. AD-A161 562 THE AREA-TIME COMPLEXITY OF SORTING(U) lLlelS UNIV AT 1/3
URBANA RPPLIED COMPUTATION THEORV GROUP ARDI
DEC 84 ACT-32 NO®914-84-C-0149
UNCLASSIFIED

k2 25 ‘
""—I—g"tl. o |
o 2o .

rr
r
re

2 s ne

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS ~1963~ A

REPORT ACT-52 DECEMBER 1984

, Sadn

| MNATED + 7
r CF i 5
. PPLIED COMPLT . :

THE AREA-TIME
COMPLEXITY OF SORTING

AD-A161 562

ICC AN i

- - v — e o — " g i - ~ e
CaiCafin® Jhult St i i i & Rt it i Rt L L TS TR TN TS TN TR TN R T AR e T, L S s 2t e S e et i

—INCLASSTFIED

SECURITY CLASSIPICATION OB THiIS PAGE

REPORT DOCUMENTATION PAGE

= ['s REPCAT SECUMITY CLASSIRICATION 5. RESTRICTIVE MARKINGS ;
None R
N R ABPEOVEd P37 PUBLIC Telease, atstribution
NLA. unlimited ;
. JLCLASSIFICATION/QOWNGRADING SCHEDULE
N/A :
~::. A PERPGAMING OAGANIZATION REPOAT NUMBEAR(S) 8. MONITORING ORGANIZATION REPORT NUMBER(S) ;
~. g ACT-52 UILU-ENG 84-2218 ,
R-report # p_1024 N/A
_- Sa NAME OF PERBSOAMING ORGANIZATION OSAICE SYMBOL. To. NAME OF MONITORING ORGANIZATION i
" Koordinated Science Laboratory (11 epplianble) IBM Fellowship, National Science Foundation, -
niversity of Illinois N/A Joint Services Electronics Program g
Sc. ACORESS (City. Siase end ZIP Code) 7o. ADORESS (Clty, State and ZIP Code) B I
.. 1101 W. Springfield Avenue 800 N. Quincy Street :
« §Urbana, IL 61801 Arlington, VA 22217 B
8a. NAME OF BUNDING/SPONSQAING €u. OFFICE SYMBOL [9. PROCURBMENT INSTAUMENT (IOENTIFICATION NUMBER :
omGanizaTion IBM Fellowship, (I applicsbie;
X00014-84-C-0149
NSF, JSEP
NLA,
 §8c. ACONESS (City. State and ZIP Code) 10, SOURCE OF FUNOING NOCS.
I” §800 NX. Quincy Street l:::::: :o. "?4':“ Tu‘:‘ m':o?mf
Arlington, VA 22217
P —— as— X
11. TITLZ Inciuce Secunty Clamificsuon)s LOE area-rime . | N
ngmplexity of Sorting N/A N/A N/A N/a
12. PEASONAL AUTHON(S)
ianfranco Bilardi
l 13a TVPS OF REPORT 130. TIME COVERED 14. OATE OF AEPOAT (Yr. Wo., Day) 1S, PAGE COUNT
- Tachnical cAOM to______ | December 1984 “
16. SUPPLEMENTAARY NOTATION .
s N/A .
17. CCSAT! CODES 18 SUSJECT TEAMS /Condnue on reverse if necesery ang idenafy by Back numoer) -

|

@ f ey ' seRoue | sus. GA.
[}
t

19. AGSTRACT 'Canunue on recerse (f nacesssry and identify by bioca number) '
.. ¥This chesis studies the minimum area A = an'k(T) required by a lavout of a VLSI circuit that ;
. 450::3 a k-bit keys in time T.

The square tessellation technique is introduced as a powerful tool to astablish area-
time lower bounds, based on the information exchanged across the boundarv of a suitable set
of sguare cells that tessellate the lavout region. When the information exchange is due =3
the fact that variables output on one side of the cell boundary are functions of variables
input on the other side, the square tessellaticn vields bounds on the ATZ measure. when, o5n ! .
the other hand, the information exchange is due to the fact that the cell saturates it
storage resources and sends some information outside :or temporary :carage, the square
tessellation vields bcunds on the AT measure. Both &I" ancd AT lower bounds are obtained Zor .
sorzing. The {ormer dominate in fast computations, while the latter dominate ia siow :
ccapucations.

The analysis indicates that the nature of the problem varies considerably with the

f . 20 S STRIALTICWAVAILABILITY SF ABSTRACT 21. AGSTRACT SECUAITY CLASSIRICATICN

UNCLASSIZIED/ UNLIMITED — 3SAME aS 3™ _ 3T!C LUSEAS

«* §22a NAME 2B RESPTNSIBLE .NOIViIDUAL 225 TRLSPWCNE VUMSEA 2%¢. SREICE 3V ASCL
- inctuae 4rea Coge:

CC FCRM 1473, 85 APR '

EDITION SR ¢ _AN 738 SB3SCLETE.

[YRS SUR

SESLAITY ZLASSF.CAT AN I8 "ai§oa ot

S e T L T e -,
RS S A P PN .-
t et talatatal ot atalt g alt s e,

TSy vl we

I'NCLASSIFIFD
SECURITY CLASEIFICATION OF ThiS PAGE

L g A
PR

relative size of n and k, and suggests a classification of keys into short (k < logn),
long (k > 2 logn), and of medium length.

Optimal or near-optimal designs of VLSI sorters are proposed for the entire range of
n, k, and T, confirming the inherent validity of the lower-bound analysis.

rF . 9 -
,..——‘.
PR .

.,
A

........

iii

THE AREA-TIME COMPLEXITY OF SORTING

Gianfranco Bilardi, Ph.D.
Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign, 1985

This thesis studies the minimum area A = a, , (T) required by a layout of a VLSI circuit that

sorts n k -bit keys in time 7.

The square tessellation technique is introduced as a powerful tool to establish area-time lower
bounds, based on the information exchanged across the boundary of a suitable set of square cells that
tessellate the layout region. When the information exchange is due to the fact that variables output on
one side of the cell boundary are functions of variables input on the other side, the square tessellation
yields bounds on the A7 2 measure. When, on the other hand, the information exchange is due to the
. fact that the cell saturates its storage resources and sends some information outside for temporary

storage, the square tessellation vields bounds on the A7 measure. Both AT ? and A7 lower bounds are
obtained for sorting. The former dominate in'fast computations, while the latter dominate in slow

-_ computations.

The analysis indicates that the nature of the problem varies considerably with the relative size of
n and k, and suggests a classification of keys into short (k¢ < logn), long (k¢ 2 2logn), and of medium

length.

Optimal or near-optimal designs of VLSI sorters are proposed for the entire range of n,k,and T,

,. confirming the inherent validity of the lower-bound analysis.

.« p—-

RS IR S R EC M it T R i T A]

iv

ACKNOWLEDGEMENTS

My advisor, Professor Franco P. Preparata, has had a profound influence on this thesis and on my

w scientific development.

Many discussions with Scot Hornick, Xiaolong Jin, Majid Sarrafzadeh, Alberto Segre, Prasoon
Tiwari, and loannis Tollis are refiected in this work in various ways. To Alberto, Majid and Scot, I am

also particularly indebted for their help in preparing the final version of this manuscript.

Several conversations with Tom Leighton have provided me with considerable insight on VLSI

sorting; it has been very beneficial to learn of Tom’s results in their early stages.
r Phyllis Young and Mary Runnells have been very patient in typing this manuscript.

The work reported in this thesis has been mainly supported by an IBM fellowship, with partial
support, at different times, by National Science Foundation grant MCS 81-05552 and by the Joint Ser-

_I vices Electronics Program under contract N00014-84-C-0149.

Finally, I want to express my gratitude to Marinella, my wife, for her love and support.

. Accession For
: NTIS GRA&I |
DTIC TaAB
Unannounece4 M
Justification
D
e]
. B —]
| Distritor - -y
Availaki 5] '/. \‘\
E———— . —_— N '
. Aee -~
o Dist !

RN S AN S N A e S A Sl N

v
:‘ TABLE OF CONTENTS
R
-. CHAPTER PAGE
o
. 1 INTRODUCTION 1
ho
- 1.1 VLSI Computation 1
1.2 Problem Statement and Organization of the Thesis 6
2 PRELIMINARIES : 10
2.1 Introduction - 10
'J:; 2.2 Encoding Multisets 15
" 3 LOWER BOUND TECHNIQUES 24
- 3.1 The Dichotomy Lower Bound on the Layout Area 25
. 3.2 Information Exchange Area-Time Lower Bounds (AT? Theory) 32
3.3 Saturation Area-Time Lower Bounds 37
4 LOWER BOUNDS FOR CYCLIC SHIFT AND SORTING 42
- 4.1 Cyclic Shift 42
| 4.2 Sorting 48
4.3 Area-Time Lower Bounds for the Comparator-Exchanger 74
= 5 ALGORITHMS AND ARCHITECTURES 79
) 5.1 Introduction ; 79
% 5.2 Parallel Algorithms for Sorting 80
5.3 Parallel Architectures 38 K
6 OPTIMAL VLSI SORTERS FOR KEYS OF LENGTH k = logn + 6(logn) 101
r 6.1 Introduction 101 ‘
6.2 Networks for Bitonic Sorting 104 :

iR R b s A

vi

6.3 Networks for Merge-Enumeration Sorting 124

g 6.4 Other Optimal Networks 137
. 7 SORTING KEYS OF ARBITRARY LENGTH 139
N 7.1 Introduction 139
- 7.2 Sorters for Keys of Medium Length 140
7.3 Sorters for Short Keys 152

7.4 Sorters for Long Keys . 163

8 CONCLUSIONS 175
REFERENCES . 179

-l‘:‘ VITA 183

THE AREA-TIME COMPLEXITY OF SORTING ;
BY
GIANFRANCO BILARDI
Laur.,, Universita di Padova, 1978
M.S, University of 1llinois, 1982
THESIS
Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical Engineering
in the Graduate College of the
University of lllinois at Urbana-Champaign, 1985
Urbana, Illinois
L‘ S ';-. _ : '._. L;I:}J‘L . ‘," DRSNS ’- SO . '__‘ '_-.:_-.: -.'._~.:-..:._;_:.:.-‘.:_-.;_..;. c _-.'__:."__-.:_:.:_:.:.

