AD-A162 016

Statistical Improvements in the Unmanned Spacecraft Cost Model - Monograph #1

by

Brian Flynn

Cost Analysis Division NCD-5

Presented at the 19th Annual Department of Defense Cost Analysis Symposium Xerox Training Center Leesburg, Virginia September 17 - 20 1985

11 21-85

047

JTIC FILE COPY

The Cost Analysis Symposium was sponsored by: CSD (PA&E) Resource Analysis, Cost Analysis Division, Pentagon, Washington, DC 20301

STATISTICAL IMPROVEMENTS IN THE UNMANNED SPACECRAFT

COST MODEL - MONOGRAPH #1

COST ANALYSIS DIVISION

NCD-5

JUNE 1985

BRIAN FLYNN

Table of Contents

1.	Int	rodu	ctio	n	•••	••	• •	• • •	•••	••	•	• •	• •	••	• •	•	••	•	••	٠	••	•	••	•	• •	• •	•	1
	A. B. C.	Purj Bacl Scoj	pose (gro pe	und	•••	•••	••	•••	• • •	• • •	•	••	•••	•••	•••	•	••	•	•••	•	•••	•	•••	•	• •	• • • •	•	1 1 2
II.	Tes	ts fo	or H	ete	ros	ske	da	sti	ci	.ty		• •	••	••	• •	•	••	•	••	•	••	•	••	•	•		• 4	4
	А. В.	Exp: Tes	lana ts	tio 	n	• • •	••	•••	•••	•••	•	••	••	••	•••	••	••	•	••	•	••	•	•••	•••	•	••	•	4 7
111.	The	GLS	Rem	edy	•••	•••	••		• • •		• •	• •	• •	••	• •	• •	••	•	••	•	••	•	• •	••	•		1	3
	A. B. C.	Gen GLS Cos	eral Est t Co	ima mpa	tes ris	 50 n	••	•••	• • •	• • •	•	•••	••	• • • •	• •	•••	•••	•	•••	•	•••	•	•••	••	•	•••	1	3 3 6
IV.	Con	clus	ion.			• • •	••	•••		• • •	• •	• •	••	• •	• •	• •	• •	•	••	•	••	•	• •	••	•	••	1	8
	А. В.	Sum Reco	naıy omme	 nda	 tic	 ons	••	•••	•••	•••	•	••	••	••	•	••	•••	•	•••	•	••	•	• •	••	•	••	1	8 8
Append	lix	1: 1	Park	's	Tes	st	fo	r ł	let	tei	0	sk	ed	as	t:	ic	it	-y	• •		••	•	•	••	•	• •	2	0
Append	lix	2: (Gene	ral	iz€	ed	Le	ast	E 8	δqι	a	re	s.	••	•	• •	• •	•	• •	•	••	•	• •	•••	•	• •	2	2

Accession For NTIS OPERI DIIC TAS ר) כ Unanneutroch II Justi, and Liter FER FORM 50 By Distribution Avoilebility Colos pavail and/or Special Dist INSFECTED

I. INTRODUCTION

A. Purpose

The purpose of this monograph is to test some of the CER's in the Unmanned Spacecraft Cost Model for non-constant error variances, or heteroskedasticity, and to take corrective statistical action if and where the problem is found.

B. Background

The Unmanned Spacecraft Cost Model is a set of regression equations or Cost Estimating Relationships (CER's) designed to explain the costs of spacecraft subsystems, such as electrical power supplies, apogee kick motors, and communication electronics. Technical and performance characteristics are used to explain costs, with the model based on 35 military, communications, weather, experimental, and lunar-probe spacecraft.

The model presents equations for explaining both first-unit recurring costs and total nonrecurring costs, using "normalized" and "unnormalized" data. Normalized data are costs adjusted for "technology carryover" and "complexity of design," with these terms accounting for the impact on cost of technological change and hardware sophistication. Unnormalized data, on the other hand, are costs in deflated but otherwise raw form.

