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CHAPTER 1

INTRODUCTION

1.1. History and Motivation

Most control systems problems can be characterized by the following
two basic questions: 1) Does the problem consist of a single or multiple
decision makers? and ii) Does the system under consideration have known or
unknown parameters? Although control theory for single decision maker
problems has been well developed [1-5], we note that many complicated
single decision maker problems can be reformulated into simpler multiple
decision maker problems. This is exemplified by the concept of multimodeling
strategies for large scale systems [6]. This concept allows a large scale
system to be controlled by multiple decision makers using various simplified

models of the system. Each decision maker will attempt to individually

optimize his own simplified system, but due to modeling uncertainties, there
is no assurance that optimization by each individual decision maker will

lead to an optimization of the entire system, Therefore, the problem at hand
falls nicely into the general framework of stochastic game theory.

Past research in game theory has concentrated mainly on problems

involving systems with known parameters [7-9]. However, game theory involving

problems with some uncertainties in the system parameters appears to have

widespread applications in power systems, industrial systems (as described

:i above), and in various economic and military fields which warrant its

:@ consideraticn. Consider, for example, a situation where several independent

i firms are selling similar products in the same consumer market. Iach firm

i% is attempting to maximize its profit function, which is related through the

o market structure to its own production level as well as the production :
™

3
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level of its competitors. Realistically, each firm should have complete

knowledge of its own profit function, but not necessarily those of its
competitors. How should each firm proceed to operate? Motivated by this
problem and related examples, we propose to study in this thesis methods

for solving game problems with some uncertainties in the system parameters,

1.2. General Problem Description

There are two basic types of game problems: Nash games and
Stackelberg or leader-follower games. We will concentrate on a basic two-
player Stackelberg game, which is characterized by the fact that one of the
players, known as the leader, has access to more information than the other
player, known as the follower., At every stage of the game each player is
attempting to minimize his own cost functional. For additional simplifica-
tion we focus on the static case (no plant) so that the two cost functiomals
depend solely upon the inputs of the two players. These two restrictions
should not cause any loss of generality because we believe that in the
future our results can be extended to both dynamical game problems and game
problems which involve additional plavers and levels of hierarchy.

In our problem we assume that each plaver has complete knowledge of
his own cost functional. In addition, we assume the leader knows the srructure
of the follower's cost functional, leaving various weighting parameters as
unknown. For a general Stackelberg game we usually have interdependent cost
functionals, and thus the leader's cost will usually depend upon the
follower's input. Consequently, the leader will attempt to use his superior

position to try and influence the follower to react in a manner which helps
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minimize the leader's cost. The leader can use his knowledge of the
follower's cost functional structure along with some estimates of the
unknown parameters to try and predict the follower's possible reaction.
This places the leader in a better position to minimize his cost because
he may now incorporate the follower's possible reaction into the optimiza-
tion procedure used to calculate his own input.

One method of implementing this procedure is through an incentive
control structure. In this method, the leader applies an input which is
functionally dependent upon the difference between the follower's actual
input and the follower's input desired by the leader. Incentive control
structures have already been applied to Stackelberg games with known system
parameters [9,10]. The methods described in these papers do not provide a
unique leader's input structure, but the question of selecting a particula-~

input structure based upon a minimum sensitivity approach has been examined

[11]. In this thesis we seek to extend the use of incentive control structures

to Stackelberg games with unknown cost functionals.

Our approach to this problem is based upon the concept of certainty

equivalence [12] and the general theory of self-tuning regulators [13-16].
The algorithm we have devised to solve this problem is basically an adaptive
scheme which uses the output of a parameter estimator to self-tunme the
leader's incentive control structure. A general block diagram of cur
algorithm is given in Figure 1.1. Our scheme is iterative in nature and is
best suited for "on-line' application. Convergence to the oprtimal incentive
control structure is assured for the scalar case and produces satisfactorv

results when applied to a higher (second) order example.
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1.3. Organization of the Thesis

This thesis is organized into five chapters. Chapter 1 is an
introduction and a general description of the problem. 1In Chapter 2 we
examine a first order Stackelberg game and develop two methods for itera-
tively adjusting an incentive control structure. Both of these methods
generate controls which converge to the optimal incentive control. Chapter
3 concentrates on developing a corresponding algorithm for a similar problem
of higher dimensions. It also describes some additional considerations
which are important in developing a higher order incentive control structure.
Chapter 4 contains some numerical simulrtion examples of both the first and
second order algorithms and comments on their performance. The thesis is

summarized in Chapter 5, which also contains some thoughts on possitle areas

for further research.
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CHAPTER 2

SCALAR STACKELBERG GAMES WITH UNKNOWN COST FUNCTIONALS

2.1. Introduction

In this chapter we study the problem of finding an optimal incen-
tive control for a scalar, static Stackelberg game with unknown cost
functionals. We begin by constructing a basic incentive input control
structure for the leader. Then we derive an expression for the optimal
incentive constant based upon estimates of the unknown system parameters.

It is not necessary to estimate the actual values of all of the unknown
system parameters since we seek only the information required to obtain the
actual optimal incentive constant. The majority of the chapter is devoted
to describing two separate parameter estimation schemes, each of which can
be used to iteratively produce controls which converge to the optimal incen-

tive control.

2.2. Problem Formulation

Let us consider a scalar, static, two-player Stackelberg game
prob.em where the leader applies the scalar control variable u and the
follower applies the scalar control variable v. Each plaver attempts to

minimize for each stage his own quadratic cost functional which are given by

(u—ut)zR

[
[}

t2, z - v a9
L + (v=v) 5S¢ for the leader (2.1a)

“ s ]
F u‘RF + V‘SF for the follower (2.1b)

<
]
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where RL’ SL’ R

P’ and SF are positive constants. Clearly JL and JF are
always > O and from the leader's viewpoint (ut,vt) is the optimal control-
pair.

The information structure of this problem is such that each
player knows his own cost functional, but the leader also knows the structure
of the follower's cost functional. The leader also has the privilege of
requiring the follower to play his input v first. The leader then plays
his input u and, subsequently, both players may compute their costs for that
particular stage. This process is then repeated until an equilibrium con-~

dition is reached.

The leader cannot be assured of cooperation from the follower so

Sl

he will attempt to use his informational advantage to try and force the

follower to cooperate. The leader may obtain an estimate (model) of the
follower's cost functional by combining his knowledge of the structure of
JF along with estimates for the unknown weighting parameters. The leader
may now use this estimate of JF to simulate the follower's optimization at

each stage and thus predict the follower's rational reaction pattern. This

PRSI W LI TIPS WS- S

allows the leader to select his input u at each stage to optimize his cost

functional JL with respect to both his input u and the follower's possible

reactionary input v.