© Copyright by
Gianfranco Bilardi

1985

- P
I
r

AP S St A A agE M A g And tud S bl A i SR e tel DA S-S SR - e e S By I e R i ™ Au® o N A ghe g ot
. P T A e r et - . b, P

CHAPTER 1

INTRODUCTION

1.1 VLSI COMPUTATION

The breakthroughs in the field of electronic devices, which have lead to Very-Large-Scale-
Inzegrarion (VLSI) technology, open new avenues to the system designer in almost all areas of electri-
cal ex.xgineering {MC79, Mu82]l New system-theoretic concepts are necessary to take full advantage of
the new technological potential, although existing theories will be an invaluabie startiag poiat, accord-

ing to a pattern typical in scientific research.

We shall focus on computing systems, which will be among the first to ve affected by the VLSI
technological revolution. However, considering that communication and control systems make an
increasing use of digital techniques for signal processing (a particular kind of computation), we realize

that computing is fundamental for all electrical engineering.

The main feature that makes VLSI a very attractive environment for computing systems is the
possibility to deploy - at a reasonable cost - a large number of processors cooperating in the execution of
a given task. This possibility has been long pursued in the hope of increasing the system's computa-

tional throughput oy means of concurrency of operations.

A sytematic development of the notion of concurrency implies a radical departure from the archi-
tecture of the traditional Von Neumann computer, and from the sequential nature of the corresponding
algorithms, given as sequences of very elementary instructions each of which is to be executed in suc-
cession by the same processor. The departure from the uni-processor architecture poses the fundamental
Guestion of how to interconnect many processors so that they can efficiently exchange information
when cooperating in solving a given problem. The interconnection network is in fact the most relevant

feature of a parailel architecture and strongly constrains its computational capabilities. A formal way

O e e e e e e e s eut e A Jhr U iy “n - ie- pir-ukar i it R R A

...........

to view a parallel architecture consists of associating to it a graph whose vertices correspond to proces-
sors and whose arcs correspond to data path. The attempt to define a general purpose architecture,
whose interconnection network can support any processor-to-processor data transfer that an algorithm
may require, leads to consider the fully interconnected graph. This architecture, under an equiyalem
formulation known as Shared Memory Machine, has in fact been extensively used in the first theoreti-
cal studies of parallel computing. However, practical considerations on limited fan-in and fan-out fac-
tors, and also on cost-effectiveness, show that the fully interconnected architecture is not a realistic
model for a computer, and motivate the investigation of architectures with simpler interconnection
that still support efficiently the execution of parallel algorithms. Thus we are led to the following
situation. Each computational problem calls for the joint design of an algorithm and an architecture.
The "best” architecture may change with the problem. Only a posteriori after careful analysis of many
problems, may we find out whether there are general-purpose, or at least broad-purpose architectures,

which are efficient for a large class of problems.

In this context an appraisal of a design must be based not only on algorithmic performance, typi-
cally characterized by time complexity, but also on some other measure capturing the “architectural
complexity”. The traditional count of processors is not an adequate measure because it totally disre-
gards the communication aspects of the system. Other mathematically reasonable candidates could be
related to the number of edges, or to the maximum degree, or to the diameter of the interconnection
graph. However, none of these measures seems to reflect completely the cost of actually building the

architecture in any technology of current interest

It is then of the greatest theoretical interest the fact that VLSI technology naturaily offers an
attractive measure of architectural complexity, the chip area. Due to the integrated nature of VLSI
te~hnology, where processing elements (transistors) and communication elements (wires) are realized in
the same medium (the silicon chip), chip area effectively accounts for the cost of all relevant aspects of

the system, and its minimization is a2 major concern in industrial applications.

-y,

The fact that the architecture to solve a problem is not given in advance - as it was in traditional
algorithm design for the Von Neumann machine - brings a new interesting consequence: the architec-
tural complexity can be traded for the efficiency of the computation. In the context of VLSI computa-

tion, this phenomenon takes the form of area-time trade-off, and plays a central role in the theory.

The rigorous development of a computation theory for VLSI rests on the definition of a model of
computation that captures the essential traits of the technology and allows for mathematical treatment
of system design. A VLSI model of computation is today available, as the result of the effort of several
authors [T80,BK81,5¢73.5a79,C)Vi81,BPP82,BL 84] and will be described in the next section. The
assumptions of the mode] will be stated axiomaticallv. For their justification, which is sometimes based

on a rather delicate and subtle analysis, we refer the reader to the literature cited above.

1.1.1 The VLS]I Model of Computation

A VLSI chip can be viewed as a computation graph whose vertices are information processing
devices and whose arcs are wires, that is, electrical connections responsible for information transfer as
weil as for power supply and distribution of timing waveforms. A given computation graph is to be
laid out in conformity with the rules dictated by technology. The essence of these rules is formaliy

accounted for in the mode! as follows
Area Assumptions

(A1} (Wire Arear All wires have minimum width A > O (which includes both the actual wire width
and the clearance between wire and any other chip region), and at most v wires (v an :nteger

2 2)can averlap at any point (hypothesis of bounded number of lavers).

{A2) (Transistor-Port Area) Transistors and ['O ports have munimum areas cr A° and ¢» A7, respec-
tivelv, for constants ¢- and ¢p.

‘A3 {Chip AreaX The chip area is at least the sum of the area of the wires, of the iransistors. and or
tbe L O poris. and it is at most the area of the smallest reciangie {or convex region) enclosing =

iegal lavout of the graph.

The area assumptions allow a straightforward appraisal of the area of any given design. To appraise
the computation time of an algorithm we need some assumption on the timing of elementary actions, as
the gate switching and the signal transmission on wires. For simplicity, in the sequel switching time is
subsumed under propagation time.

Time Assumptions

(T1) (Propagation Time Along a WireX A bit requires a constant time 7 to propagate along a wire,

irrespective of its length (synchronous model).

(T2) (Algorithm Time): The computation time of an algorithm is the time of the longest sequence of

Wwire propagation times between beginning and completion of the computation.

Assumption (T1) is not immediate to jutify, and it is in fact false at the physical level. The essence of
the justification is that, although a detailed analysis of the electric phenomenon of wire propagation
{BPP82) shows that constant transmission time can be achieved on long wires only if proportionately
large driving transistors are deployed, results of layout theory [BL84] ensure that a layout of the com-

putation graph can always be found in which large drivers can be accommodated without substantial

degradation of area and time performance.

The transfer of information within the chip is constrained not only by wire bandwidth, but aiso

by fan-in and fan-out capabilities of logic gates. This fact is accounted for by the following assump-

tons.
Fan-in and Fan-owt Assumptions
iF1) (Bounded Fan-in) The number of input lines of a logic gate is upper bounded by a consant / ..

(F2) (Bounded Fan-ow): The number of output lines of a logic gate is lower bounded by a constant

fO'

Other assumptions are often stated in the VLSI computation literature when studying lower and

upper bounds for specific problems. These assumptions are not dictated by technological constraints, but

rather by reasons of various Kinds, ror instance to avoid trivial or meaningless solutions, 0 enforce

IS
-

ro

I
R .

features that are appealing for practical application, or to simplify the analysis. Most of these auxiliary

assumptions concern the I/0 protocol. We list here the most common ones:
Protocol Assumptions
(P1) (Semellective Protocol): The input data of the problem are available only once at the input ports.

(P2) (Time-Determinate Protocol): Input and output data are available at prespecified (instance

independent) time.

(P3) (Place-Determinate Protocol): Input and output data are available at prespecified (instance

independent) ports.
(P4) (Boundary Protocol): All /O ports are on the boundary of the layout region.
(P5) (Word-Local ProtocolX: All the bits of a given input word enter the chip at the same input port.

Unless explicitly stated otherwise, assumptions on area, time, fan-in and fan-out, assumptions P1,
P2, and P3 on /O protocols will hold throughout this thesis . Instead, P4 and P5 will always be expli-

citlv mentioned when adopted.

It is worth observing that, although all our networks will exhibit bounded fan-in and bounded

fan-out, assumptions F1 and F2 will not be needed in most of our lower-bound proofs.

Usually, when discussing asvmptotic analysis, the specific values of some of the constants in the

model, such as c-, ¢p, A, and T, are not relevant, and can all be conventionally chosen equal to one.

It is aiso convenient, when considering layouts of computation graphs, to restrict the attention to
embeddings on a suitable rectangular grid. Generally, this restriction could be easily removed at the

srice of more elaboraie proofs, which would not add particular insight to the analysis.

1.1.2 The VLSI Complexity of a Computational Problem

Once a mocel of computation for VLS is defined. algorithms for various problems can be proposed
and analyzed. and a coherent theory can be developed. Several authors have proposed performance

measures, tvpicallv-a function of the area A and of the tume T of the form AT ®, with respect to whica

P R I Iy PR I R I RN ¢._r U R e’ e " -',-.‘_ .'_."'4- S e v e e ‘_--‘_-'*_. e
e, P --,..,'_,{,.-,.',:.(.... AN ‘.". Y YA Nt ~

ALY

-

[SSCT

¢ et LSRR CEA I
PRI "- et Tt e ‘ > e et "-.'.4"‘ - et o -.‘-‘-.“--' PR S SIS

optimality can be defined. In our opinion, however, the following approach is more fundamental.

Given a computation problem I to any chip that solves II for an input of size n, in time 7 , and
area A, We can associate a point of coordinates (7,4 ,) in a plane, which we call time-area plane. The
set of all designs corresponds then to a region in this plane. The objective of VLSI complexity theory is
then the determination of such region. Since if a point (7 A) is feasible then (T oA) is feasible for

any A > A, (just waste some area!), the objective can be reformulated as follows.

