Underselle.

JAN 2 7385 APR 0 8 1985 JAN 2 9 1987 JUN 6 1988

PRESSURE MEASUREMENTS ON FIVE MINIATURE MACH/FLOW ANGULARITY PROBES AT MACH NUMBERS 1.76, 2.0, 3.0 AND 5.0

TROPINGER DERORIS VILE GUMY

AEDC-TSR-83-V16

0.2

aminmo

THE PROPERTY OF TRUMPS

PROFERTY OF U.S. AIR FORCE ACTIVE TECHNICAL LIBRARY

M. T. Byers, E. J. Marquart, J. C. Donaldson, and S. A. Stepanek

Calspan Field Services, Inc.

May 1983 Final Report for Period March 20, 1983

Approved for public release; distribution unlimited.

ARNOLD ENGINEERING DEVELOPMENT CENTER ARNOLD AIR FORCE STATION, TENNESSEE AIR FORCE SYSTEMS COMMAND UNITED STATES AIR FORCE

Unclassified

PROPERTY OF U.S. AIR FORCE AEDC TECHNICAL LIBRARY ARNOLD AFB, TN 37389

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE

		REPORT DOCUME	ENTATION PAG	E					
UNCLASSIFICATION AUTHORITY 3. DISTRIBUTION(AVAILABILITY OF REPORT Approved for public release; distribution unlimited. A PERFORMING ORGANIZATION REPORT NUMBERIES AEDC-TSR-83-VI6 5. MONITORING ORGANIZATION REPORT NUMBERIES AEDC-TSR-83-VI6 Sex NAME OF REPORT NUMBERIES AFDOL STREEMENT NOT NUMBERIES ACORES (City, State and ZIP Code) 5. MONITORING ORGANIZATION REPORT NUMBERIES AFDOL STREEMENT NOT NUMBERIES ACORES (City, State and ZIP Code) Air Force Systems Command Arnold Air Force Station, TN 37389-5000 7a. NAME OF MONITORING ORGANIZATION NUMBER (If explained) 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER (If explained) NAME OF FUNCING/FORGENING ANDID AT FORCE Station, TN 37389-5000 7a. NAME OF NUMBERIES (City, State and ZIP Code) 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER (If explained) Air Force Systems Command Arnold Air Force Station, TN 37389-5000 10. SOURCE OF FUNCING NOS. (If explained) 9. PROCURE NOS. (If explained) Air Force Systems Command Arnold Air Force Station, TN 37389-5000 10. SOURCE OF FUNCING NOS. (If explained) 7a. ADD (If explained) Strekey Explore OF THISE WALE Final 13a. Triate Covered Prive OF REPORT Final 13a. Triate Covered Prive OF REPORT Final 20. OFFICE SYMBOL (If explore OF FUNCING NOS. (If explore OF REPORT	1a. REPORT SECURITY CLASSIFICATION		1b. RESTRICTIVE MARKINGS						
22 SECURTY CLASSIFICATION AUTHORITY 3. DETINUUTION/AVAILABILITY OF REPORT 23 SECURTY CLASSIFICATION AUTHORITY 3. DETINUUTION/AVAILABILITY OF REPORT 24 DECLASSIFICATION AUTHORITY 3. DETINUUTION/AVAILABILITY OF REPORT 25 DECLASSIFICATION AVAILABILITY OF REPORT 3. DETINUUTION/AVAILABILITY OF REPORT 26 DESTRIBUTION/AVAILABILITY OF REPORT 3. DESTRIBUTION/AVAILABILITY OF REPORT 27 DECLASSIFICATION 0.0 DEFICE SYMBOL 28 ADDRESS (CITY, State and ZIP Code) 4. ADDRESS (CITY, State and ZIP Code) 29 DECLASSIFICATION AUTHORING 0.0 OFFICE SYMBOL 20 OBTRIBUTION AVAILABILITY OF REPORT 10. DECLASSIFICATION REPORT NUMBER 20 DETINE 10. SUPERCENT FUNCTION AUTHORING 20 DETINE 10. SUPERCENT FUNCTION AUTHORING 20 DETINE 10. SUPERCENT FUNCTION AUTHORING 20 DETINE OF SUPERCENT AUTHORING 10. SUPERCENT FUNCTION AUTHORING 20 DETINE OF SUPERCENT AUTHORING 10. SUPERCENT FUNCTION AUTHORING 21 DECLASSIFICATION 10. DECLASSIFICATION 22 DECLASSIFICATION 10. DECLASSIFICATION 23 DETINE 10. DECLASSIFICATION 24 DEVELOPMENT 10. DECLASSIFICATION 25 DEFENSITY 10. DECLASSIFICATION 26 DETINE OF SUPERCENT	UNCLASSIFIED								
The DecLassi FicATION/DOWNGRADING SCHEDULE Unlimited. PERFORMING ORGANIZATION REPORT NUMBER(S) 5: MONITORING ORGANIZATION REPORT NUMBER(S) A PERFORMING ORGANIZATION REPORT NUMBER(S) 5: MONITORING ORGANIZATION REPORT NUMBER(S) A NAME OF REPORTING INGANIZATION B: OFFICE SYMBOL (If september DOT B: OFFICE SYMBOL (If september ORD To: ADDRESS (City, State and ZIP Code) At F Force Systems Command Arnold Air Force Station, TN 37389-5000 B: OFFICE SYMBOL (If september) B: OFFICE SYMBOL ORDERSS (City, State and ZIP Code) Is: SUPLEMENTARY MORE At Force Systems Command Arnold Air Force Station, TN 37389-5000 Is: SUPCEOF FUNCING NOS. B: OFFICE SYMBOL ORDERSS (City, State and ZIP Code) Is: SUPLEMENTARY NOTATION Arnold Air Force Station, TN 37389-5000 1: Steff Reverse Station, TN 37389-5000 Is: SUPLEMENTARY NOTATION Arnold Air Force Station, TN 37389-5000 1: Steff Reverse Station, TN 37389-5000 Is: SUPLEMENTARY NOTATION Arnold Air Force Station, TN 37389-5000 1: Steff Reverse Station, TN 37389-5000 Is: SUPLEMENTARY NOTATION Arnold Air Force Station, TN 37389-5000 1: Steff Reverse Report THE Content OFTIC). Task 2: ABSTRACT (Contine on Reverse (Interverse and Market) Arnold Enterverse Into acoustic Market (Interverse and Reverse (Interverse and Market) Arnold Enterverse Into acoustic probes (Secondary Object Number) 2: ABSTRACT (Contine	28. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION/A	c public re	loaso dist	ribution			
A PERFORMING ORGANIZATION REPORT NUMBER(B) A PERFORMING ORGANIZATION REPORT NUMBER(B) AEDC-TSR-83-V16 AEDC-TSR-83-V16 AEDC-TSR-83-V16 AEDC-TSR-83-V16 AEDC-TSR-83-V16 AEDC-TSR-83-V16 AEDC-TSR-83-V16 ATT FORCE Systems Command Arnold Air Force Station, TN 37389-5000 Arnold Air Force Systems Command Arnold Air Force Station, TN 37389-5000 ATT Force Systems Command Arnold Air Force Station, TN 37389-5000 AIr Force Systems Command Arnold Air Force Station, TN 37389-5000 ATT Force Systems Command Arnold Air Force Station, TN 37389-5000 Air Force Systems Command Arnold Air Force Station, TN 37389-5000 ATT Force Systems Command Arnold Air Force Station, TN 37389-5000 AIR Force Systems Command Arnold Air Force Station, TN 37389-5000 AIR Force Systems Command Arnold Air Force Station, TN 37389-5000 Air Force Systems Command Arnold Air Force Station, TN 37389-5000 Air Force Systems Command Arnold Air Force Station, TN 37389-5000 Air Force Systems Command Arnold Air Force Station, TN 37389-5000 Air Force Systems Command Arnold Air Force Station, TN 37389-5000 Air Force Systems Command Arnold Air Force Station, TN 37389-5000 Arnold Air Force Station, TN 37389	25 DECLASSIFICATION/DOWNGRADING SCHED	ULE	unlimited.		lease, uist	ribución			

