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-We presenna new domain decomposed fast Poisson solver on a rectangle divided into parallel
strips or boxes. The method first performs uncoupled fast solves on each subdomain, and then the
interface variables are computed exactly by fast Fourier transform, without computing or inverting
the capacitance matrix explicitly. Finally, the solution on the interior of the subdomains can be.
computed by one more fast solve on each subdomain.

This method, as opposed to others, does not involve any iteration in the solution of the system
for the interface variables. It is especially suited for parallel implementation, since the independent
problems in the subdomains can be solved in parallel, and the communication involves the interface

variables only. 0f
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1. Introduction
We consider the solution of the Poisson equation in a rectangular region partitioned into strips.

By the method of Domain Decomposition, the solution of the algebraic equations resulting from
the discretization on a regular grid is reduced to the solution of problems in the subdomains and
a linear system for the interface unknowns, given by the capacitance matriz. This is an important
tool in the solution of elliptic partial differential equations. There are several reasons why these
techniques might be attractive:

* The method is suited for the solution of very large problems on machines with limited storage.

" Special solution techniques might exist to solve the problems on the subdomains that cannot be
applied efficiently to the entire domain. This is often the case, for example, when the domain
has irregular geometry, but it can be broken up into regular subdomains, like rectangles.

" The equations in the different subdomains might have different parameters or even be of dif-
ferent nature, in which case the idea of substructuring comes very naturally.

" The idea is attractive for parallel processing, since the problem can be decoupled in independent
subproblems and the communication needed will be only for the interface values.

The capacitance matrix is expensive to compute or invert explicitly, while it is relatively simple to
compute the product of such matrix with an arbitrary vector. For that reason the interface system
is usually solved by conjugate gradient methods instead of a direct method. In order to improve
the convergence of the method, several preconditioning techniques have been given in the literature
[6, 7, 1, 2].

For the problem considered in this paper, we present a fast direct method for the solution to
the capacitance matrix that does not require the computation of the elements of the matrix. As
oppossed to the other methods given so far, there is no iteration involved.

In the case of uniform sized strips, we derive the eigenvectors and eigenvalues of the capacitance
matrix. This gives not only a direct method to solve the interface system, but also a framework to
analyse other preconditioners.

In section 2, we apply the method of Domain Decomposition to the solution of the Poisson
equation in a rectangular domain subdivided into strips, and derive a system for the interface
unknowns and the capacitance matrix. In section 3, we analyze the capacitance matrix, giving its
eigenvectors and eigenvalues. Based on this, we derive a fast direct method for the solution of the
interface system. The eigen-decomposition of the capacitance matrix also provides a clear way of
analyzing some other preconditioners. In section 4, we analyze the preconditioners given by Golub
and Mayers, Dryja and Proskurowski, and BJorstad and Widlund. Finally, in sections 5 and 6, we
discuss extensions of the method to rectangular domains subdivided into boxes, and more general
variable coefficient operators and summaryze the results, giving some concluding remarks.

2. Domain Decomposition

We consider the Poisson equation Accesio.l Flr
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Figure 1: The domain 0l and its partition

We partition f) into k + 1 strips flj, i = .... , k + 1 of sizes 1 by Ii and denote the interfaces
between fli and fli., by Fi,i = 1,...,k. We use a uniform mesh with grid size h on (I with n
internal grid points in the x-direction, i.e.

h
n+l

and mi internal grid points in f0, in the y-direction, i.e. for i - 1,..., k + 1,

Ii (m, + 1)h.

Let us consider a standard 5-point centered difference approximation to (2.1). If we order the
unknowns for the internal points of the subdomains first and then those in the interfaces ri, then
the discrete solution vector u = (un, ur) satisfies a linear system that can be expressed in block
form as:

~pT Qr)( ur)=(r) (2.2)

where the right hand side depends on f and ub and

n L2  .) (2.3)

Lk+2
Qr ffiI |(2.4)

2



where Li corresponds to the discrete Laplacian on (i for i < k + 1, and Li for i > k + I is the
tridiagonal matrix tridiag(l, -4, 1). The matrix P has the following block bi-diagonal form:

P= P2.1 .,, (2.5)
Pk,.k- Pkk

Pk+lk)

where PFj corresponds to the coupling between the unknowns in the subdomain fl, with those in
the interface ri.

By applying block Gaussian Elimination to (2.2), we obtain the following system for the
interface unknowns:

Cur = g (2.6)

where
g fr - prQn1fn (2.7)

and
: C ffiQr - n-l (2.8)

C is sometiaut called the capacitance matriz. Since Qn is block diagonal, the right hand side of
(2.6) given by (2.7) can be evaluated by solving a problem like (2.1) on each subdomain fli, with
zero Dirichlet boundary conditions on the interfaces ri-1 and ri , i = 1,...,k + 1. Once (2.6)
is solved, the problem is decoupled and the solution un, at the subdomains can be computed by
solving k + 1 independent subproblems:

Liun, i fn, - Pl,i-i r,_, - Pi,iur,

for i = 1,... ,k + 1. This is nothing more than solving for u n on each subdomain Ili with the
computed ur., and ur, as boundary conditons.