Given a computation problem II, its VLSI complexity is described by the family of curves
A =a,(T) one for each value n of the problem size, where a, (T 2 min{A y there is a chip that

solves IT on instances of size n with performance (7 ,A).

Usually there is a minimum value T ,,.(n) of the computation time below which no feasible
design exists, and a maximum value T ,,(n) above which a, (T) is constant, meaning that no savings
in area result from slowing down the computation. In conclusion we would like to find, for a given
problem, the value of a, (T), for T €{T 5n(n)T g,x(n)} Typically a, (7") is determined within a con-
stant factor by establishing suitable lower and upper bounds. As expected, a, (T) is increasing in n and

decreasing in T, expressing the fact that a faster computation requires more computing resources.

1.2 PROBLEM STATEMENT AND ORGANIZATION OF THE THESIS

1.2.1 Sorting -
Sorting is a fundamental combinatorial operation, and is among the most frequently performed -

by computing svstems Thus, the VLSI complexity of sorting has received a lot of attention by fj-:

researchers. But, in spite of intensive study, this problem does not cease to offer extremely intriguing =

questions, and to reveal heretofore unsuspected facets. :
Formally, the ink)-sorting problem is defined as follows: ;;:

(1) The input is a sequence of n k-bit kevs, each a member of a finite set of integers. B

| S R A A M i s an g S A S0 LRI S48 A R AR DA 2 A M ea s i a e a e At S R

(2) The output is a rearrangement of the input keys, so that they form a nondécreasing sequence.
‘ Throughout this thesis, we represent the input of the (nk)-sorting problem as an n Xk array of
b binary variables
X ={X%4 =0,1,....n-1; j =0,1,.... k=1
where X/ is the coefficient of 2/ in the binary representation of the i -th input key. The i -th row of

X, denoted by X, , represents the i -th input key, and the j -th column of X, denoted by X -, represents

the j -th least significant position. A similar notation is adopted for the output array Y.

One could be tempted to analyze the complexity of sorting as a function of nk, the total number

of input bits. However, as will be fully substantiated in the following chapters, the nature of sorting

-

is strongly influenced by the relative size of n and k. Thus, it is appropriate to state the objective of our
study as the determination of the minimum area A = a, , (T) sufficient t0 lay out a circuit that solves

the (nk)-sorting problem, as a function of n and k.

1.2.2. Thesis Outline

This thesis is organized in two parts, respectively devoted to the study of lower and upper bounds

[| to the area~time compiexity of sorting.

In Chapter 2, after a review of known area-time lower-bound techniques, we study the subject of

multiset encoding, which turns out to be deeply related to sorting. In fact, although the input to the

' (nJe>-sorting problem is given as a sequence of keys, the output depends exclusively on the multiset
underiving the input sequence. In the VLSI eavironment, where somputation is governed by the dow
of information in the two-dimensional chip, the information-theoretic content of :he input multiset has
a fundamental influence on the area-time complexity of sorting. The fact that this information conten:
is verwv sensitive to the relative sizes of n and k is the primary reasen for which the nature of sorung is

strongiv depencent on the length of the kevs.

The traditional bisection 0w technique is not adequate to study the area-time complexity of sor-

- i1, except for a special intervai of Key lengths. In Chapter 3 we introduce the notion of square 1

LA A e ach S Jaih sk et et s At i il nads el Jeui ot e dind Jeudh bedh e dadh St b Aunh S conl SRt

I3
.
:

l
!
'
4
4
4

ot

: 8
> tessellation, a partition of the layout region into square cells of identical size, and we show how to
E obtain area-time lower bounds in terms of the information exchanged across the boundary of the tessel-
- lation cells. A novel feature of these bounds is that their form depends upon the nature of the mechan-

ism forcing the information exchange. When the information exchange is due to the fact that the vari-
ables ourput on one side of the cell boundary are functions of variables input on the other side, the
square tessellation technique vields lower bounds on the A7 > measure. This mechanism has been exten-
sively studied in the literature, especially in connection with the bisection technique. In addition to it,
we consider here for the first time another mechanism, which we call sarurazion, occurring when a cell
of the tessellation fills all its storage in the course of the computation, and sends some information to
the rest of the chip for the only purpose of temporary storage, to request it back at a later time. When
the information exchange is due to saturation, the square tessellation technigue yields bounds on the

AT measure.

The effectiveness of the general techniques developed in Chapter 3 is demonstrated in Chapter 4,
where several lower bounds are obtained for two problems cyclic shift and sorting. Here the keyvs are
classified into short (k < logn), long (k 2 2logn), and medium-leagth. Medium-length kevs have beer
heretofore the object of investigation, and can be adequately studied by bisection techniques. It is for

5 short and long kevs that the full power of the square tessellation techniques becomes evident. For both

cases, AT and AT lower bounds can be established, and it is interesting to observe that the A7 * bound

dominates in fast computation, while the A7 bound dominates in slow computation. In the last section
of Chapter 4 we obtain bounds for the problem of comparison exchange, a special case of sorting where
the Kevs are just two. The bound is on the AT 'logA measure, and rests cruciaily on the bounded fan-in

assumption, unlike the bounds mentioned above that hold even for circuits with unbounded fan-in and

fan-out. N

In Chapter 5 we turn our attention to upper bounds, and review some well known paralle! aigo-

rithms for soriing, as well as some networks of processors particulariyv suited to VLSI implementations. o

In Chapter 6 we study (nk)-sorting for k = logn + 68(logn). After explaining why this particular
. value of kevlength plays a central role in the construction of sorting circuits, we turn our attention to
- specific designs We first consider the bitonic sorting algorithm, and propose two architectures, the
pleated cube-connected-cycles, and the mesh of cube-connected-cycles, both of which achieve optimal
- area-time performance in a2 wide spectrum of computation times. The fastest bitonic sorter works in
= time 7 = &log?n). To obtain faster sorters we then turn our attention to another algorithm, the
merge-enumeration combination. A network that combines the cube~connected-cycles and the

orthogonal-trees architectures executes this algorithm in &(logn) time and optimal area.

In Chapter 7 we consider the (rk)-sorting problem for arbitrary &, and we propose three sorting
networks, respectively tailored to short, medium-length, and long keys. The algorithms presented in
this chapter are new. The ones for short and medium-length keys exploit efficient encodings of schemes
for multisets, while the algorithm for long keys takes advantage of the non-word-locality of the 1/O

protocol. The fact that the resulting VLSI designs are optimal or near-optimal confirms the inherent

validity of the lower-bound analysis developed in Chapters 3 and 4.

:‘f_f Some closing remarks are finally presented in Chapter 8.

o ——
v oy

R

oo rT Ty vy vy ww
i e S e Sai* e~ el o YA N T LW e e N e T TR LN N -~ .

"Rt .
2an ¥ 9, st 8,

& et
. v

P,

FOAT .,

PRELIMIN ARIES

2.1 INTRODUCTION

Part | is devoted to the study of lower bounds on the area-time complexity of sorting. However,
the techniques that we develop are general, and will probably be useful to investigate several other

problems.

We recall from Chapter 1 that the VLSI complexity of a computational problem II is described by

the family of functions
A=a,(T),T €T gnn)T pu{n)} . R |

where n is the input size, a, (T") is the area of the smallest design that solves II in time T, T ,, is the
minimum time required to solve II (regardless of the area), and T ,, is a time such that, for 7 >

T max» @, (T) is constant with respect to 7.

Area-time lower bounds can be stated in different forms. The most common are

A = Q(f l(n,T). 2.2
T = Q(f {n,A). 23
g(A.T) = Q(f () 2.4

where /', f 5, g and f are suitable functions. It is usually a simple matzer to convert one of the
above forms into another. The choice of the form to be used in a specific case is onlv a matter of con-

venience.

A

AR Dl T M M N R A A pel prp i SN aAS AR i S e daen Sate aate Sntt TR Tpre— L e R A AN AR S B S R b Th A ety

11

-

2.1.1 Layout Theory

‘ Since a VLSI chip can be viewed as the layout of a given computation graph, some useful tools to
establish area-time lower bounds can be borrowed from layout theory, a chapter of graph theory which
studies, among other things, the problem of determining the minimum area needed to embed a given

graph in the plane, according to some specified layout rules.

Typically, lower bounds (and also upper bounds) on the layout area are given in terms of some
auxiliary quantities associated with the graph, which are hopefully easier to compute or to bound than
the area itself. Among the most interesting auxiliary quantities proposed in the literature are the bisec-
tion width (T80} the crossing number {L81a] the wire area [L81a] the separator [Ls80b, Va81] and the
bifurcator [L82,Bl 84]

When applying layout theory to obtain area-time lower bounds, we do not deal with a specific

graph, but with all the graphs that can support the computation to solve a given problem II, in a given
ume 7. Thus, our goal is to show how this computational property of the graph implies a bound, either
. directly on the area, or on some related auxiliary quantities. Some techniques have been proposed in the

literature to achieve this goal, and we briefly review them in the next section.