AEDC-TSR-83-V16 SR NAME OF REFORMING ORGANIZATION Arnold Egineering Development Center Pb. OFFICE SYMBO. (Trapplicable) DOT Ta. NAME OF MONITORING ORGANIZATION (Trapplicable) DOT State of the end of th	4. PERFORMING ORGANIZATION REPORT NUM	BER(S)	5. MONITORING OF	GANIZATION R	EPORT NUMBER(S	S)			
Sex NAME OF PERFORMING ORGANIZATION Arrold Engineering Be. OFFICE SYMBOL ("Implication") Te. NAME OF MONITORING ORGANIZATION ("Implication") Sex ADDRESS (City, State and 2P Code) DOT Sex ADDRESS (City, State and 2P Code) Th. ADDRESS (City, State and 2P Code) Sex ADDRESS (City, State and 2P Code) Th. ADDRESS (City, State and 2P Code) Sex ADDRESS (City, State and 2P Code) Sh. OFFICE SYMBOL ("application") Arrold Engineer- ing Development Center Sh. OFFICE SYMBOL ("application") Sh. OFFICE SYMBOL ("application") Sex ADDRESS (City, State and 2P Code) Sh. OFFICE SYMBOL ("application") Sh. OFFICE SYMBOL ("application") Sh. OFFICE SYMBOL ("application") Sh. OFFICE SYMBOL ("application") Sex ADDRESS (City, State and 2P Code) Sh. OFFICE SYMBOL ("application") Sh. OFF	AEDC-TSR-83-V16								
BAR AFROID I Engineering DT Be ADDRESS (City, State and ZIP Code) The ADDRESS (City, State and ZIP Code) Air Force Systems Command Arnold Air Force Station, TN 37389-5000 The ADDRESS (City, State and ZIP Code) Be ADDRESS (City, State and ZIP Code) Be, OFFICE SYMBOL (If applicable) DO Be ADDRESS (City, State and ZIP Code) Be, OFFICE SYMBOL (If applicable) DO Be ADDRESS (City, State and ZIP Code) Be, OFFICE SYMBOL (If applicable) DO Be ADDRESS (City, State and ZIP Code) Be, OFFICE SYMBOL (If applicable) DO Be ADDRESS (City, State and ZIP Code) Be, OFFICE SYMBOL (If applicable) DO Be ADDRESS (City, State and ZIP Code) DO DO Be ADDRESS (City, State and ZIP Code) DO DO Be ADDRESS (City, State and ZIP Code) DO DO Be ADDRESS (City, State and ZIP Code) DO DO Be ADDRESS (City, State and ZIP Code) DO DO Be ADDRESS (City, State and ZIP Code) DO DO Be ADDRESS (City, State and ZIP Code) DO DO Be ADDRESS (City, State and ZIP Code) DO DO Be ADDRESS (City, State and ZIP Code) DO DO		EN OFFICE SYMBOL	72 NAME OF MONI						
Development Center DOT 6c. ADDRESS (City, State and ZIP Code) Atr Force Systems Command Arnold Air Force Station, TN 37389-5000 Th. ADDRESS (City, State and ZIP Code) 8c. NAME OF FUNDINGARDNSONING ORGANIZATION Arnold Engineer Bb. OFFICE SYMBOL (I spelled) P. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER 8c. ADDRESS (City, State and ZIP Code) Bb. OFFICE SYMBOL (I spelled) P. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER 8c. ADDRESS (City, State and ZIP Code) Bb. OFFICE SYMBOL (I spelled) P. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER 8c. ADDRESS (City, State and ZIP Code) Bb. OFFICE SYMBOL (I spelled) P. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER Atr Force Systems Command Arnold Air Force Station, TN 37389-5000 Is. Spelled OFFICE PROFECTION NO. PROBE TABLE PROME PROFECTION NO. 11: Stef Engletic School (I state and ZIP Code) Atr Force Station, TN 37389-5000 Is. Spelled OFFICE PROFECTION NO. 12: PERSONAL AUTHORIS Byers, N. T., Marquart, E. J., Donaldson, J. C., and Stepanek, S. A., Issuer and Northon Angularity (I sector) Issuer and No. 13: Supplementary NOTATION Available in Defense Technical Information Center (DTIC). Issuer and Northon Angularity (MFA) Probe dynamic pressure trans- pitot acoustic ducer Mach/Flow Angularity (MFA) Probe dynamic pressure prediction 14: ADSTRACT (Continue on reverse I necoustry ond identi	Arnold Engineering	(If applicable)							
See, ADDRESS (City, State and ZIP Code) The ADDRESS (City, State and ZIP Code) Air Force Systems Command Arnoid Air Force Station, TN 37389-5000 B. OFFICE SYMBOL (If spatiable) B. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER (If spatiable) See, ADDRESS (City, State and ZIP Code) B. OFFICE SYMBOL (If spatiable) B. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER (If spatiable) Arnoid Air Force Systems Command Arnoid Air Force Station, TN 37389-5000 In. SOURCE OF FUNDING NOS. Task No. WORK UNIT No. II: SPLE REVERSE OF CHIESE PARE Byers, M. T., Marquart, E. J., Donaldson, J. C., and Stepanek, S. A., 13. TYPE OF REPORT FROM	Development Center	DOT							
Air Force Systems Command Arnold Air Force Station, TN 37389-5000 Sa Ande GF RESPONSING ORGANIZATION Arnold Engineer- ing Development Center Bb. OFFICE SYMBOL (// applicable) D0 S. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER (// applicable) D0 Re. ADDRESS (C): State and Zir Code) 10. SOURCE OF FUNDING NOS. Air Force Systems Command Arnold Air Force Station, TN 37389-5000 10. SOURCE OF FUNDING NOS. FROGRAM TASK NO. No. No. No. No. No. Step Reform Code) 10. SOURCE OF FUNDING NOS. (65807F No. No. No. No. No. No. No. No. Step Reform Code Not Station, TN 37389-5000 14. Date of PENDARK, S. A., (65807F No. No. No. No. No. To Step Reform Tas TIME COVERED 200 Tas Experimental Notation No. No. No. No. No. To Step Reform Tas TIME COVERED 200 May 1983 16. PAGE COUNT No. To Step Reform To Step Reform No. No. No. No. No. To Step Reform To Step Reform To Step Reform No. No. No. No. To Step Re	6c. ADDRESS (City, State and ZIP Code)		7b. ADDRESS (City,	State and ZIP Cod	le)				
Arnold Air Force Station, TN 37389-5000 See Name of FUNDINGSPONSORING ORGANIZATION Arnold Engineer- ing Development Center Bb. OFFICE SYMBOL (If opplication Arnold Engineer- BUDD D. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER Arnold Air Force Systems Command Arnold Air Force Systems Command Arnold Air Force Station, TN 37389-5000 Io. SOURCE OF FUNDING NOS. PROGRAM ELEMENT NO. PROJECT NO. TASK NO. WORK UNIT 11 Stef Effetting Sec OF Final Tast Time Coverse Final Tast Time Coverse Final Procent Final PROJECT NO. Task NO. WORK UNIT 12 Stef Effetting Sec OF Final Tast Time Coverse Final Tast Time Coverse Final Procent Final Procent Final Procent Final Task Time Coverse Final Procent Final Procent Final Procent Final Procent Final Task Final Procent Final Final Final<	Air Force Systems Command								
Se. NAME OF FUNDING/SPONSORING ORGANIZATION AMODIL Engineer- ing Development Center Bb. OFFICE SYMBOL (if ppUkebein) DO PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER Se. ADDRESS (City, State and ZIP Code) II. SOURCE OF FUNDING NOS. III. SOURCE OF FUNDING NOS. III. SOURCE OF FUNDING NOS. Air Force Systems Command Arnold Air Force Station, TN 37389-5000 III. SOURCE OF FUNDING NOS. Task NO. III. SOURCE OF FUNDING NOS. 11. SILE (KeyKeySewGP FMISSerVALE JI. Donaldson, J. C., and Stepanek, S. A., PROGRAM Byers, M. T., Marquart, E. J., Donaldson, J. C., and Stepanek, S. A., 12. FFERSONAL AUTHORS; Byers, M. T., Marquart, E. J., Donaldson, J. C., and Stepanek, S. A., III. DATE OF REPORT (Yr. Ma., Day) III. PAGE COUNT May 1983 13. SUPLEMENTARY NOTATION PROGRAM ENDUELEMENTARY NOTATION III. SUBJECT TERMS (Continue on revere I' necessary and identify by Mock number) III. Program (Yr. Ma., Day) 14. DOC III. SUBJECT TERMS (Continue on revere I' mecessary and identify by Mock number) III. SUBJECT TERMS (Continue on revere I' mecessary and identify by Mock number) 15. Buesch Technical Information Center (DTIC). III. SUBJECT TERMS (Continue on reverse I' mecessary and identify by Mock number) 14. ABSTRACT Continue on reverse I' necessary and identify by Mock number) IIII. Defended Actor (DTIC) 17. COSATI CODES IIII. SUBJECT TERMS (Continue on reverse I' me	Arnold Air Force Station, TN	37389-5000							
