the variable.

I&V|
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a tangent modulus formulation allows us to precompute all of the elastic
kernel functions, to invert one of these, and to perform all of the ensuing
numerics as matrix multiplications.

Stress Intensity Factor Comoutations

The structure of (3) has been investigated by Cruse and Polch [3] for
interior points approaching the crack tip. It was found that, for the
elastoplastic case where the crack tip strains can exhibit a singularity up to

"1 o (where P is the distance from the crack tip), eq. (3) still results in
convergent integrals in (2), (3). However, the actual strength of the plastic
strain singularity is a function of the work hardening (see Hutchinson [61)
and can oniv be inierrec from the resuiting strain tistrioutions after
satisfying the yield criterion implicit in (3).

The elastic stress intensity factor computation :or the BIE formul ar on

using the cracked Green's function results directly from the elastic version
of (3). As shown by Snyder and Cruse [1], the kernels in the two boundary
integrals in (3) are explicitly dependent on the inverse-square root of the
distance of p(x) from the crack tips (+/-a). Further, for the nonsingular
distribution of anelastic strains in (3), the volumetric kernel has the same
explicit dependence. Thus, for nonsingular, anelastic strains we obtain the
following direct, path independent evaluation of the elastic stress intensity
factors

U
(K ,K ) : - *R 1'1 I(Q)u (Q)ds + IL 1'II(Q)t (Q)ds

-I II i i i i

5 s (4)
1,11 A

+ fMij (qci (q)dA

A

The first two terms in (4) are those previously used by Snyder and Cruse
[1] and by Stern, et al. [7]. These are path independent integrals which
provide a simple quadrature for computing KI, KII from any solution for ui, ti
on a path around the crack, but excluding the crack.

Equation (4) states that nonsingular, anelastic strains modify the
elastic KI, KII values in an equally simple sense of quadrature when these
quantities are specified in the volume (area). Some examples of this
quadrature for a notch plasticity problem will be discussed below.

In developing eq. (4), it was assumed that the anelastic strains were
nonsingular, thus negiecting the crack tip elastoplastic effects. The
additional terms, reflecting the higher order singular behavior, are
represented by the incremental elastoplastic strain portion of eq. (3)
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*. Np ( f Z j ") E (q)dA(A> i j+ m(5)

P(. .. '.+ Eim (~mP)

As discussed by Cruse and Polch [3], eq. (5) is dimensionally homogeneous for
any, physical singularity in plastic strain increment as p(x)+/-a, but the
order of :he singularity is not nirectly scivacie from (5).

A considerable number of technologically important oroblems to :he
aercsoace industry are associated with the use of linear elastic fracture
mechanics parameters (i.e., KI, KTT) for problems of limited or localized
plasticity. These include predicting KT for cracks which are undergoing

cyclic plasticity resulting in crack closure effects on spectrum crack growth.
and cracks growing ir the plastic zone of a bolthole subject to high loading
or prestressing.

The present research seeks to shed light on some of these problems by
presenting a stress intensity factor computation algorithm that can directly
and unambiguously model these kinds of limited plasticity effects. For such
problems, the solution given in (4) is to be used. The two boundary data
integrals in (4) reflect the plastic strain distribution of the crack tip, as
well as other :nelastic strains through the volume integral in (2). Secondly,
the prior plasticity of a notch will affect KI, KII through the. volume
integral of those nonsingular strains in (4). The resulting values of KI, KI-
are the plasticity corrected elastic stress intensity factors which define tie
strength of the elastic singularity which dominates the plastic singularity.
The use of this approach is obviously limited to crack tip plastic zones which
are contained within the field of the elastic singularity.

Numerical Solution Algorithm

Application of the appropriate interpolations to the data in eqs. (2) and
(3) reduces the integrals to algebraic form. In general, the boundary
solution involves an equal number of known (applied) boundary data and unknown
data. Letting the unknown data be given by { 1, the product of the known data
and its coefficient matrix terms by {y}, and the coefficient of the piecewise
constant plastic strains by [E], we obtain from (2)

[A]{x} { + [E] Pe:} (6)

Similarly, taking [S] and [D] to be the elastic coefficient arrays of
y. the boundary data, and [G] to be the elastic coefficient array for the

plastic strain, then eq. (3) becomes

[cT, [S]{t} [ D]{ul [G]{cP} (7)

The strain superscripts in (6) and (7) refer to total (elastic plus plastic)
and plastic values, while the dots imply that all of the variables are to be
interpreted in terms of their incremental evaluation.

k.