__. 2.1.2 Area-Time Lower-Bound Techniques

To date, all known area-time lower bounds belong to one of the three following classes.
(1) Input-out put bounds. They are of the form
AT = Q(sizeof inpw + sizeof outpur) 23

and are a trivial consequence of the fact that the area is at least proportional to the number of 1'O

ports, which in turn is at least proportional to the maximum aumber of bits that the chip inputs or

outputs iz a time unit. For boundary chips. (where all the IO ports are placed on the boundary of the

.ayout region), the [-O bound becomes

12

pT = Qsizeof inpu + sizeof oupur) 2.6
where p is the perimeter of the layout region. Bound (2.6) is usuaily combined with other consicera-

tions to obtain area-time bounds

(2) Functional dependence bounds. Functional dependence of the output variables on the input vari-
ables can sometimes be exploited to strengthen the 1/0 bound, as in [Jh80L where it has been shown

that, for the addition of binary integers with n bits,

A= 9(% log(%)) 2.7

or equivalently,
AT /logA = Q(n). 28 -
The argument to establish the bound is rather subtle, and we will discuss it in detail in Section 4.3,
where we apply it to the problem of comparison exchange.
(3) In formation-Exchange Bounds. Almost all the nontrivial known lower bounds on area-tume com-

plexity are of the type

AT? = QU ¥n)). ' 2.9 -

e

where / (n) is the bisection-information of the problem II being considered, a very important notion
introduced by Thompson [T80] Informally, the bisection width & of a graph G = (V,E). is the
minimum number of edges to be removed in order to separate a set of 'VI/2 vertices from its comple- --
ment. (For formal definitions and generalizations see [T80] and also Section 3.1.) The bisection-
information arguments are based on two facts: (i) the lavout area is at least proportional to the square
of the bisection width; (ii) any computation graph that solves a given problem II must support an
information exchange / (n) through its bisection, where /(n) is a function associated with II. The L
sound (2.9) follows easily from (i) and (ii), considering that & 2/ (n)/ T. The evaluation of /(n)
requires an argument tailored to the particular problem being studied. Indeed. considerable attention

has been devoted to the subsect of information exchange. which we survey briedy in the next section.

Tl VLW LR RN TwW T T &
..

13

T

2.3 Information exchange

In recent years the study of both distributed and VLSI computing has generated considerable

' interest in the analysis of the amount of information that different processors have to exchange when
cooperating in solving a given problem.

Several quantitative definitions of the information exchange / associated to a problem II bave

been proposed, and several techniques to lower bound / have been developed. The objective of this sec-

tion is to recall the main concepts at an intuitve level, and to indicate the appropriate references, where

a more detailed treatment of the subject can be found.

The general framework is one in which two processors P, and P » cooperate to solve a problem II,
or equivalently to compute a function f. The basic question is How many bits do the processors have
to exchange during the computation? The answer is obviously dependent on a number of assumptions,

and different authors have made different assumptions, We list some of them here.

1/0-Variable assignmen:t. In the simplest case the assignment of I)O variables to processors is

compietely specified. In applications to VLSI we are typically interested in a class of assignmem's. and

the information exchange must be minimized over the class. ([Y79] [T80} [BKS31] [aA80]) {Y81]

(LS81] [BG82] [MS82] [Sa79] [Vu83] [JK84] [ALYS3])

Communication. protocoi. We may consider a one directional link, say from P to P, (one-way
communication) or a link for each direction (two-way communication), ({Y79). We may also impose
bounds on how many messages can be exchanged. a message being a run of bits sent by P, t0 P;_,.

Alternatively. we may bound the leagth of the messages, and so forth ([PS82] [DGS84]).

Type of computarion. The computation performed by P, and P . can be assumed to be deter-

- ministic, or nondeterministic, or randomized (Las Vegas). ([MS82] {PS82] [LS81] [DGS84) [Y75]
[AUYS3))

Compiexity measure. Finally, we can count the bits exchanged by P, and £ in the worst case

[instance, or in several kinds of average case (Km83}

st s e A B AT AT ARSI
!.:.:,:"‘,:;:).'-','-’.'I'I"f'."-“'-‘ o P e, - \,'u .»\'.-.. AR RO 2 S R AR I R O, .
2o sl il slimind o ndinediiad ~ Sl -

- e av,

T — — 3 M-S W A e S e S Jhon S & e S 3
- EhlRr Pl . . . B .

14

The above list of assumptions is by no means exhaustive, but should give an idea of the variety of

issues which are addressed in this area of study. Typical results that can be found in the literature con-

N cern: (i) general lower-bound techniques; (ii) bounds on the information exchange of specific functions;
(iii) the study of complexity classes related to various definitions of /; and (iv) conditions under which
h the bound AT? = Q(J?)is valid in the VLSI model.

A complete account of the theory of information exchange is not our present objective. However,

we will return to this subject to propose some new developments, with relevant applications to VL3I

complexity.

2.1.4 Summary of Part |

The input to a sorting problem is a multiset, and for this reason efficient schemes to encode mul-

tisets are essential to obtain good algorithms. Moreover, the fact that the efficiency of a given encoding

scheme is very sensitive to the ratio between the size of the multiset and the size of the universe from
which the elements are drawn, makes the nature of the sorting problem varv considerably with the
length of the keys being sorted. Thus, both lower-bound arguments and upper-bound constructions

greatly benefit from a solid understanding of the subject “encoding of multisets” which is treated in -

Section 2.2,

Chapter 3 is devoted to general lower-bound techniques. In Section 3.1 we gen:ralize the notion

of bisection width by introducing the notion of dichotomy width of a graph, a quantity very useful to

-

lower bound the layout area of some graphs. In Section 3.2 we show that a suitable generalizaton of
the traditional concept of information exchange can be used to lower bound the dichotomy width of :i'f.
computation graphs. When combined with those of Section 3.1, these results provide powerful tools to -
lower bounid the area-time complexity of computational problems. ::::
The traditional bisection-information technigues as well as the generalization proposed in Section <
.

3.2 capture the idea that if some variabies output at a given place carry information on other vaiatles

:iput at a different place, then some kind of information flow between the txo places will be required -

s ta e g e

podindhfinin et ol et St M RN S it S e AT DA S i = ¢ afii oA e =g

15

by the computation. However, there are cases where the information is input in a place close to where
it must be output, and nevertheless it must be temporarily transferred to a different place, due to the
fact that all local storage is saturated. In Section 3.3 we show how this intuition can be formalized by
defining the notion of information exchange under bounded storage. We also develop a general tech-

nique to obtain area-time lower bounds based on this notion.

In Chapter 4 we apply the results of Chapter 3 to specific problems. In Section 4.1 we derive
iower bounds for the information exchange and the area-time complexity of cyclic shift. Although
cvclic shift is an interesting problem in its own rights, our main motivation to analyze it is due to the
relationship between cyclic shift and sorting, to be systematically exploited in Section 4.2 where we

finally concentrate on the sorting problem.

Section 4.2 is organized in three subsections, respectively devoted to the study of three different
ranges of key lengths. Several new lower bounds are obtained both on the AT 2 measure (using the
dichotoray-information technique), and on the AT measure (using the saturation technique). As we
shall see, the .AT"? bounds dominate in fast computations, whereas the A7 bounds dominate in slow

computations.

Finally, in Section 4.3 we discuss the area-time lower bounds for the comparator-exchanger,
which can be viewed as a sorter of two kevs. Here we have to investigate the notion of functional

dependence and its effect on the area-time performance. Crucial to this type of argument is the notion

of bounded fan-in digital circuits.

2.2 ENCODING MULTISETS

This section is devoted to the study of efficient encodings of multisets. We are interested in mul-

tisets pecause:

(1) The irput to a sorting problem is a multiset (the ordering of the eiements in the input iist s

immaterial).

BV e e A h A E s e ard ad g Al ta § ol SeASIbACS Seth Ac et Al at e aui gRN Sl S TR sl AL L SO ANE AR L SN R e e O i oA A

16

(ii) A sorted list can be viewed as a canonical representation of the underlying multiset (two lists

of elements represent the same multiset if and only if they are identical when sorted).

The study of efficient encodings of multisets will provide us with a background both for the

information-based lower bounds of Chapter 4, and and for the upper bound constructions of Chapters 6

and 7.

A rultiset S is a collection of elements from a totally ordered set U called the universe, with
repetitions allowed. In the sequel we are only concerned with finite multisets and finite universes so

that, without loss of generality, we can use the following notation:

XpXpeoonXpa 2.10

U

U {0,1,...,7r=1}. 211

Thus, n is the size of the multiset, and r is the size of the universe. Usually we think of the elements
of U as encoded in binary, and we denote by & = ‘logrl the number of bits needed tn encode an ele-

ment. Since the order of the element of S is immaterial, representation (2.10) is not unique, and given

any permutation 7 (0), 7 (1),..., 7 (n =1) of the integers 0,1,...,7 —1, We can also write

S = lxmo)vxﬂ(llv""xﬂ(n—l) }'

This representation becomes unique if we add the comstraint that X, SX 4y » for
i =0,1,...,n=2, or in other words if we require that the sequence X ..y X ,..+. . X mnp-1) be

scrted in noncecreasing order. From this standpoint sorting becomes the operation of computing a

canonical rerresentation for a multiset.

Other representations are clearly possible, and couid be more convenient in some situations. In

rarzicular, in V'LSI computation we are interested in nonredundant representations because thev require

less bandwidth for transmission.

f

T VgL W W)

D™ g A AR o gt T T A A A A il e A P R I S Al et A Sl ine A e ve e A A ierhie Tt il ek Aok Wl A

17

2.2.1 Counting Arguments

A simple combinatorial argument shows that the number of multisets of size » in 2 universe of

size ris * ¥7 = 1|, Thus, the number of bits necessary to encode a multiset is
- r +n —1
} e(nrs) = log - 212

If we use Stirling’s approximation for the factorial, after some manipulations we can rewrite Eq. (2.12)

- as
f e(nr)=nlog(1 +r/n) + riog(1 + n/r)+lower order terms. 213

It is interesting to consider the asymptotic behavior of elnr) when r is an increasing function of n, as in

the following examples.

(Dr/mn 0 e(ny) =rllogn —logr)
(r =ry=constanz, e{n ro,)=r.ogn)

(2) r = n Xconstant .e(n,r)=9(n)
tr=n,elnn) = 2n)

(3)r/n o el(nr) = nllogr —logn)

(n =n,=constanz, e(nyr) = nologr)

Certainly there are encodings of multisets that use strictly efnr/ bits. However, we are interested in
encodings that either arise naturally from problems, or that, although artificially introduced, preserve

some iatuitive meaning, and are useful in multiset manipulations.