and anization Arrold Engineer (freplicable) D ing Development Center D0 ac ADDRESS (CHy, State and 21P Code) D0 bit End Code Code (1P) bit End Code (1P) D0 bit End Code (1P) D0 bit End Code (1P) D1 bit End Code (1P) D1 bit End Code (1P) D0 bit End Code (1P) D1	- NAME OF FUNDING (SPONSORING	Sh OFFICE SYMPOL	9 PROCUREMENT	NSTRUMENTIO	ENTIFICATION N				
Ing Development Center D0 Be ADDRESS (CIV, Sites and ZIP Code) 10. SOURCE OF FUNCING NOS. Air Force Systems Command 11. Source of FUNCING NOS. Arnold Air Force Station, TN 37389-5000 10. Source of FUNCING NOS. 11. SELE KEVENSSE OF CHINSCHARGE 65807F 12. PERSONAL AUTHOR(S) Byers, M. T., Marquart, E. J., Donaldson, J. C., and Stepanek, S. A., 13. TYPE of Reform 13. TWE COVERED Final 13. TWE COVERED 200 FROM	ORGANIZATION Arnold Engineer-	(If applicable)	I. FROCOREMENT I						
Bit ADDRESS (City, State and ZIP Code) 10. SOURCE OF FUNDING NOS. Air Force Systems Command Arnold Air Force Station, TN 37389-5000 10. SOURCE OF FUNDING NOS. 11 Stelf Kdydetserwidy Station, TN 37389-5000 PROJECT PROJECT Station, TN 37389-5000 PROJECT PROJECT NO. TASK NO. WORK UNIT NO. 11 Stelf Kdydetserwidy Station, TN 37389-5000 11. Station, TN 37389-5000 10. SOURCE OF FUNDING NOS. TASK NO. WORK UNIT NO. 11 Stelf Kdydetserwidy Station, TN 37389-5000 11. Station, TN 37389-5000 10. SOURCE OF FUNDING NOS. TASK NO. WORK UNIT NO. 11 Stelf Kdydetserwidy Station, TN 37389-5000 11. Station, TN 37389-5000 11. Station, TN 37389-5000 11. Station, TN 37389-5000 12 Station, TN 37389-5000 11. Station, TN 37389-5000 11. Station, TN 37389-5000 11. Station, TN 37389-5000 13 Station, TN 37389-5000 11. Station, TN 37389-5000 11. Station, TN 37389-5000 11. Station, TN 37389-5000 13 Station, TN 37389-5000 12. Station, TN 37389-5000 14. Date of Report Trins, No. 11. Station, TN 37389-5000 13 Station, TN 37389-5000 13. Station, TN 37389-5000 14. Date of Report (Tr., Mo., Day) 15. PAGE COUNT 14 Date of Report Continue on reverse (Incertains (Continue on reverse (Incertains (Continue on reverse (Incereverse and theme) 10. Statio	ing Development Center	DO							
Air Force Systems Command Arnold Air Force Station, TN 37389-5000 PROJECT NO. TASK NO. WORK UNIT NO. 11: UPLE NetWork Struct Procession Station, TN 37389-5000 65807F Image: Social Station Statio	8c. ADDRESS (City, State and ZIP Code)		10. SOURCE OF FUR	NDING NOS.	,				
Arnold Air Force Station, TN 37389-5000 ELEMENT NO. NO. NO. NO. NO. 11 SEE REVEXSE OF THISS HADE 65807F 65807F 65807F 65807F 12. PERSONAL AUTHOR(S) Byers, M. T., Marquart, E. J., Donaldson, J. C., and Stepanek, S. A., Tak TYPE OF REPORT 13b TIME COVERED 200 13a TYPE OF REPORT 13b TIME COVERED 200 May 1983 16. PAGE COUNT 14a TYPE OF REPORT 13b TIME COVERED 200 May 1983 16. PAGE COUNT 14a TYPE OF REPORT 13b TIME COVERED 200 May 1983 11. PAGE COUNT 15. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Mach/Flow Angularity (MFA) Probe dynamic pressure transpitot acoustic 14 02 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Pressure prediction 15. ASSTRACT (Continue on reverse if necessary and identify by block number) Pressure prediction pressure transpitot acoustic pressure transpitot acoustic 16. ASTRACT (Continue on reverse if necessary objectives were to test a hot-film anemometer and three pitot-acoustic probes for durability, and to examine the response of three ported dynamic pressure sure transducers located downstream of the tunnel test section. UNCLASSIFIED 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT	Air Force Systems Command		PROGRAM	PROJECT	TASK	WORK UNIT			
11. SEE REVERSE WORD CHARGE REVERSE 65807F 12. PERSONAL AUTHOR(S) Byers, M. T., Marquart, E. J., Donaldson, J. C., and Stepanek, S. A., May 1983. 15. PAGE COUNT May 1983. 13a. TYPE OF REPORT Final 13b. TIME COVERED ROM TO 3/10/81 14. DATE OF REPORT (Yr., Mo., Day) May 1983. 15. PAGE COUNT May 1983. 14. OZE 10. DIMECOVERED ROM TO 3/10/81 14. DATE OF REPORT (Yr., Mo., Day) May 1983. 15. PAGE COUNT May 1983. 17. COSATI CODES 11. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 17. COSATI CODES 11. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 14. 02 14. DOTE docustic Dressure prediction 14. 02 16. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Pressure measurements were obtained on five miniature Mach/flow angularity probes which were developed at AEDC as part of an on-going probe development effort. These measurements will be correlated with Mach number and known flow angle in order to calibrate these probes. Secondary objectives were to test a hot-film anemometer and three pitot- acoustic probes for durability, and to examine the response of three ported dynamic pres- sure transducers located downstream of the tunnel test section. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED/UNLIMITED 22a. NAME OF RESPONSIBLE INDIVIDUAL M. O. Cole	Arnold Air Force Station, TN	37389-5000	ELEMENTINO.	NO.	NO.				
SEE REVERSE OF THIS PAGE 12. PERSONAL AUTHOR(S) Byers, M. T., Marquart, E. J., Donaldson, J. C., and Stepanek, S. A., 13a. TYPE OF REPORT 13b. TIME COVERED At a TYPE OF REPORT 13b. TIME COVERED 13b. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 17. COSATI CODES 14 02 04 02 04 02 04 02 04 02 04 02 04 02 04 02 05 by block number) Pressure measurements were obtained on five miniature Mach/flow angularity probes which were developed at AEDC as part of an on-going probe development effort. These measurements will be correlated with Mach number and known flow angle in order to calibrate these probes. Secondary objectives were to test a hot-film anemometer and three pitot-acoustic probes for durability, and to examine the response of three ported dynamic press	11 TITLE (Include Security Classification) -		65807F						
12. PERSONAL AUTHOR(S) Byers, M. T., Marquart, E. J., Donaldson, J. C., and Stepanek, S. A., 13a. TYPE OF REFORT 13b. TIME COVERED 200 FROM	SEE REVERSE OF THIS PAGE					·			
Bypers, M. I., Marquart, E. J., Donardson, J. C., and Stepanek, S. A., 13a. TYPE OF REPORT Final 13b. TIME COVERED 13b. TIME COVERED 14b. TYPE OF REPORT 13b. SUPPLEMENTARY NOTATION Available in Defense Technical Information Center (DTIC). 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP 14 O2 04 O2 15. ABSTRACT (Continue on reverse if necessary and identify by block number) Pressure measurements were obtained on five miniature Mach/flow angularity probes which were developed at AEDC as part of an on-going probe development effort. These measurements whill be correlated with Mach number and known flow angle in order to calibrate these probes. Secondary objectives were to test a hot-film anemometer and three pitot-acoustic probes for durability, and to examine the response of three ported dynamic pressure transducers located downstream of the tunnel test section. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED/UNLIMITED SAME AS RPT. [2] DTIC USERS 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED/UNLIMITED SAME AS RPT. [2] DTIC USERS 22. TELEPHONE NUMBER (Include Area Code) (615) 454-7813 22. OFFICE SYMBOL (615) 454-7813	12. PERSONAL AUTHOR(S)	Denaldson 1	C and Stop	anak s A	Anno 1997				
13a. TYPE OF HEPORT 13b. TIME COVENED 14: DATE OF HEPORT (Yr., Ma., Day) 15: PAGE DOUNT Final FROM	Byers, M. I., Marquart, E. J.	, Donaldson, J.	U., and Step	anek, J. A.	• 				