L

Equations of the model, both normalized and unnormalized, are presently estimated independently of one another, using ordinary least squares (OLS) or nonlinear regression. Based on theoretical grounds, however, several improvements to the model may result from:

- Testing equations for heteroskedasticity, and taking corrective action, if necessary
- Estimating power-function regression equations using Goldberger's unbiased estimator [1] rather than OLS
- Investigating alternative specifications of single equations
- Determining the proper form of the random error term in each equation, e.g., additive or multiplicative, and then using this specification to drive the estimation technique
- Estimating total spacecraft unit cost as a system of simultaneous equations

C. Scope

here in the in the work of the

This paper, the first of five statistical monographs on the spacecraft model, is limited to the first area of research, i.e.,

testing equations for heteroskedasticity. And while no effort is made to gather cost, technical and performance data on recently built satellites, the points illuminated here should be applicable to future model-building efforts.

Ì

Land and a second second and a second second second and a second with a second second second second second second

II. TESTS FOR HETEROSKEDASTICITY

A. Explanation

A crucial assumption in regression analysis is that the spread of observations on a dependent variable around a population regression line is invariant with respect to changes in the value of an explanatory variable. Put another way, the variance of an equation's error term should be constant from one observation to another. When it isn't, the errors are called heteroskedastic, and OLS standard errors are biased. Figure 1 illustrates the problem.

Heteroskedasticity in the spacecraft model, if present, could take either of two forms, at least in theory. First, the variance of unit costs might <u>increase</u> in proportion to the value of an explanatory variable such as subsystem weight. If the mean cost of a heavy system is a lot higher than the mean cost of a light one, for example, then the magnitude of the delta between the two costs may imply different variances.¹

On the other hand, however, the opposite case may hold. Namely, the unit costs of lightweight systems might be more volatile than those of heavyweight systems due to:

 Rapid technological change in the aerospace industry in the early and mid 1960's when many of the lightweight

4

in sin we not the the second and a station of the second descent and a state of the second descent and the second second and the second s

systems were built, thus inducing a large variance in costs.

 Efforts in some cases to pack a lot of technical performance into a lightweight package, thus driving costs above the norm.

¹ Let the mean cost of a lightweight Apogee Kick Motor (AKM) equal \$100, and let the mean cost of a heavy one equal \$1000. Next, assume that three values are observed, with identical spreads of ±10% about the mean in each case:

> 110,100,90 for the light AKM 1100,1000,900 for the heavy AKM

The sample variance is 100 in the first case but 10,000 in the second.

1. 1. 1. 1.

EXAMPLES OF HETEROSKEDASTICITY

In each of these graphs the dots represent ordered pairs of observations on Y and X, the dependent and explanatory variables in a simple linear relation. The lines represent population regression equations, which are almost always unknown. The vertical distance between a dot and a line is an observation on the error term.

Heteroskedasticity occurs when the variance of the regression equation's error term is not constant. In graph (a) the variance increases as values of X increase. In graph (b), on the other hand, an inverse relationship holds.

FIGURE 1

B. Tests

5.6

「日本のためのない」「日本のためのない」「「「

Park's test is used to determine which form of heteroskedasticity, if either, is present in the spacecraft model. The test, detailed in Appendix 1, is performed on all first-unit recurring cost CER's which are based on unnormalized data and for which a reasonable number of degrees of freedom is available.² The null hypothesis in all cases is that an equation's error term is homoskedastic. The alternative hypothesis is that the error variance is related, either directly or inversely, to the magnitude of the explanatory variable.

² To limit the scope of this study to manageable size, two classes of CER's were not tested for heteroskedasticity

- Equations for estimating non-recurring costs
- Equations based on normalized data.

Further, the test was not performed on subsystems with a paucity of observations

- Apogee Kick Motor for 1-Axis Satellites (sample size of 5)
- Apogee Kick Motor for 3-Axis Satellites (sample size of 6)
- Dispenser (sample size of 4).