There are many possible methods of implementing this additional

information to trv and enforce cooperation. We concentrate on an incentive

4 A 2 CRR KXY

control input structure for the leader. With this structure the leader's
input u at each stage is functionally dependent upon the difference between

k] 1 . . t . -
the follower's actual input and the follower's optimal input v desired bv
¢ P p 3

"R LY AN . 4.

the leader. The mechanics of the game now proceed as follows [17]:
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.Ei Step 1. At the beginning of each stage, the leader formulates his incentive
et

(P

%ka control input structure u(v), based on his parameter estimates, and
I‘ "
¥ 'Q(‘
@&h presents it to the follower.
(é}l’h
v Step 2. The follower calculates his input v by optimizing his cost func-
2* ,*:
%st. tional JF’ knowing that the leader's input will be given by the
RheR
;ﬁ:ﬁ function u(v).
. Step 3. The follower plays his input v and the leader's resulting input u
e
iyfé is calculated from the input structure u(v). The players then
5
ity
:&Ha compute their costs for that stage.
TN At the end of each stage the leader uses the additional information acquired
{::} during that stage to update his parameter estimates and then returns to
ey
:;u% step 1. The game continues in this manner until an equilibrium point is
5 reached. For our purposes, we will define an equilibrium point as an input
s
a{ﬁ pair (ue,ve) such that each player will play the same input at the next
A
e stage. If the leader applies the optimal incentive control input, then
o, obviously the optimal input pair (ut,vt) will be the resulting equilibrium
Do)
e
R point.
il
!.' L'\'
"1'4‘;/'\
1293
:‘ 2.3. Construction of an Optimal Incentive Control
[
h,i The leader knows only the structure of JF and, therefore, he must
L atzem, T to estimate the parameters R, and S_,. Let us denote by ﬁ(l) and
%$?$ F F F
» .
I S(i) the leader's estimates of R_ and S_ at stage i. From (2.1b) the
:,'1 #} F F F
!. \ . . .
3{4: leader's estimate of the follower's cost functional at stage i becomes
g . .

; (1 22(4 24(4i in A
:S\; JIS,)=uRE(,)+VSIS). (2.2)
! h
Bl
R
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Let us collect the unknown system parameters R and SF into a vector denoted

F
by a. Let the vector &(i) consist of the estimates ﬁéi) and §éi).

At each stage i consider a leader's input of the form

o@D 2yt @Dy Dty (2.3)

(1)

With this structure the leader's true input u at stage i deviates from

his desired optimal input ut by an incentive constant D(&(i)) multiplied

by the difference between the follower's actual input v(l) at stage i and

(1) (1)==ut and JL is minimized. To
achieve this minimum the leader must select the appropriate incentive

(i)) .

t t
v . Note that when v =v we have u

constant D(a

Given a particular structure for u(l) as in (2.3), the follower

will select an input v(l) which minimizes JF as given in (2.1b). The leader

= (1)

may simulate this minimization by using his estimate JF given in (2.2) and

computing the solution to

s (1) s (1) 2 (1) .
dig _ RN . 33p 7 @ _
gD e 5, (D) o)

0 (2.4)

where G(i) represents the leader's estimate of the follower's input v(i)
at stage i. Solving this expression we obtain

RSy

e A AR TS YOI YIS IO T

d~(i) F ¥

v
which reduces to
. (1) (1), t t
G(l) = D(J' )[D(l )V u ] (2.6)

(1), 2, a(1) ,5(1)
MG ™) +5 /RF )
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(1)

The leader wishes to select D(&(i)) so that v =v" at each stage. Setting

0(1) =vt in (2.6) produces

ol X

~(1) t

S v

~ (1) F

D(a*") = - —5— (2.7)
AR

\
o F

ey
A""I ‘Eﬂa

as the optimal incentive constant. We can see that D(&(l)) does not depend

explicitly upon both ﬁéi) and §éi), but merely upon their ratio. Thus, the

-
=
> Wy
E“T R

fq leader need only estimate the ratio
.
‘o
) ~(1) _ a(d) ,5(1)
X = § R . 2.8
:‘g' F /F (2.8)
L With this notation the expression for the optimal incentive constant in (2.7)

reduces to

VNN C AN

[ SRR T S e

D(a . (2.9)

~ t ‘

u !
8 )
a ‘

| !
W 2.4, Parameter Estimations and Updating Techniques
ng The leader begins his estimation of x==SF/RF by making an initial
P ) .

% gluess i(o). Since SF and RF were both positive, the ratio x is always
:2 positive and the initial guess i(o) can ute constrained to positive values.
L
{f: Using ﬁ(o), the leader computes D(ﬁ(o)) via (2.9) and his input structure

'

) u(o) via (2.3),and presents it to the follower. After the follower computes
ﬁj v(o), the true value of u(o) is obtained and both players may compute their
116"
gg costs for step zero. At the end of this stage the leader must have a

X
Q’ method for updating i(o) which incorporates the new information acquired
%Q during stage zero. We now consider the formulation of a general updating
b3
iy
k 0 procedure to be used following any stage i.

1N

.y . e
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(1)
(1)

To update X we first calculate the follower's actual input

v(l) at step i, with u taking the form given in (2.3) and D(&(i)) as in

(2.9). This calculation is similar to the one in equations (2.4) and (2.5)

& and yields
i i

A V(i) = D(a € ))[D( ¢ ))V =u ] (2.10)
é‘r’- A(l) 2 ¢
1¢ [D(a"™)" +x]
Fg We would like to update ﬁ(i) so that v(i) converges to G(i). The value of
gg G(i) was given in (2.6), and by our selection of D(&(l)) this reduces to

s G, (2.11)
2 Therefore, we actually want to update ﬁ(i) in such a way that v(i) converges

€Y

-V', the optimal follower's input from the leader's viewpoint. We

(1)

[

have devised two separate methods for updating x

2.4,1. Error function method

!! Consider the following function of x<1), which measures the error
b between v'1 and P
.
g, Gy = 22 2 L D52, (2.12)
!E
r‘L.
Substituting (2.9) into (2.10) we obtain
A(i) i(i)vt
. 2 12 .3 , 2
] t ~ t t t
36 V(i) - u + x(l) v -+x(1)u v (2.13)
- *(1)2 Vt2 ﬁ(i)zvtz-kx ut2
ae X -—-i'+x ‘
& .
u
E§ From (2.13) we can calculate
m
EE: R YT 1 T AR P ATl L 4 2 i N e T
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{ 2
. A (1) _
G
,::;|: v(i)—vt - U V (x % . (2'14)
‘ 9 ~
;:‘ég x(i) vt +xut
i
g t t (1) 1
Thus for u #0 and v #0 we have v =vt if and only if x )=x. We also
s
hiy
43;; find by differentiating (2.14) and treating x as a constant
2
T 3 2 2 .2 2
aw® Dt VY gD vt +xu 2D GO @ e 2.15)
RS ~ (1) . 2 2 ) )
\{‘“ g ox (x(i) t +x ut )
!' (N
R . (1) . (1)
Qh . Let us restrict the domain of E (x ) to positive values of x . Note
!;lu
that E (x( )) as given in (2.12) is a positive definite function because
A " -
:2 E ( (1 )) =0 only when x( )-x, and E (x(i)) >0 at all other values of x(i).

~ (1)
(1)

(1)

Our goal of adjusting x such that v converges to vt can now be

NI,
» -
?i. W }.

accomplished by adjusting x such that Ei(i(l)) converges to zero. We

A
.
«

(1)) |

K
z% propose to update x( ) by using the following gradient technique on E (x :
i
'~“ L1+ o (1) -Yvi(i)Ei - 3D _Y(v(i)_vt)vi(i)v(i). (2.16)
g
},‘: At the end of each stage i, the leader knows the value of the input v(i)
i which the follower has just applied, and can easily calculate the quantity
: v(i)-vt. In additionm, VA(i)v(i) can be calculated from (2.15) by using the
~ '?_: known quantities Vt and ut, the current estimate \:( ), and by substituting
: h:r)* fc(l) as an estimate for the unknown constant x. Thus, the leader has enough
:' information to implement the updating procedure (2.16). We know that x is
“
E _ always positive so it is reasonable to require that x( ) always remain
, 7 positive. This can be accomplished by an appropriate choice of the step
\"j_\_ size y. Our updating procedure leads to the following theorem.