This technique of reducing the problem on 0 to the solution of decoupled problems on the
subdomains and a smaller system for the interface is usually called domain decomposition or aub-
structuring.

3. The capacitance system
By substituting (2.3), (2.4) and (2.5) in (2.8), we can see that the matrix C has the following

block tridiagonal form:

CB 2 C
C B c 2  (3.1)". Bk

Bk Ck

where Ci is the capacitance matrix corresponding to the inteface r;, i.e.

¢, = Lk.+,~- P,7 L.1.,- PiT.I,.,L.2,P,., (3.2)

and
Bi -P7 1 L7 1P (3.3)
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The matrix C is expensive to compute explicitly, since the computation of the blocks Ci and
Bi requires the solution of 2n subproblems on each fl . Also, the resulting blocks are dense n
by n matrices, and therefore, the solution to (2.6) by Gaussian elimination would require 0(n 3 )
operations, which may overcome the 0 (n~log(n)) complexity of the fast solvers for the subdomains,
when m f n.

Instead of using a direct method to solve the system (2.6), preconditioned conjugate gradient
(PCG) methods can be applied, where only matrix-vector products of the form Cw for a given
vector wv are needed. From (3.2), we can see that the evaluation of Ciw for each i requires the
solution of two subdomain problems. For example, the product -PT 2 L- 1 P2 ,2 w can be computed by
solving the discretized version of (2.1) on 02 with homogeneous right hand side (i.e., the Laplace
equation) and boundary conditions u = w on r2, u = 0 on the rest of the boundary, and then
taking the solution on the first row of grid points above r2. Similarly, B2w corresponds to taking
the same solution on the first row below r.

Each iteration of the PCG method requires the solution of at least one problem at each subdo-
main. Therefore, it is important to keep the number of iterations low. A number of preconditioners
for the matrix C have been given in the literature in order to improve the convergence [6, 7, 1, 2].

It turns out that for the problem we are considering, an exact decomposition for the capacitance
matrix is possible. The system can then be solved directly by fast Fourier transforms, and therefore
no preconditioned conjugate gradient iteration is necessary. The two strips case is analyzed by Chan
in [4], where the eigenvectors and eigenvalues of the capacitance matrix C are given exactly.

Here we extend that result to the multistrip and multi-box cases. We will show that the
matrices C, and Bi in (3.1) have the same eigenvectors. The system (2.6) can thus be solved by
fast Fourier transforms and cyclic reduction [3, 8].

Let us define the orthogonal matrix W as the matrix whose columns are

= + 2 (sin jirh, sin 2jirh,...,sinnjih)T (3.4)

for j ,...,n ,
J~hS (3.5)OCj =-- 4 sin 2 (35

and 2

+ a + 2) (3.6)

Then, we have the following

Lemma 3.1. The matrices Ci and Bi have the same eigenvectors (3.4). For i = 1,... ,k, we have

WTC,W f= Ai = diag(Ail,..., Ai,) (3.7)

and for i -2,..., k, we have

WBW Di = diag(6i1,... ,6 ,) (3.8)

where

+ (3.9)

4
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and

Proof. We will compute the three terms of Ciwi in (3.2) separately. As we stated before, the
product -PI7L71P,iwi can be computed by solving the problem

AhV = 0 in f0i

v=O on fi n (3.11)

v = 0 on ri-,

v = wj on ri

and taking the values of the solution at the first row of grid points above ri. By using separation

of variables, it can be shown [4J that the solution to (3.11) at each grid point (a, t) is given by:

v(sh, th) = (cl r+ + c2r'-)sin ejwrh, (3.12)

where r+ and r- are the roots of the characteristic polynomial corresponding to substituting (3.12)
in (3.11), namely,

2 O'j+ (3.13)

22r-=1+ f- a + 7

with aj given by (3.5). The constants cl and C2 are determined by the boundary conditions and
they are given by M + I

7-Cl - -
-- M++l - r:I+1

C2 =- + - M+

Therefore, we can compute the product -P.L 1 P,jw, by taking t 1 in (3.12), i.e.

