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; "" Introduction I

-, Overhead costs generally are estimated by using estimated overhead

rates which are then applied to estimated labor hours or costs in each
-. ' of several functional categories, sulch as engineering or manufacturing.

,q Total overhead is then obtained by summing across all the functions.
:' This approach is not entirely satisfactory since changes in operating
~rates cause changes in overhead rates which are reflected only after a

• . significant lag, For firms in which output fluctuates significantly, this

,+'. approach can result in poor estimates of overhead costs with corre-
?; sponding difficulties for product pricing. In instances where the Fed-

~eral government is the sole purchaser of the product, actual production

costs (both direct and indirect) are important inputs into the price and

quantity negotiation process. With aerospace contractor overhead corn-

prising 30 to 50 percent of total costs to the Federal government, it is

imperative that overiead costs be estimated with greater accuracy.

• . An alternative approach to estimating overhead costs is to estimate

:" these costs directly arid, hence, forego direct reliance upon overhead

81%

-;" rates. Two examples of this are provldedj 'x [7] and [4. Martinson
'/ reclassified overhead costs from the usual functional categories into an

. input-oriented categorization and then regressed these new categories of

' overhead costs on various operating variables. Current conventional
wisdom holds that the Martinson .appro.ch1+hias een unsucce-ssful in al-

P~i rmQst.al of +Its+ subsequent trials.
> Gross and Dienemann estimated various categories of overhead costs

using direct labor and material costs on a pooled time-series, cross-sec-

-." tion sample of aerospace firms. The categories which they used were

s similar to those used by Mar&'s, on. Unfortunately, there are major

technical difficulties with the meth dolog¥y of Gross and Dienemann. Al-

0I

most all of their regression models dsed lagged values of the dependent

variable as one of the explanatory variables, yet they reported only the

Durbin-Wat.son statistic as the measure of the degree of autocorrelation

* present in their models. It is well-known (see [5] or [6], for example)
f!+ ~that the use of lagged values of the dependent variable as an explana- -1 .
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tory variable results in an upward bias of the Durbin-Watson statistic
(that is, the statistic does not find autocorrelation when it is actually

present). Since it is also well-known that the presence of positive au-

tocorrelation in a regression model biases downward the standard errors
and biases upward the R-squared statistic, most of the results of Gro;,s

-* and Dienemann have unknown reliability.

1"he procedures described below attempt to estimate total ove-head
costs from five aerospace contractors as functions of the number of di-
rect manufacturing personnel. These procedures are extensions to both
more data and more firms of the analyses performed in [1]. The focus
here is on determining the effectiveness of a procedure which can be
routinized and, hence, utilized by persons with relatively low degrees
of statistical sophistication. Consequently, the number of explanatory

variables is purposefully kept to a minimum.

• Data Sources and Characteristics
Data were obtained for five major United States defense aircraft

manufacturers. The data, however, are proprietiry and are not re-
leaseable. To preserve the anonymity of the data and results, any

specific reference to individual manufacturers will be in the form of

contractors A through E.
Prior to the obtaining of any data, a particular format for collection

of overhead cost data was determined in order to assure uniformity of

data categories across the different firms. The overhead cost data from
the major manafacturing divisions of the contractors were collected
within this defined format on a quarterly basis beginning with the first
quarter 1979 through second quarter 1984. The format for overhead

costs has five major categories with several subcategories within each
category. The five major categories are (i) labor-related, (ii) facill-
ties-related, (iii) operations, (iv) mixed labor and facilities, and (v)

corporate transfers. Other additional data pertaining to production and
operating characteristics of the divisions of the firms were also ob-
tain.,d.

The various categories of 4.vt data were converted from current to
constant fourth quarter 1982 dollars using indices from Bureau of Labor

Statistics (BLS) and Bureau of Economic Analysis publications. The la-
bor-related data were converted using the BLS SIC 3721 (aircraft in-

'22
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dustry) index and other categories were converted usins GNP deflators

for structures, services, etc. It is recognized that these indices,
along with almost all others, are imperfect, but they were selected in

an attempt to provide the best measures of inflation from among all
readily-available indices relevant to these particular categories.