2.2.2 List Encoding

The most natural way to describe a multiset consists in giving a list of its elements, in any order.
Clearly e, (n) = nlogr =nk bits are used for this representation. Thus, the iist encoding is optimai

(in the order) if and orly if the universe is large enough. namely if

- - - - - - - . - - - - " . . - - - " - - vt e T TNt e -~ e
S L L T AP A UL S T UL e TS
. DR TR T SR AT WA L RV DL DA VR L ST LA AL NS PRI YCAPL A e S e e e -
.. - ..- LI I CH 4 - * . o™ .)l fePL At e - ¥ - LS I T T I L R T T I ST P N -t .
R OTE PP PGV AP ORI AP AR . SR WA R R WAl R WL W W iy WA Y oy ey

P —— WA Shabe Jhole J0tt Jhave Junt Jiiaue it Mube i e heon Jast et duge e M Jiuir Bhan Sat it dape S i o BEE i sl ol AP L M AP AP SRR

18

k = logn + Q (logn) 214

or, equivalently, if r > n'!**’ for some a > 0 . The list encoding becomes very inefficient for a
small universe. In the extreme case of r =2 ,;,(n,2) =n ,wherease (n,2) = logn . Therefore we

turn out attention to another method.

2.2.3 Multiplicity Encoding

Another simple way to specify a multiset is to say how many occurrences it contains of any given
element of the universe. Formally, we introduce the multiplicity function u()(i{ =0,1,...,r —1)

of multiset S defined as

12 G) Snumber of occurrences of element i in multiset S. 215

Since (i) is at most n, u (i) can be represented with llog(n +l)l € logn + 1 bits, and hence S can be

encoded with e, (n ,7)=r (logn +1)bits. This encoding is optimal in the order when
k = logn — Q (logn) 216

orequivalently, if < n''~°/ for some a > 0. Slightly better results can be obtained by using a

variable length encoding for u (i) . For exampie we can encode integer A with 2 ‘1og (h +1)l bits by

using the empty string for o = O. The multiplicity function can then be represented by the list

w(0),u(1),...,u(r —1) with the commas encoded as '01". Thus we can use a total number of bits

r=1
e milnr)= 32

1 =)

log(y.(i)+l)]+2(r-l).

It is easy to see that, under the constraint u (0) + (D) + ...+ u(r —1) = n,
enuiny) =0 (riog(n/r +1)+r)

which is optimal for » €a . For r>n, we must resort to different techniques.

ks

19

a 2.2.4 The Insert-and-Prune Encoding

‘ . In this section we propose a new encoding for multisets which is based on a sorting method and is
- not as natural as the list and the multiplicity schemes, but it is simple and elegant. Moreover it can be
effectively used in some sorting algorithms.

" - Let us begin with a simple observation. In a sorted sequence of n elements of k bits each, the
) sequence of bits in the most significant position is a run of zeros followed by a run of ones. Therefore it
can be completely descriceu vy specifying how my zeros there are, which only requires logn bits
instead of the n bits taken in the list representation. In general, in a sorted sequence the }th most
significant position (from the left) contains at most 2/ alternating rums of zeros or ones. Thus, for

J < logn not all the binary sequences of n bits are candidates to be the j-th position of a sorted

sequence, and therefore less than n bits are needed to eneocie that position.

We could try to exploit systematically the above observations and build an efficient encoding
-. based on the length of runs of identical bits in each bit position of the secuence, but the resulting
scheme would be rather awkward and difficult to manipulate. However, the above discussion reveals
an important property: the leftmost bit positions in a sorted sequence carry less information than the
number of bits devoted to these positions in the list. As it turns out, if we have some extra knowledge
about our sorted sequence, we may even completely reconstruct the sequence by looking only at its

least significant position! This is a consequence of the following result.

- Theorem 2.1. ¥ S = {Xq.... X, -} is a multiset drawn from the universe U = {0,1,...,7 =1}

and T is the sorted list of the union of S and U, then there is a one-to-one correspondence between §

and the sequence of bits in the least significant position of 7.

Proof. T is the concatenation of r subseguences the i-th of which consists of, u (i) + 1 copies of ele-

.
ittt M

ment i (i =0,...,r —1), where u (i) is the multiplicity function of S. The situation is illustrated in Fig-

[ure 1. The least significant bits of 7 are the concatenaticn of r sequences, the i-th of which consists of

w4 (i) + 1 identical bits each equal to { modulo 2. Thus, from the least significant bits we can recover

20
T, pl%os ones s . . - (r=1s,
w(0)+1 u(1)+1 uli)+ wlr=1)+1

Figure 2.1. The structure of sequence 7.
the multiplicity encoding of S, and S itself. The converse is obvious. O ,_
Remark. It follows from Theorem 2.1 that the sequence of bits in the least significant position of T is a
valid encoding of S, requiring n_ + r bits. For » = n the encoding is optimal up to lower order -
terms. Forr >> n orr << n the encoding is highly inefficient. However, for » > n, the follow- -
ing generalization of Theorem 2.1 yields a better result. e
Theorem 2.2. Let for simplicity n = 2%y = 2and s = 2° be powers of two. Let also :
S ={X4,-..»Xa—}] be a multiset from the universe U ={0,...,/=1} , and
U(s) =1{0s,25 ,...,7=s] be a smpling of U with period s. Define T as the sorted list of the union .'::
of S and U (s). Then, there is a one-to-one correspondence between S and the sequence formed by the .
o +1 least significant bits of the elements of 7.
Proof. We introduce the notation o i
A'=pnudtiset of the prefixes of length k = of the elements in multiset A]
and we define U (s)'and T ' accordingly. Clearly U (s)'={0,1,...,7' =1} where r'=r/s . Thus .

we can apply Theorem 2.1 to muitiset S' and universe U (s)", to reconstruct 7' from the (k — o) -th - ;
A
X

most significant bit position of 7. Then we easily reconstruct the entire 7 by concatenating most and

LA Sl bl A e Al el e Jeh seert

21
least significant positions of each element. Finally weobtain§ =7 —U(s). O
Remark. Theorem 2.2 reduces to Theorem 2.1 wher 0 =0.

We call insert-and-prune encoding the representation of S obtained by augmenting S with U (s) and
Ly - sorting the result (therefore effectively inserzing the sorted U(s) into the sorted S), and by subsequently
' removing (pruning) the k —~ o — 1 most significant bits of each element. The number of bits required
by this encoding is

e, (nr)=(oc+1)(n +277). 217

For r<n, the choice o =0 minimizes ¢,, (n,r) giving ¢,, (R,r)=n +r and the encoding is not

optimal. For » 2n , the choice & = log (r /n) yields an optimal encoding with

e, (nr)=0 (n(log(r/n)+ 1)) 218

Surnmary of insert-and-prune encoding. If S is a multiset of n elements of k =logn +h bits, we can

encode it with ¢;;, =(k +1)2n bits by the following procedure.
1. AddtwS then elements{2"i:i =0,1,...,n~1}.

2. Sort the réﬁlt'mg multiset.

3. Retain only the bits in the (h +1) least significant positions.

A picture of the encoding scheme is given in Figure 2.2.

2.2.5 Two-Stage Encoding
Given a multiset S with a muitiplicity function (i), i =0,...,7 —1. we define the distribution

function

ME)=F ui), i=01....,r-1 219
XY

Otviously (M (0).M (1),.... M (r —1)) is a sorted sequence with all elements less than or equal to n. If

n €r , we can then eacode this sequence by the insert-and-prune method. Since the size of the

- D S A
“tw e .t vt
o e Wte e . (N .

‘‘‘‘‘ P SO

- PR i O e N M A N

22

5 log n—1 Redundant Bits
-. bits

. k bits

- h + 1 H

2 bits lUseful Bits

2n Elements

Figure 2.2. The insert-and-prune (isp) encoding scheme.

sequence is , and the size of the elements is logn =logr —1+(logn —logr +1), the two-stage encoding of

S uses a number of bits

e(n 7)=2r (logn ~logr +1)=0 (rlog (n /r +1)), 220 0y
which is optimal. -
2.2.6 Summary of Optimal Encodings -

We summarize the encodings described in the previous section in Figure 2.3, where we show the
ranges of k in which each of the encodings is optimal. We recall that the results are of an asymptotic

nature, and are based on the assumption that k increases with n.

For completeness, we report here that a multiset S = {X,,..., X, -1} can be represented by speci-

fving the difference between consecutive elements in the sorted arrangement of S. This encoding is

..

23

efficient when » 2 n, and has been successfully exploited in [Lo83] to obtain optimal sorting algo-

' 5 rithms on 2 distributed system.
e e(n,r) = 8(r login/r + 1)) e(n,r) = 8(n log (r/n + 1))
t =
l—— Two-Stage Encoding ot Insert-and-Prune Encoding =i
Multiplicity List
bt Encoding jtm———— Encoding ———m=pn
] k
- k =logn—S(logn) k=logn—oflogn) k=logn+oflogn) k=logn+Q(logn)
r;,'

Figure 2.3. Ranges of optimality of encoding schemes for multisets.

CHAPTER 3

LOWER-BOUND TECHNIQUES

The lower-bound techniques of this chapter use a combination of a geomerric argument, based on
a suitable subdivision of the layout region, and an in formation-theoretic argument, based on the infor-

mation exchange between a region of the geometic subdivision and the remaining part of the layout.
Two basic methods to subdivide the layout region will be considered.

(i) Bipartition. It is the classical method introduced by [T80} whereby the subdivision is obtained

by cutting the layout into two regions separated by a straight line (or a simple deformation thereof).

(ii) Square tessellation. It is a method that we shall introduce in the next section, and consists in

subdividing the layout region in a mesh of square cells all of the same size.
We shall also make use of two basic information-theoretic notions.

(a) In formation exchange. 1t is the classical notion studied by several authors, as briefly reported

in Section 2.1.3, and will be formally defined in Section 3.2.

