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CHAPTER 1

INTRODUCTION

1.1. History and Motivation

Most control systems problems can be characterized by the following

two basic questions: i) Does the problem consist of a single or multiple

decision makers? and ii) Does the system under consideration have known or

unknown parameters? Although control theory for single decision maker

ar problems has been well developed [1-5], we note that many complicated

single decision maker problems can be reformulated into simpler multiple

decision maker problems. This is exemplified by the concept of multimodeling

strategies for large scale systems [6]. This concept allows a large scale

system to be controlled by multiple decision makers using various simplified

models of the system. Each decision maker will attempt to individually

optimize his own simplified system, but due to modeling uncertainties, there

is no assurance that optimization by each individual decision maker will

lead to an optimization of the entire system. Therefore, the problem at hand

falls nicely into the general framework of stochastic game theory.

Past research in game theory has concentrated mainly on problems

involving systems with known parameters [7-9]. However, game theory involving

problems with some uncertainties in the system parameters appears to have

widespread applications in power systems, industrial systems (as described

4 above), and in various economic and military fields which warrant its

consideration. Consider, for example, a situation where several independent

firms are selling similar products in the same consumer market. Zach firm

is attempting to maximize its profit function, which is related through the

market structure to its own production level as well as the production
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level of its competitors. Realistically, each firm should have complete

knowledge of its own profit function, but not necessarily those of its

competitors. How should each firm proceed to operate? Motivated by this

problem and related examples, we propose to study in this thesis methods

for solving game problems with some uncertainties in the system parameters.

1.2. General Problem Description

There are two basic types of game problems: Nash games and

Stackelberg or leader-follower games. We will concentrate on a basic two-

player Stackelberg game, which is characterized by the fact that one of the

players, known as the leader, has access to more information than the other

player, known as the follower. At every stage of the game each player is

attempting to minimize his own cost functional. For additional simplifica-

tion we focus on the static case (no plant) so that the two cost functionals

depend solely upon the inputs of the two players. These two restrictions

should not cause any loss of generality because we believe that in the

future our results can be extended to both dynamical game problems and game

problems which involve additional players and levels of hierarchy.

In our problem we assume chat each player has complete knowledge of

his own cost functional. In addition, we assume the leader knows the stra1cture

of the follower's cost functional, leaving various weighting parameters as

unknown. For a general Stackelberg game we usually have interdependent cost

functionals, and thus the leader's cost will usually depend upon the

follower's input. Consequently, the leader will attempt to use his superior

position to try and influence the follower to react in a manner which helps

.a ....
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minimize the leader's cost. The leader can use his knowledge of the

follower's cost functional structure along with some estimates of the

unknown parameters to try and predict the follower's possible reaction.

This places the leader in a better position to minimize his cost because

he may now incorporate the follower's possible reaction into the optimiza-

tion procedure used to calculate his own input.

One method of implementing this procedure is through an incentive

control structure. In this method, the leader applies an input which is

fall functionally dependent upon the difference between the follower's actual

input and the follower's input desired by the leader. Incentive control

structures have already been applied to Stackelberg games with known system

parameters [9,10]. The methods described in these papers do not provide a

unique leader's input structure, but the question of selecting a particula-

input structure based upon a minimum sensitivity approach has been examined

[111. In this thesis we seek to extend the use of incentive control structures

to Stackelberg games with unknown cost functionals.

Our approach to this problem is based upon the concept of certainty

L equivalence [12] and the general theory of self-tuning regulators (13-161.

The algorithm we have devised to solve this problem is basically an adaptive

scheme which uses the output of a parameter estimator to self-tune the

leader's incentive control structure. A general block diagram of our

algorithm is given in Figure 1.1. Our scheme is iterative in nature and is8
best suited for "on-line" application. Convergence to the ortimal incentive

control structure is assured for the scalar case and produces satisfactory

results when applied to a higher (second) order example.
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u u(v) PROCESS V

CONTROLLER

INCENTIVE
CALCULATION

I____REGULATOR

Figure 1.1. A general block diagram of our algorithm.



1.3. Organization of the Thesis

This thesis is organized into five chapters. Chapter 1 is an

introduction and a general description of the problem. In Chapter 2 we

examine a first order Stackelberg game and develop two methods for itera-

tively adjusting an incentive control structure. Both of these methods

generate controls which converge to the optimal incentive control. Chapter

3 concentrates on developing a corresponding algorithm for a similar problem

of higher dimensions. It also describes some additional considerations

which are important in developing a higher order incentive control structure.

Chapter 4 contains some numerical simulption examples of both the first and

second order algorithms and comments on their performance. The thesis isI

summarized in Chapter 5, which also contains some thoughts on possible areas

for further research.
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CHAPTER 2

SCALAR STACKELBERG GAlES WITH UNKNOWN COST FUNCTIONALS

2.1. Introduction

In this chapter we study the problem of finding an optimal incen-

tive control for a scalar, static Stackelberg game with unknown cost

functionals. We begin by constructing a basic incentive input control

structure for the leader. Then we derive an expression for the optimal

incentive constant based upon estimates of the unknown system parameters.

It is not necessary to estimate the actual values of all of the unknown

system parameters since we seek only the information required to obtain the

actual optimal incentive constant. The majority of the chapter is devoted

to describing two separate parameter estimation schemes, each of which can

be used to iteratively produce controls which converge to the optimal incen-

tive control.

2.2. Problem Formulation

Let us consider a scalar, static, two-player Stackelberg game

prob-.em where the leader applies the scalar control variable u and the

follower applies the scalar control variable v. Each player attempts to

minimize for each stage his own quadratic cost functional which are given by

t2 + (vvt
J = (u-u ) R Lor the leader (2.1a)

JF u F + v F for the follower (2.1b)

%I.'~
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weeRL, L R Fsand S F are positive constants. Clearly J Land J Fare

t talways > 0 and from the leader's viewpoint (u , v ) is the optimal control

pair.

The information structure of this problem is such that each

player knows his own cost functional, but the leader also knows the structure

of the follower's cost functional. The leader also has the privilege of

requiring the follower to play his input v first. The leader then plays

his input u and,subsequently,both players may compute their costs for that

particular stage. This process is then repeated until an equilibrium con-

dition is reached.

The leader cannot be assured of cooperation from the follower so

he will attempt to use his informational advantage to try and force the

follower to cooperate. The leader may obtain an estimate (model) of the

follower's cost functional by combining his knowledge of the structure of

3 F along with estimates for the unknown weighting parameters. The leader

may now use this estimate of J to simulate the follower's optimization at

each stage and thus predict the follower's rational reaction pattern. This

* allows the leader to select his input u at each stage to optimize his cost

functional J with respect to both his input u and the follower's possible
L

reactionary input v.