AR
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Theorem l: The gradient technique for updating x

Proof: The gradient algorithm for updating x

13

(1)

based upon the error

function E (ﬁ(i)), applied with a sufficiently small step size y and by
~(1 ) (1)

using x as an estimate for x in V,(i)V » produces estimates x( ) which
X

converge to the actual value of x.
(1 is given by equation (2.16).

Substituting (2.14) and (2.15) into (2.16) we obtain the updating

equation
| t~ (1) t 1r 4 2 .2 3 31
A(i+]) A (1) R‘Fv X -SFV ut vtx-i(i) ut v +2xX (1) t
X = x -y . (2.17)
t2 2 ( )2 2,
S +KFf((i) v (xu® )
ut

The actual value of x is unknown to the leader so we substitute our estimate

ﬁ(l) for x in (2.17) to produce

t (i)

~ (i+1) ~(1) RFV u vtx(l) A(i)

X = X -y 2
.|.RF£(1) (x (i)ut 'HE(I) )
F

(2.18)

From (2.18) we see that the only equilibrium point for our updating scheme

(if vt,ut#O) occurs when
. S,
R vtﬁ(i) = Svt = i(l) = - = x, (2.19)
F F RF

From (2.19) we see that this updating method has the desired equilibrium

point.
To prove that ﬁ(i) converges to x we consider two separate cases:
1) Case 1l: If s ..
(1) _ A

1i) Case 2: 1If x
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For simplicity we rewrite (2.18) as d
t~(i) t 2 2 3
. s Rvx ' ""=-8v t t- (1) ( ) R A a
x(i+1) = x(l)-YAx where OAx =|-% F > = XX 2“ 2v .
N2 .t -(1) t2 m® 2
s +r x D T (x v
F F t a
L u- JdL .
(2.20)
) ]
By requiring x D to be positive at all times, and since RF and SF are positive
constants, we see that the denominator of Ax is always positive. Therefore, g
we concentrate our interest on the numerator of Ax because sign Ax = sign AXVUM' !
4
From (2.20) we have
2 2 2
~ (1) t7~(1) (1) g
AXNUM (v u R )(x -x) (u % -+v P ). (2.21)
. . (1)
Examination of the case x > X

In this case we want to show that Ax>0. It is obvious that the

first two terms in (2.21) are positive because is a positive constant
P

~ (1)

and x -x is also positive. Furthermore, the third term of (2.21) is also

~ (1)

positive by our previous requirement that x be positive at all times.

The product of three positive quantities is always positive so (2.21) implies

~ (1) ~ (1)

that Ax is positive whenever X is greater than x. Thus, whenever X is

greater than X, our updating procedure (2.20) will produce an updated

~ (1+1) ~ (1)

estimate x which is less than x as desired.

(1)

Examination of the case x

In this case we want to show that 2x <0, Similarly as in the

previous case we find that the first and third terms of (2.21) are positive.

However, since x( ) is less than x, the second term in (2.21), f( ) is
negative. This makes the expression &x in (2.21) negative whenever x( ) is
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less than x. Therefore, if ﬁ(i)'<x our updating procedure (2.20) will
produce an updated estimate §(1+1) which is greater than ﬁ(l) as desired.
(1)

We have just shown that if x is greater than (less than) x

then our updating procedure (2.20) produces a next estimate i(i+1) which

(1)

is less than (greater than) % . By choosing vy small enough such that

L (3+D) (1)

-x has the same sign as X ~’-x, we insure that the differences

li(i)

-xI form a monotonically decreasing sequence of errors which converge

to its lower bound of zero. Therefore, for a properly chosen constant y the

updating scheme (2.20) produces estimates ﬁ(l) which converge to x. This

completes the proof.
(1)

This updating scheme produces estimates X which display a one-

sided convergence to x, with the direction of convergence depending upon
the selection of i(o). 1f i(o) (i)
0) ~ (1)

<x then x converges to x from below. Note that when x

>x then x converges to x from above and

if x (1)

converges to X, D(&(l)) in (2.7) converges to the optimal incentive constant

Sth
i

RFu

D*s-

(2.22)

A leader's input structure of the form (2.3) using (2.22) will generate the

optimal input pair (ut,vt).

2.4.2. Gradient on J. method
(i)

A second method of updating x uses a gradient technique which

is based upon minimizing JL. Intuitively this method is the most logical
~(1)

one because it adjusts x in a manner which creates the greatest decrease

in the value of JL’ which is precisely the overall goal. This updating
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scheme is given by gﬁ
A(i+1) “(i) -

x = X -vyV., J . (2.23 Ry

(1)L ) ‘&.t,

Using (2.1a), (2.3) and (2.9) we can rewrite JL as "
=

2 t2 B

= pa1)? (1)_ t\2 (1_ 632 _ (D))" v (i) t.2 -

JL D(a RL( ) 4-SL(v v ) =1[X 2 RL-G-SL (v7/'=-v)". :3

(2.24)

9

We must be careful when calculating v“(i)JL to include the depen-
X
dence of both D(&(i)) and v(i) upon x( ). By the chain rule we have gg
7.0 = it A Tl R YAl N (2.25) r%
x(DTL @ ) G T @y @) B
From (2.9) and (2.24) we can find gi
~ (1)
3D(a*"’) . t, t )
e (2.26) §g
3J
L ~ (1) (1)  t,2 (1) v (1)
e D = 2D(a )RL(V -v ) = t RL( (2.27) g
a ")
oJ (1) i r:
Lo, (D) ~(1),2 PO C VNN B A el b
3v(i) 2(v -y )[D( ) RL+S ] 2(v ) RL+S

(2.28)

Substituting (2.26)-(2.28) into (2.25) we can write

C
e )

2
. . (i) (1)
- L (@) v (i) _ &2 (1) v 3
ORI A +2(v' Y %) RL+S -77?5? (2.29) ti
u = u
i (1) (1) '
At the end of each stage 1, the values of the inputs v and u

are known so all of the quantities in (2.26)-(2.28) can easily be calculated

-l

o

-
)
S

A A o o S R R o
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Theorem 2: TFor an initial guess x
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(1)
by the leader. The quantity EXTIT is found by differentiating (2.13) as
ox

before, and treating x as a constant. The resulting expression is the same
as in (2.15). Once again since the actual value of x is unknown to the

leader, he replaces x in (2.15) by his estimate ﬁ(i) which yields

4 2 2 .3
av(i) - ut vtﬁ(i)4-§(i) ut vt 2.30
~(1) (1)2 t2 (1) t2 2 (2.30)
(;{ v +x u )
. . oD (A_t
Using this expression for _TTIT and the expression for v ' /=v in (2.14), we
ax
write (2.29) as
2 2
t t A (1) 2
e ey ¥ u v (x -x)
[EYEON A A 0 2
u v +xu
N/ 2 2 .3
+ 2 (i) RL+S u v (x(i) x%\(\u vtx(l) 2 (1) utzv;
«(1) t t/ t ~(1) t
u X v +xu +x " u )
2 2 2 2 2
= [2(§(i)-x)ut vt (ut £(1)4-§(i) vt )]
2 2
[RLV (x(i) (‘(1) A )+(x(1) v RL+S u )(x(i) ot )]
2,
("(i) v +Xu ) (X(i) “(i)ut )
(2.31)

In the updating equation (2.23) let us again choose y sufficiently small such

- (1)

that x remains positive at all stages of the iteration. This leads to

the following theorem.