Modeling Quarterly Overhead Costs
Sequential cost and operating data, as with most other time series

data resulting from firm operations, can be expected to exhibit some
level of autocorrelation. This is because firm expenditures from period

to period are not totally random but tend to change relatively smoothly.
Consequently, the error process of a time series-based statistical model
of the costs of a firm does not exhibit the desired (normal) random
structure but, instead, exhibits a structure in which errors in one
period tend to be related to errors in other periods. Although the

presence of some form of autocorrelation in the residuals of a regression

model does not create any problems in obtaining unbiased estimates of
the regression coefficients themselves, itdoes result in biased estimates
of the standard errors of the regression coefficients. Hence, any hy-
pothesis tests which rely upon either the standard errors or functions

of the standard errors may result In erroneous conclusions. This in-
cludes the standard t-tests for the statistical significance of the differ-
ence of the reg.'ession coefficient value from zero. Consequently, it is
desirable to obtain not only unbiased estimates of the regression coeffi-
cients but also unbiased estimates of their standard errors.

First order autocorrelation occurs when the errors of the model are

related to the errors in the adjacent, prior periods. Tho errors are

said to follow a first order autoregressive, or AR(1), process. Yearly
cost and operating data tend to have errors which follow an AR(1) pro-
cess. The use of quarterly data, however, may cause the autocorrela-

tion to take on a special form. Instead of, or perhaps in addition to,
the standard, first order autocorrelation, one might encounter a special
form of fourth order autocorrelation (see [8]). This special form cor-

responds to a seasonal patterit in the e'rors, since each error is corre-

lated only with the error which occurred four quarters previously.
Plots of the raw data confirmed that this form of autocorrelatlon is po-

tentially present since, within each year, there was a clearly discerna-
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ble tailing off of expendit' .,es toward the final quarters. This pattern

is a typical one for organizations which operate in an environment of

known, binding budgets with all funds available at the beginning of the

budget period.

The general model utilized in this analysis is of the form

Yt = Xtf * Ct , (1)

et = PtEt-i " ?It t"2 .. T, (2)

where X t is, in general, a Txk matrix, P is a kxl vecLor, and i is ei-

ther 1 for an AR(1) process, 4 for an AR(4) process, or a mixture of

these two processes. The Yt are total overhead costs, and the columns

of Xt are direct personnel and a constant term. The error component

of the model, Et, has the specific structure indicated by equation (2),

where 71t has the zero-moan and constant-variance properties usually

assumed for the error component of a regression model. Note that this

model assumes a special form of the general fourth-order autoregressive

(AR(4)) process. The general AR(4) process can be written as

Ct =  Plt-1 * P2Et-2 * P3Et-3 * P4t-4 + 'Ot (3)

For i=4 in equation (2), this assumes that the effects of the prior three
quarters are neg!igible compared to the effect of the corresponding

year-earlier quarter. This is the seasonal pattern discussed above.

After selection of the independent variable(s) for a particular mod-

el, the general procedure was to first perform an OLS regression on

the untransformed data and then test for the presence of the above

form of the AR(4) process, the AR(1) process, or some mixture of the

two in the residuals. Following [8], the test statistic for the AR(4)

process can be written as

=(et - et_4 )

d4 = , (4)

=let2

where

A
at Yt Yt

A aYt =XtP and
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A

A is the estimator of 3 obtained from the OLS regression indicated by

equation (1). The null hypothesis is that of zero autocorrelation in the

residuals, and the alternative hypothesis is ,hat of the quarterly form

of autocorrelation. This test and test statistic are exdct analogs to the

Durbin-Watson test and test statistic which are used for an AR(1) pro-

cess. The reader should note well that both the venerable Durbin-Wdt-

son test and this Wallis test use null hypotheses of zero autocorrelation.

If this is unacceptable, then other tests should be used. Tables of the

upper and lower critical points of the distribution of d4 a'-e given by

Wallis [8] for the above type of model.

If a test reveals the presence of the AR(1) or the AR(4) process in

the residuals, then the model must be reestimated using a transformed

version of the original data. Such transformations for an AR(1) pro-

cess are discussed In [5] and [6]. For the AR(4) process, the depen-

dent variable is transformed as
*2

2t (1 - pt ) t=1,2,3,4, and (5)

yt Yt - P4yt-4 , t5,...,T. (6)

Similarly, the independent variables are transformed as

Xt = Xt (1 - p42 ) , t=1,2,3,4, and (7)

Xt = Xt - p4Xt.4 , t=5, . ,T. (8)

Each of these transformations requires an estimate of P4. There are a

number of ways to estimate this parameter, but only the most straight-

forward technique was selected here because of the potential require-

ment that this entire procedure be replicable by persons with relatively

low levels of statistical sophistication. Although [1] evaluated three al-
ternative estimators, the following one performed as well as more com-

plex estimat ,rs. For thu AR(4) process, the estimate of P4 is given by

P4 (9)

This estimator is derived from equation (4) via equation (2) and asymp-

totic arguments. Note that the value of this estimator is easily obtalna-

ble from the value of the test statistic calculated from equation (4).