(b) Bounded-storage information-exchange. It- will be formally defined in Section 3.3 as a
refinement of (a) when a bounded storage is assumed for the processors that execute the computation,

and is instrumental to study information-exchange in saturation conditions.

When classified with respect to the geometric and the information-theoretic notions of which they

make use, the lower-bound techniques can be of one of the four types (i)(a), (i)Xb), (ii)>a), G;i)<b).

As we shall see, types (i){a) and (ii)-(a) yield lower bounds on the AT ? measure, and tvpe (ii){(b) =
vields lower bounds on the A7 measure. Presently, we do not know of any useful application of tech-

gique {i)<(b). r

r
.

. V. W

SAVANLAAL AN S Al A M

25

In all the applications where we shall make of the square-tessellation technique, although we sub-
divide the layout into many regions, we only need to consider the information exchange occurring

between one region and the rest of the layout.

Thus, in both the bipartition and the square tessellation techniques, we are effectively studying
the information exchange that occurs between a set of nodes of the computation graph, and its comple-
ment. We refer t0 a partition of the vertex set of a graph into two sets as w0 a dichotomy of the graph.
As we shall see, dichotomies, and the related notion of dichotomy-width (to be formally defined in Sec-

tion 3.1) play a relevant role in lower-bound theory.

To avoid terminological confusion, we stress the point that dichotomy is a topological notion per-
tining to a graph, while bipartition is a2 geometric notion pertaining to a layout (of a graph). The two
concepts should be kept distinct, although any bipartition of the layout induces a dichotomy of the

graph.

We shall use the term bisection only in a topological denotation, to refer to a dichotomy which is
(roughlv) balanced with respect to a given weight of the vertices of the graph. This is in agreement
with the original definition given in [T80] lnstead, we shall nor use the term bisection to denote a

geometric cut of the layout, even if it induces a bisection in the corresponding graph.

3.1 THE DICHOTOMY LOWER BOUND ON THE LAYOUT AREA

In this section we present a new technique to obtain lower bounds on the layout area of graphs.

The technique is based on the notion of dichotomy which generalizes the notion of bisection.

Given a graph G = (V .E) we call dichotomy a partition D =(V ,V',) of the vertex set V', and we
denote by 8(D) the number of edges of G that connect V, to V ;. We define the dichotomy width with
respect t0 a class I of dichotomies of G, as the minimum number of edges that have to be removed in

order to disconnect V' | from V', over all dichotomies in T. Formally we have the following definition.

De finition 3.1. Given a graph G = (V' .E), and a class T of dichotomies of G, the T - dichotomy width s

26

defined as

5 & min&(D). 11

Remark. If T={D:1V,| =IN/2|}. where N =1V |, then §; becomes the minimum bisection width as

defined by Thompson [T30}

In the sequel we consider some choices of I' that enable us to prove a lower bound on the layout
area in terms of §y . We begin with the simple case in which I is the class of all dichotomies(V,,V)

with V,=m(m <N =1V 1):
L&V, V,2 1V, =m) 12
To simplify the notation, we write 8(m) for 8r_, the dichotomy width of G with respectto I, .

We discuss now some concepts that are useful in relating the layout area A of a graph to its
dichotomy width &m). A graph is to be laid out on the layow grid, a plane grid the vertices of which
have integer coordinates in a suitable cartesian frame of reference. A layout of a graph is an assign-
ment of nodes to vertices of the grid, and of edges to paths of grid edges, where different edges of G
share only grid vertices. This restriction implies that all nodes have degree at most fogr. a property we

shall always assume when discussing layouts of graphs

Beside the layout grid, it is convenient to consider another grid, the auxiliary grid, the vertices of

which are the points of semi-integer coordinates, as shown in Figure 3.1.

The area of a given layout is defined to be the area of its smallest enclosing rectangle with boun-
dary on the auxiliary grid. The layowt area of A of a graph G is the area of its smallest layout. A =ig-
<ag line is cither a straight line on the auxiliary grid, or a pattern of the kind shown in Figure 32.

Formally, a vertical zig-zag line is a set of the form

{(xpy)i—oo <y SyolUl(x,y0)ixo S x Sxg+alUl(xo+a,5)iyo Sy < oo

where @ €{0,1}. A horizontal zig-zag line could be cefined similarly.

- i T A P T . S S T P PRI S co-
" ‘-('- LR S y . LN R Y

« ,'.. .-..q SCUOUOLEUR T AR . :‘.. ._"-\-. At \:.

4

A (vertical) zig-zag line.

LR . et T et ettt .
ST e A o . e e

IR IR T S TR S S P - S S U
. * ., - MY PR - . . o . . .

» . . . % N

]

[|
L LR

| |

[

- am b] o=

The next theorem states the first lower bound :0 .4 in terms of &m). The result generalizes the

sound A 2(8(V /2)—1)? obtained by Thompson (T30} and the proof is based on the same technique

28

introduced by [T80} which we call a bipartition technique because it is based on a suitable partition of

the layout into two regions.

Theorem 3.1. If a graph G has dichotomy width &), then the sides [, and !, of the smallest enclos-

ing rectangle R of any layout of G have length at least 8m)—1, whence
A 2 (B(m)—-1F = Q(8m)). 33

Proof. It is easy to show that there exists a vertical zig-zag line which splits R into two regions
‘ (separated by either I, or , +1 grid segments), one containing m nodes of G, and the other N —m . By
X

. the definition of I, -dichotomy width at least 8(m) edges cross the boundary between the two regions,

and thereforel, +1 2 8m)orl, 2 8m)-1. 0O

The next theorem provides another bound on A in terms of &m). The bound is better than (3.3)
whenever m = o(N). The proof introduces a novel technique, which we call the square tessellation
technique, because it is based on a partition of the layout region into a mesh of square cells, all of the

same size. .
Theorem 3.2. For every graph G = (V ,E), and every m <N,

34

A= QIN m)|.

m

Proof. Given a layout of G (on the unit grid), let R be the smallest enclosing rectangle (on the auxili-
ary grid). Let us consider on the auxiliary grid a mesh of square cells with sides of length -
14 l(S(m)=1)/4]. and such that one cell has a vertex overlapping with the southwest corner of R (see
Figure 3.3).

We claim that no cell of the mesh contains m or more nodes of G. In fact if a cell contains m or

more nodes then we can find a zig-zag line that cuts the cells into two polygons one of whick, called P,

contains exactly m nodes. (See Figure 34) This opolvgon has a perimeter

p SH =4 l(&(m)— l/4l £ &m)—1, so that less than 8(m) edges can cross it, contradicting the

.................. Y “~ *, - ~ . -
................................. N e N T T e T T e et
.......... - .. e % T S N W VY
PBARADARAFIPIL IR Ay I I e W IA S R WIS Sl S I Tl S S S ST IE th E G S I P S S e o

29

\

Figure 3.3. Square tessellation of the layout (1o the proof of Theorem 3.2..

1
definition of &m). We conclude that at least _[N m! cells of the mesh contain some nodes of G, and
|
- thererore overiap with R. The totai area of these nonemprty cells is then

T T T T S TP P DR PP LR S 3 - et -

P IR S A e S A I e e I I S N A LN S R AL PR PO T " LANCREES
PR R A L o T e, . Lo PO PO . .

t;‘. > e o la laiala LRI RN R T S AP C P L LG WL PR P TR A WA it adadoa e s

T T T Y TR W T T TV T T N T Y TR T T e —w

30

P
\ m Nodes

[= [(§(m)=1)/4] =]

Figure 3.4. A cell with m nodes or more.

Due t0 some nonempty cells which have only a partial overlap with R, the lavout area 4 can be
smaller than A, . However these cells can occur only at the boundary of R. Since Theorem 3.1 ensures

that the length of each side of R is at least four times the length [of the side of the cell R contains at

ieast 16 cells. so that it is easv to show that A 2 16/25 A, . Thus,

LW o)

16 v .1 N 5

A2 D — iyl =22 —-1)

12 33 {(S(m) 1)/ ‘ 5% (8(m)=1) 1.6
and the theorem s proved. T

Remcrk. Equation 3.6 vields a better bound than Equation 3.3 for m <.\ 28,

atidedndnded ol D 0l

In general, the best bound that we can obtain for the area of a given graph G from Theorem 3.2

corresponds to the value m, of m that maximizes in the function Alm }28%m)m . For most of the

31
computation graphs considered in the area-time literature m,=N /2 (or more in general m,=&(XN)),
and Theorem 3.1 is sufficient to obtain good lower bounds. This fact accounts for the success of biparti-

tion techniques, and has lead researchers to focus almost exclusively on balanced partitions of computa-

tion graphs. However, the computation graphs that solve some important problems, including sorting,
have a A(m) function whose maximum is achieved for values of m considerably smaller than N. In

these cases, the notion of dichotomy and the square tessellation technique developed in the present sec-
tion are instrumental to obtain fighr bounds.
When applying dichotomy arguments to computation graphs, we often need to consider a class I’

for [is

more general than I',, . For example we may focus on the set U of the nodes that are input ports, and
nect a set V, containing m input ports from its complement V ;. In this case the appropriate definition

we may want 8y to represent the minimum number of edges to be removed from G in order to discon-

T={V, V.UV,NU I =m)

. 7
Of course, if U =V, we obtain again I',,. We can take one more step toward generality and consider a

read by mode v during the computation. Then we may set

T={(V,V;): T mGv)=ml
vE

graph G with each vertex v has a weight m (v). For example m (v) could be the number of input bits
Vi

338
Obviously 3.8 reduces to 3.7 when m(v)=1 for v €l ,and m{+v) =0 for v €V ~{ . When dealing

with a weighted graph it is more useful to include in I all dichotomies (V' },V' .) such that V', has glo-

fal weight :n a given interval [m ,ym.]. Ia fact we caa state the following resuic.