There are many possible methods of implementing this additional

information to try and enforce cooperation. We concentrate on an incentive4

control input structure for the leader. With this structure the leader's

4nput u at each stage is functionally dependent upon the difference between

the follower's actual input and the follower's optimal input v~ desired bv

'411 1the leader. The mechanics of the game now proceed as follows [171:
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Step 1. At the beginning of each stage, the leader formulates his incentive

control input structure u(v), based on his parameter estimates, and

presents it to the follower.

Step 2. The follower calculates his input v by optimizing his cost func-

tional JF' knowing that the leader's input will be given by the

function u(v).

Step 3. The follower plays his input v and the leader's resulting input u

is calculated from the input structure u(v). The players then

compute their costs for that stage.

At the end of each stage the leader uses the additional information acquired

during that stage to update his parameter estimates and then returns to

step 1. The game continues in this manner until an equilibrium point is

reached. For our purposes, we will define an equilibrium point as an input

pair (u eV e) such that each player will play the same input at the next

stage. If the leader applies the optimal incentive control input, then

t t
obviously the optimal input pair (u ,v ) will be the resulting equilibrium

point.

2.3. Construction of an Optimal Incentive Control

The leader knows only the structure of JF and,therefore,he must
F and

atter,. to estimate the parameters R and S Let us denote by ^(i)
F F, F

SFi) the leader's estimates of RF and SF at stage i. From (2.1b) the

leader's estimate of the follower's cost functional at stage i becomes

1 (i) = u2 (i) + v2§(i)
F F F
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Let us collect the unknown system parameters RF and SF into a vector denoted(i -'(i) ad i

by a. Let the vector &i) consist of the estimates F and S
F F*

At each stage i consider a leader's input of the form

u . u +D v )(v -v). (2.3)

With this structure the leader's true input u(i) at stage i deviates from
t ~i

his desired optimal input u by an incentive constant D(&(i)) multiplied
by the difference between the follower's actual input v(i) at stage i and
by atistae i an

v t. Note that when v i t =v we have u u and J is minimized. To
L

achieve this minimum the leader must select the appropriate incentive

constant D(a

Given a particular structure for u (i ) as in (2.3), the follower

will select an input v(i) which minimizes JF as given in (2.1b). The leader

mav simulate this minimization by using his estimate given in (2.2) and

computing the solution to

dJF = F + -= 0 (2.4)

6d(i) (i) Dui (

where v(i) represents the leader's estimate of the follower's input v (')

at stage i. Solving this expression we obtain

'4' ^(i)
idJ)F  2v( S(i) + 2R i)D((i)[ut +D( (i))(v ()-vt)] 0 (2.5)

dv
( i )

a,

which reduces to

V - D(i) D ( )( ' v t -u t ] (2.6)
(D( ) +S()/RF(i))
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Th-edr-ihstoslc (& (i) ' t-

The leader wishes to select D ) so that vi=v at each stage. Setting
^ (i) Vt
v = in (2.6) produces

1(i) t

D(a) (i) t (2.7)

F

as the optimal incentive constant. We can see that D(& ( ) ) does not depend

explicitly upon both RF( ) and § ( i ) , but merely upon their ratio. Thus, the

leader need only estimate the ratio

M . § lk~i)(2.8)

With this notation the expression for the optimal incentive constant in (2.7)

reduces to

',c )- - -. (2.9)

utu

2.4. Parameter Estimations and Updating Techniques

The leader begins his estimation of x=S /R by making an initial
F F

guess (0). Since SF and RF were both positive, the ratio x is always
.(0)

positive and the initial guess x can bq constrained to positive values.

Using i(0), the leader computes D(.x ( 0 ) ) via (2.9) and his input structure

u(0) via (2.3),and presents it to the follower. After the follower computes

v (0 )  the true value of u (0 ) is obtained and both players may compute their

costs for step zero. At the end of this stage the leader must have a

method for updating *(0) which incorporates the new information acquired

during stage zero. We now consider the formulation of a general updating

procedure to be used following any stage i.

'-I

- > , "- ".o'" '-'"-" - 4- S4 """*" • C-"" "*"""'" "'""



3To update x(i) we first calculate the follower's actual input

v(i) at step i, with u(i) taking the form given in (2.3) and D(&(i)) as in

(2.9). This calculation is similar to the one in equations (2.4) and (2.5)

and yields

11 v(i) = D( ) [D(() )v t-u t (2.10)
Pq [D(&(i)) 2 +x]

We would like to update x(i ) so that v (i ) converges to v(i). The value of

(i) was given in (2.6), and by our selection of D(&(i)) this reduces to

(i) V. (2.11)

Therefore, we actually want to update x in such a way that v converges

M.t
to v(i) v , the optimal follower's input from the leader's viewpoint. We

have devised two separate methods for updating (i)

2.4.1. Error function method

Consider the following function of x (i ) , which measures the error

between v and v

(E ) i 7 (i) v(i))2 . l(i)_vt)2

Substituting (2.9) into (2.10) we obtain

2
) 2 23 2u . t M iV t +. (i) ut V t

( 2(i) 2  t + i(i) vt  +x ut Vt

From (2.13) we can calculate
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S(i) -Vt M u v () -x) (2.14)

TufUv(i) t +xui

Thus for u t0 and v t0 we have v M. vt if and only if i(i)=x. We also

find by differentiating (2.14) and treating x as a constant

- .i (2x (Vt3+ut I V (ix vt +xu )2 (i)vt (i) vt3+i(i)ut v

a.(i) i)2v t 2 +2 . (2.15

Let us restrict the domain of Ei( (1)) to positive values of i). Note

that E (i) as given in (2.12) is a positive definite function because

Ei x) -0 only when M. x, and Ei(x ) >0 at all other values of iof adjusting(i)(i) (i)

Our goal of adjusting such that v(i) converges to v can now be

accomplished by adjusting x such that Ei(x i ) converges to zero. We

propose to update i by using the following gradient technique on Ei(xi).
i

£(+I £i)= (i / (vi) (i)~

yV^ (i)+i MM- -vt) tV (i)v . (2.16)
x x

At the end of each stage i, the leader knows the value of the input vM

which the follower has just applied, and can easily calculate the quantity

v (i)v t. In addition, V,(i(i)i) can be calculated from (2.15) by using the
t t

known quantities v and ut, the current estimate x(i), and by substituting
^ (i)

x as an estimate for the unknown constant x. Thus, the leader has enough

information to implement the updating procedure (2.16). We know that x is

always positive so it is reasonable to require that i) always remain

positive. This can be accomplished by an appropriate choice of the step

size y. Our updating procedure leads to the following theorem.