After each model was reestimated using the transformed data of

equations (5) through (8) and the estimator of P4 given by equation

-5-
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(9) (or equivalent transformations and estimators for an AR(1) pro-
cess), the model was checked for the presence of first order autocorre-
lation using the Durbin-Watson statistic. Then each. model was checked

for the presence of seasonal autocorrelation using the statis,ic -;0own ini
equation (4). An examination of the residual plots pruv> I-d futher
evidence of the presence or absence of any systematic effects.

Structural Analyses
The procedures outlined in the previous section will be illustrated in

detail using total overhead costs from one of the contractors. Following
this illustration, the results for each contractor will be presented and
discussed. All statistical results will be reported to three significant

digits.
Table 1 presents the results of these procedures applied to the re-

gression of total overhead costs for contractor A (TOTOHA) upon total
direct personnel for contractor A (DIRPERA). The rebults of the re-

gression on the original, untransformed data can be seen as poor,

TABLE 1
Model: TOTOHA = a + b DIRPERA

-7' Untransformed Data

Sum of Squared Residuals: 378.
Ad*ustedR-Squared:

urbin-Watson Statistic:
Estimate of a:Standard Error: '

Estimate o b:
Standard Error: 5,1

Estimate of d4 : 468

Estimate of P4: .766

Transformed Data

um of Sauared Residuals: 216.8El
usted.R-Squared:

F-Statistic: 176
Durbln-Watson Statistic: 106
Estimate of: 45.

Standard Error: '

-6-
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Upon testing this model for the presence of the special form of

fourth-order autocorrelation discussed above, the null hypothesis of no

fourth-order autocorrelation is clearly rejected since the calculated val-

ue of d4 is below the upper and lower five percent significance points

(see [8]). The data were then transformed as described above and the

model was reestimated. The regression results for the transformed data

show that there is indeed a great deal of information contained in this

model of overhead costs. As indicated above, the residuals of the

transformed regression were carefully examined. Tests and plots indi-

cate that the transformed model conforms to both the Gauss-Markov

theorem and residual normality. Therefore, this model has all desirable

statistical properties, with the possible exception that there may be

some AR(1) process remaining in the residuals after adjustment for the

presence of the AR(4) process; this is indicated by the value of the

Durbin-Watson statistic after adjustment. Note, however, that the Dur-

bin-Watson statistic prior to the adjustment indicated that there was no
ARC1) process present. In summary, the regression model using trans-

formed data yields excellent results, but the adjustment for this special

form of autocorrelatlon clearly is necessary in order to obtain these re-

, suits.

Table 2 presents the results of the modeling of total overhead costs

for all contractors. Results for other major categories of overhead

costs for contractors A and B are presented In [1].

Results similar to those for contractor A are obtained when the pro-

cedures described in the previous section are applied to the regression

of total overhead costs for contractor' B (TOTOHB) upon total direct

personnel for contractor B (DIRPERB). Very poor results were ob-

tained initially when using untransformed data, the presence of this

special form of fourth-order autocorralation was Indicated clearly by the

test, and excellent results were obtained using transformed data.

Since all costs are measured in thousands of dollars, the first model

in Table 2 may be interpreted as indicating that there Is a fixed compo-

nent of total overhead costs (when a function of direct personnel) of

approximately $4.25 million, with each additional direct person costing

about $16,300 in total overhead costs.

These structural results may be used to compare overhead costs ex-

perienced by contractors A and B. The two models for total overhead

costs are

-7-
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TABLE 2

Summary Regressions

Model: TOTOHA =a + b DIRPERA

Sum of uqared Residuals: 216. E7
Adjusted ER-q ua red: .9
F-Statistic: 176: 9
Durbin-Watson Statistic: 1.06
Estimate of a: 4250.