16. SUPPLEMENTARY NOTATION Available in Defense Technical Information Center (DTIC). 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 14 02 04 02 04 02 19. ABSTRACT (Continue on reverse if necessary and identify by block number) Pressure measurements were obtained on five miniature Mach/Flow angularity probes which were developed at AEDC as part of an on-going probe development effort. These measurements will be correlated with Mach number and known flow angle in order to calibrate these probes. Secondary objectives were to test a hot-film anemometer and three pitot-acoustic probes for durability, and to examine the response of three ported dynamic pressure sure transducers located downstream of the tunnel test section. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED/UNLIMITED SAME AS RPT. 20 DTIC USERS 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED/UNLIMITED SAME AS RPT. 20 DTIC USERS 22. OFFICE SYMBOL 22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER (Code) 22c. OFFICE SYMBOL (Code) 00S DOS DOS	Final EBOM	оvered 3/20/83	May 19	83 (<i>Yr., Mo., Day</i>)	3 15. PAGE C	1			
Available in Defense Technical Information Center (DTIC). 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 14 02 04 02 04 02 19. ABSTRACT (Continue on reverse if necessary and identify by block number) Pressure measurements were obtained on five miniature Mach/flow angularity probes which were developed at AEDC as part of an on-going probe development effort. These measurements will be correlated with Mach number and known flow angle in order to calibrate these probes. Secondary objectives were to test a hot-film anemometer and three pitot-acoustic probes for durability, and to examine the response of three ported dynamic pressure sure transducers located downstream of the tunnel test section. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED/UNCL	16. SUPPLEMENTARY NOTATION		L						
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUE.GR. Mach/Flow Angularity (MFA) Probe dynamic pressure trans- ducer 14 02 hot film pressure prediction 19. ABSTRACT (Continue on reverse if necessary and identify by block number) pressure measurements were obtained on five miniature Mach/flow angularity probes which were developed at AEDC as part of an on-going probe development effort. These measurements will be correlated with Mach number and known flow angle in order to calibrate these probes. Secondary objectives were to test a hot-film anemometer and three pitot-acoustic probes for durability, and to examine the response of three ported dynamic pressure transducers located downstream of the tunnel test section. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED/UNLIMITED SAME AS RPT. D DTIC USERS D 22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER (height Area Code) (he	Available in Defense Technica	1 Information C	enter (DTIC).	-					
11. COSATT CODES Initial State of the State of t		19 SUBJECT TERMS /C	antinus an anuma if a		for her black number				
14 02 pitot acoustic hot film ducer pressure prediction 19. ABSTRACT (Continue on reverse if necessary and identify by block number) Pressure measurements were obtained on five miniature Mach/flow angularity probes which were developed at AEDC as part of an on-going probe development effort. These measure- ments will be correlated with Mach number and known flow angle in order to calibrate these probes. Secondary objectives were to test a hot-film anemometer and three pitot- acoustic probes for durability, and to examine the response of three ported dynamic pres- sure transducers located downstream of the tunnel test section. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT unclassified/unlimited same as RPT. 20 DTIC USERS UNCLASSIFIED 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED/UNLIMITED SAME AS RPT. 20 DTIC USERS UNCLASSIFIED 22a. NAME OF RESPONSIBLE INDIVIDUAL W. 0. Cole 22b. TELEPHONE NUMBER (finding Arecoder) 005 22c. OFFICE SYMBOL DOS	FIELD GROUP SUB. GR.	Mach/Flow Ang	ularity (MFA)	Probe dy	namic press	ure trans-			
04 02 hot film pressure prediction 19. ABSTRACT (Continue on reverse if necessary and identify by block number) Pressure measurements were obtained on five miniature Mach/flow angularity probes which were developed at AEDC as part of an on-going probe development effort. These measurements will be correlated with Mach number and known flow angle in order to calibrate these probes. Secondary objectives were to test a hot-film anemometer and three pitot-acoustic probes for durability, and to examine the response of three ported dynamic pressure transducers located downstream of the tunnel test section. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION uncLassified/unlimited	14 02	pitot acousti	ic ducer						
19. ABSTRACT (Continue on reverse if necessary and identify by block number) Pressure measurements were obtained on five miniature Mach/flow angularity probes which were developed at AEDC as part of an on-going probe development effort. These measurements will be correlated with Mach number and known flow angle in order to calibrate these probes. Secondary objectives were to test a hot-film anemometer and three pitot-acoustic probes for durability, and to examine the response of three ported dynamic pressure transducers located downstream of the tunnel test section. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED/UNLIMITED SAME AS RPT. Diric USERS 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED/UNLIMITED SAME AS RPT. Diric USERS UNCLASSIFIED 22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER (Include Are Code) (DOS DOS W. O. Cole EDITION OF LIAN 70% SOFFOLETE UNCLASSIFIED	04 02	hot film	pressure prediction						
Pressure measurements were obtained on five miniature Mach/flow angularity probes which were developed at AEDC as part of an on-going probe development effort. These measurements will be correlated with Mach number and known flow angle in order to calibrate these probes. Secondary objectives were to test a hot-film anemometer and three pitot-acoustic probes for durability, and to examine the response of three ported dynamic pressure transducers located downstream of the tunnel test section. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED/UNLIMITED SAME AS RPT. Diric USERS 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED/UNLIMITED SAME AS RPT. Diric USERS UNCLASSIFIED 22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER (ficture Area Code) (615) 454-7813 22c. OFFICE SYMBOL DOS W. O. Cole EDITION OF LIAN 70 is OFFORETER UNCLASSIFIED	19. ABSTRACT (Continue on reverse if necessary and	l identify by block number	•)						
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED/UNLIMITED SAME AS RPT. I DITIC USERS UNCLASSIFIED 22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER (Include Area Code) (615) 454-7813 22c. OFFICE SYMBOL DD FORM 1473. 83 APR FDITION OF 1 (AN 73)'S OFFOL ETE UNCLASSIFICATION	Pressure measurements were obtained on five miniature Mach/flow angularity probes which were developed at AEDC as part of an on-going probe development effort. These measure- ments will be correlated with Mach number and known flow angle in order to calibrate these probes. Secondary objectives were to test a hot-film anemometer and three pitot- acoustic probes for durability, and to examine the response of three ported dynamic pres- sure transducers located downstream of the tunnel test section.								
W. O. Cole (615) 454-7813 DOS	20. DISTRIBUTION/AVAILABILITY OF ABSTRAC UNCLASSIFIED/UNLIMITED SAME AS RPT. 228. NAME OF RESPONSIBLE INDIVIDUAL	T Z otic users 🗆	21. ABSTRACT SECL UN 22b. TELEPHONE NI (Include Are Co	URITY CLASSIFIC ICLASSIFIED	CATION 22c. OFFICE SYM	вог			
	W. O. Cole		(615) 454-	7813	DOS				
	DD EORM 1472 92 ABD	SDITION OF 1 (AN 30)				ICD			

