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1. INTRODUCTION

-The unit learning curve plays a prominent role in DOD cost analysis. In

those cases when the model accurately describes the real-life situation, i.e.,

when the model is properly applied to the data, it can be a powerful tool for

predicting unit production costs. There are, however, some unique estimation

problems inherent in the model.

The usual method of generating predicted unit production costs attempts to

extend properties of least squares estimators to non-linear functions of these

estimators. The result is biased estimates of unit production costs. Another

problem common to many learning curve applications is estimating lot midpoints

and slope coefficients when both estimates depend on each other and both

quantities are unknown.

This paper addresses the two problems discussed above and presents an

alternative procedure for estimating unit learning curves. A simple modifica-

tion to the usual estimators results in new estimators which-yield unbiased

estimates of unit production costs. The lot midpoint problem isaovercome by

another simple and widely used estimation technique, that of iterative

* *ordinary least squares (OLS). Accession For

NTIS GRA&I
DTIC TAB
U1 aunced 0

s I f Ic

By

Distribution/
Availability Codes

Avail and/or
Dist Special

P......-..'. .~......-



2. BACKGROUND

.1 The learning curve equation is frequently employed in DoD cost analysis.

Although there are several variations of the general form of the equation, the

one considered here is that of a unit learning curve;

y - ax (2.1)

where y refers to the cost of unit x of a specified manufactured item and a

and b are parameters to be estimated. Frequently a is referred to as the cost

of unit one or the T I value, since when x = 1, y - a, regardless of the value

*. of b. In learning curve applications b is a negative exponent usually ranging

. between zero and one in absolute value. Hence, as the number of units in-

creases, the unit cost will decrease.

The stochastic model corresponding to the functional model (2.1) is

*usually assumed to be

bu
y -axe (2.2)

1. The model (2.1) is a mathematical function while the stochastic model

(2.2) includes the disturbance term. Stochastic in this case is meant to

imply random.

• 2. The letter e is defined to be based of the natural logorithus, i.e., e -

2.71828 . . .

. . . ** . ..! ~ .~**.
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which includes a multiplicative function2 of the disturbance term u. This

3
• error term is assumed to be a veil-behaved random variable with zero mean and

2
. constant variance a . Thus, y has a lognormal distributien. (See Appendix

A).

Given these results and a fixed value (but any fixed value) of the explan-

4atory variable x, the mean or expected value of y is

b 0.5 a2

E(y) - axbe (2.3)

the median5 of y is

b
M(y) - ax (2.4)

3. Disturbance term and error term are frequently used interchangeably and

refer to the randomness in y not accounted for by the functional form of

the equation.

" 4. The mean or expected value of y can be interpreted as the average value of

y observed from repeated observation on the same value of x. It is

usually denoted by the letter E.

5. The median of y is the "middle value" of y; or the value of y such that

half of the observations are greater in value than y and half are less in

value. It is usually denoted by the letter M.
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Details of these derivations can be found in Goldberger [11. Note that the

mean and median of y are not the same. This is due to the fact that the

lognormal distribution is not symmetric. 7 Recall that in the case of a linear

regression function with additive error term the median is equal to the mean,

provided the error term is normally distributed.

Since equation (2.2) is not linear in the parameters a and b, one cannot

estimate these parameters by simple linear regression. The usual solution to

this problem is to proceed as follows:

1) Transform equation (2.1) by taking logs8 to yield

In y -iIn a + b In x (2.5)

6. A detailed and rigorous theoretical account of much of the underlying

theory upon which this paper is based can be found in a paper by Arthur

-' Goldberger which appeared in Econometrics in 1968.

7. A random variable which has a symmetric distribution has the same proba-

bility of being n units above the mean as it does of being n units below

the mean. An example of a symmetric distribution is the normal distribu-

tion.

8. The letters In are meant to represent the natural logorithm of the

expression following. Natural logorithms are used exclusively throughout

this paper.
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2) Perform ordinary least squares on the linear equation (2.5) to obtain

the estimated equation

,N A
in y , in a + b In x (2.6)

where the "hats" denote OLS estimates.