Standard Error: 5150.
Estimate of b: 16.3

Standard Error: 1.23

Model: TOTOHB a b DIRPERB

~um~ of cuared Reqidual1s: 116. E7
d'ustedc R Squared: 3

F- tatistic: 295.
Durbin-Watson Statistic: :751 T

Estimate of : 15'8
Standard Erro~r: .922

Model: TOTOHC a +b DIRPERC

I urn of Squared Reliduals: 248:.4
Adjusted. R-Sq uared: J

F-' Statistic: 1 .,8
Esti-ate sn Statistic: .5

StandaT Error: 1 3
Estimate 0f b:

Standard Error;::

Model: TOTOHD a +b DIRPERD

' urn of quared Reliduals:,24
d'usteg K- are'1:
F- tatistic:
Durbln-Wa-tson Statistic:
Estimate of 9

Standa d Error:5
Estimate of b:

Standard Error:

2Model: TOTOHE a +b DIRPERE

Surn of Suared Reqiduals: 155.
d'ustegR-Squ areA. :

S-tandaic 3 rorDurblI-Wa son Statistic:6

Estimatedob :E

8-
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TOTOHA = 4250 * 16.3 DIRPERA and
TOTOHB = 3460 + 15.8 DIRPERB.

It may be seen that the regression for contractor B lies everywhere be-
low the regression for contractor A; not only does contractor B have a
lower fixed cost (no statistical difference) but also it has a lower vari-
able cost (no statistical difference). Comparisons between other con-
tractors may also be made using the results in Table 2.

The reader should be aware that these comparisons imply only that,

with the same number of direct personnel, contractor B experiences
lower total overhead costs than contractor A. These comparisons do

not imply that contractor B has lower overhead costs than contractor A,
regardless of the circumstances. This observed, but not statistical,
difference Is at least partially due to the different personnel classifica-
tion systems used by the two contractors.

The results shown for contractors C and D were obtained using the
same procedures as were used for contractors A and B. However,

there were some additional complicating factors which were not present
for contractors A and B. The Wallis test statistic (equation 4) for con-
tractor C showed that there was no evidence of AR(4); however, the
Durbln-Watson showed that there was evidence of ARM) After adjust-
ment for ARM1), there still appeared to be some AR(4) remaining in the

residuals. If this is true, then it indicates that there is most likely a

mixture of AR(1) and AR(4) which must be removed from the regression
residuals.

After adjusting the model for contractor D for the presence of the

AR(4) process, there was still strong evidence from the Durbln-Watson
statistic that some AR(1) process remained In the residuals. Again, It
appears that there is a mixture process in the residuals.

The results shown for contractor E were obtained with no adjust-

ment of the variables. Both the Durbin-Watson and the Wallis statiatics
indicated that ARM1) and AR(4) were not present.

Predictive Analyses

Since the results shown in Table 2 using total overhead costs for
most contractors were of such high quality, It was determined that pre-

dictive tests of these regressions for each contractor should be under-
taken. The general procedure was to fit the regression model to a

-9-



sample of only the first four and one-half years (eighteen observa-

tions), predict the last year (four observations), and compare the pre-

dicted to the actual values of overhead cost.

The regression model using transformed data was estimated exactly

as described in the previous section except that only the first eighteen

observations were used. Based upon these estimated results, the last

four observations were predicted via the equation

' A A A
Yt = PiYt-i * (X t  - piXt-i)0 , t=19,. • .,22, (10)

where yt and Xt are defined below, i is either I or 4 (depending onA

whether the AR(1) or AR(4) process is adjusted for), and 3 and 'N are
the values obtained from the estimation based on the first eighteen ob-

servations.

Regression models of the quality of those discussed In the previous

section generally have good predictive capabilities. Standard approach-

es to measuring the predictive power of regression models assume

knowledge of all right hand side (RHS) variables. This poses particu-

lar problems for the current approach since predictions at t=18 for

t=19,. . .,22 require future values of variables on the RHS of equation

(10). Note that this makes the predictions, Yt. conditional on the val-

ues of the RHS variables.

To generate predictions which are unconditional on the values of the

RHS variables requires an independent process to provide forecasts of

RHS which are unknown at the time of the forecast. If the residual

process is determined to be AR(4) or AR(1), then values of Xt are re-

quired for use in equation (10). For an AR(1) process, values of Yt

also are required.

To obtain independently forecasted values of X for t=19,. . .,22,

the first eighteen observations were modeled using a Box-Jenkins ap-

proach (see [2] and [3]). Since only eighteen observations were avail-

able, the underlying ARMA models were kept as parsimonious as possi-

ble. Application of this methodology resulted in the models shown in

Table 3. Forecasts of direct personnel for each contractor which re-

sulted from these models were then used in equation (10) to obtain

forecasts of overhead costs.

Since the error process for contractor C is AR(1), lagged future

values of yt are required on the RHS of equation (10) in order to pre-
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TABLE 3
Box-Jenkins Models of Direct Personnel

Contractor Model

AB ARMA 4,2B ARMA (,01C ARMA (1,
D ARMA(1,
E ARMA (1,)

dict future values of yt at time t=18. Unlike the AR(4) case in which
unconditional forecasts are available from equation (10) immediately upon
obtaining independent forecasts of Xt, the AR(1) case requires lagged

values of yt which fall within the prediction window, t=19,. . .,22.