2 (© large enough such that ﬁ(o) > x, the

iterative scheme detailed in (2.23), applied by using an appropriately small




o~

EN

18

(1)

S which converge to the true value of x.

Proof: The algorithm for updating ﬁ(l),given by (2.23),uses Vh(i)J » which
b4

step size v and by substituting ° as an estimate for x in the expression

3v(1)/3£(1), produces estimates x

L
takes the form of (2.31).

From (2.31) we see that our updating scheme has equilibrium
points (if vt, ut#O) when

2 2 2 2
~(D)7 t t
x-—Sx v txu ) (2.32a)

2 2 ) )
2 ,
vE GG 4 Dyt

1)

|
»

(2.32b)

Obviously, (2.32b) is the desired equilibrium point while (2.32a) is an

undesirable equilibrium point which we seek to avoid. By choosing y small

enough such that i(l)-xz;o for all i, we can disregard the equilibrium

point (2.32a) because it is smaller than x.

It is obvious that the denominator of V¥ in (2.31) is

i(i)JL

positive, so we concentrate our attention on the numerator because

T, J. =si v . 2.31 h

sign /ﬁ(l) L = sign i(i)JL - From (2.31) we have

2 2 2 . 2 2 . 2 . N2 2
Ta(i)J = [2ut vt (ut ﬁ(l)+§(i) vt )(ﬁ(l)—x)][RLvt (ﬁ(l)-x)(ﬁ(l) vt
%1 Ty

o L2 N2 2 2 2 .2 2
D D R st H GV 1. (2.33)
We want to show that 7 _ i)JL in (2.33) is positive. The
x( NUM

~(1)

difference x

(0)

-x is always greater than zero by our choice of v and x" 7,

so by inspection,we see that all of the terms in (2.33) are positive. This

makes both 7 J. and 7 positive. Therefore, whenever ﬁ(l):>x our

i(i) L

J
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Theorem 3: For an initial guess ﬁ(o)‘<x,the iterative scheme of (2.33),
applied with an appropriately small step size vy and by substituting x( )
an estimate for x in the expression 3v( )/3§(1), produces estimates ﬁ(l)
which converge to the true value of x provided x( ) satisfies the following
conditions f
4
22 ]
(0)
~ 0 2
t (;{(0) vt +§c(°)ut )
6 4 2 4 5 6 2 4
3F(§(O)) - x2u +2x x(o) t 3§(0) vt ut -2§(0) vt —2§(0) xvt ut <0
~(0) 2 2 2 2 '
x t (i(o) vE a0yt (2.35)

Proof: Once again the updating algorithm (2.23) uses the expression
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~(i+1)

updating scheme (2.23) produces an updated estimate x
LU+ (D)

such that

as desired. This completes the proof.

~(0) (0)

is chosen such that x <x, then we can

~ (1)

Unfortunately, if x
no longer guarantee that the estimates X produced by the algorithm in
(2.23) converge to the actual value of x. We can, however, prove the

following theorem. ]

vﬂ(i)JL given in (2.31). Consequently, this updating scheme has the same
%
two equilibrium points given in (2.32a,b). The denominator of ¥ ,A( ) L in

(2.31) 1is positive by inspection so sign Vﬂ(i)JL==sign 7 This
X

N
x (D) Iy

allows us to concentrate on the reduced expression in (2.33).

We want to show that 7 in (2.33) is negative. However,

v Ly
this situation is more complicated than in Theorem 2 because we must also

avoid the undesirable equilibrium point given in (2.32a). We can insure

~ (1)

that the estimates x are always smaller than x by an appropriate choica

£_ 6 _v_2_"
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s of v. This restricts the first term in (2.33) to negative values. 5
g: Therefore, a necessary condition for V i J to be negative is that the .
") . %(1) LNUM .j
R second term in (2.33) be positive. "

. Our necessary condition is gi

3 >
) )
N 2 . 2 2 . 2 2 2 2 2
;ﬁ vt (x(l)-x)(i(l) vt -+§(l)ut )-+(ﬁ(l) vt +xut ) >0 (2.36)

o
N A

which reduces to

; ~ (1) (ﬁ(i)zvtz-kxutz)z
b < X > X - - . (2.37)
o e )2 % ) ¢l -
¥ v (x v +x u )
7
i: The expression on the right hand side of (2.37) is precisely the value of ;
- the undesirable equilibrium point given in (2.32a). We see that if (2.37)
- holds then 7 _,,.J <0 and the updating scheme in (2.23) will produce an -
e _ 2 Iyuy .
e §(1+1) which is greater than ﬁ(l) as desired. We now seek to find conditions .
'y . (s )
" on x(o) to insure that x(l) converges to X.
’ Rewrite (2.37) as :
b
> 2 2 2 2
. ~(1)7 t t R
& i gs o Loyt ) D, (2.38) :
’ vt (ﬁ(l) vt -+§(l)ut )
i? Now differentiate (2.38) with respect to i(l) to obtain C
7 6 2 4 4 2 4 5 6 2 2 4 ¢
o (i 2 (1 (3 (i A
\ SF(x(l)) - x2ut + 2x x(l)vt u ~3x(l) ut vt —2x(1) vt -2x(i) xvt ot (2.39)
7T L (1) B 4 N2 2 22 ThE )
ﬁ: X vt (x(l) vt -i-x(i)ut ) -y
-«
i: Notice that the denominator of this equation is always positive
¥,
~ and that as ﬁ(‘) increases, the numerator decreases. Consequently, if
:F-J' -1 ‘(i) (1 it 5 A(l'*'l)
oy '4£Eir—l-is negative, and x(l)ffx(1+“), then 4£Qir———l-must also be ")
B4 :Q(l) ;§(1+1) s

»
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3F(§(i))
negative. Thus for a negative value of (1) we can conclude that if
X .
(2.38) holds for x(i) then it must also hold for §(1+1) since
i s 2™ oy s p WDy < rg D). (2.40)
Combining these results, we can guarantee that whenever i(i)'<x our

algorithm (2.23), applied as stated in Theorem 3, will converge to x if

both equation (2.38) holds and éf%%é;Zl.’ as given in (2.39), is negative.

If we select y small enough sucsx;hat i(i)—x and ﬁ(i+1)-x have the same
sign, then we may generalize the above conditions to ﬁ(o). Therefore,

if (2.38) holds for i(o) and (2.39) is negative for i(o), then our subsequent
estimates ﬁ(i) will converge to x. These are precisely the sufficiency

conditions given in the statement of the theorem and thus the theorem is
proved.