Finally, inherently nonlinear equations of the model were estimated in power-function form, i.e.,

 $Y = \alpha + X^{\beta} + \varepsilon$ as $Y = \alpha X^{\beta} e^{\varepsilon}$.

And linear equations with Y-intercepts restricted to zero were estimated in unrestricted form, i.e.,

 $Y = \beta X + \epsilon$ as $Y = \alpha + \beta X + \epsilon$.

As Table 1 shows, the null hypothesis of homoskedasticity is rejected for three of the sixteen equations examined

- (1) Attitude Control
- (2) Attitude and Reaction Control
- (3) Program Level

シンシン

.

And as Figures 2 through 4 illustrate, the spread of regression residuals is inversely related to the magnitude of X in the first two CER's, and directly related in the last.

TABLE 1

ومناجع فسيعجم فسيقحم أوسيه فسيقص فالمقار والمقاصف فالمحار الماسي فالمالي الأرا

RESULTS OF THE PARK TEST FOR HETEROGKEDASTICITY (Unit-Cost Equations Based on Unnormalized Data)

	Banpla	Ľ-
Fquation	<u>Size</u>	Statisth:
Structure Thermal Control, and Interstage	31	0.807
Telemetry, Tracking, and Command (TT&C)	29	-1.557
Communications	15	-0.197
Communications Antennas	12	-2.199
Communications Electronics	3.2	3.016
Combined Communications and TT&C	15	-0.405
Attitude Control	30	-2.373
Attitude Determination	16	-0.398
Attitude and Reaction Control	16	-3,158
Power Supply (subsynchronous altitude)	11	-0.660
Power Supply (synchronous altitude)	19	-0.185
Platform (without mission equipment)	31	-1.156
Program Level (as a function of platform)	30	2.521
Program Level (communications satellites)	15	1.839
LOOS (for satellites with an AKM)	12	1.804
LOOS (for satellites without an AKM)	10	-0.351

NOTE: Figures underlined represent cases where the null hypothesis of homoskedasticity is rejected at the 5% level of significance using the two-tailed t-test.

. . .

. 1

: ر د

FIGURE 2

FIGURE 3

III. THE GLS REMEDY

A. General

The brute and blind mechanical nature of Ordinary Least-Squares (OLS) gives excessive weight to observations on Y that are associated with large error variances. In the Attitude and Reaction Control CER (Figure 3), for example, the position of the least-squares line is governed inordinately by those data points that are most spread out, i.e., by those associated with relatively lightweight systems. OLS estimates of regression parameters are consequently no longer of minimum variance, although they do remain unbiased.³

Generalized Least Squares (GLS) is a statistical technique which alleviates the problem of heteroskedasticity in a regression equation. It adjusts observations on Y and X so that the variance of the equation's error term is once again constant, as Appendix 2 details.

B. GLS Estimates

GLS estimates of the parameters in the three CER's are compared to their OLS counterparts in Table 2. Differences are small for the first CER but substantial for the remaining two.

In the Attitude and Reaction Control equation, as Figure 3 shows, the OLS regression line seems a little too steep, with its position inordinately influenced by the outlier in the southwest quadrant of the chart. And in the Program-Level Cost CER, as Figure 4 shows, the ordinary least-squares line again seems too steep, with the northeastern outlier appearing particularly

and a start of the start of the

³ See Kmenta [2] for a detailed explanation.

pernicious.⁴

⁴ Excluding these recalcitrant data points from their respective samples and then re-estimating using OLS gives values close to those obtained by GLS in the case of the second CER, but not the first. In the Attitude and Reaction Control equation, the revised OLS line is flatter than the GLS line by a fair margin.