CONTENTS

		Page
	NOMENCLATURE	2
1,0	INTRODUCTION , , , , , , , , , , , , , , , , , , ,	4
2,0	APPARATUS	
	2.1 Test Facility	4
	2.2 Probe Rake	5
	2.3 Test Instrumentation	5
3,0	TEST DESCRIPTION	
	3.1 Test Conditions and Procedures	6
	3.2 Data Reduction , , , , , , , , , , , , , , , , , , ,	7
	3.3 Uncertainty of Measurements	8
4,0	DATA PACKAGE PRESENTATION , , , , , , , , , , , , , , , , , , ,	8
	REFERENCES,	9

APPENDIXES

I, ILLUSTRATIONS

Figure

1. 2. 3. 4. 5. 6. 7. 8.	Tunnel A	11 12 13 14 15 16 17 18
II,	TABLES	
Tabl	<u>e</u>	
1, 2, 3,	Data Transmittal Summary	20 21 24
III,	SAMPLE DATA	
SAMP	LE	
1. 2,	Tabulated Data	26 27

NOMENCLATURE

А	Slip	flow	coefficient	(psi)
---	------	------	-------------	-------

ALPI, ALPHI Indicated angle of attack (deg)

ALPHT Total angle of attack (deg)

DPSQP

Mach/Flow-Angularity probe nondimensional parameter,

 $[(DP13)^2 + (DP24)^2]^{0.5}/(2 \cdot P5)$

DP13 Differential pressure measurement of the probe in the pitch plane [P1-P3] (psid)

DP24 Differential pressure measurement in the yaw plane [P2-P4] (psid)

 $\frac{dP}{dt}$ Derivative of the instantaneous transducer pressure with respect to time (psi/sec)

KNOM Nominal stabilization coefficient, evaluated by an examination of the physical characteristics of the probes and pressure lines (1/psi)

KP(1-5) Coefficients obtained by the pressure stabilization routine for Mach/Flow-Angularity pressures 1-5. (1/psi-sec)

M, MACH Free-stream Mach number

MU Dynamic viscosity ($lbf-sec/ft^2$)

P Free-stream static pressure (psia)

PAVG Average pressure value of the Mach/Flow-Angularity probe "static orifices" [(Pl + P2 + P3 + P4)/4] (psia)

PAVGP5 Ratio, PAVG/P5

P(1-5) Pressure measurements for probe orifices 1-5 (psia)

P(1-5)F Final transducer pressure measurement for orifices 1-5 (psia)

Peq	Equilibrium transducer pressure as predicted by equilibrium pressure stabilization routine (psia)
P(1-5)I	First transducer pressure measurement for orifices 1-5 (psia)
P(t)	Instantaneous transducer pressure (psia)
PHII	Indicated roll angle (deg)
PHIT	Total roll angle (deg)
PT	Stilling chamber pressure measurement (psia)
PT2	Pitot pressure downstream of normal shock (psia)
Q	Free-stream dynamic pressure (psia)
RE	Free-stream unit Reynolds number (ft ⁻¹)
RHO	Free-stream density (lbm/ft ³)
RUN	Data set identification number
Т	Free-stream static temperature (^O R)
TDEL	Indication of delay time between data initiation and start of data recording (sec)
TDP	Free-stream flow frost point (^O F)
TNP(1-5)	Nominal time constant for the Mach/Flow- Angularity probe (sec)
TREC	Indication of elapsed time of data recording (sec)
TT	Tunnel stilling chamber temperature (°R or °F)
V	Free-stream velocity (ft/sec)

.

edularia Meteoretura martina

3

.

1.0 INTRODUCTION

The work reported herein was performed by the Arnold Engineering Development Center (AEDC), Air Force Systems Command (AFSC), under Program Element 65807F, Control Number 9R02, at the request of Director of Technology (DOT), AEDC. in support of technology project number DA12VW (Calspan project number V32B-AU). The AEDC/DOT project manager was Mr. M. K. Kingery. The results were obtained by Calspan Field Services, Inc./AEDC Division, operating contractor for the Aerospace Flight Dynamics testing effort at the AEDC, AFSC, Arnold Air Force Station, Tennessee. The test was performed in the von Karman Gas Dynamics Facility (VKF), in the Supersonic Wind Tunnel (A) on March 29, 1983 under the AEDC project number C960VA (Calspan Project Number V--A-2R).

The primary objective of the test was to obtain pressure measurements on five (5) Mach/Flow Angularity (MFA) probes so that these measurements can be correlated with Mach number and known flow angles to "calibrate" these probes for future flow-field probing techniques. Secondary objectives were to test three (3) pitot acoustic probes and one hot-film anemometer for durability and to investigate the response of three (3) ported dynamic pressure transducers mounted downstream of the tunnel test section.