Since the yt's are lagged and hence known, unconditional forecasts of

yt are obtained using the independently forecasted Xt and rolling the
unconditional yt's forward one period.

Conditional and unconditional predicted values of overhead costs

were then compared to the observed values of overhead costs using (1)
a Pearson correlation coefficient, (2) the root mean squared forecast
error, and (3) the mean absolute percentage error. These results are

shown in Table 4.
For conditional predictions of contractor A, the Pearson correlation

coefficient value of .981 indicates that there is a strong tendency for
the predicted values of total overhead costs to follow closely the actual

values. A measure of the size of the forecast errors is given by the
ratio of the root mean squared error to the mean of the four actual val-
ues to be predicted. For contractor A, the root mean squared error is
5.4 percent of this mean and shows that the forecast errors are small

relative to the actual values. A second measure of the size of the

forecast errors is given by the mean absolute pkrcentage error. This
measure for contractor A indicates that the forecast errors are approxi-
mately 5.3 percent of the actual, observed values.

Except for contractor C, conditional prediction results for the other
four contractors were similar in qualty to those of contractor A.
Again, the difficulty with contractor C (as well as contractor D) is that

a mixture process is present but has not been eliminated from the resi-
duals. If this were done, the prediction results for contractors C and
D would improve considerably.

4.
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TABLE 4

Prediction Results

Conditional Unconditional
iviodel: TOTOHA = a 4- b DIRPERA

Correlation coefficient between
actual and predicted values .981 .512

Root mpean squared error divided by
the mrean of the actual values .0540 .0639

Mean absolute prcentage error
(in percent) 5.28 5.83

Model: TOTOHB = a b DIRPERB

Correlation coefficient between
actual and predicted values .883 .900

Root rpean squared error ivided bythe mea of the actual values .0436 .0448
Mean absolute percentage error

(in percent) 3.65 3.95

Model: TOTOHC = a + b DIRPERC

Correlation coefficient between
actual and predicted a ues .544 .745Root mpean squared error ivideld by
the mean of the actual values .199 .228

Mean absolute rcentage error
(in percent 19.1 21.4

Model: TOTOHD = a + b DIRPERD
Correlation coefficient between

actual and predicted galues .899 .896
Root .mean squared error ivided by

the ean of the actual values .114 .122
Mean absolute Percentage error

(in percernt) 8.87 9.92

Model: TOTOHE = a + b DIRPERE

Correlation coefficient betvaen
actual and predicted values .845 .743

Root mpean squared error divided by
the mean of the actual values .0755 .0980

Mean absolute prcentage error
(in percent g 5.31 6.99

Unconditional predictions for contractors B and D were very similar

to their conditional predictions The unconditional predictions for con-

tractors A and E were slightly worse and for contractor C was better

than the respective conditional prediction. These results are very sim-
ilar to those for the conditional models and indicate that not much pre-

dictive power Is lost in moving to the unconditional models. This con-

- 12 -



clusion itself is conditioned on the prediction period, the prediction

window, and, just as for the conditional models, the underlying model-

ing processes. Again, extending the sample size will improve these

modeling results, especially for the residual processes which may be

mixtures of AR(1) and AR(4).

Another general approach to estimating direct personnel is to use

some other even more readily-available variable to attempt to predict di-

rect personnel. The most logical and most available is units of output.

In the case of one of the contractors, the most straightforward ap-

proach of regressing direct personnel on units of output of type 1,

units of output of type 2, etc., produced a surprisingly high R-I squared statistic of .84. In general, however, some assumptions about

the production technology will be necessary in order to utilize this ap-

proach. Also, this approach requires a larqer sample size than that

utilized in the above approach since it estimates a larger number of

coefficients.

Summary

The statistical models for analyzing overhead costs which have been

presented in this paper have yielded, in general, excellent structural

results. Additionally, predictive analyses were undertaken of the best

structural models. These predictive analyses showed that reasonable

predictions are possible for all contractors and that excellent pre-

dictions are available for most. These results indicate that this entire

procedure may yield fruitful results when applied to other contractors

and over longer time series. The above results indicate that overhead,

at least for this sample, tends to follow variations in output levels

through the number of direct personnel. More research is necessary in

this area to evaluate the advantages and disadvantages of the alterna-

tive approaches for estimating and predicting costs of these and similar

f irms.

-13-
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