A .• ; " " " " " > " - '" , ,'" '. " " ''"' .,'"'" ..'- ". ,- -.- . - " "," ' -"' ,'''%,\VV.,%' ". r..
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Theorem 1: The gradient technique for updating (i) based upon the error

function Ei(x ), applied with a sufficiently small step size y and by

using x(i) as an estimate for x in V (i)v(i), produces estimates (i) which

converge to the actual value of x.
Proof: The gradient algorithm for updating is given by equation (2.16).

Substituting (2.14) and (2.15) into (2.16) we obtain the updating

equation
vtx i)-sv 4 t^()22v3+2 1u2vt

(i+l) (i) t SFv t ut t X-i) ut vt 3 ()

2 2 2 2 2  (2.17)

- M 2 -x 1
LJ vx- J2 L l 2 7

The actual value of x is unknown to the leader so we substitute our estimate

for x in (2.17) to produce

Y 2i 2Y 2 (2.18)
S FY x( i) 2 v t 2  (xi)ut2+x i)vt)2

'

From (2.18) we see that the only equilibrium point for our updating scheme

t t
(if v ,u #0) occurs when

Rvx = Sv (2.19)F F

From (2.19) we see that this updating method has the desired equilibrium

point.

To prove that (i) converges to x we consider two separate cases:

i) Case 1: If i >x.

ii) Case 2: If (i)x.

a '',- , , .."* 'A,, "• : ..."' "' ... ''''''" ..,:.-.-.. ,.- ';-"> ' ".'.-,-" -.,' ...-'.
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For simplicity we rewrite (2.18) as

tRFVt(i)-s Fvt 4xt (i)+ (i)2 t2 t3
xYAx where Ax _

+ F yR where2 v t2  (i)ut 2 (i) 2vt2 ) 2

rSFRFFX(ijv i

(2.20)

By requiring x to be positive at all times, and since R and SF are positive

constants, we see that the denominator of Ax is always positive. Therefore,

we concentrate our interest on the numerator of Ax because sign Ax = sign AxM -

From (2.20) 
we have

=XNUM (vt 2 ut 2 p) ('(i)_x) (ut 2 (i vt 2 (i) 2  (2.21)

Examination of the case x >x

In this case we want to show that Ax> 0. It is obvious that the

first two terms in (2.21) are positive because RF is a positive constant

and M(i)-x is also positive. Furthermore, the third term of (2.21) is also

positive by our previous requirement that (i) be positive at all times.

The product of three positive quantities is always positive so (2.21) implies

that Ax is positive whenever x(i) is greater than x. Thus, whenever x(i) is

greater than x, our updating procedure (2.20) will produce an updated

estimate x(i+i) which is less than x(i) as desired.

Examination of the case x ( ) <x

In this case we want to show that Ax <0. Similarly as in the

previous case we find that the first and third terms of (2.21) are positive.

However, since x(i) is less than x, the second term in (2.21), -x, is

negative. This makes the expression Ax in (2.21) negative whenever x(i) is
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less than x. Therefore, if (i) <x our updating procedure (2.20) will

produce an updated estimate x(1+1) which is greater than x(i) as desired.

We have just shown that if i) is greater than (less than) x

then our updating procedure (2.20) produces a next estimate x which

is less than (greater than) i). By choosing y small enough such that
S(i+l)-x has the same sign as x(i)-x, we insure that the differences

ix(i)-xl form a monotonically decreasing sequence of errors which converge

qto its lower bound of zero. Therefore, for a properly chosen constant y the

updating scheme (2.20) produces estimates x which converge to x. This

completes the proof.

This updating scheme produces estimates ( which display a one-

sided convergence to x, with the direction of convergence depending upon

the selection of (0) If (0) > x then i) converges to x from above and

if x(0)< . then x(i) converges to x from below. Note that when E(i)

converges to x, D(t i )) in (2.7) converges to the optimal incentive constant

~SFVt

D* F (2.22)

RFu

A leader's input structure of the form (2.3) using (2.22) will generate the

optimal input pair (ut,vt).

2.4.2. Gradient on J method

A second method of updating (i) uses a gradient technique which

is based upon minimizing JL" Intuitively this method is the most logical

one because it adjusts x in a manner which creates the greatest decrease

in the value of JL' which is precisely the overall goal. This updating

IJ
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scheme is given by

-^(i+1) x -(i) ( . 3
x yV(i)JL. (2.23)

Using (2.1a), (2.3) and (2.9) we can rewrite JL as

J L = D (& (i) 2Lv (v v2)2 (i)-vt) 2 M SLV -t) 2 M 21 vt 2 RL+ S )(v (i ) -vt) 2. '.

u

(2.24)

We must be careful when calculating V ()iLto include the depen-

dence of both D&))and v (') upon x '. By the chain rule we have

d iJL 31JL v (i )  + 3JL D ( (i ) )  
(2 .25)ii (i) JL - -i"" ( M

J3D( ) -D( )

From (2.9) and (2.24) we can find

D(&(i)) -vt /u t  (2.26)

Jt (i) (vii)L

dc o2D( ) )-v t 2 _2ii) up on (i) t chai rl
J (i) ) 2 (i) -vt

;x~
i

) 
2

LS t 2 RL+SL -

L(2.28)

Substituting (2.26)-(2.28) into (2.25 we can write

v(i t i 1i)RLiv

SJL = 2t ( (i) +2 2 (+SL (i) (2.29)

u - u

At the end of each stage i, the values of the inputs v(i ) and u (i )

are known so all of the quantities in (2.26)-(2.28) can easily be calculated

2~() i) t)2 ( j*~~i)t 2SCi
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by the leader. The quantity is found by differentiating (2.13) as

before, and treating x as a constant. The resulting expression is the same

as in (2.15). Once again since the actual value of x is unknown to the

leader, he replaces x in (2.15) by his estimate i(i) which yields

Su( i )  ut4vt(i)x +x(i) 2u t2v t3(2.30)! (i----- =~C ( iv2 +P i)ut2) 2 2.0

ai(i) 2(i 2 22

v(i)

Using this expression for and the expression for v(1)-v t in (2.14), we

write (2.29) as

u - P\ t 2 ( t Ci
X(i, ( 2 2 t2 2

(t2 J t2 )() f22)v
x v +x u )

U [ 2 (i)x)t vx iv i (u2t R.+ U (i)-x vt~)c()u

2 222 2t2 22 2

[R v t (i)_x)(i v +i u )+xi ) v RL+SLU ) v +xut)]

(Ci) 2vt 2+xut 2 ((i) 2 t 2  2i)t 2
C v )Cx v +xMu

(2.31)

In the updating equation (2.23) let us again choose y sufficiently small such

that i(i) remains positive at all stages of the iteration. This leads to
~V4

the following theorem.