€- "- " ' -"-" '" "-" "'" . -".' -" '.. ' . ' .- , "'.,.--'. " - .:-.. '. ..-. . .- -. . . ... . .- . .
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The present BEM algorithm makes use of the Huber-Mises-Hencky yield

condition and associated flow rule. Elastic, perfectly plastic material
response was modeled throughout this study, but the code allows for a multi-
piecewise-linear definition of a general stress-strain curve.

Following the approach adopted in the ADINA code, each increment in total
strain is divided into subincrements (Bathe [8]). The number of subincrements
is selected to minimize the error in the deviatoric stress change within the
strain increment. The stress increment for a given iterate of increment in
plastic strain is then obtained by an Euler forward integration of the flow
rule, according to
• .. CURRENT

-- LOAD

" , EP T
"- 1 }

CURRENT PREVd (8)

LOAD LOAD T
PREV
LOAD

In eq; (8), the elastoplastic matrix relating the subincrements in stress
* and total strain is given for plane strain by

S ijSmn T
do =2G[6.6 +6 6 - (9)i. imjn + - 2V mn ij 2J (i + H/3G) mn

The current state of deviatoric stress, S.., and second invariant of
deviatoric stress, J2, is updated within te subincremental integration of

- (8). The tangent modulus, H, is taken as the slope of the effective stress-
effective plastic strain curve, at the current level of effective stress.

U Figure 2 summarizes the current iteration algorithm for the solution of
eqs. (6,7). The coefficient arrays [A], [S], and [D] depend solely on the

. elastic constants of the material and the boundary shape. Thus, they are
-* computed once and stored. The [A] matrix is inverted prior to storage. The

interior arrays [E] and [G] are also dependent solely on the elastic constants
and the interior element modeling. These are also computed once and stored.
Note again that only that portion of the interior expected to be inelastic
need be modeled. The expense of generating [El and [G] for crack problems
dictates that such limited volumetric modeling be employed.

In the first iteration at a given load step, the plastic strain increment
in Figure 2 is taken from the last load step. The boundary solution then
responds, in an elastic manner, to the increase in loading. Estimated

. interior total strains are then calculated. Based on the new total strain
increment, the interior stresses and plastic strains are computed based on
satisfying the yield condition through eq. (8). The plastic strain increment
is then updated in both eqs. (6,7) for a recalculation of the boundary and
interior solutions.

Absolute convergence of the strain solution within each element is
. required for the iteration process used. That is, the maximum tifference
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between successive iterates of the plastic strain correction term (second term
on the right hand side of eq. (6)) is not allowed to exceed a user-specified

tolerance. This tolerance has been selected on the basis of its ability to
relate directly to the amount of the displacement increment. A number of

numerical experiments with tolerances ranging over 10-6 to 10- 9 were conducted
to test the sensitivity of the results to this value. It was found that the
errors in the displacements, for a simple uniform stress test case, were of
the order of the tolerances specified. A decrease in the tolerance by an
order of magnitude generally resulted in a doubling of the number of

iterations required to achieve convergence. A value of 10- 7 was used for the

notch problem and a value of 10- 9 was used for the fracture mechanics problem,
in order to account for the higher strain gradient.

Numerical Results

The computer program has been verified on two example problems. The
first is a plate with perforations, previously solved by Haward and Owen [9]
using finite elements and resolved by Telles [10] using the BEM. This example
served the basic purpose of validating the current code and provided a basis
for some numerical experimentation. The second problem is a fracture
mechanics problem of a center cracked plate loaded in tension. The plastic
strain results are compared to ADINA results using a singular finite element
model.

The geometry for the first problem is shown in Figure 3. Plane strain
conditions are applied for all three of the analyses and the material is taken
to be elastic-perfectly plastic. The appropriate constants are E = 42. x
103MN/m2, a = 105. MN/m2 , V = 0.33. The one loading condition considered

was uniaxial tension, applied by prescribing displacements at the edges of the
plate section. The piecewise linear plastic strain BEM mesh of Telles is
shown in Figure 3; the FEM quadratic isoparametric element mesh used by Haward
and Owen is shown in Figure 4. The current BEM mesh, using piecewise constant
plastic strains, is shown in Figure 5.