It is interesting to note that the sufficiency condition (2.34)
of Theorem 3 explicitly requires that the initial guess be larger than the

undesirable equilibrium point given by (2.32a). 1In addition, the

aF(ﬁ(o)) <0
a§<0)

analogous to insuring a locally convex function for our gradient technique.

sufficiency condition (2.35) which states that is somewhat
However, the leader has no a priori information about the value of x and
thus has no way of knowing whether his initial guess will satisfy the
sufficiency conditions of Theorem 3. Therefore, in applications it is more
logical for the leader to select a somewhat larger value for his initial
guess i(o), since Theorem 2 guarantees convergence to the actual value of x
from above. 1In general, the convergence, if it occurs, will be one-sided

2(0)

and will depend upon whether x is greater than or less than x. If i(l)

. ~(1 .
does converge to X we are again assured that D(u( )) will converge to the

oL

3
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optimal incentive constant D* in (2.22). The resulting leader's input ;i

structure from (2.3) by using (2.22) will generate the optimal input pair
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CHAPTER 3

HIGHER ORDER STACKELBERG GAMES WITH UNKNOWN COST FUNCTIONALS

3.1. Introduction

Chapter 2 developed methods for finding an optimal incentive
control for scalar, static, two-player Stackelberg games with unknowm cost
functionals. We now seek to develop corresponding methods for similar
problems of higher dimension. In this chapter we concentrate on a second
order game and again adopt a basic incentive input control structure for the
leader, 1In this case we no longer have an incentive constant, but rather a
2x2 incentive matrix which provides great flexibility. The leader is free
to select the structure of this incentive matrix, the elements of which
depend upon his estimates of the unknown cost functionals. The resulting
optimal incentive matrix may or may not be unique, depending upon the
structure chosen by the leader. Generally, the leader may use his freedom
in selecting the incentive matrix to satisfy specific design considerations
as described at the end of the chapter.

Paralleling the scalar case, it is again unnecessary to precisely
estimate the actual values of the unknown system parameters. It suffices to
obtain enough information about these parameters to find the elements of the
optimal incentive matrix. The parameter estimate updating method utilizing
a gradient technique on JL provides good results and its details are

described in Section 3.4.

!
|
1
{
|
!
|




HEEEH T NUSURWRLCEURURNLUELELCH UST WIS W1TS T Wl Wil ifal Wl el W e e T S RS LML T N CaI AT RN Iy AN T N AN TN IR TN TN T 7T N T Oy v arw o

24

3.2. Problem Formulation

We now consider a general problem similar to that of Chapter 2
but with higher dimensions. Assume that the control inputs are given by

the 2x1 vectors

u |
u =]- 1 for the leader AND v =i for the follower.

Each player again tries to minimize at each stage his own quadratic cost

functional given by

L

[
H

F F

where R., S., R, and 3

L Spe Bp g are all symmetric, positive definite 2x2 matrices.

Thus, JF and JL are alwayvs 20 and from the leader's viewpoint an optimal

solution is given by the input control pair

u

<

u

[«

]
o ———
Nt o=t
[AS A O ol 4

.

'H-_
<

We assume that the information structure of this problem and
the steps followed in playing the game are the same as described in
Section 2.2. At the end of each stage the leader will use the new infor-
mation obtained during that stage to update his parameter estimates and the
next stage of the game will begin. The plavers will continue to play until

an equilibrium point is reached as previously defined.

. e

RN S e N TR
/ < -:.._- B N

(u—ut)'RL(u—ut) + (v—vt)'SL(v—vt) for the leader (3.1a)

u'R_u + v'SFv for the follower (3.1b)

£y
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3.3. Construction of an Optimal Incentive Control

The weighting matrices R, and SF of the follower's cost functional 3

F |
(1) and '

are unknown and thus the leader will attempt to estimate them. Let

§éi) denote the leader's estimates of the matrices RF and SF at stage 1.

There are actually only five unknown elements in the matrices RF and SF 3
since they are both symmetric and can be scaled such that R11= 1, Let us &
stack the unknown elements of RF and SF into a vector a. Then &(i) is the ?;
s (1) 2() (1) a(d) 2 (1) %
stacked vector representing the estimates RF12 s RF22’ SFll’ SF12’ and SF22 "1
of these unknown elements at stage i. R
Consider an input of the form ?
B ot oWy (W5 (3.2) _
@ w, B
where D(a'"’) is now a 2x2 matrix. D(a ') = . (1) A1) | &
D21 D25 5

From (3.2) we see that in general each of the leader's inputs ufi) and uéi)

depend upon both of the follower's input deviations from the desired input.

The leader may now use the follower's estimated cost functional :E
o

A(d) _ ap(d) 1o (1) :~i

JF u RF u+v SF v (3.3 /

(1)

to the incentive

(i) e

to calculate an estimate of the follower's response v
input structure u(i) of (3.2). This is done by finding the vector v
which minimizes 3?1). From basic calculus and the chain rule, G(i) is a
solution to

djéi) _ ajéi) . ajéi) e
I O R O R O T e

=0, (3.4)

.........
....
LT T I I
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: We may solve (3.4) using (3.2) and (3.3) to obtain i

). [[vt'n(&(i)) B T B O AR T AN TEIC N 10k YOI i ]

> s et
PeTa m’ a W

(3.5)
i - () S(1) _ ot . -
63 The leader wants to choose D(a ) such that v =v , With this equality
1S
!3 (3.5) reduces to
R €2 (1) "~ (1) (1)
W -u RF1 D(a ) = SF1 . (3.6)
:f Expanding the matrices in (3.6) we obtain
h‘
B
- ot @ D5 (D) L p @)y | te(d)  ta(d)
_ up @By +Repobay —uy Rpib ) #8365 = viSE +vi8hy) (3.7a)
= @ L D5 (D) L2 (D) | ta(d) | Ea(d)
> ay @y +Rp1By") —uy RepyBry +ReydByy") = viSey +vaSiy) (3.70)
.3
which £ ; (1) 5(1) (1)
" ich reveals a system of two equations and four unknowns (D11 »D 12 ,DZ1 ’
3 51y g CON .
- 22 ence our solution for D(a'"’) is certainly non-unique and has two
2N
;}: degrees of freedom [18].
R To insure a unique solution we suppose the leader chooses D(i(l))
F
%; to be a diagonal matrix. That is,
N
’ BIA
~ (1) 11
D(a""") . (3.8)
0 p{b)
L 22 4
Then (3.7a,b) reduces to
ts(1),5 (1) _  ta(d) ta(i)
(—u1 JZRqu)D lsFll + VZSF12 (3.9a)
ta (i) ta(i) a(d) ta(i) (1) fna
(-u)Re15-UgRp22)Day" = ViSpyp + VaSpan (3.50)

and we have




e phibe nca g ;mﬁﬁ.ﬂ

=

& 27
to (1) |t (1)
' (1) _ _ N1Sp1*tVaSer2
D = - (3.10a)
. 11 ot +ub (1)
3 17 U2RF12
to (1) |t (1)
~(1)  V15r12tVaSea2
D = - : - (3.10b)
i 22 ut (1)+ t. (i)
1%p12 Y U2Rp22
Ny,
@Q as the elements of the incentive matrix D(&(i)). The optimal diagonal

incentive matrix elements D’l"1 and D’Z‘2 can be found from (3.10a,b) by using

the actual values of RF12’ RF22’ sFll’ SF12’ and SF22'

=
F

A Y

i 3.4. Parameter Estimations and Updating Techniques

. The leader begins his estimation of the unknown parameters in a

rﬁ by making an initial guess &(0). Since we know that RF and SF are positive

l | definite matrices it is advisable to select this initial guess &(O) such
that the resulting matrices, f‘\éo) and §]§0)’ are both positive definite. The

S leader may use these parameter estimates to calculate his input structure

u(o) via (3.2), (3.8), and (3.10a,b) and present it to the follower. The

» follower will optimize his cost functional (3.1b) with respect to this

‘)\ leader’'s input structure and present his input v(o). The subsequent value

® of u(o) may be obtained from (3.2) and each player may then compute his cost

53 for stage zero. At this point the leader wishes to have a method for
updating nis parameter estimates before beginning stage one of the game.

g We now consider the formulation of a general updating procedure which can

. be used following any stage {i.