The test was performed at Mach numbers 1.76, 2.0, 3.0, and 5.0 at unit Reynolds numbers of 0.92 x 10^6 to 4.2 x 10^6 per foot. The probes were tested over an angle-of-attack range of -4 to 11.6 deg and roll angles of -90 deg to 180 deg.

A summary of the test data transmitted to AEDC/DOT is presented in Table 1.

Inquiries to obtain copies of the test data should be directed to AEDC/DOT, Arnold Air Force Station, TN 37389. A microfilm copy has been retained at AEDC.

2.0 APPARATUS

2.1 TEST FACILITY

Tunnel A (Fig. 1) is a continuous, closed-circuit, variable density wind tunnel with an automatically driven flexible-plate-type nozzle and a 40- by 40-in. test section. The tunnel can be operated at Mach numbers from 1.5 to 6 at maximum stagnation pressures from 29 to 200 psia, respectively, and stagnation temperatures up to 750°R at Mach number 6. Minimum operating pressures range from about one-tenth to one-twentieth of the maximum at each Mach number. The tunnel is equipped with a model injection system which allows removal of the model from the test section while the tunnel remains in operation. A description of the tunnel and airflow calibration information may be found in the Test Facilities Handbook (Ref. 1).

2.2 PROBE RAKE

The Mach/Flow angularity probes, the pitot acoustic probes, and the hot film anemometer were supported in the test section by a probe rake which was designed and fabricated at AEDC. This rake was pitched or rolled to achieve the desired probe attitudes. The probe rake is shown in Fig. 2, with details presented in Fig. 3. Figure 4 shows the rake installed in the tunnel test section.

2.3 TEST INSTRUMENTATION

The measuring devices, recording devices, and calibration methods used for all measured parameters are listed in Table 2 along with the estimated measurement uncertainties.

Generally, Mach/Flow angularity probes are used to measure the local stream total pressure, local Mach number, and local flow angle. A typical Mach/flow angularity probe is shown in Fig. 5. The probes are nominally 0.040 inches in diameter, made up of 5 individual pressure orifices of 0.006 inches ID. Probes this small minimize probe interference and improve the resolution of the measurement location while mapping complex flow fields. Mach/Flow angularity probes are calibrated to measure the two flow directional angles (ALPHT and PHIT) of the airstream with respect to the probe. Typically, pressure measurements in orifices 1 and 3 are in the vertical or pitch plane, and, orifices 2 and 4 are in the horizontal or yaw plane of the flow field.

These Mach/Flow angularity probes are the result of an on-going probe development effort. The goal of this effort is to develop a smaller, less intrusive MFA probe with extended structural life. The design approach was to fabricate the probes from single pieces of prestretched rods with 5 small holes drilled lengthwise through the rods in a cruciform pattern. Tensile stretching of the rods was performed after drilling to reduce further the diameter of the rods at a prescribed, controlled rate. Stretching was continued until the specimen fractured, whereupon the fractured tips were cut to orient the outer holes on 15degree planes (see Fig. 5). Pressure tubes were then attached on the base to the orifices, and the probes were fit to probe bodies suitable for tunnel installation. Generally, the probes were stretched to the 0.040 in. diam from rods initially 0.2 in. in diameter. The holes were drilled 0.040 in, diam.

Three (3) pitot-acoustic probes, designed and fabricated at AEDC, were tested in order to investigate a new probe design. The pitotacoustic probe, shown in Fig. 6, consists of a stainless steel cylindrical shell with a conical frustum tip (20 degree half angle) which houses a dynamic pressure sensor. As shown, the transducer was threaded into the stainless steel frustum probe tip and then a 0.015 inch thick RTV cap was placed over the 0.099 inch diameter sensor tip to protect it from the tunnel environment.

A hot-film anemometer probe (Fig. 7), designed and fabricated at AEDC, was mounted on the probe rake in order to determine its durability in supersonic flow. This probe consists of a 0.020-inch diameter glass rod ground to a slender double wedge at the leading edge. A thin

platinum film was then deposited (painted) along the leading edge. Two strips of gold painted along the rod served to connect the film to wire leads from the anemometer instrumentation.

Four dynamic pressure transducers were located downstream of the tunnel test section and arranged as shown in Fig. 8. One transducer was flush mounted with the tunnel wall and the other three were located at distances of four, eight and sixteen inches from the orifice along a port. Dynamic signals from the transducers were recorded on analog tape. These recordings will be used to determine the effect of this porting concept on signal response. Such porting, if properly understood, may be used to isolate fragile transducers from harsh tunnel environments.

3.0 TEST DESCRIPTION

3.1 TEST CONDITIONS AND PROCEDURES

A summary of the nominal test conditions at each Mach number is given below.

MACH	PT, psia	TT, °R	<u>Q, psia</u>	P, psia	<u>RE x 10⁻⁶/ft</u>
1,76	14,76	546	5,92	2,73	4,11
2,00	16,66	546	5,96	2,13	4,21
3,01	26,90	541	4,57	0,72	4,16
5,04	86,99	621	2,79	0,16	3,92
5,04	68,20	620	2,19	0,12	3,05
5,04	60,51	620	1,94	0,11	2,74
5,04	50,71	620	1,63	0,09	2,30
5,04	30,92	613	1,00	0,06	1,42
5,04	20,17	613	0.65	0.04	0,92
5,04	20,17	613	0.65	0,04	0,92

The Tunnel A sidewall Mach number probe was used at each test condition to monitor deviations from the standard calibrated Mach numbers. When a deviation was measured, the free-stream conditions were corrected and the actual Mach number was printed on the data tabulations.

A test summary showing all configurations tested and variables for each is presented in Table 3.

In the VKF continuous flow wind tunnels (A, B, C), the model(in this case, the probe rake) is mounted on a sting support mechanism in an installation tank directly underneath the tunnel test section. The tank is separated from the tunnel by a pair of fairing doors and a safety door. When closed, the fairing doors, except for a slot for the pitch sector, cover the opening to the tank and the safety door seals the tunnel from the tank area. After the model is prepared for a data run, the personnel access door to the installation tank is closed, the tank is vented to the tunnel flow, the safety and fairing doors are opened,

the model is injected into the airstream, and the fairing doors are closed. After the data are obtained, the model is retracted into the tank and the sequence is reversed, with the tank being vented to atmosphere to allow access to the model in preparation for the next run.

Rake attitude positioning and data recording were accomplished with the point-pause mode of operation, using the Model Attitude Control System (MACS). Rake pitch and roll requirements were entered into the controlling computer prior to the test. Rake positioning and data recording operations were performed automatically during the test by selecting the list of desired model attitudes and initiating the system.

Pressure data on the MFA probes were acquired by the Random Access Data System (RADS) from the Tunnel A Standard Pressure System. The data acquisition sequence was:

- 1. Inject the rake into the test section.
- 2. Pitch to desired rake attitude.
- 3. Delay a specified time to allow pressure to stabilize.
- 4. Acquire 20 to 40 data points (depending on pressure level) in order to establish a time history of the pressure readings.
- 5. Pitch to next probe attitude.

The data from the pitot acoustic probes, the hot film anemometer probe, and the dynamic pressure transducers were not acquired by the RADS but were recorded on FM tape.

3.2 DATA REDUCTION

Prior to each operating shift, and as required, the pressure transducers are all calibrated with a known pressure differential and their readings are recorded. A zero pressure differential is applied across each transducer and the zero readings are recorded. From these data, linear scale factors are calculated for each transducer for each range. MFA probe pressures are calculated from differential pressure readings using the calibrated scale factors, plus a reference pressure (near vacuum, \sim 50 µHg) which is measured with an absolute pressure transducer.