Figure 6 plots the numerical results in terms of the amount of force

required versus the applied displacements. Table 1 summarizes the numerical
force-displacement data. All three model results show excellent agreement,
given the disparity in modeling strategies. The predicted limit load for the
current study differs from the other two by less than 2%. The difference is
attributed to the use of constant strain elements. Limit load is obtained
when the centroidal value of stress in the last ligament element yields, a
condition that will occur below the load for yielding the last physical
ligament ahead of the notch.

The current BEM code was tested for a range of load increments in a
deliberate attempt to create numerical instability. The numerical results
plotted in Figure 7 were generated using an incrementation scheme resulting in
a single element yielding at a time. The BEM results required about twenty
iterations per load step to fully converge. The worst case was one load step
to the maximum displacement. The solution converged in 45 iterations and
agreed with the other limit load results within 0.2%. The maximum deviation
in calculated plastic strains was 10% in the last element to yield.

.
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Table 1.

Numerical Results of the Polystyrene Plate Problem

PCP - Uniaxial Stretch

Load Case Load % Displacement Force a (x 10-z) F/(a+)

(A x10-3  (F) [%]

1 .50 4.5 10.3576 1.50 34.525

2 .55 4.95 11.3259 1.65 37.753

, 3 .60 5.4 12.2459 1.80 40.820

4 .65 5.85 13.1047 1.951 43.682

5 .70 6.3 13.8412 2.10 46.137

6 .75 6.75 14.4610 2.25 48.203

7 .80 7.2 14.7765 2.40 49.255

8 .85 7.65 14.9091 2.55 49.697

9 .80 8.1 15.0009 2.70 50.003

10 .95 8.55 15.0650 2.85 50.217

11 1.00 9.0 15.1112 3.00 50.371

12 1.05 9.45 15.1412 3.15 50.471

13 1.10 9.9 15.1412 3.30 50.471

The ultimate strength = 50.471 MN/m2

a, d defined in Figure 2

4.1

hiI
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The second example is a center-cracked plate loaded in tension. The
total width of the plate is 8 units, with a crack size of 2 units. One
quarter of the geometry was modeled using ADINA, as shown in Figures 8 and
9. Extremely fine resolution of the crack tip elements was taken in order to
minimize the error in the finite element solution. The elastic stress
intensity factor for this finite element model, using the crack opening
displacement at the quarter-point node, was in error relative to handbook
values by about 2%.

The BEM mesh corresponding to the local finite element scale is shown in
Figure 10. The elastic BEM szress intensity factor results were
indistinguishable from the handbook results. The FEM/BEM meshes were selected
so as to provide about three decades of plotting data in terms of crack zip
distance. The maximum size of the plastic zone was limited solely for
convenience in the current study.

Plane strain conditions were used for both of the models. The elastoplastic
2 2 2material constant used were E=2.037.10MN/m, a =3.452.10MN!m , and v=0.27.-: y

The ADINA crack tip model used quadratic, isoparametric finite elements
with nine interior strain integration points. The BEM model used constant
strain triangles throughout. As noted above, both meshes were identical in

.% the crack tip region. The ADINA model used one layer of collapsed quadratic
elements adjacent to the crack tip. This approach induces a (1/r) type of
singularity in the displacement gradient within this first layer of

j elements. No singularity modeling is used in the BEM plastic strain
distribution.

Loading history was identical for both models and spans the range of load
factors of 0.0310 to 0.2075. A value of 1.0 corresponds to yielding of the
whole plate. A total of 68 load steps was used for both models. The load
steps satisfy the conditions of Larsson and Carlsson [11]. Simply stated,p these conditions require that at most one element becomes plastic at each load
increment, and that the load increment should be smaller than 1% of the load
corresponding to K may-/a. The range of load factors has been chosen as

Imax y
the range to go from yielding the innermost element to yielding the outermost

element.

ADINA failed to converge for the first step until the stiffness
reformulation (BFGS) procedure was used. After the first load step (requiring
20 iterations) the ADINA algorithm with reformulation generally converged with
five iterations. The BEM algorithm, using elastic "stiffnesses," converged in
ten to fifty increments at each load step with the higher numbers occurriig at
the higher load levels. The total computer time for the two models was
essentially the same, although the BEM calculations are cheaper per load
step. A higher final load level or cyclic loading would yield a benefit to
the BEM model, even though the current BEM code is not yet optimized for these
calculations.