In either event, however, GLS is preferred. It uses all sample data, and has optimal statistical properties. The outliers, in other words, are partly but not fully to blame for the bugaboo of heteroskedastic disturbances. Indeed, they're symptomatic of the problem.

and an an an an an an an

TABLE 2

COMPARISON OF OLS AND GLS ESTIMATES (t-statistics in parentheses)

	OLS Es	timates	GLS Estimates					
CER/Summary Statistics	lŋa	ß	lŋa	ß				
ATTITUDE CONTROL	3.370	0.945	3.265	0.967				
	(9.055)	(11.090)	(6.073)	(8.633)				
R-Squared	0	.814	0	.997				
F-Statistic	122	.882	4847	.543				
DW Statistic	2	.711	2.390					
ATTITUDE & REACTION CONTROL	1.559	1.172	2.630	0.940				
	(1.308)	(4.261)	(3.097)	(5.528)				
R-Squared	0	.565	0	.996				
R-Statistic	18	.159	1873	.922				
DW Statistic	1	.761	2	.584				
DROCDAM-I FUEL COOM	- 220 015*	0 490	194 610*	0 414				
PROGRAM-DEVEL COST	-330.013	0.400	104.019					
	(-0.493)	(0.081)	(0.511)	(0.55/)				
R-Squared	0	.615	0	.792				
F-Statistic	44	.63 5	53	.449				
DW Statistic	1	.242	1	.208				

These are estimates of α rather than $l\eta\alpha$

- NOTES: 1. Summary statistics and t-values for GLS estimation are from the transformed GLS equation, i.e., the equation with values of Y and X adjusted to yield an error term with constant variance (see Appendix 2).
 - Further, the mechanics of GLS require that the Y-intercept of the transformed equation be restricted to zero. Hence, each R-Squared statistic shown above is computed about a mean of zero.
 - Comparison of OLS and GLS R-Squared's or F's is invalid since they are based on regressions using two different dependent variables.

C. Cost Comparison

E

Cost estimates based on GLS are compared to their OLS counterparts in Table 3 for a quartet of sample obervations on each explanatory variable, i.e., for the mean of X, for ±50% of the mean, and for 300% above the mean. This latter percentage is included to capture the frequent case where a cost estimate is needed for a proposed piece of hardware whose weight lies outside the range of the weights of those spacecraft subsystems used to estimate the CER.

GLS and OLS predictions differ the most for observations wide of the mean, with the percentage delta increasing in absolute value as X becomes relatively small or relatively large. This isn't surprising since the GLS and OLS regression lines intersect near the average value of X in all three CER's, as Figures 2 through 4 show.

TABLE 3

	Predicted Cost											
CER	Value of	X GLS	OLS	Delta	%Delta							
ATTITUDE CONTROL												
0.5*Mean	52.5	\$1206.0	\$1227.8	\$21.8	1.8%							
Mean	105.0	\$2357.6	\$2363.7	\$ 6.1	0.3%							
1.5*Mean	157.6	\$3491.5	\$3469.5	-\$22.0	-0.6%							
4.0*Mean	420.0	\$9008.5	\$8760.8	-\$247.7	-2.7%							
ATTITUDE & REACTION CONTROL												
0.5*Mean	47.6	\$ 523.8	\$ 439.8	-\$84.0	-16.0%							
Mean	95.3	\$1005.9	\$ 992.1	-\$13.8	-1.48							
1.5*Mean	142.9	\$1472.1	\$1595.0	\$122.9	8.3%							
4.0*Mean	381.2	\$3702.4	\$5037.1	\$1334.7	36.0%							
PROGRAM-LEVEL COST												
0.5*Mean	4046.3	\$1859.8	\$1603.4	-\$256.4	-13.8%							
Mean	8092.7	\$3535.0	\$3545.7	\$10.7	0.38							
1.5*Mean	12139.1	\$5210.2	\$5488.0	\$277.8	5.38							
4.0*Mean	32370.8	\$13586.1	\$15199.2	\$1613.1	11.9%							

COMPARISON OF GLS AND OLS COST ESTIMATES , (Costs are in thousands of FY79 constant dollars)

* All values are in unlogged form.