-y
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3 28 B

N

B ~
'l

' , (1) . =

The follower's true input v at any stage i can be found by ]

-t

Ll el e

optimizing JF in (3.1b) with respect to v(i) and u(i) as given in (3.2). .

» X

£ Kt
> By the chain rule vi® i¢ a solution to B

. o

; LA 3 g 5y (D) il

I ) N ¢ N ) Bl (3.11) ?
dv v Ju v .

o

' which leads to ~

4 ﬁ
[ 1 L} | ~ " N ~ - ;
& ARG TER SR IES YIRS YGOSR L YCR S PR C Wt ) '

i3
This value ol v(i) will produce a corresponding leader's input gi
? u(i) according to (3.2). Once these values are obtained, the leader may }%

f. calculate his cost JL for step i. At this point the leader wishes to update

K his estimate &(i) by making use of the information gained during step i. g&
.

ﬁ Corresponding to the first order (scalar) case,this can be done by using

E a gradient technique based upon minimizing JL.

“ Since there are five estimated parameters in &(i{ the leader must

;3 have five separate equations for updating his estimate. In general, we

'é write

-~ .+ A
, Cl.(l 1) = a(i) ‘YVA(i)JL (3.13)
b *
é which is, in fact, the five equations
i
S (141) _ o (d) _
Rr12 Re12 = Y7 (1)L (3.14a)
Rr12
S(141) (1) _
- RF22 (vﬁ(i)JL (3.14b)
F22

(141)

a (1)
SF11

SFll-Yvé(i)JL
F1l

(3.14c)
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a(1+1) _ 2(1) _
SF12 SF12 ng(i)JL (3.144)
Fl2
a(1+1) _ 2(1)
8529 SF22-yV§(i)JL. (3.14e)
F22

Expanding the matrix equations (3.la) and (3.12), the leader may obtain the
(1) (1)

following expressions for J and v

~ (1)

in terms of known quantities, the

parameter estimates a » and the unknown parameters a. (Recall that D(l)

and D§2) were both functions of known quantities and the estimates a( ) )

2
(i) (i) (i) (1) (1) __ty (1) _ (i) (1) t
Dy Ry v 1) +2D Dy Rppp vy =v) (v - )+Dzz Rp g9 (¥ "V,

J. =
L
8t - vp) +2SL12( fi)‘vl)(v(i)‘vz)+stz( 51)‘V§)
(3.15)
(i) t5 (1) _ ¢ (1), ta(d) (i)
1By’ By’ R 11 (3B w1 (s pm,) 5557 )
(1) ~(i) ts (1) _ (i) (i) ~(1) A(1)
v = M -=[Ryy Dy  (viDyy 1)+R22 22 (VoPpy 2)](512+D11 Dy Ryp)
(i) (i) (i) (1)
5y ) (S91Ry5 Dy5” ) = (S15¥D17 Doy 12)
(3.16a)
(i) t5 1) _ (i) t5 s (1) _ (i)
Ry, Dy3) (viB) 1’ -u]) +Ry, By (v3B5) up) 165,,4D777 )
(1) (i) ta(i) t (i) t(i) A (1) (1)
vy = N\ =D (vD) mu Ry Byt (v 2 N [CH N )/ (3.16b)
%
(i) (i) (i) (1)
(81140117 ) (S59%Ry, Doy ) = (8 p#D )7 Doy’ Ryy)

Using the chain rule and equations (3.10), (3.13), and (3.16a,b),

we can find the quantities V~(1)’ *(i)’ c gy through a lengthy, but

RF12  Rp22 SF22
straightforward process. For example,
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~ (1) 5 (1) (1)
. dJ 33, 3D] 8J; 8D,," 3 vy

L
WL T{ZD | T 5D 2D

+
1) S 1) ,2(1)
Rp12 dRp12 11 ®p12 Wy gy 3V Rppy
1
2, avéi)
+—_- L)
A COPYEY 3.17)
2 %o
aﬁﬁ) aﬁg) 3J
where — and are found by differentiating (3.10a,b), and ———,
2 2 D 5D
Rr12 Rp12 11
3JL BJL BJL
s , and ——— are found by differentiating (3.15). The
) T gD av D)
22 1 2
equations for vfi) and véi) in (3.16a,b) contain the unknown parameters in
EY 3y (D)

a so we must obtain (D and ‘%i) by differentiating (3.16a,b) and treating
Rpiz B2

these five unknown parameters as constants. However, our resulting expres-

av(i) Bv(i)

sions for ~ti) and ~%i) will still contain these unknown parameters so
?

12 Rp12

we need to replace them with our corresponding parameter estimates. After

making this substitution, all of the quantities on the right hand side of

(3.17) will be known and we can calculate V, J..
R{f) L

Calculations of the gradient of J. with respect to each of the

L

other four estimated parameters are similar. Once these values are computed,

the leader may use (3.l4a-e) to update his parameter estimates and obtain

&(i+1) which are used to begin the next stage i+l in the game.
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E' e

3.5. General Aspects of the Higher Order Problem

In this section we will attempt to address a few general questions

pertaining to the higher order problem we have just studied. We will assess
the performance of our algorithm in solving actual numerical problems,

and discuss some implications stemming from the incentive matrix

< 2

31 flexibility.

&

e 3.5.1. Implications of the incentive matrix flexibility

- From equations (3.7a,b) we can see that there are only two

:B equations governing the four elements of the 2x2 incentive matrix.

Ci Consequently, the optimal incentive matrix D(&(i)) is non-unique and has two
s

i degrees of freedom. A closer inspection of (3.7a,b) reveals that ﬁfi) and

ii ﬁéi) are isolated in one equation while ﬁfé) and ﬁgé) are isolated in the

i other. This decoupling allows us to solve for the columns of the incentive

matrix independently of each other [18].

If we allow the incentive matrix to be a general 2x2 matrix, then

each of the leader's inputs u, and u, will depend on both of the follower's

) 1 2

gg inputs vy and Vye However, if the incentive matrix is restricted to a :
- diagonal structure,as it was throughout this chapter, then there is a slight i
o partitioning of the control space. 1In this case uy depends only upon vy é
‘) and u, depends only upon Vye S
" Although we selected a diagonal incentive matrix for simplicity =
E;; and to insure a unique solution, there are certainly other meaningful ways .

to exercise the two degrees of freedom. One of the most useful methods

e

would be to select the optimal incentive matrix in a manner such that the

optimal incentive control is robust to parameter estimation errors [1G].

":*1|
KPP - ams] ' LA

S L
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Specifically, the leader would like to minimize the sensitivity of his

-
?gé cost functional JL to variations in the parameter estimates &(i). This

égi method has been studied for the deterministic problem [11], and its ideas

P should be extendable to the problem at hand.

igg‘ To minimize the estimation procedure, we also investigated the

;g%g possibility of limiting our estimations strictly to the elements of the

P incentive matrix D. This approach was appealing because in the case of a

aizg diagonal incentive matrix it reduced the number of elements of a from five
gfﬁ (ﬁFIZ’ ﬁFZZ’ §F11’ §F12’ and §F22) to two (ﬁll and 522). Even with the

f;z most general form of the incentive matrix the number of elements of a is

?233 reduced from five to four. Although the concept seemed promising, we were

; ?} unable to find a suitable method for directly updating the estimates of ﬁll
;:;: and 622 due to a lack of information about the unknown and unestimated system
%zi; parameters. Therefore, we adopted our present approach of attempting to

fﬁk: estimate all of the unknown system parameters, and then constructing the

r:?. optimal incentive matrix at each stage as a function of these estimates.