-PL71P ,, i  (r- \ r-yi+l \ , (3.14)

where rwhr= -- (3.15)

Since r+r- 1, 'Y = r!- and therefore (3.6) and (3.15) are equivalent. By a similar computation
we can prove that

PT =- P(4 +;i1 Mi+L; = (r ( ~ )w,(3.16)

Finally, it can also be verified that

=L+I+;Wj (-2 - oa)wy. (3.17)
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Combining (3.14),(3.16) and (3.17) we have

Ciwj -\)ijuj

w here -2 +2+1

= -2-+o+ - I -, =2+1

which, after some simplifications, leads to the expression (3.9).
By similar arguments, Biw, requires the computation of the solution to (3.11) at the mi-throw away from ri and we can prove that:

Biwi = v(., mih) = - 6jiwi

where
j - clr+ + C2rm

-m+)

Let us partition the vectors ur and g in (2.6) as:

( iur = g=9

ur, (g,

where, for i 1,...,k,
u1 i 

g
ur, -- r, i

The system (2.6) may be written

Ciur, + B2ur2 =gr,

Biur,_ + Ciuri + Bi+lur,+, = gr,, i = 2,...,k -1 (3.18)

Bkur,_., + Ckur = grk

Using (3.7) and (3.8), the system (3.18) becomes

Al D2  (fir, ) Or \
Dk

Dk A ur,/ \ gr

where, for i < k,
r,= WVTgr, (3.20)
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and
ur, = War,. (3.21)

By reordering the equations in (3.19), the system can be reduced to the solution of n tridiagonal
systems of dimension k and ur can then be computed by by the expression (3.21). Note that Fast
Fourier Transforms can be used in computing # and ur. An outline of the algorithm follows:

ALGORITHM DDFPS ( Domain-Decomposed Fast Poisson Solver)

Step 1: Compute right hand side g by (2.7). This requires the solution of k + 1 decoupled
problems of the form (2.1) on ni, i = 1, .... , k + 1, namely

AhVi = f in fli

Vi = ubi on Oi n an

vi = 0 on I-i
vi = 0 on ri

and then compute

gr, = fr, - vi(., Mi) - vi+i (., 1)

Step 2: Obtain new right hand side by (3.20) using Fast Fourier Transforms.

Step 8: For j = 1,. .. , n, solve

( "2 " "' uj'2 g2 j (3.22)

6kj Aki Uf J gjk

Step 4: Fast Fourier Transform the resulting ur,'s to obtain ur, by (3.21).

Step 5: Solve the following problem in each subdomain

AhUi =f on niI

with boundary conditions

Ui = ut, on an nr
ui -= urit on Ii-I

i = uri on ri

3.1. Uniform size strips
When mi = m for all i, i.e. all strips have identical dimensions, all the blocks Ci in (3.1)

are identical, as well as the blocks Bj. In this case, the eigenvalues and eigenvectors of C can be
explicitly computed.

7



Lemma 3.2. mi =-- m,1:5 i 5 k + 1, then the capacitance matrix has the form

C B C , "'

B C,

and the eigenvalues of C are given by

iT
ais = "\ + i6cos-T

for i = 1,...k and j = 1,...n, where A are the eigenvalues of C1 and Sj are the eigenvalues of B.
The eigenvectors vji are the direct product of the vectors wj defined in (3.4) and

zi (sin -,sin r sink i-+ , ks + k+

i.e.
(sin k)W,

( wsin •j

sinlf)wi

Proof. It can be verified that
CV%, - aivij£i

by simple substitution and using the fact that z, and ori, are the eigenvectors and eigenvalues of
the tridagonal matrix:

6, ,

As an improvement over the plain Fourier Analysis method, which has complexity O(knlog2n),
block-cyclic reduction techniques can be combined with fast Fourier transforms to get an algorithm
for solving the interface system for the regular sized strips case, which has asymptotic complexity
o(knlog2 og2n) [3, g.

4. Analysis of some preconditioners
As we mentioned before, the system (3.1) was previously solved by the preconditioned conju-

gate gradient method. Several preconditioners have been proposed in order to improve the conver-
gence of the method. For the case where there is only one interface (k = 1), Dryja [6] proposed
as preconditioner for C the square root of the one-dimensional discrete Laplacian. This matrix,
which will be denoted by MD, can be inverted by fast Fourier transform, since it has the following
decomposition:

AD = Wdiag(A,',.. ,A,)w (4.1)

8



where the columns of W are given by (3.4) and

AP 2v/ (4.2)

with aj given by (3.5). Golub and Mayers [7] improve Dryja's results with a preconditioner given
by

MG = Wdiag(AA,.A.. ,Ar)W T  (43)

where /r 2

4 (4.4)

For the two strips case, Bjorstad and Widlund [1] give the following approximation to C as a
preconditioner:

MD A = L3 - 2pT , L'Pi,

When the two strips have the same dimensions, this preconditioner is exact, although their method
involves an extra solve in the subdomain fnl in order to invert AIB, as opposed to solving by only
one fast Fourier transform on the interface.