Theorem 2: For an initial guess x(O) large enough such that x(0) > x, the

iterative scheme detailed in (2.23), applied by using an appropriately small

I
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step size y and by substituting i) as an estimate for x in the expression
. ( ) i)(i)

3L' vU / produces estimates x which converge to the true value of x.

Proof: The algorithm for updating x ,given by (2.23),uses V i(i)JL which

takes the form of (2.31).

From (2.31) we see that our updating scheme has equilibrium
t t

points (if v , u #0) when

M2 t2 t2 2
(i) (x v +xu2) (2.32a)t 2 M 2 i 2 2 ((i)ut 2

v (x V +x

(i) X. (2.32b)

.-' Obviously, (2.32b) is the desired equilibrium point while (2.32a) is an

undesirable equilibrium point which we seek to avoid. By choosing y small

enough such that xi)M-x> 0 for all i, we can disregard the equilibrium

point (2.32a) because it is smaller than x.

It is obvious that the denominator of V (i)JL in (2.31) is

positive, so we concentrate our attention on the numerator because

sign 7 .i) = sign JL From (2.31) we have(i)J (i) LNUN"

7 1 J Lu = [2ut 2vt 2(ut 2(i) (i) vt 2X(i)x)][Rvt 2(x(i)-x)(x(i)2 vt
2

+(iut2 ) + ((i)2vt2 t2 ) 2 t2 t2

+x uS)+(x(vR v +xuu)(. (2.33)

We want to show that V J in (2.33) is positive. The~(i) JLNuM

difference x ()-x is always greater than zero by our choice of y and x(0),

so by inspection,we see that all of the terms in (2.33) are positive. This

makes both 7 i(i) JL and 7 ()JLNuM positive. Therefore, whenever x(i) x our
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updating scheme (2.23) produces an updated estimate (i+l) such that

x <i as desired. This completes the proof.

Unfortunately, if x is chosen such that < x, then we can

no longer guarantee that the estimates (i) produced by the algorithm in

". (2.23) converge to the actual value of x. We can, however, prove the

following theorem.

Theorem 3: For an initial guess (0) < x,the iterative scheme of (2.33),

applied with an appropriately small step size y and by substituting xi as

an estimate for x in the expression 3v(i)/ x i , produces estimates xi

which converge to the true value of x provided (O) satisfies the following

conditions

2 t2 22

(0-x = F(x ( 0 ) > (x v +xu ) (2.34)

v - ( x ) v t2 + u(0)ut2

1K 6F( 4(0) 2ut622(0)vt2ut4_3 4vt2ut4 5 t6 t 2 t4
=x u -3x v v -2x xv u

'(O) vt4((O) 2vt2+'(0)ut2 2  <3.
Xv(x v+ u ) (2.35)

Proof: Once again the updating algorithm (2.23) uses the expression

V (i)JL given in (2.31). Consequently, this updating scheme has the same

7, two equilibrium points given in (2.32a,b). The denominator of 7, MJL in
(ix

(2.31) is positive by inspection so sign 7 (i)JL sign 7( J This
c~)J M i)L m

allows us to concentrate on the reduced expression in (2.33).

We want to show that 7  1i)JL in (2.33) is negative. However,

this situation is more complicated than in Theorem 2 because we must also

avoid the undesirable equilibrium point given in (2.32a). We can insure

that the estimates x are always smaller than x by an appropriate choice *

I

.. .- - ..
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of y. This restricts the first term in (2.33) to negative values.

Therefore, a necessary condition for V (i)JLN to be negative is that the

second term in (2.33) be positive.

Our necessary condition is

t2(i)x 22 u2 (i22 2 2

v M -x)(x v +M u )+ (x v +xu t ) > 0 (2.36)

which reduces to

(i) t2 2 2

M(i - (x v +xu )
t 2 ^(2 (2.37)

v (x v +x iu t )

The expression on the right hand side of (2.37) is precisely the value of

the undesirable equilibrium point given in (2.32a). We see that if (2.37)

holds then 7, M <0 and the updating scheme in (2.23) will produce an

%(i+) which is greater than i) as desired. We now seek to find conditions

on x (0 ) to insure that x (i ) converges to x.

Rewrite (2.37) as

2vt2 2 2

.(i)x > _ 2(i) t +xu t  M

x -2 ) 2 2+2 F(x " (2.38)vt2(xi 2vt 2 +X i ut )

Now differentiate (2.38) with respect to x to obtain

F(x(i) 2 t6 2 2 i) 4u2v 2 xiM5 62 t 2 4

_-=) xu 4-2x v u 3x u v 2 v . xv u .(2.39)

(i) 4 2 2 2 2
v (x i v +x u

Notice that the denominator of this equation is always positive

and that as () increases, the numerator decreases. Consequently, if

F~x is negative, and m(i) :(i+I) t F(xit also be()X <X ,te - must lob
(i+ )

-is~
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negative. Thus for a negative value of aF(xi) we can conclude that if(i)
0(i)

(2.38) holds for x then it must also hold for x(i+ l" since

x(i+l) > .(i)-x and F(i+1 ) ) < Fxi)). (2.40)

Combining these results, we can guarantee that whenever < x our

algorithm (2.23), applied as stated in Theorem 3, will converge to x if

both equation (2.38) holds and -F~x-i)) as given in (2.39), is negative.

If we select y small enough such that x -x and x i+l)-x have the same
^(0)

sign, then we may generalize the above conditions to x . Therefore,
(0) (0), hnorsbeun

if (2.38) holds for x and (2.39) is negative for (0, then our subsequent

estimates (i) will converge to x. These are precisely the sufficiency

conditions given in the statement of the theorem and thus the theorem is

proved.

It is interesting to note that the sufficiency condition (2.34)

of Theorem 3 explicitly requires that the initial guess be larger than the

undesirable equilibrium point given by (2.32a). In addition, the

sufficiency condition (2.35) which states that F(x(0)< 0 is somewhat

analogous to insuring a locally convex function for our gradient technique.