2N

Sa%

{; 2 3.5.2. Performance analysis of the algorithm

1;%3 Unlike the scalar case, we have thus far been unable to analytically
;3%; prove that the iterative method described in this chapter will indeed

f?gg produce a sequence of incentive control structures which converge to the

“fi optimal incentive control. Nevertheless, extensive simulation studies utilizing
'¥zi this iterative method have produced some good convergence results.

?ié Since our parameter estimates are updated by using a gradient

X7 method on JL’ we expect the value of JL to decrease at each successive

stage of the game. We also expect J_ to converge to its optimal value of

L

P P T T " s " ‘e
AR LT S 2T aFASS »;_]
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zero unless it settles at a local minimum. Unfortunately, we must remark
that we cannot be totally assured of a monotonically decreasing JL,because

strictly speaking, our updating technique is not a true gradient technique.

Bvii) av(i)

Recall that our calculation of expressions such as — and used in
sa (D) sa (1)
F12 Rp12

the updating technique involved some of the unknown system parameters a.
This prevented us from calculating expressions which were crucial to the

updating process. To circumvent this problem,we replaced the unknown para-

meters o with their most recent estimates &(1), enabling us to calculate

the necessary expressions and continue our iterative process. This sub-

stitution is of small consequence provided the values of ﬁfi) and ﬁé;)

computed from the estimates &(i) are close to their optimal values. It does

create greater difficulties in cases where the computed values of ﬁfi) and

ﬁéé) are less accurate estimates of their optimal values.
Qur simulation studies appear to confirm the '"near-gradient”
nature of our updating scheme. For a relatively good initial guess &(0),
i.e., a guess such that ﬁ§2) and ﬁég) are 'reasonably close" to their optimal
values Dtl and Dgz, our scheme does indeed behave similar to a gradient
technique and the resulting leader's cost JL decreases monotonically to
(0)

zero. However, for a less fortunate initial guess a , our scheme

deviates from the behavior of a gradient technique and does not produce a
monotonically decreasing JL. In some of these cases our scheme actually
exhibits a behavior characteristic of dual control [12] by sacrificing the
minimization of JL over an initial iterative period in order to gain better

estimates of the unknown parameters. Once the scheme achieves parameter

2 (1) s (1)

estimates which provide sufficiently accurate estimates of D11 and D,,2 ,

S N
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§§$
¢ it then proceeds to generate control inputs which result in a monotonically

'i: decreasing JL. An example of this phenomenon is illustrated in Figure 3.1.
4

g From this figure we can see that the leader's cost actually increases for

approximately the first ten iterations before beginning its monotonic decent

’ﬁké towards zero.
;ﬁiﬁ Simulation studies have also revealed that our scheme will not
necessarily provide accurate estimates &(i) for the actual values of a. In

?;3 cases where our scheme successfully generates the optimal incentive control,
e

ﬂ§§ the leader's cost functional approaches zero and the generated values ﬁfi)
Wt

e and ﬁé;) approach their optimal values DTI and DZZ, respectively.

i : Consequently, the follower's actual inputs vfi) and véi) also approach their
%'i desired values of vi and vg. In general though, the estimates &(i) do not

" ;‘ necessarily approach a. In fact, the estimates of some elements of a may
SO8
;%Ei; converge to values far from their actual value. From this we can see that
;iiis our scheme is not actually attempting to estimate o, but merely uses the
(:‘, estimates &(i) as a vehicle through which it can compute and adjust the estima-
%Siﬁg tions ﬁfi) and Agé). Thus, although we were unable to accurately estimate
:%:? the elements of the optimal diagonal incentive matrix by themselves, as

L)

;.” discussed in the previous section, we are able to accurately estimate these
.§$§ elements by expressing them as functions of estimates of the unknown system
‘;253 parameters.,

Sf;?j The selection of the step size vy is crucial in applying our itera-
éé;; tive scheme. It must be chosen small enough to avoid large overshoots in
;?;? the parameter estimations, but large enough to provide a sufficient adjust-
3_;: ment in the incentive matrix., This will insure an adequate rate of
i;ﬁ; convergence., In the event that the scheme becomes bogged down at an
-7
s
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undesired local minimum, the authors propose restarting the algorithm with

~(0)

an entirely new initial guess a . No recommendations are made regarding

~(0)

restarting the algorithm with an initial guess a modified from the

previously unsuccessful initial guess.

3.5.3. Generalization of the algorithm to higher dimensional problems

In this chapter we have developed an algorithm which iteratively
computes incentive input controls for the leader in a static, second
order Stackelberg game with unknown cost functionals. This algorithm was
developed without using any inherent properties of the second order problem,
leading us to believe that it can be extended to a general n-th order
problem. In a general n-th order problem,equations (3.7a,b) will represent
a system of n equations and n2 unknowns. This results in n(n-1) degrees of
freedom in selecting the optimal incentive matrix. We can once again be
assured of a unique solution by considering only diagonal incentive
matrices., Furthermore, we believe that this solution can be computed by

applying a generalized algorithm similar to the one described in this

chapter.
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CHAPTER 4

SIMULATION EXAMPLES

In the previous two chapters we have discussed methods for

deriving optimal incentive controls for two-player Stackelberg games with

unknown cost functionals.

methods via a few numerical examples.

We now demonstrate the results of these

The first example is a realistic

economic problem which uses the theory of Chapter 2 and implements the

error function method for updating parameter estimations. The second

example demonstrates the algorithm described in Chapter 3 applied to a second

order problem.

4,1, A Scalar Economic Example

Consider the following economic problem [20,21] illustrated in

Figure 4.1.

A monopoly M operates in a market with a demand curve specified
by p=A1-A2q and with a flat marginal cost curve MC=C dollars/unit. The

government, which does not know the value of the parameters A

1

or AZ’ wishes

to regulate this monopoly in such a way that its production output will be

equal to q*, the same quantity which would be produced in a purely competi-

tive market. We do assume, through market surveys or estimates, that the

government does have knowledge of the current operating point (qm,pn).

The

government regulation may be either a tax or a subsidy, and can be applied

in either a lump sum or per quantity method.