In [5], Dryja and Proskurowski propose an algorithm for the case of multiple strips. By
ignoring the off-diagonal blocks Bi in (3.1) and using the preconditioners for the two-strips case on
the diagonal, they propose using either the block-diagonal matrix diag(MD) or diag(MG).

Using the results of the previous section, we can analyze these preconditioners. It is a well
known fact that the rate of convergence of the preconditioned conjugate gradient method depends
on the condition number of the matrix .- 'C, where Mf is the preconditioner, being close to one.
We will use the 2-norm condition number in this paper, and for simplicity, we will only consider the
case of regular sized strips, with mi = m. In [4], Chan shows for the two-strips case that K(Mj 1C)
and K(ML1 C) depend on the aspect ratio

a,= (m + 1)/(n + 1) (4.5)

and in particular,

lim K(AriC) 1 + e-22r (4.6)
h-0 1 -

The asymptotic expression (4.6) is plotted in Fig. 2. As we can see, the condition number will be
large for small a.

For the case of multiple strips, we have to analyze the effect of dropping the blocks Bi's.
Note that when the eigenvalues of Bi, namely 6j, are small compared to Ai, the system (3.22)
becomes diagonal and therefore, it can be trivially solved. We will see that the values of 6b are
small compared to A, when the aspect ratio (4.5) is large. This can be derived from Lemma 3.2,

where we give an asymptotic expression for the ratio in terms of the aspect ratio a when h -- 0.

By computing (3.10) and (3.9) for the regular strips case, we can see that
6_ ___+__/_

I+= + (4.7)

which is a decreasing function of j. Therefore,
,. 6,

b - max*A 1  1< . Aj

Moreover, we have:

...... ..... 9
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Lemma 4.1. ln i

-. * 1-

: Proof. Since a, - 0 when h 0 , we have

* 1.0~
I dI y

0h-o 17 d

torTherefore, + 0
h- 1  e +eo

* P ScBy (4.7) and (4.8), we have

lira 61 • + - 2a Ca1 Ca

h--0 - h2 - e dh

When a is large enough, the 6j's can be ignored, so that the system (3.1) becomes block-
diagonal and moreover, for large, the eigenvalues Ai approach (4.4) and in that ase, (4.3) is a
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Figure 3: Condition number of the preconditioned capaci-
tance matrix with Golub and Mayers' preconditoner for two,
three, and up to eight strips (k is the number of interfaces).

good approximation to C. For a small, the condition number of the preconditioned capacitance
matrix becomes large. Fig. 3 shows the dependence of the condition number on the aspect ratio a
for different numbers of strips.

5. Dividing the domain into boxes
In the parallel implementation of domain decomposition, the ratio between the amount of

communication and the amount of computation required grows as the strips become narrower. For
this reason, it seems natural to divide the domain into boxes.

Boxes introduce a new difficulty, the cross points. Cross points are more difficult to handle,
since they represent a strong coupling between interfaces. We refer the interested reader to 121.

One way around cross points Is to use algorithm DDFPS recursively. We can, for example,
apply algorithm DDFPS to the domain n divided into horizontal strips 0,, and then solve the
subproblems in steps 1 and 5 by subdividing each strip m, in vertical strips n0,. Another approach
is given by nested dissection, which can be described recursively as follows: the domain n is divided
in two strips il and n2. We will call this partition P, and given a partition P, Pi+l is obtained
by subdividing each subdomain of Pj into two (vertical or horizontal) strips. An example of the
partition procedure is given in Fig. 4 Algorithm DDFPS with k = I is applied to P, and it is

11
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Figure 4: An example of nested dissection

applied recursively in steps 1 and 5 to solve for the problems in the subdomains. Conventional fast
solvers are used for the subproblems in the finest partition.

I

6. Concluding remarks
We present a fast direct Poisson solver on a rectangle divided into parallel strips or boxes.

The method, as opposed to others, does not involve any iteration in the solution of the system for
the interface variables. It is especially suited for parallel implementation, since the independent
problems in the subdomains can be solved in parallel, and the communication can be reduced to k
vectors of length n, where n is the number of points in the interface.

Since the method is based on the fact that C can be solved by FFT's, it can be generalized
to other separable operators with coefficients which are constant in the z or y direction, and other
boundary conditons.

It appears that domain decomposition requires more computation than a conventional fast
solver on the whole domain, since the algorithm requires two solves on each subdomain, namely
steps 1 and 5. Many operations can be saved, however, since only one row of the solution is needed
in step 1 for the computation of the right hand side (2.7). Also, some of the computations in step
1 can be saved for step 5, since the right hand side for the subproblems in steps 1 and 5 differ
only at one or two rows of the grid points. With these savings, algorithm DDFPS can be made
computationally equivalent to the fast Poisson solver on a rectangle using FFT's in the x-direction
and solving n tridiagonal systems in the y-direction.

Ia
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