Theorern 3.3. Let G = (V ,E) be a graph where each node v has a nonnegative integer weight miv). Let
M=

™~

mtv),andletm(v) € my=m, +1,forany v. If we define
r={v

WY arm, € mi)<m

t
2
€

RIS
METREY

ot ata®
.

e e
RS

ot

W:—r‘v.f_r_r:v—.v ul Sad-lul Sl Aulh Sl Natna) Matiran vani RAS LA N e i ” -~ L o diar et i Sl T A S A A i A A4 Jhhe S

32

then we have .
A= n(%s,-?). 310

Proof. The argument is the same as the one made to prove Theorem 3.2, except that the claim made on R

the square cell of side lé l (¢~ 1)/4] will now state that the global weight of the nodes inside the cell :"

is less than m,. The bound m(v) € m,—m, + 1 ensures that if a cell has global weight m , or more, g

then it is always possible to construct a zig-zag cut delimiting a polygon with a perimeter p £ 61, tl'
which includes a set of nodes with global weight in the interval [m ,m,]. Thus, less than §; edges con-
nect the set V| of the nodes inside the polygon to the set V ; of the nodes outside the polygon, contrad-

jcting the fact that (V .V)€l . O -

Remark. Theorem 3.2 is a special case of Theorem 1.3, and is obtained by setting m; = m, = m ,and v

m (v)=1 for all v's. .

o

3.2 INFORMATION EXCHANGE AREA-TIME LOWER BOUNDS (AT? THEORY) ~

'

In this section we introduce the notion of information exchange for a computational problem II, °

and we relate it to the dichotomy width and to the AT ? measure of computation graphs for II . :

In formation Exchange. Let P, and P, be two processors cooperating to solve problem II. Let 7 be

the set of input and output variables of II each of which is assumed to be binary. We call //0 assign- &

ment a partition N =(7,,V,) of ¥, where 7 is the set of variables that have to be input or output by .

processor P, (s = 1.2). We define the in formation exchange of II under assignment 7 as o

I(n)2 the minimum over all the algorithms (that solve II under the variable)

assignment 7)) of the maximum over all the problem instances of the

number of bits exchanged between P, and P -

11 il

In other words, for any algorithm that solves II under 7 there is at least a problem instance for which .

P, and P exchange /() or more bits, and no integer larger than /(m) enjoys the same property. X

F'.'.f-"'."-"."-":‘- P A T APt S A Ari i A AR AN i A r."‘l;"‘x_ LBug Sl A A ad Al Rl Sad A find el Wl Mol Sl Sl Ml Anll bbb se S aae i S anih il

E 3
We also define the information exchange for a class H of assignments as

8 .
In =2).
- H 21}1}1 (n 312

In formation and Dichotomy. Given a computation graph G = (V .E) and a dichotomy D = (V' ,,V) of
its nodes, we can identify P, with the subgraph of G on vertex set V, (s = 1,2). This choice of P, and
- P, defines in a natural way an I/0 assignment (D) = (V,%;) where ¥ is the set of variables input

or output by nodes in V' (s = 1.2). We are then able to relate the notion of dichotomy width 10 that of

information exchange.

Theorem 34. Let H be a class of /O assignments for problem II, with information exchange /45 . Let

G = (V,E) be a computation graph that solves II in time 7, and let 8y be the dichotomy width of

L I'={Dm(D)eH). Then.
8 = I, /T. 313

Proof. f D =(V V.)€l , then n(D)€H, and [(n(D)) 2 I, . Thus V| must be able to

exchange [, bits with V', in time T, and therefore must be connected to V', by at least [y /T edges.

Hence, foreach D €I, 8(D) 2 /5 /T,and 8y = min{8(D):D €T} 21[4.T . CT

Y]
sl

- AT ° measure. We are now ready to state a result of major importance for the AT * theory.

Theorem 33. Given a computation graph G for problem IL if the class T = {D :n(D) € H | generated]

s

by a class H of I'O assignments satisfies the conditions of Theorem 3.3. for a suitable choice of m , m '_:::4

r and of the weighting function mfv/, then the following lower bound holds on the area-time perfor- S
" .
marce of G

~ . P .
ATI=Q !ng | 3.14 "

st

. St
N %
“ 7
Proof. It sutfices <0 combine 3.13 and 3.10. C N

. ;itj

-~

Tae AT - lowar bound 3.14 is a far reaching result because for mary interesting computational prob-

g

a
b el e
WO Y

.
id

L TR

RO YA A A e Srasivee Seen i an Mo e “shae Jhie St CRA I~ AT i S M A (i M A e e S R S S Jandl S Badh g

lems we are able to (i) find a class A to which Theorem 3.5 is applicable, and (ii) compute or bound the

information exchange /.
A Formar for H. In several applications it is convenient to focus on a suitable set U of 1O variables,
and to define H as

H = {7’=0‘1,%.):m1 g H.(ﬁ?fll < HI.z,. 3-15

If we let miv) be the number of variables in % that are input or output by node v during the compu-

tation, then the class I" of dichotomies associated to H is

F={v,V)im; € ¥ m(v) € m,),
viV'

316

and, if m(v) € ma=m;+1 all the conditions are satisfied for the validity of the bound
AT*=Q (M /m I3), where M is the total number of variables in U. Thus, classes of 1/O assign-
ments of the kind specified by 3.15 are good candidates when studying the area-time complexity by

means of Theorem 3.5. For this reason we further investigate the nature of I, .
Some Properties of I . An interesting case of class X is obtained from 3.16 whenm, = m, =m ,
Le.

Hn 3m=@, 70 1UNT | = m). 317
In fact the classes /,, enable us to decompose A as

H =H,VUH, ,U- U H,, 318
and, if we denote by /(m) the information exchange of A, , we can write

Iy = min{I(m)),..., I (m). 3.19
A simpie, but useful, observation is that, for any m =1,2,...,n, we have

Im)-I{m=-1) £ 1. 3.20

e

D)

[.w\ﬂ__.‘w\‘_v~1,,v\- L Bl Bafl Badh A S0 B 2k AAcEag) SR ol s nas Bete Jne gt tiere die g g i S S RAYL gl S gl Sl et i e tal e > Edertai Mt conk/nk S Yo Sufit RafF
o~ s At Dt et St it . K CalC R PP Rl S Al -

35

in H, [H,_,] into one in H,_, [H,]. Using the fact that 7 (0)=0 as the base, and Equation 3.20
as the inductive step of an inductive reasoning, we easily prove that /(m) € m . Another interesting

consequence of 320 is that
Imp)=1y € my=m,, 321

a result that may simplify the derivation of boundson / .

A refinement on the AT *> Bound. The fact that /[is related to / (m,) by 3.21 suggests the possibility
of obuaining a bound on AT * directly in terms of 7 (m,), a quantity easier to handle than /5 . Sucha
bound is indeed provided by the next theorem. As we shall see from the proof, the result is not trivial,

and requires the combination of several arguments.

Theorem 36. Let G be a computation graph for problem I1. Let U be a set of /O (binary) variables
of II, of cardinality M. If H, is the class of the assignments such that exactly m variables of U are

assigned to P; . and / (m) is the information exchange of H, , then there exists a constant A such that
AT2 2 A M I3(m)m = QM [3(m)/m). 22

Proof. Since a noce v can read at most one (binary) variable per unit of time, m{(v) € T ,and con-

dition m(v) < m,—~m, is ensured by the choice m-=m,m, =m =7 in the definition 3.16 of H.

~With this choice, relations 3.13 and 3.21 imply that

].".’ ; I (m) - T.
and Theorem 3.5 (whose hypotheses are all satisfied) vields the bound

AT 2 A WU m)=T P m, 3.

t2
L)

for some constant A, . {If we retrace the proof of 3.23 we can see what A, = 1/25 will do.)

When T approaches /im) from below, bound 3.23 mav become weak. but because 7 s larze "ve

2xpest AT to remain large. In fact

AT 2 (number varabies be input or owpu by G} 2 M,

“1

o

N T T R TR ,
"1:1"".' e {_J_.'-.i'.:;mk LY

o« o

PO

ale ot

and we have another bound

AT* 2 MT. 3.24

Combining 3.23 and 3.24 we obtain

AT? 2 max{I\\M (I(m)=T X2 /m ,MT). 125
To prove that

max (\\ M ((m)=T)¥m MT)} 2 X,Mlz(m)ﬂm 326
we select for T the value
T AI12(n)21(m)+A),

where A = m /A, , and we argue as follows.

() ForT 2Ty MT 2 \\MI3(m)/2m . Infact I(m) € m ,and A, can be taken € 1/2, %
that2/(m)+A € 2 A = 2m/A,. Thus, To 2 I2(mM2m /).

(ii) For T € To, M\MMU(m)=TPR/m 2 \\MI?(m)2m . Since T, < I(m) the function

(ZI(m)=T $/m in the interval [0,T ;] is decreasing, and achieves its minimum at7 = T,. The

. . _ IXm) 12 + A 5 I%m) . .
value at the minimum is (J (m)=72/m = A aTx > Th , which yields the

desired result.

Equation 3.26 proves the theorem. Since A = A,/2, A can be taken to be 1/50. (=]

Remark. The value of T, used in the proof is an approximation of the (smallest) root of the equation
in the unknown 7 obtained by equating the two bounds 3.24 and 3.25. The exact root would give a

slightly better bound for A, at the expense of more algebraic manipulations.

Remark. Although we bave just proved that bound 122 holds for any 7, the proof itself shows that,
for T > T,, the bound is weak, and that AT 2 M provides more information on the area-time

complexity of problem II . However, when the computation is slow, the complexity is usually deter-

F’- AR i s g AT A B ari Sal ave grh gAL g0l g g & pul SR SRG il i s ael giel pul stdh
|

F 37

mined by other phenomena, as the ones to be discussed in the next section.