In order to optimize data acquisition time and improve the reliability of pressure readings, an equilibrium pressure stabilization routine was used. The routine requires as an input the time history of the pressure readings from a transducer. This routine then fits the time history as an exponential decay with a step input by adjusting the value of KP in the equation below and evaluates the final equilibrium value.

 $\frac{dP(t)}{dt} = KP \{P_{eq}^2 - P_{(t)}^2 + A (P_{eq} - P_{(t)})\}, psi/sec$

References 2 and 3 give a further description of the equilibrium pressure stabilization routine.

In some cases the pressures are at equilibrium throughout the data record (essentially constant pressure, indicated by a value of KP less than 0.01 or greater than 3) and the pressures are simply defined as the average value of the recorded pressures.

Reduction of pitot acoustic probe, hot film anemometer probe, and dynamic pressure transducer data will consist of spectral analysis of their recorded signals. This effort will be performed and documented under technology project DA12VW, Aerodynamic Measurement Improvements.

3.3 UNCERTAINTY OF MEASUREMENTS

In general, instrumentation calibration and data uncertainty estimates were made using methods recognized by the National Bureau of Standards (NBS) (Ref. 4). Measurement uncertainty is a combination of bias and precision errors defined as:

$$U = \pm (B + t_{05}S)$$

where B is the bias limit, S is the sample standard deviation, and t_{95} is the 95th percentile point for the two-tailed Student's "t" distribution (95-percent confidence interval), which for sample sizes greater than 30 is equal to 2.

Estimates of the measured data maximum uncertainties for this test are given in Table 2. Propagation of the bias and precision errors of measured data through the calculated data was made in accordance with Ref. 4 and the results are given in Table 2b.

4.0 DATA PACKAGE PRESENTATION

The data package consists of one volume containing tabulated and plotted pressure data, as well as a nomenclature list, and a detailed run schedule. Appendix III contains examples of the data presented in the data package. Sample 1 shows typical tabulated data and Sample 2 shows typical plotted data.

REFERENCES

- 1. Test Facilities Handbook (Eleventh Edition) "von Karman Gas Dynamics Facility, Vol. 3," Arnold Engineering Development Center, Revised, April 1981.
- 2. Carver, D. B. "Heat-Transfer, Surface-Pressure, and Flow-Field Survey Tests on a Blunt Biconic Model at Mach Number 10 - Phase V," AEDC-TSR-79-V36, June 1979.
- 3. Brown, David L. "Predicting Equilibrium Pressures from Transient Pressure Data," Aerospace Research Laboratories, ARL 65-7, January 1965.
- 4. Abernethy, R. B. et. al. and Thompson, J. W. "Handbook Uncertainty in Gas Turbine Measurements," AEDC-TR-73-5 (AD755356), February 1973.

APPENDIX I

ILLUSTRATIONS

a. Tunnel assembly

b. Tunnel test section Fig. 1 Tunnel A

All dimensions in inches unless otherwise specified.

Figure 3. Probe Rake Details

Figure 4. Installation Photograph

Figure 5. Mach/Flow Angularity Probe

All Dimensions in Inches

Figure 6. Pitot Acoustic Probe

NOTE: Transducers were installed ≈ 108 inches aft of STA 0.00 (Roll Hub)

A Constraint of the second sec

TABLES

.

TABLE 1. Data Transmittal Summary

The following items were transmitted to the Sponsor:

Sponsor AEDC/DOT Attn: Mr. M. K. Kingery Arnold AFS, TN 37389

Item	No. of Copies
Test Summary Report	. 1
Final Tabulated and Plotted Data, 1 volume	1

PROJECT NUMBER TESTING COMPLETED TABLE COMPLETED	<u> </u>	TABLE	: 2. Bas	MEASUREMENT UNCERTAINTY Estimated Uncertainties ic Measurements SHEET NO. 1 OF 3						DATA QUALITY CERTIFIED: ORIGINATOR M. T. Byers DATE 5/5/83 Checked by T. Buchanan Date 5.183		
	Precisi	STRAI on Index 9)	<u>ат-ат</u>	TE ESTINA Bi	TED MEASU	Uncer t (B	rtainty + tos8)				Hatbod of	
Parameter Designation	Percent of Reading	Unit of Mensure-	Degree of Freedom	Percent of Reading	Unit of Mensure-	Percent of Reading		Hango	Type of Monsuring Device	Type of Recording Device	System Calibration	
PT,psia		0.002 0.007 0.017	>30 >30 >30	0.2 0.2 0.3		±(0.2% + ±(0.2% + ±(0.2% +	0.004) 0.014) 0.034)	5,5 to 15 15 to 60 60 to 150	Bell & Howell Vari- ablo Capacitance Pressure Transducer	Digital Data Acqui- sition System (RADS) and Analog to Digital Converter	End to End Calibra- tion Using Multiple Pressure Levels Measured with a Secondary Standard Traceable to N.B.S.	
TT,deg ¥		1	>30		2		14	70 to 300	Chromel [®] -Alumel [®] Thermocouple	Doric Digital Thermo- meter and RADS	Thermocouple Verifi- cation of NBS Con- formity and Voltage Substitution Cali- bration	
P1P5, psia	Note 1	0.002	>30	0.15		±(0.15% +	0.004)	0 to 15	Bell & Howell Variable Capaci- tance Pressure Transducer	Digital Data Acqui- sition System and Analog to Digital Converter	End to End Calibra- tion Using Multiple Pressure Levels Measured with a Secondary Standard Traceable to NBS	
ALP[,deg		0.025	>30		0		±0.05	-12 to 20	Potentiometer		Neidenhain Rotary Encoder RD 700 Resolution - 0.0006 deg, Overall Accu- racy - 0.001 deg	
Pli II, deg		0.15	>30	-	0		±0.30	-180 to +180				
		-										

ŝ

Thompson, J. W. and Mernethy, R. B. et al. "Handbook Uncertainty in Gas Turbine Measurements." AEDC-TR-73-5 (AD 755356), February 1973. NOTE: 1. Precision index includes considerations for equilibrium pressure stabilization technique (see Section 3.2.); Precision index of transducer is 0.0015 psi. _____

21

		STEAL	DY-ST	ATE ESTIM	ATED MEASU	REMENT*			
	Precis	sion Index (S)		В	ias (B)	Unce: ±(B	rtainty + t ₉₅ S)		
Parameter Designation	Percent of Reading	Unit of Measure- ment	Degree of Freedom	Percent of Reading	Unit of Measure- ment	Percent of Reading	Unit of Measure- ment	Test Conditions Mach	Range
MACH		0.01 0.01 0.01 0.01 0.01			0.00 0.00 0.00 0.00		0.02 0.02 0.02 0.03	1.76 2.00 3.01 5.04	1.76-5.04
P		0.033 0.027 0.039 0.002			0.005 0.002 0.003 0.000		0.071 0.058 0.019 0.004	1.76 2.00 3.01 5.04	0.04-2.73
Т	4.09 3.69 2.46 0.77				7.84 7.05 4.75 1.27		16.02 14.43 9.67 2.81	1.76 2.00 3.01 5.04	101-337
RE,ft ⁻¹ x10 ⁻⁶	0.07 0.07 0.08 0.04				0.13 0.14 0.15 0.07		0.27 0.28 0.31 0.16	1.76 2.00 3.01 5.04	0.9-4.2
Q	0.02 0.03 0.03 0.03 0.03				0.01 0.01 0.01 0.01 0.01		0.05 0.07 0.07 0.06	1.76 2.00 3.01 5.04	0.6-5.9
v	10.20 10.60 12.80 7.80				18.40 19.80 25.30 15.50		38.80 41.00 50.90 31.10	1.76 2.00 3.01 5.04	1580-2500
PT2	0.05 0.06 0.06 0.05		0.05 0.06 0.06 0.02 0.05 0.01		0.13 0.15 0.14 0.11		1.76 2.00 3.01 5.04	1.2-12.2	
RHOx10 ³		0.32 0.29 0.15 0.05			0.51 0.44 0.25 0.05		1.15 1.02 0.56 0.16	1.76 2.00 3.01 5.04	0.9-21.8
MUx10 ⁸		0.55 0.52 0.20 0.06			1.07 1.00 0.38 0.10		2.18 2.05 0.78 0.23	1.76 2.00 3.01 5.04	0.1-26.2
3	1		1	•		1		4	1