However, the leader has no a priori information about the value of x and

thus has no way of knowing whether his initial guess will satisfy the

Srisufficiency conditions of Theorem 3. Therefore, in applications it is more

logical for the leader to select a somewhat larger value for his initial

guess 0), since Theorem 2 guarantees convergence to the actual value of x
q'I

from above. In general, the convergence, if it occurs, will be one-sided

and will depend upon whether is greater than or less than x. If (i)

does converge to x we are again assured that D( (i )) will converge to the

,.1," . . ... ' " ' . -g .,
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optimal incentive constant D* in (2.22). The resulting leader's input

structure from (2.3) by using (2.22) will generate the optimal input pair

(t vt
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CHAPTER 3

HIGHER ORDER STACKELBERG GAMES WITH UNKNOWN COST FUNCTIONALS

3.1. Introduction

Chapter 2 developed methods for finding an optimal incentive

control for scalar, static, two-player Stackelberg games with unknown cost

functionals. We now seek to develop corresponding methods for similar

problems of higher dimension. In this chapter we concentrate on a second

order game and again adopt a basic incentive input control structure for the

leader. In this case we no longer have an incentive constant, but rather a

2x2 incentive matrix which provides great flexibility. The leader is free

to select the structure of this incentive matrix, the elements of which

j depend upon his estimates of the unknown cost functionals. The resulting

optimal incentive matrix may or may not be unique, depending upon the

structure chosen by the leader. Generally, the leader may use his freedom

*in selecting the incentive matrix to satisfy specific design considerations

as described at the end of the chapter.

.. Paralleling the scalar case, it is again unnecessary to precisely

estimate the actual values of the unknown system parameters. It suffices to

obtain enough information about these parameters to find the elements of the

optimal incentive matrix. The parameter estimate updating method utilizing

a gradient technique on JL provides good results and its details are

described in Section 3.4.

15 .. ) . • . .. ,. .. .. ,.-.--> --?z ... ;-..v . -. - - "t~.? . .- ...- - --. . * ! - . , -.
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3.2. Problem Formulation

We now consider a general problem similar to that of Chapter 2

but with higher dimensions. Assume that the control inputs are given by

the 2xI vectors

7,? [u1  -V1 ]
u -- for the leader AND v for the follower.

u 2u2 . v 2

Each player again tries to minimize at each stage his own quadratic cost

functional given by

JL (u-u t)'R ( u - u t) + (v-v ) S L(v-v ) for the leader (3.1a)

JF = U'RFU + V'SFv for the follower (3.1b)

where RLO SL9 RF9 and SF are all symmetric, positive definite 2x2 matrices.

Thus, JF and JL are always >0 and from the leader's viewpoint an optimal

solution is given by the input control pair

u t v
t 1  t 1-- t AND vt = i

We assume that the information structure of this problem and

I t t

the steps followed in playing the game are the same as described in

Section 2.2. At the end of each stage the leader will use the new infor-

mation obtained during that stage to update his parameter estimates and the

of the game will begin. The players will continue to play until
next stage o Lh gam e to
an equilibrium point is reached as previously defined.

* *&~~~ ~~ ~ *,*>i
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3.3. Construction of an Optimal Incentive Control

The weighting matrices RF and SF of the follower's cost functional

are unknown and thus the leader will attempt to estimate them. Let i)nd
Ri,

5(i) denote the leader's estimates of the matrices R and S at stage i.
F F F

There are actually only five unknown elements in the matrices R and SF F

since they are both symmetric and can be scaled such that R = 1. Let us

stack the unknown elements of RF and SF into a vector a. Then &(i) is the

stacked vector representing the estimates aI ' 2i) and (i)

of these unknown elements at stage i.

Consider an input of the form

u u +D<c )(v -v) (3.2)

[^(i) ()
where D(& (i ) ) is now a 2x2 matrix. D )( i) 11 12

D21 D22 .

(i) (i)
From (3.2) we see that in general each of the leader's inputs uM and u2i.

1 2,

depend upon both of the follower's input deviations from the desired input.

The leader may now use the follower's estimated cost functional

F u, ui) + v F(i) v (3.3)

to calculate an estimate of the follower's response v to the incentive

input structure u(i) of (3.2). This is done by finding the vector

which minimizes (i) From basic calculus and the chain rule, is a

solution to

dF ) F F i) 0. (3.4)
dv 3 (u)i+ - (u)

.'.... .-. .. .. ..:;:; . .:....:;::::,.?. : :. ...... :i.: :.:-:..,. .-:, - < i.: . -:-::- '' : <'- -- .: '.' ."
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We may solve (3.4) using (3.2) and (3.3) to obtain

(v 'I " (i)' i))

) D(F ~ )-ut-F Da ][SF + F

(3.5)

The leader wants to choose D( s(i))  th i t With this equality

(3.5) reduces to

t-u i D( i) vt:() (3.6)
-u RF = )F

Expanding the matrices in (3.6) we obtain

-ut(i) +(i)(i) _u -u()(i) ) ffi tv(iS +vS(i) (3.7a

1 R D1 F12 21 2 (F12 11 F22 21 1 Fl 2 F12

-t (i) + D(i)((i), u (i)-D(i ) +v t M

U 1 2  F12 22 )- 2  F12 12 +RF 2 2D 2 2  V1 F12 2 F22 (3.7b)

which reveals a system of two equations and four unknowns (i) _,(i) (i)
11  12 ,21

22 Hence our solution for D( i ) ) is certainly non-unique and has two

degrees of freedom [18].

To insure a unique solution we suppose the leader chooses D(J (i))

to be a diagonal matrix. That is,

D(i) 0
D(&( i ) ) = Ul (3.8)

L 0 D I', [ 0 22

Then (3.7a,b) reduces to

.t- t (i) a(i) t§(i) + tg(i) (.a

4"'1 -UU2 F12 11 1 VlFll 2 V2F12

tt'(i)(-u Ru i §t)(i) + v 2  (3.9b)

(-UIRF 92U 2 F 22) 22 1 F2 2 F22

and we have

4~!
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St (i) t^ (i)

(i) vlFll+ 2 F12 (3.a)

11 - t t (i)u 1 +u 2 RF1 2

t (i) t (i)
viSF (3.1b)

22 t(i) t (i)
Ulp-Fl 2 ' U2PF22

as the elements of the incentive matrix D(&(')). The optimal diagonal

incentive matrix elements D* and D2 can be found from (3.10a,b) by using
11 22

the actual values of RF12 - RF2 2' SF11' SF12' and SF2 2.