The crack tip plastic strain distribution results are shown in Figure 11
for two of the computed load levels. The data are taken from points
distributed near, but not on, a line at an angle of about 850 to the plane of
the crack. This angle corresponds to the line of maximum equivalent elastic

% '.
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Figure 9.Finite Element Modeling of the Crack Tip Vicinity
with Singular Elements (La 0.001)
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strain. The jaggedness of the curves is mostly due to the use of triangular
elements, as well as to the points having different angular locations. Thern data is plotted in terms of the centroidal value of plastic strain. The
innermost row of finite elements has three sampling points radially, which
accounts for the smaller radius plotted for these results. The numerical
results from ADINA show a tendency for a spurious peak in plastic strainJ
increments in the second row of elements. This peak is no doubt induced by
the lack of a singularity-transition element in the current study.

It is significant to find that the numerical results are in such good
agreement. This confirms the accuracy of the BEM algorithmn for piecewise

-2 constant plastic strains. The BEM results do not show the strength of the
plastic singularity as strongly in the first row of elemen:ts as do the finite
element results, with the imbedded 1/r singularity in displacement gradient.
However, both sets of results strongly indicate that the plastic strain for .-7, localized plasticity possesses the same 1/r singularity that is associated
with fully developed plasticity for the case of zero strain hardening.
Clearly, the presence of the underlying elastic singularity field plays an
important role in enhancing the modeling accuracy for crack tip plasticity.%

Figures 12 and 13 show the progressive development of the plastic zone up
to the maximum modeled load. It is to be emphasized that the current study
was intended to confirm the accuracy of the new BEM algorithm for
elastoplastic fracture mechanics analysis, and not study extensive plasticity
response at the crack tip. For this reason the current results were not
carried beyond the load level shown. There is no inherent limit to the load
level that can be modeled with this BEM algorithm.

:_11:The next problem was selected to validate the stress intensity factor
*algorithm for prior plasticity for any residual or thermal strain field. The

geometry selected is a simple tension specimen with the boundary and internal
mesh shown in Figure 114. The mesh arrangement was selected solely for A
convenience, as it is used as a portion of a later mesh. The specimen was
loaded to 110% of the yield stress for a bilinear material response. This
induced a uniform plastic strain throughout the specimen.

The next step in the validation of eq. (14) was to introduce a crack, done
along the bottom of the mesh as shown. The residual boundary solution
corresponding to the residual internal strains is computed for the cracked
case by eq. (6). Next, the internal strains for the residual boundary and
internal variables are computed from eq. (7). In the case of the test
problem, eq. (6) produced the uniform displacements compatible with uniform
residual strains, eq. (7) computed internal strains equal to the residual
strains.

The elastic stress intensity factor for the problem was then computed for%
the residual boundary terms computed from (6). If there were further changes
in the residual strains due to unloading plasticity, these would modify the
elastic strain intensity factor through the appropriate term in eq. (14). As

V, required for this simple case, the residual stress intensity factor was
zero. The residual values in the first and third terms in eq. (14) cancel each
other to within computer accuracy.
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Figure 13. Growth of the Plastic Zone (BIE)
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Figure 15 shows the final application problem for this study. The model

includes a simplified internal mesh for modeling plasticity at a hole in
tension. The plate is two units long by one unit wide (W). The hole radius
(R) is 0.25W. Local meshes were used to model crack tips at 0.05R and at
0.5R. The elastic KT for this mesh is computed to be 3.29 as compared to 3.24
from Peterson [12]. The elastic stress intensity factors for the two crack
lengths are 13% higher than the values given by Rooke and Cartwright [13],
which is due to the finite width of the specimen.

Figure 16 shows the progressive generation of the plastic zone at the
hole. The material is modeled in plane strain with a yield stress (perfect
plasticity) of 50 ksi. The plate is loaded to a level of 44.6 ksi applied at
the end of the plate. This level of loading was exaggerated in order to
generate a plastic zone that encompassed both crack lengths. In fact, the
notch was found to undergo substantial reverse yielding at unloading. After

the plastic strains are computed for the notch alone, the crack is introduced
through eqs. (6,7). The boundary solution computes crack face closure
corresponding to the residual strains. With application of the residual
strain and boundary terms, the internal strain algorithm predicts localized
reversed plastic flow at the crack tip. Elastic stress intensity factors are
computed for the residual terms, without the unloading corresponding to
introduction of the crack, and for the residual terms with full unloading of
the crack surface.