Let p=price and q=quantity produced.

specified by

oS T T o e e e

e

We have a demand curve
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Figure 4.1. Government regulation of a monopoly.
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P = Al—Azq. (4-1)

By economic theory [21] we know that the marginal revenue (MR) curve has the

same intercept and twice the slope of the demand curve. Thus,

MR = Al-ZAzq. (4.2)

Since we know that (qm,pm) must be a point on the demand curve,we can

1 as a function of A2 and thus eliminate one of the unknown

parameters. From (4.1) we have

express A

AI = pm+A2qm. (4.3)

We know that the monopolist will produce at a level where MR=MC. Let us
assume that the government decides to provide a subsidy of S dollars per

unit produced. If A, were known, then

2

MR = MC =>A +S-2A,q% = A ~Aq* =S = A q* (4.4)

1 1

would be the optimum subsidy. However, A2 is unknown so the government will

3 (1)

attempt to estimate it with A . Consider the incentive structured subsidy
s = A0¢* + DAY (a-am. (4.5)

Given this subsidy, the monopolist will still produce at the level of ouptut

which maximizes his profit. To estimate this level of production q( ), the
government solves (using A( D as an estimate for A2)
Eiéii =0 (4.6)
ai(i) T
where
i - a erace-cosm) = ¢V hya_+p_-8,3) 4.7)

S

P P

SR
LA -

TRy
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is the monopolist's total profit. Solving (4.6) by using (4.7) we obtain

~ (1)

: (_-:+D(f\§i))q* -ﬁéi)q* -pm-ﬁéi)q

o (4.8)

20G4M) -4

as an estimate for the monopolist's production level. Setting i(i) in (4.8)
equal to the desired output q*, the government calculates its optimal incen-
tive constant to be

A(i)

D(A(i)) . 2 (q*':m)+C-Pm
2

q

. (4.9)

However, since our estimate AZ of A2 is probably incorrect, the monopolist's

true production level will probably differ from q*. Solving (4.6) and (4.7)

with the actual value of A2’ we find that the monopolist actually produces

(C-p_-4,q)q*

1) _ @ -meﬁz(czl:lfqm) -AZQ*T units. (4.10)

Now consider the positive definite error function
B, =3 @P-g%2 (4.11)
The government may update its estimates for Agi) by using a gradient method

on Ei
A§i+1) = Agi)-yv&(i)21 = Aéi)- Y(q(i)-q*)VA(i)q(i). (4.12)
2 A

Differentiating (4.10) and using AZ as an estimate for A2, we have

X2
@ . =g (4.13)

(- pm - ‘&qu)

7.
e
2
which is substituted into (4.12) to generate the final form of the updating

equation
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*2
-q%) 1 . (4.14)
(- Py~ Aqu)

(1)

OO (O

2

In this example let our variables take on the following numerical values

>
L]

$450

A, = $1,50/unit

q, = 130 units

p_ = $255/unit

p* = cost C = $60/unit

q* = 260 units

v = .00001

sigma = 3.0.

Then the updating equation (4.14) takes the form

2
AD L g Y(q(i)-260)< 260 A(i)> : (4.15)
-195-—130A2

Assume that the government makes an initial guess of Ago)==.65. By simula-

tion with a small amount (35dB S/N ratio) of noise, we obtain the results

illustrated in Figures 4.2-4.4. Figure 4.2 illustrates the estimate Agl)

at each stage i. In this case A

Aél) converges to the actual value of A

2
rather quickly (in approximately twenty iterations). Using these estimates
(1)

AX to implement the incentive structured subsidy computed from (4.5) and

&

(4.9), the resulting quantity produced and market price at each stage i are

displayed in Figures 4.3 and 4.4, respectively.

- Tt

PN
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(1)

Time response of the parameter estimate A

2

stage number i

40

¥
60

L7
Figure 4.2.
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Estimate Agi)
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4.2. A Second Order Example

- SR

Consider the following second order numerical example

o
tf _ t,' t £y t
JL = (u-u’) RL(u-u )+ (v=v) SL(v—v ) (4.16a)
= 1! '
Lﬂ Jp = u'Rpu+v'Sey (4.16b)
¢ -
S Y
where u = is the leader's 2x1 input vector

u
g 2
= - -
-3 v,
' and v = is the follower's 2x1 input vector.

v
& "2}

Suppose we have the following values

<

B . |28 o |28

i u = v = (4.17)
L 3.4 L 4.6

¥ (1.0 .63] 86 1.1

5! R = s, = (4.18)
| .63 1.8 | [ 1.1 2.5

g 1.0 .75 [ .75 .65

. RF = SF = (4.19)

3; | .75 1.2 | .65 1.6

R L

» and the leader, who does not know the contents of the matrices RF and SF’

“u

- wishes to apply an optimal incentive input

-

N - i

= oD 2yt e Wy (WG (4.20)

3 s ~(1)y

ﬁ1 wnere D(a ) is a diagonal matrix.

o

From equations (3.10a,b) and (4.19) we find the optimal diagonal
>

incentive matrix elements to be

g

%*
7 D* = -.8603 D)., = -1.417. (4.21)
0“7 11 22
i
E
T T e e G B R e e G R B S S S S S RSN G



. .
PN -
. u" '~) ’

.ﬁl.l

LA :
: !‘A.‘« "’.’ a..‘f' ‘%‘ﬁ‘t‘-ﬁ-} 4.

~-.8603 0

Thus, D = is the optimal diagonal incentive matrix. Using

0 -1,417
the algorithm described in Chapter 3 along with the initial guesses

. 1.1 1.5 .8
2 (0) _ 1.0 a

Rr

1.1 2.0 .8 1.0

and a step size y=.002, and applying at each stage i the incentive
control calculated from (3.2), (3.8), and (3.10), we obtained the simula-

tion results displayed in Figures 4.5-4.9. These results include a small

amount (45 dB signal/noise ratio) of noise. Figure 4.5 displays the leader's

(1)

cost JL

incurred at each stage, while Figures 4.6~4.7 illustrate the
A (1) ~ (1)

values of D11 and D22 calculated at each stage. We can see that JL

approaches its optimal value of zero and ﬁ;i) and ﬁé;)

(1) (1)
1 2

each approach their

optimal values. The resulting components v and v of the follower's

0 _
Sp = (4.22)

input are displayed in Figures 4.8 and 4.9, respectively. These plots also

approach their desired values of vi and v;.
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j CHAPTER 5 ;

\ § SUMMARY AND CONCLUDING REMARKS

L .

; :;,. \ j
\ \ ‘

%) In ;his thesis we—hevs_used the certainty equivalence approach

%?' and the theory of self-tuning regulators to derive an iterative method u

W

sty

a.' which generates an optimal incentive control for the leader in a static,

() : T

L two-player Stackelberg game with unknown cost functionals. Duximmthod uses g

fjx all available degrees of freedom to restrict the incentive matrix to a 1

kf diagonal structure. This restriction assures the leader of a unique optimal ':

%

| a_'f

rhy incentive control. Convergence to the optimal incentive control has been

i proven for the scalar problem and simulation studies hav%(shown good conver-
Lo 1. £
<2 [

) . . Ay .
! gence results for the second order problem. ue_iu145h4xﬁthaﬁ? that this

method is extendable in its present form to a general n-th order problem.

—

Y In Chapter 4 we applied oué5iterative method ,to a scalar economic
M a

.’; example involving government regulation of a monopoly. A simulation study
R

120 .

j of the problem revealed that the desired regulation was indeed achieved.

e <

e We also demonstrated the effectiveness of ouy method on a general second

l.‘- . - . r ,

-2 s Aens S el

oy order numerical problem.
. "a.-;

i Future research regarding application of optimal incentive controls
A T

o to Stackelberg games with unknown cost functionals may now focus on two

n)_"

o

’}: general areas, Starting with the iterative method detailed in this thesis,
o one may abandon the diagonal incentive matrix structure and attempt to use
Lif the resulting degrees of freedom to satisfy other useful criteria. An
P -~

% example cf this is given by the minimum sensitivity design approach
A ‘.;
] mentioned earlier. It is a&se—quatg desirable to trg_aaézextend the
b.e
N existing methods to dynamical systems and to problems involving more than
[} :,3 .
; two ayers.

:‘¢ < P y - ———
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