3.4. Parameter Estimations and Updating Techniques

The leader begins his estimation of the unknown parameters in a

by making an initial guess & . Since we know that R and SF are positive

definite matrices it is advisable to select this initial guess &(0) such

that the resulting matrices, and S , are both positive definite. The

leader may use these parameter estimates to calculate his input structure

u(0) via (3.2), (3.8), and (3.10a,b) and present it to the follower. The

follower will optimize his cost functional (3.1b) with respect to this

leader's input structure and present his input v(0) . The subsequent value

of u(O) may be obtained from (3.2) and each player may then compute his cost

for stage zero. At this point the leader wishes to have a method for

updating his parameter estimates before beginning stage one of the game.

We now consider the formulation of a general updating procedure which can

be used following any stage i.
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The follower's true input v at any stage i can be found by

optimizing JF in (3.1b) with respect to v i) and u(i) as given in (3.2).

By the chain rule v(  is a solution to

dJF 3J F (i)

dv(i) +vai) M M 0 (3.11)dv v~) u~i  av~

which leads to

'(i))) (a I (i) ))-. (3.

(-ut +v t D (& ' ) D(a RD( i) 3.12)

This value of v(i) will produce a corresponding leader's input

u according to (3.2). Once these values are obtained, the leader may

calculate his cost JL for step i. At this point the leader wishes to update

his estimate P) by making use of the information gained during step i.

Corresponding to the first order (scalar) case,this can be done by using

a gradient technique based upon minimizing JL"

Since there are five estimated parameters in P(i), the leader must

have five separate equations for updating his estimate. In general, we

write

&(i+l) = am1 _V &M i L  (3.13)

~which is, in fact, the five equations

(i+l) Mi

F12 F12 y7 iV (3i)Ja

• RF12
(i+l) i) (3.14b)

RF22 R F22 Y7i(i)JL

F22

S(i+l) M SFF11I S F I I -y7 (i)JL (3 .14c) .

.. ,.
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(i+) F - YV J (3.14d)UF12 F12 (i) JL

~(i+1) M (i
F22 'F22 yV §(i) JL" (3.14e)

-F22

Expanding the matrix equations (3.1a) and (3.12), the leader may obtain the

following expressions for J i  and v(i) in terms of known quantities, the

parameter estimates a(i), and the unknown parameters a. (Recall that

and D 2) were both functions of known quantities and the estimates Ci)

b (i)2  .I2 (i) t. 2.^2(i)B(i)2 2 (i) t( 11 v -V1  11  22 R 12(v1  -V1 1v 2  -v2)+ 22 RL22 2  2
J L & v

~\+ SL1(viM- t )2 +s ((i) vt) ()- t )+ v(i)- )
L-v 1  ) +2SL 1 2(Vl -V1 ) (v2  v2)+SL22(v2  2

(3.15)

/ (i) tb(i) t ^() tb(i) ut 22 22 2
11[D (V1D11 -u1)+R1 2 11 2 22 2)](S22+R 22 )

Rn, vi) b(i) t6(i) ut BM1 t-(i) t - W -
v 1 \-[RI2 D22 (vl1 l1-1l)+R 22 D22 (v 2 D22 -u 2)]SI2+DI 11 2 R 12)

[S b(i) 22 ) - (SI2+DI (1 2
122112 2 2 22 12 2212

~(3.16a)

Ci) B ) tB (i) U t 6 ( ) t u(i) t . + (i ) 21[ u1222 (v 1 11-Ul)+ R22 22 (v 2uD22 -u 2]S22+D11
v~i). -1(')(vtb(" -t) 5(i)( t-(i) ut MS+(i) b(i)R(31b

2 D11 ( 1D11  1 1 1 22 12 11 22 12
(VlDI ) tv2u22

(Sthe D )(S+R 2  (i)- (S+6(i ) 6() R2 )

)1 122 -22 1 1 22

Using the chain rule and equations (3.10), (3.15), and (3.16a,b),

we can find the quantities (i 7(i)""'7( through a lengthy, but
RF12 RF22 F22

straightforward process. For example,

7-"
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/d L aL 11 JL u22 JL 1

+7L 1 1(3.17)

M ()

3v2j aR

412 12 12ll

_JL _JL JL
3 L Aand M are found by differentiating (3.15). The

ab M a(i)
2 (i) 2i)

equations for v i) and V i  in (3.16a,b) contain the unknown parameters in
12cts emutot i ()(i)

.a so we must obtain (i ) and (i by differentiating (3.16a,b) and treating

these five unknown parameters as constants. However, our resulting expres-

av(i) av~i)

sions for 1 and 2 will still contain these unknown parameters so
PFI12 P-I12

we need to replace them with our corresponding parameter estimates. After

making this substitution, all of the quantities on the right hand side of

(3.17) will be known and we can calculate V ji)JL .
RF12

Calculations of the gradient of JL with respect to each of the

other four estimated parameters are similar. Once these values are computed,

the leader may use (3.14a-e) to update his parameter estimates and obtain

-(i+l) which are used to begin the next stage i+! in the game.
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3.5. General Aspects of the Higher Order Problem

In this section we will attempt to address a few general questions

pertaining to the higher order problem we have just studied. We will assessI

the performance of our algorithm in solving actual numerical problems,

and discuss some implications stemming from the incentive matrix

flexibility.2

3.5.1. Implications of the incentive matrix flexibility

From equations (3.7a,b) we can see that there are only two

equations governing the four elements of the 2x2 incentive matrix.

Consequently, the optimal incentive matrix D(& (i)) is non-unique and has two

degrees of freedom. A closer inspection of (3.7a,b) reveals that 6(') and

21are isolated in one equation while 6()and 6()are isolated in the

N other. This decoupling allows us to solve for the columns of the incentive

matrix independently of each other t181.

N If we allow the incentive matrix to be a general 2x2 matrix, then

each of the leader's inputs u I and u 2 will depend on both of the follower's

inputs v1 and v. However, if the incentive matrix is restricted to a

diagonal structure,as it was throughout this chapter, then there is a slight

partitioning of the control space. In this case u1 depends only upon v1

* and u2 depends only upon v2

Although we selected a diagonal incentive matrix for simplicity

and to insure a unique solution, there are certainly other meaningful ways

V to exercise the two degrees of freedom. One of the most useful methods

would be to select the optimal incentive matrix in a manner such that the

optimal incentive control is robust to parameter estimation errors [19).

% %a
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Specifically, the leader would like to minimize the sensitivity of his

*cost functional J Lto variations in the parameter estimates &('~). This

method has been studied for the deterministic problem [11], and its ideas

should be extendable to the problem at han(*.