Table 2 summarizes the numerical results. The engineering approach often
used for cracks at notches with prior plasticity is to take the residual
strains (and resulting stresses) prior to unloading and to use these as pseudo

tractions on the crack faces. This approach corresponds to the second set of
* .results in Table 2, for zero crack surface unloading. The results show that

the residual strains produce crack closure (negative stress intensity factor)
and a corresponding reduction in the maximum stress intensity factor at
load. The effect is, of course, more pronounced for the small flaw as it is

more completely buried by the prior plastic zone.

Table 2.

Stress Intensity Factor Results (KIlo/-)

a/R - 0.05 a/R 0.5

Elastic
- Max. load 3.411 2.070
- Zero load 0 0

Plastic (Zero Crack
Surface Unloading)

- Max. load 1 .4 8 3a 1 . 88 6 a
- Zero load -I.928 _0 184 b

Plastic (Full CracK
Surface Unloading)

- Max. load 0.841a
- Zero load -2 .5 6ib -0.183

b

Note a: Maximum load values (elastically)
Elastic - Zero load values

Note b: Negative values of K, imply crace ciosure

at positive load
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The more correct result for the stress intensity factor calculations is
provided by the third set of results in Table 2 with full crack surface
unloading. The point to be made is the significant difference between the
results assuming no crack face unloading of the residual stresses, and those
for full unloading. The usual engineering approaches to modeling crack growth
in a notch with plasticity [14, 15] do not account for this unloading, which
occurs at positive applied loads (crack open). The effect is most significant
for short cracks, which generally consume most of the crack growth life.

The same discrepancy between the engineering and more correct results,
including unloading effects, will occur for problems of residual welding
strains and thermal gradient strains. The new algorithm presented herein is
offered as an effective means for correcting the engineering approach when the
plastic zone can be estimated or computed, if not by BIE, then by finite
element procedures.

RESEARCH COMMUNICATION

The research to date has involved three individuals. The program manager
is Dr. T. A. Cruse. Dr. Arje Nachman was a co-principal investigator on the
effort for a few months prior to his taking a position with the Hampton 7.

Institute, Hampton, Virginia. Dr. E. Z. Polch, who was developing the
comouter algorithms for the current research, has been serving as co-principal
investigator since that time.

The research results to date have been incorporated in several
manuscripts. These include a chapter in a major reference book on BIE, two
journal submittals, and two conference proceedings. The following list
summarizes these submittals:

1. "Fracture Mechanics," T. A. Cruse, Boundary Element Methods in
Mechanics, book in series Computational Methods in Mechanics, edited by D. E.
Beskos, Elsevier Science Publishers B.V., Amsterdam, to be published.

2. "Elastoplastic BIE Analysis of Cracked Plates and Related Problems,
Part 1: Formulation," T. A. Cruse and E. Z. Polch, submitted to International
Journal for Numerical Methods in Engineering.

3. "Elastoplastic BIE Analysis of Cracked Plates and Related Problems,
Part 2: Numerical Results," T. A. Cruse and E. Z. Polch, submitted to
International Journal for Numerical Methods in Engineering.

4. "Advanced Algorithms for Fracture Mechanics Analysis in Two and Three
Dimensions," T. A. Cruse and E. Z. Polch, 2nd International Conference on
Variational Methods in Engineering, Southampton, England, July 17-19, 1985.

5. "BIE Analysis of Crack Tip Plastic Zones," T. A. Cruse and E. Z.
Polch, AIAA 26th Structures, Structural Dynamics, and Materials Conference,
Orlando, Florida, April 15-17, 1985.

The paper from the 26th AIAA Structures, Dynamics, and Materials
* conference is currently under revision to add some additional information

relative to the calculation of crack tip stress intensity factors, including
the effects of plasticity. The paper will be submitted shortly to the
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International Journal of Fracture and will also be co-authored by Cruse and
Polch. The efforts from the second year of the contract will also result in
several publication submittals. At this time it is probable that these
articles will be submitted for publication in the Engineering Fracture

.- Mechanics Journal and the International Journal of Fracture. Some specific
aspects of the current research will be included in further review type
articles by Cruse, and in various conference proceedings.

Dr. Cruse has made two trips associated with other business activities
which have resulted in specific consultation on the problems of crack growth
modeling with elastoplastic models. The current research effort was discussed
in detail with Mr. James Rudd of the Air Force Flight Dynamics Laboratory on
and with Dr. James Newman of NASA (Langley Research Center). Both individuals
expressed interest in this work and will be kept informed of the research
progress. A brief telecon was held with Dr. Ted Nicholas to inform him of the
principal results of the work and to inform him of the potential for

" application of the research to the small flaw problem.
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