TABLE 2. Continued b. Calculated Parameters

Abernethy, R. B. et al. and Thompson, J. W. "Handbook Uncertainty in Gas Turbine Measurements." AEDC-TR-73-5 (AD 755356), February 1973.

22

.

AFSC Amaid AFS Team

TABLE	2.	Concluded
ь.	Cond	luded

	STEADY-STATE ESTIMATED MEASUREMENT*								
	Precis	sion Index (S)		Bi	ias (B)	Unce: ±(B			
Parameter Designation	Percent of Reading	Unit of Measure- ment	Degree of Freedom	Percent of Reading	Unit of Measure- ment	Percent of Reading	Unit of Measure- ment	Range	
$\frac{P(1-5)}{P_5}$		0.0008	>30		0.0018		0.0034	0.1 to 0.5	
$\frac{DP13}{P5}$, $\frac{DP24}{P5}$		0.0011	>30		0.0025		0.0047	-0.3 to 0.3	
DPSQP		0.0006	>30		0.0013		0,0025	0.0 to 0.2	
PAVGP5		0.0004	>30		0.0009		0.0017	0.1 to 0.4	
ALPHT									
Probe 1 Probe 2 Probe 3 Probe 4 Probe 5		1.2 1.2 1.2 1.3 1.3	→30 >30 >30 >30 >30 >30		0.0 0.0 0.0 0.0 0.0		2.4 2.4 2.6 2.6	0.0 to 14.0 0.0 to 14.0 0.0 to 14.0 0.0 to 14.0 0.0 to 14.0	
PHIT									
Probe 1 Probe 2 Probe 3 Probe 4 Probe 5		5.0 6.0 8.0 7.0 6.0	>30 >30 >30 >30 >30		0.0 0.0 0.0 0.0		10.0 12.0 16.0 14.0 12.0	-90 to 180.0 -90 to 180.0 -90 to 180.0 -90 to 180.0 -90 to 180.0	
l t								ementa "	

Abernethy, R. B. et al. and Thompson, J. W. "Handbook Uncertainty in Gas Turbine Measurements. AEDC-TR-73-5 (AD 755356), February 1973.

23

.

AFSC Amold A78 Team

RUN	МАСН	REx10 ⁻⁶ /ft	ALPHI(deg)	PHII(deg)
6-16	3.0	4.2	-4 to 11.6	0
26-36	1.75	4.1	-4 to 11.6	0
37-55	1.75	4.1	4	-90 to 180
56,57,58	1.75	4.1	-4 to +4	90
60-78	2.0	4.2	10	-90 to 180
79-87	2.0	4.2	-4 to 11.6	90
88-98	2.0	4.2	-4 to 11.6	0
99-117	2.0	4.2	10	-90 to 180
118-129	5.0	3.9	-4 to 11.6	0
130-148	5.0	39	10	-90 to 180
149-151	5.0	3.9	-1 to 1	0
152	5.0	3.1	0	0
153	5.0	2.7	0	0
154	5.0	2.3	0	0
155	5.0	1.4	0	0
156	5.0	0.9	0	0 ·

TABLE 3. Run Summary

APPENDIX III

SAMPLE DATA

•

ARVIN/CALSPAN FIELD SERVICES,INC. AEDC DIVISION VON KARMAN GAS DYNAMICS FACILITY ARNOLD AIR FORCE STATION, TENN MEASUREMENTS IMPROVEMENTS TEST

DATE	COMPUTED	20-APR-83
DATE	RECORDED	29-MAR-83
TIME	RECORDED	12:26:23
TIME	COMPUTED	10:47
PROJE	CT NO V	A=2R

RUN 60 PAGE 1

(

1. A.C.

ALPI 10.02 KNOM 0.03 PHII-90,01 Α 0.160

м	2.000	тт	545.	67	Q 0.5	96E+01	RHO	0.189E	-01	TREC	27.50				
RE	0.421E+07	Т	0.303E+	03	V 0,17	07E+04	MU	0.239E	-06	TDEL	10.00				
PT	16.643	P	0.213E+	01	PT2 0.1	20E+02	TDP	-	26.						
PROAF	P1	P2	P3	P4	P5	TNP1	TNP2	TNP3	TAP4	TaP5	KP1	KP2	KP3	KP4	KP5
1	3.963	2.617	3.754	5.859	11.994	4.125	6.186	4.348	2.805	1.380	0.016	0.016	0.004	0.002	0.002
2	4.265	2.892	4.218	5.247	11,994	3.832	5.603	3 878	3.129	1.381	0.008	-0.000	-0.000	0.007	0.002
จั	3.861	2.655	4.053	4.955	12.010	4.234	6.092	4.032	3.310	1.378	0.012	0.007	0.018	0.006	0.002
4	3 766	2.528	1 951	5 040	11.915	4.336	6.394	4 238	3.255	1 390	0.014	0 021	0.025	0.005	0.002
26	3,906	2.666	4.609	5,517	12.012	4.184	6.062	3,553	2,977	1.379	0.016	0.017	0.015	0.009	0.003
PROBE	ALPHT	PHIT	P1I	P21	P3I	P41	P5I	PIF	P2F	P3F	P4F	P5F			
			/P1F	/P2F	/P3F	/P4F	/P5F	/P1	182	/P3	/P4	/P5			
1	9.74	85.91	0.997	0.997	1.001	0,999	0.999	0.999	0.999	1.000	1.000	1.000			
2	10.55	94.29	0.997	0,998	1,000	0.998	0.999	1.001	1.001	1.000	1.000	1.000			
3	12.04	86.68	0.991	0.999	1.009	0.999	0.999	0.999	1.000	1,000	1.000	1.000			
4	11.02	89.99	0.995	1.004	1.003	0.999	0.999	0,999	1.000	1.000	1.000	1.000			
5	11.82	91.43	0,996	1.019	1.019	0.997	0,999	0.999	1.001	1,000	1.000	1.000			
PROBE		P1/P5	P2/P5	P3/P	5 P4/P5	DP13 /P5	DP24 /P5	PAVGP	5 DPSQP	1					
1		0.330	0.218	0.31	3 0.488	0.017	-0.270	0.338	0.135						
ž		0.356	0.241	0.35	2 0.437	0.004	-0.196	0.346	0.098						
3		0.322	0.221	0.33	7 0.413	-0.016	-0.191	0.323	0.096						
4		0.316	0.212	0.32	3 0.423	-0.007	-0.211	0.319	0.105						
5		0,325	0 222	0.38	4 0.459	-0.058	-0.237	U.348	0.122						

Sample 1. Tabulated Data

27

••