To minimize the estimation procedure, we also investigated the

possibility of limiting our estimations strictly to the elements of the

incentive matrix D. This approach was appealing because in the case of a

diagonal incentive matrix it reduced the number of elements of & from five

~~2'RF2S
5F1'SF 2.and SF22) to two (61and D22). Even with the

-most general form of the incentive matrix the number of elements of & is

reduced from five to four. Although the concept seemed promising, we were

unable to find a suitable method for directly updating the estimates of

and D 2due to a lack of information about the unknown and unestimated system

parameters. Therefore, we adopted our present approach of attempting to

estimate all of the unknown system parameters, and then constructing the

optimal incentive matrix at each stage as a function of these estimates.

3.5.2. Performance analysis of the algorithm

Unlike the scalar case, we have thus far been unable to analytically

prove that the iterative method described in this chapter will indeed

produce a sequence of incentive control structures which converge to the

optimal incentive control. Nevertheless, extensive simulation studies utilizing

this iterative method have produced some good convergence results.

Since our parameter estimates are updated by using a gradient

method on J LO we expect the value of JLto decrease at each successive

stage of the game. We also expect J L to converge to its optimal value of



33

zero unless it settles at a local minimum. Unfortunately, we must remark

that we cannot be totally assured of a monotonically decreasing J L, because

strictly speaking, our updating technique is not a true gradient technique.

Recall that our calculation of expressions such as d~i

1ii and , used in

F12 F12

the updating technique involved some of the unknown system parameters a.

This prevented us from calculating expressions which were crucial to the

updating process. To circumvent this problem,we replaced the unknown para-

meters a with their most recent estimates &(i),ealnustcluae

stitution is of small consequence provided the values of h(i) and 2

computed from the estimates a(' are close to their optimal values. It does

icreate greater difficulties in cases where the computed values of 6()and

-, are less accurate estimates of their optimal values.

Our simulation studies appear to confirm the "near-gradient"

nature of our updating scheme. For a relatively good initial guess &()

i.e., a guess such that ()and D(0 are "reasonably close" to their optimalI

values D and D* our scheme does indeed behave similar to a gradient

technique and the resulting leader's cost Jdecreases monotonically to

1(0)
zero. However, for a less fortunate initial guess a ,our schemeI

deviates from the behavior of a gradient technique and does not producea

* monotonically decreasing JL In some of these cases our scheme actuallv

exhibits a behavior characteristic of dual control [12] by sacrificing the

minimization of JLover an initial iterative period in order to gain better

estimates of the unknown parameters. Once the scheme achieves parameter

estimates which provide sufficiently accurate estimates of and

11 22
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it then proceeds to generate control inputs which result in a monotonically

decreasing J L An example of this phenomenon is illustrated in Figure 3.1.

From this figure we can see that the leader's cost actually increases for

approximately the first ten iterations before beginning its monotonic decent

Y towards zero.

Simulation studies have also revealed that our scheme will not

necessarily provide accurate estimates &(i) for the actual values of a. In

cases where our scheme successfully generates the optimal incentive control,

* .~ the leader's cost functional approaches zero and the generated values

7- 2211 22

Consequently, the follower's actual inputs (i) and v(i) also approach their

desired values of v 1 adv 2. In general though,the estimates &(' do not

necessarily approach a. In fact, the estimates of some elements of a may

converge to values far from their actual value. From this we can see that

our scheme is not actually attempting to estimate a,- but merely uses the

estimates & (i) as a vehicle through which it can compute and adjust the estima-

tions D(11 and D 2i) Thus, although we were unable to accurately estimate

the elements of the optimal diagonal incentive matrix by themselves, as

discussed in the previous section, we are able to accurately estimate these

elements by expressing them as functions of estimates of the unknown system

parameters.

The selection of the step size y is crucial in applying our itera-

tive scheme. It must be chosen small enough to avoid large overshoots in

the parameter estimations, but large enough to provide a sufficient adjust-

ment in the incentive matrix. This will insure an adequate rate of

convergence. In the event that the scheme becomes bogged down at an

.vZ

---------------------------------------------------p. -3.- 1A"
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undesired local minimum, the authors propose restarting the algorithm with

an entirely new initial guess &''. No recommendations are made regarding
' ^ (0)

restarting the algorithm with an initial guess & modified from the

previously unsuccessful initial guess.

3.5.3. Generalization of the algorithm to higher dimensional problems

In this chapter we have developed an algorithm which iteratively

computes incentive input controls for the leader in a static, second

order Stackelberg game with unknown cost functionals. This algorithm was

developed without using any inherent properties of the second order problem,

leading us to believe that it can be extended to a general n-th order

SJproblem. In a general n-th order problem,equations (3.7a,b) will represent

a system of n equations and n2 unknowns. This results in n(n-1) degrees of

. - .freedom in selecting the optimal incentive matrix. We can once again be

assured of a unique solution by considering only diagonal incentive

matrices. Furthermore, we believe that this solution can be computed by

applying a generalized algorithm similar to the one described in this

chapter.

A.,
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CHAPTER 4

SIMULATION EXMPLES

In the previous two chapters we have discussed methods for

deriving optimal incentive controls for two-player Stackelberg games with

unknown cost functionals. We now demonstrate the results of these

methods via a few numerical examples. The first example is a realistic

economic problem which uses the theory of Chapter 2and implements the

error function method for updating parameter estimations. The second

example demonstrates the algorithm described in Chapter 3 applied to a second

order problem.

4.1. A Scalar Economic Example

Consider the following economic problem [20,21] illustrated in

Figure 4.1.

A monopoly N operates in a market with a demand curve specified

by p= A -A 2q and with a flat marginal cost curve NC- C dollars/unit. The

government, which does not know the value of the parameters A or A 2, wishes

to regulate this monopoly in such a way that its production output will be

equal to q*, the same quantity which would be produced in a purely competi-

tive market. We do assume, through market surveys or estimates, that the

government does have knowledge of the current operating point (qm,p,). The

government regulation may be either a tax or a subsidy, and can be applied

in either a lump sum or per quantity method.