3) Take the antilog9 of the right-hand side of equation (2.6) and use the

resulting equation to generate estimates of y in the original unlogged

* equation, viz.,

A
y - (2.7)

where w - in a + b In x.

10

The least squares estimates obtained in step 2) are unbiased and have

the minimum variance of any unbiased estimators. These desirable properties

result from the least squares estimation technique; see, for example, Draper

and Smith (2, p.87]. It is important to note here that these properties apply

* 9. To take the antilog of a logorithm one merely raises e to the power of the

logorithm. Hence, eln x- x.

10. An estimator is said to be unbiased if its expected value is equal to

the parameter it is meant to estimate. Thus, E(x) - x implies that x is

an unbiased estimator of x.

S .5 . S -.... . S . *nu i i ,,= ==.i . .n...



'I
only to the parameters themselves and not to exponential functions of these

parameters. Indeed, because of the convexity11 of the exponential function,

E(eV) eV + 0.5 var W (2.8)

b 0.5m*a 2

-ax e (2.9)

. vhere m*u 2 is the variance of a predicted y value for any given value of x.

" Specifically, this variance is the familiar covariance result,

2O x2  A ^"A

m* 2  var (ln a) + (ln x) var (b) + 2 ln x coy (n a, b).

Thus, In step 3), e is not an unbiased estimator of either the mean or the

.- median of y. (Compare equation (2.9) with equations (2.3) and (2.4)).

11. The expected value of a convex function of a random variable is always

greater than the convex function of the expected value of that random

x E(x)
variable, i.e., if x is a random variable then E(e ) > e *See Mood,

et al (3, p.721, for details.

I.'
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3. UNBIASED ESTIMATORS

It is clear from the results of the last section that the customary

procedure for estimating learning curves results in biased estimates. It

would be nice if we could modify the estimator e discussed in the last

section in such a manner so as to yield unbiased estimates of the mean and

median of y. Fortunately, such a modification has been developed by

Goldberger (1].

Goldberger has developed correction factors (See appendix B), FM and FE

such that

E(FM) a -= 5m*a2  (3.1)

0.5ao2  -.S* 2

E(FE) = e e -0.5m* (3.2)

A
The products of the estimator ew and the correction factors result in unbiased

estimators of the mean and median of y, i.e.,

SO. 5m* 2  -0.5m*o 2

E(eFM) - e e e

w b
e - ax (3.3)

v 0.5m* 2 0.5a2  --05m*c72
E(eWFE) ewe e (3.4)

w e0.5 52



b 0.5cPa- ax e

Comparing equations (3.3) and (3.4) with equations (2.3) and (2.4) will verify

the fact that these estimators are unbiased.

Although the correction factors FM and FE involve infinite sums, they

converge rather quickly to some preassigned tolerance. This property of rapid

convergence and the use of digital computers make these estimators a desirable

alternative to traditional estimation techniques.

4. LOT MIDPOINTS

Having solved the problem of biased estimators, we consider another

problem associated with estimating unit learning curves. The unit learning

curve relates unit cost or labor hours to the number of items produced. DOD

contractors, however, usually account for costs by the lot rather than by the

unit. Hence, while the average cost of a lot is known, the quantity associ-

ated with it, or the lot's midpoint, is not. Specifically, the midpoint of a

lot will lie somewhere between the lot's first and arithmetic midpoint, with

the exact location depending on the curve's slope. An unfortunate dileua

therefore emerges: lot midpoints can't be computed without knowing the slope,

and the slope can't be estimated without knowing the lot midpoints.

In an attempt to resolve this perplexing problem, the following procedure

is suggested:

I) Estimate the slope using approximations to true lot midpoints.



V

2) Compute new lot midpoints based on the previously estimated slope.

3) Repeat steps 1) and 2) until the delta between successive estimates of

the slope is smaller than some preassigned tolerance.

In a sampling experiment, Flynn [5], examined the properties of the OLS

estimator of a unit learning curve when lot midpoints are iteratively estimat-

ed.