A state of the second second

IV. CONCLUSION

A. Summary

የመንከተለው የሚያስት የሚያስት እና የአስት እና የአስት እና የአስት እና የአስት እና እና እና እ

Sixteen CER's of the Unmanned Spacecraft Cost Model were tested for non-constant error variances, or heteroskedasticity. Based on Park's two-tail t-test, the null hypothesis of homoskedasticity was rejected in three cases:

- Attitude Control
- Attitude and Reaction Control
- Program-Level Cost

Generalized Least Squares (GLS) was invoked to provide best, linear, unbiased (BLU) estimation. Differences between GLS and OLS estimates of regression-equation parameters were profound in the last two CER's.

B. Recommendations

Based on the foregoing analysis, this study recommends

- Using GLS instead of OLS when heteroskedastic disturbances are suspected
- 2. Using observations on spacecraft unit costs from <u>outside</u> current NCD-5 samples to compare the predictive accuracy

he had a said

of the GLS and OLS estimators of the above three CER's.

R-A-LOCALON

APPENDIX 1

PARK'S TEST FOR HETEROSKEDASTICITY

A simple linear equation of the spacecraft model is

(1) $Y_i = \alpha + \beta X_i + u_i$ (i = 1, 2,..., N), where

Y = first-unit hardware cost

X = hardware weight

u = a randomly distributed error term.

Further, α and β are population parameters to be estimated, and N is the number of spacecraft in the sample.

To test for heteroskedasticity, Park [3] proposes using

(2)
$$Var(u_i) = \delta X_i^{\gamma} e^{\epsilon_i}$$
, where

δ = an unknown constant
Y = a population parameter measuring degree of heteroskedasticity
Var(u_i) = the variance of u_i in equation (1)
ε_i = a well-behaved random error term.

For values of Y statistically different from zero, the error term in equation (1) will be heteroskedastic since Var (u_i) will change as X_i changes.

To estimate γ , the values \hat{u}_{i}^{2} from OLS estimation of equation (1) are used as proxies for observations on $Var(u_{i})$ in equation (2). Taking logs,

(3) $\ln(\hat{u}_{i}^{2}) = \ln \delta + \gamma \ln(X_{i}) + \varepsilon_{i}$

with the significance of γ examined using the two-tailed t-test.

TANA WAY WAY

A TWE WEATHING THE ANT AND A CAN SALA CAN SALA

to the states taken when

APPENDIX 2

GENERALIZED LEAST SQUARES

Using results from Park's test of Appendix 1,

(4) $Var(\hat{u}_i) = \hat{\delta} X_i^{\gamma}$, or in words,

the variance of the random error term in equation (1) is related to the value of the explanatory variable, X_i .

Generalized Least Squares (GLS) is implemented by

• Dividing equation (1) by $X_{i}^{\gamma/2}$, denoted w_{i} for simplicity,

$$Y_i/w_i = \alpha/w_i + \beta X_i/w_i + u_i/w_i$$

constant variance

• Estimating this equation using OLS, with the term $1/w_1$ regarded as a second explanatory variable, and with the Y-intercept restricted to zero.

Since the transformed error term is of constant variance, i.e.,

$$E(u_{i}/w_{i})^{2} = Var(u_{i})/w_{i}^{2} = \delta$$
,

the Gauss-Markov theorem now applies, and least-squares estimates are best, linear, unbiased (BLU).

REFERENCES

. : : N

- Goldberger, Arthur S., "The Interpretation and Estimation of Cobb-Douglas Functions," <u>Econometrica</u>, Vol. 35, July-October, 1968, pp. 464-472.
- [2] Kmenta, Jan, <u>Elements of Econometrics</u>,
 The Macmillan Company, New York, 1971, pp. 249-269.
- [3] Park, R.E., "Estimation with Heteroskedustic Error Terms," <u>Econometrica</u>, Vol. 34, No. 4, October 1966, p. 888.

FILMED

DTIC

The second second