Let p- price and q =quantity produced. We have a demand curve

specified by
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Price
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Pm "Current Operating Point

., |Government
C=P Desired Operating Point
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I I
q qm q*

Quantity

Figure 4.1. Government regulation of a monopoly.
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p = A 1 -A 2q. (4.1)

By economic theory [21] we know that the marginal revenue (MR) curve has the "

same intercept and twice the slope of the demand curve. Thus,

MR - A1 - 2A2q. (4.2)

Since we know that (q-'Pm) must be a point on the demand curve,we can

express A as a function of A and thus eliminate one of the unknown
1 2

parameters. From (4.1) we have

A, = pm + A 2qm "  (4.3)

We know that the monopolist will produce at a level where NR=MC. Let us

assume that the government decides to provide a subsidy of S dollars per

unit produced. If A2 were known, then

11 2 2
SMR -MC >A I+S- 2A q  =1 A A 2 *  ' = A~*(4.4)

would be the optimum subsidy. However, A2 is unknown so the government will

attempt to estimate it with &(i) Consider the incentive structured subsidy

S= qi) + D(A(i))(q-q*). (4.5)
2 q+ 2

Given this subsidy,the monopolist will still produce at the level of ouptut

which maximizes his profit. To estimate this level of production q(i) the

government solves (using A2i) as an estimate for A2)

F 2.

F(i) 0 (4.6) K

where

FM q i(PRICE-COST) q q) 47F 2 m mI
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is the monopolist's total profit. Solving (4.6) by using (4.7) we obtain

.'.+ , <:,> _C +D (i')) q* - i 'q*- - M> q,, '
~()= 2 2 m 2 m (4.8) -• +<,,<2(D( ))-+>

as an estimate for the monopolist's production level. Setting j(') in (4.8)

equal to the desired output q*, the government calculates its optimal incen- %

tive constant to be

( i Ma(q, _) +C -pm

D (A " 2 (4.9)
2 q

However, since our estimate A2 of A2 is probably incorrect, the monopolist's

true production level will probably differ from q*. Solving (4.6) and (4.7)

with the actual value of A2, we find that the monopolist actually produces

q = (C P +A 2  q* q units. (4.10)(C - pr+ A2(q*-qm) - A:4*) !!

Now consider the positive definite error function

Ei = I (q(i)q*)2 . (4.11)

The government may update its estimates for (i) by using a gradient method
2

on Ei

A2  -yV (i)Ei A2  - y(q M _q M (4.12)
2 2

Differentiating (4.10) and using A2 as an estimate for A2, we have

___i) (4.13)2 (C -P -M A 2qm)

which is substituted into (4.12) to generate the final form of the updating

equation

. + , _+ + u+ _ +,L', T , ,•, + .,
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i(i) + y(q (i)q*) [ 2  (4.14)
2 2 (C - p m -A Aq m

In this example let our variables take on the following numerical values

A- $450

A2 - $1.50/unit

qm - 130 units

Pm $255/unit

p* - cost C = $60/unit

q* - 260 units

- = .00001

sigma - 3.0.

Then the updating equation (4.14) takes the form

Ai+l) = Ai)+ y(i)_ ( 26 02) 60A2 )(4.15)
22-(i) (415

Assume that the government makes an initial guess of A0) .65. By simula-

tion with a small amount (35dB S/N ratio) of noise, we obtain the results
(i)

illustrated in Figures 4.2-4.4. Figure 4.2 illustrates the estimate A2

at each stage i. In this case A2 converges to the actual value of 2

rather quickly (in approximately twenty iterations). Using these estimates

Ai to implement the incentive structured subsidy computed from (4.5) and

(4.9), the resulting quantity produced and market price at each stage i are

displayed in Figures 4.3 and 4.4, respectively.
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4.2. A Second Order Example

Consider the following second order numerical example
= t + t ' t(41a

JL = (u-ut) RL(u-ut) + (v-v ) SL(V-V t (4.16a)

J i = U'Ru +v'S v (4.16b)
F F

where u {fi is the leader's 2xl input vector
u 2

and is the follower's 2xl input vector.

"* Suppose we have the following values

Su tf 2.8 V M2.5 (4.17)

3.4 4.6

1.0 .63 ] .88 1.1].

= [ 63 SL - 1[ 1 ZI (4.18)

RF [1.0 .75] SF 4 :2 .65 (4.19)S.75 1. .65 1.

and the leader, who does not know the contents of the matrices RF and S.,

wishes to apply an optimal incentive input

u(i)  u +D )(v -v) (4.20)

where D(,(i) ) is a diagonal matrix.

From equations (3.10a,b) and (4.19) we find the optimal diagonal

incentive matrix elements to be

D* -. 8603 - -1.417. (4.21)
1. .22
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Thus, D -- is the optimal diagonal incentive matrix. Using
0 -1. 417]"

the algorithm described in Chapter 3 along with the initial guesses

- 0 2.0] §(O) 1 (4.22)Pl- F. . .8 1 .0

and a step size y= .002, and applying at each stage i the incentive

control calculated from (3.2), (3.8), and (3.10), we obtained the simula-

tion results displayed in Figures 4.5-4.9. These results include a small

amount (45 dB signal/noise ratio) of noise. Figure 4.5 displays the leader's

cost J L incurred at each stage, while Figures 4.6-4.7 illustrate the

values of Dl1 and D 22 calculated at each stage. We can see that JL

approaches its optimal value of zero and Di ") and 622 each approach their
11 22

optimal values. The resulting components v(i) and v(i) of the follower's
1 2

input are displayed in Figures 4.8 and 4.9, respectively. These plots also

approach their desired values of v I and v2.

1 2

-2.
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CHAPTER 5

SUMMARY AND CONCLUDING REMARKS

In histhesis we-vused the certainty equivalence approach

and the theory of self-tuning regulators to derive an iterative method

which generates an optimal incentive control for the leader in a static,

two-player Stackelberg game with unknown cost functionals. method uses

all available degrees of freedom to restrict the incentive matrix to a

diagonal structure. This restriction assures the leader of a unique optimal

incentive control. Convergence to the optimal incentive control has been

proven for the scalar problem and simulation studies have shown good conver-

gence results for the second order problem. Wa i2all-be±:iv that this

method is extendable in its present form to a general n-th order problem.

In Chapter 4 we applied our-iterative method to a scalar economic

example involving government regulation of a monopoly. A simulation study

of the problem revealed that the desired regulation was indeed achieved.

'-." We also demonstrated the effectiveness of o method on a general second

order numerical problem.

Future research regarding application of optimal incentive controls

to Stackelberg games with unknown cost functionals may now focus on two

general areas. Starting with the iterative method detailed in this thesis,

one may abandon the diagonal incentive matrix structure and attempt to use

the resulting degrees of freedom to satisfy other useful criteria. An

example of this is given by the minimum sensitivity design approach

mentioned earlier. It is ae desirable to txi.va extend the

existing methods to dynamical systems and to problems involving more than

two players.

-A.N. . .
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