The results of this sampling experiment showed that mean iterative OLS

values were always very close to mean non-iterative values based on true lot

midpoints. The iterative OLS estimator appeared to be unbiased in the sanm-les

examined. The estimator is not without problems, however, for sometimes it

fails to converge. (48 out of 12,000 regression equations in the sampling

experiment) Frequency of failure seems to increase as R2 decreases and as lot

quantities increase.

Fortunately, R2 values in real-world learning curve estimation are typi-

cally very strong, thus minimizing the chance of non-convergence. In the rare

event that iterative OLS breaks down, common rules of thumb can be applied to

compute lot midpoints. It was also found that this estimator's iterative

* algorithm usually converges to four decimal places after only three to five

iterations.

e, AM -:.P-: . *. '.



5. AN ALTERNATIVE ESTIMATION PROCEDURE

Based on the results of the preceding sections, the following estimation

procedure is suggested as a desirable alternative to the customary procedure.

1) Transform equation (2.1) by taking logs to yield

in y - in a + b in x (5.1)

2) Use iterative OLS to estimate lot midpoint quantities and the OLS

estimates

in y ina + b in x (5.2)

A
W

3) To predict new y values for any given x value use the estimators

A
A w
YE eFE

A
A wM e FM

bH

depending on whether an estimate of the mean or median is wanted. The

resulting estimates are unbiased and have performed consistently in

sampling experiments.
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To get an idea of the magnitude of the bias introduced by the customary

estimation procedure, we illustrate a sample of 10 learning curve data sets.

These data sets are chosen from Navy aircraft and missile acquisition pro-

grams. They were not chosen randomly, but instead, were chosen to indicate

the wide range of bias possible using the usual estimation procedure.

Figure 5.1 shows estimated percent bias for median predicted TI values of

* the 10 samples when compared to the unbiased procedure suggested in this

* paper. Note how the estimated percent bias is directly related to the vari-

ance of the predicted y values, viz., m* a2 . In this case the predicted y

* values and T values are the same, since x = 1.

Sample
Size Variance of e Estimated % Bias

10 .00275 .14

8 .00429 .21

8 .00454 .28

8 .01053 .53

3 .01071 .54

10 .01204 .60

14 .08141 4.17

3 .11253 5.90

5 .30523 17.07

4 .72146 49.13

Figure 5.1 - Estimated % Bias of Yedian T Values

.o1
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Flynn [5] and Dagel [41 have developed computer software to implement the

alternative estimation procedure described in this section. The FORTRAN-77

- "code is relatively compact and is currently being run on a VAX computer. It

should present few problems to adapt this code to personal computers such as

- the IBM-PC.

t. . .". ~ . 4 * * * % -



APPENDIX A

A NOTE ON THE MEAN AND VARIANCE OF A LOGNORMALLY DISTRIBUTED RANDOM VARIABLE.

If Y is a positive random variable and if we define a new random variable

X - in Y

with X having a normal distribution, i.e. X-N( 11, c2 ) then

x
Y-e

has a lognormal distribution. The probability density function (p.d.f.) of X

is

fx (x) - (1/ v2") exp [-( -u )212/2 .

*. Hence the mean of Y can be derived in a straight - forward manner by evaluat-

*~ ing the integral

E(y) = X (x) dx (3,pp. 176-177)

S+ 0.5 2

e2

The variance of Y can be derived in a similiar manner by evaluating E(Y ) and

- then using the fact that

*"* b Q~.** *.**
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var(Y) -E(Y 2 ) (E(Y)) 2

This results in

v () e 2 ;& +2 a2 -e a2 + 2 m

Note that when X ~.N(O,a2 ),i.e. when I.' 0,

0.5UE(Y) -e

var(Y) -e -e

Details of these derivations can be found in Dagel [4].



APPENDIX B

The exact form of the correction factor as given by Goldberger is

F(v:v,c) f f(cw)j

where

f j . (v/2) J r(v/2) /r((v/2) + j ].

.I

and where

w = variance of the estimator

c - a constant

v - degrees of freedom.

The correction factor for the median of y is

F PM(w:vc)

where

P2

W = m S2

C°
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* The correction factor for the mean of y is

F E (v:vc)

where

w -0.5s82

c -(1-m*)

Details of these derivations can be found in Goldberger (1].
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