. Boundary Chips. We briefly discuss now the situation where all the /O ports are on the boundary of
the layout regién. which for simplicity we consider to be a rectangle R of dimensions [, and!, . In
e this case, as we have mentioned in Section 3.1, the 1/0 bounds requires p = Q (M /T), where M is

the input size. Thus, for the larger side of the rectangle, say, the horizontal side of length [, , we have
. !, = Q(M/T). On the other hand, we have also seen in Theorem 3.3 that both /, and!, are at least
&m) and we know that &m) 2 I(m)/T . Thus, A =1, l, = QUM /T XI1(m)/T)). In conclu-

sion, the performance of boundary chips satisfies the bound
AT = QM I(m)). 327

N - Remark. The value of m that yields the best bound in 3.27 is not necessarily the same that would give

the best bound in 3.22.

.i 3.3 SATURATION AREA-TIME LOWER BOUNDS

When we ideally isolate a region of the layout of a VLSI svstem, not only is the bandwidth

tween this region and the remaining part of the layout bounded by the perimeter of the region. but ‘:l«

also the amount of information that can be stored within the region is bounded by its area. This fact

-

has important consequences for the area-time performance of some computations. In this section we

develop techniques to express these effects in a quantitative manner.

- In formation-Exchange Under Bounded Storage. We consider again the by now familiar framework 4
1n Ahich two processors P, and P , cooperate to solve a given probiem II. However, we acdd a new ele- ',

r

ment to the picture by assuming that only a limited amount of storage is available 1n each processor.

.~ r'?
Storage limitations may affect the information exchange. In fact during the computat:on. one of 3

P.- R
o the two processors may ill its storage (a situation referred to as “saturation”) atd hence be forced to “
K

N send some information to its mate for temporary s:orage. At a later tume, this information will return j

3 the original rrocessor, wnen its memory is no jonger saturated. Each tit invoived in this process goes

cry

back and forth, contributing twice to the information exchange.

These considerations lead to the following formal definition of the information exchange of II
with respect to a given /O assignment 7) under the condition that P, and P, can store at most s, and
5 5 bits of information respectively.

I(nls,, sz)che minimum over all algorithms (that solve II under assignment 7 , and under

storage bounds s, and s, for P, and P,), of the maximum over all the problem

instances of the number of bits exchanged between P ; and P, .

Similarly, the information exchange for a class A of assignments can be defined as

IH(Sng)A;-kigl(ﬂllez) 329

Remark. The functions 7 (1) | 5,,55) and I (s ,,s ;) are both nonincreasing in each of the two variables

s, and 5,. (More storage never hurts.)

As in previous sections, of particular interest is the family of assignment classes defined with

respect to0 a suitable set of 1/O variables of the problem, that is
H, ={n=20%0U Y, i=am}] 3.30

For convenience of notation, we write / (m |5 ,,s,) instead of [(s;.55).

The Square-Tessellation Technique. We now show that by combining bounds on the information

exchange with bounded storage with the square-tessellation technique we can obtain area-time lower
bounds.

We recall from Section 3.1 that a computation graph G is to be laid out on the layour grid, and
that it is also useful to introduce the auxiliary grid whose vertices are the centers of the elementary

cells of the layout grid.

Let us conside} on the auxiliary grid a square cell with a side of length [as shown in Figure 3.5.

We can identify the part of the graph laid out within the cell with processor P, , and the part laid out

- AR R R b enl A S Al A A afted Sull ekt

[R T Ny T vy ey sy

AN S Bl T,

LBl ke gt Shege 2y Tvv“'x'vx.‘*rt\‘_v‘_-_‘}"'_‘l:'";'

39

Figure 3.5, A cell of the square tessellation can be viewed as a processor P, , with storage bounded

by {2 Identifving P, with the rest of the lavout, the bandwidth between P,and P,is
bounded by 4L.

outside the cell with processor P, . Obviously, the storage of P, is upper bounded bv /2. The storage
of P, is also upper bounded by A —12, where A is the area of the layoug of the graph. However, 1n

the sequel we will not make use of this bound.

If m variables of % are input or output (by nodes of the computation graph laid out) within the

cell then the information exchange across the boundary of the cell is at least
Iom 124 =13 2 [{m >+ o).
Since the perimeter of the cell is 4L, we can conclude that
T 2 I(mil%+ ooj/4l 331

G:ven a tesseilation of the layout region with square ceils of side [, we can argue that. since M = .

variables are input or output in area A. thers exists at least a cell C of the tessellation Sor which the

nurcber of variabies of %4 haedled by Cis

0y '-'..-’..-' s 'f‘-;"n:".;"."."' L e e Sl e

P i o of

A -2 NS (AN

€

3
e,

A A NIGRmaand

LS B S Al A AN el gl g S A arti I AL SRAE L e SR U S ety

m' 2 MU¥/A. 32
If we could find a cell of the tml'lttion for which m is exactly MI2/A , we could state the bound

T 2 I(MI3A 1% e)/4,
from Equation 3.31, which is indeed an area-time 16wer bound. A cell with m exactly equal to MI%/4
does not always exist, but we can argue as follows to obtain a bound.

We know that, since at most 7" variables can be input or output by 2 node in time 7', there exists a
suitable zig-zag line that cuts the cell C into two regions one of which inputs and outputs a number
(M!%/A + h) of variablesof U, withO0 € A < T . Moreover, the perimeter of this region is at most
41 and the area is at most I2. Thus, e can claim that an amount 7 (MI%/A +h 1% o) of informa-

tion must cross the boundary of this region. Hence,
T 2 I(MI%A +h11%)/4l,for some h € [0T -1} 333

We can formally summarize the preceding discussion by stating the following theorem.

Theorem 37. Let G be a computation graph for problem II. Let U be a set of /O (binary) variables
of I, of cardinality M. If H,, is the class of assignments such that exactly m variables of U are
assigned t0 P, and I (m |5, oo) is the information exchange of 5, when P, has s bits of storage, then

the area-time performance of any layout of G satisfies the bound

> ; 2 2
T ’oi};m%rl(ul /A +hl%00)/4L 334

Proof. Obvious from Equation .33

Remark. To obtain the best possible bound from 3.34 we must choose the value of ! that maximizes

the right hand side. (We can choose [as we wish, since the inequality holds for arbitrary [.)

Remark. In most cases in the range of interest, / (m |5, o) is increasing with m, so that the minimum

in 3.34 is achieved for A =0. Then we can state the bound as

W T ey —

b

AR A DA SRS A AT S A

b s

IS 7 2 max 1(MI%A 113 00)/4l. 335

' In all applications of 3.35 made in what follows (Theorems 4.5, 4.10, and 4.18) it turns out that, for the

- value /, of { that maximizes the lower bound, /(m |l$,) = Bym , where B, is a constant. Then we

o can write the bound as

}" AT 2 B M, 3.36

o

i .

with 8 = B,/4. Usually [, is an increasing function of the problem size, and therefore 3.36 is a better '

. bound than the straightforward 10 bound AT = Q(M). <3

|]

] K

P

=

SN

-~ .-"-‘
]

o o

[3
2]

. -

‘ »
KX
R

......

CHAPTER 4

| LOWER BOUNDS
FOR CYCLIC SHIFT AND SORTING

4.1 CYCLIC SHIFT

Several lower-bound arguments for sorting are based on the fact that sorting circuits are capable
of performing cyclic shifts on a suitable sequence of words. In this section we derive some results on
the information exchange and the AT 2 measure for the cyclic shift problem. This will afford us the
possibility to illustrate the lower bounds techniques of the preceding sections by applying them to a

relatively simple problem.

Shift arguments have been first proposed by [BK80] and [A.A80] to lower bound the AT ? perfor-
mance of integer multipliers, and they have also been successfully applied to sorting by [L84] whose

results will be reviewed in Section 4.2.2.

De finition. The input of the (ng)-cyclic shift problem is a pair (p.Z) where p is an integer between 0
and n-/, and

Z ={Z/;:i=01l....n-1j =0,1,...4-1}

is an n Xq array of n words of ¢ symbois each. The output is an array W with the same format as Z,

such that
an = Z(Ii—p Jmodn

In the following we shall assume that Z has binary entries. No assumption is made instead on the

encoding used for the integer p, the size of the shift.

..................
....................

e S .

.......
....

M BAecin A chamn Aan A Al A e U M e Tiien Jeie il L aiiier S VA S A et e S dend Jeaiih S it Suni Sl it R i Mt Ml i St S A A S ee i Sl St

43

In formation Exchange. With reference to the framework of Section 3.2, let n=(7,7) be an I/0
assignment for the (ng)<cyclic-shift problem. We need to define a number of quantities that are func-
tionsof 1

b, a number of input words whose j-th bit is input by P,

c, 4 number of output words whose j -th bit is output by P, ,

B éb,,+b R (global number of Z entries input by P),
C éc,,+<: 1+ +** +¢, -, (global number of W entries output by P).
For a given shift p, it is easy to see that input position (ij) contributes one bit to the information

exchange if and only if Z;/ and w ~»)mod n are assigned to different processors. An immediate conse-

quence is that
I(m) 2 B~-C I 4.1

Let &, be the information exchange due to the j-th position summed over all the n different shifts.

We claim that
6,=b(n—-c)+(rn=-b), 42
In fact, each of the 5, bits input by P, is output by P, (n -c‘,) times, and, svmmetrically, each of
the n — b bits input by P,isoutput by P, ¢, times
By the pidgeon-hole principle there is a shift size with information exchange not smaller than the
average, Which ensures that

1<) 2 1/'n 3 9,. 13

We can then derive bounds on /(7)) if we are able to bound the @, 's With the mouvation that &.
tends to be large when the output bits of position j are about equaliy split between P, and 2., We

classify the positions as follows. For given y€[0,1/2] we define

CoRljiyn <o, S =y i

-~ % Ty a

08¢, > 1=y}, 440
Qzé{}= ¢, <yn} 4.4¢
2. 810, 1,5=012 go+g,+q2=9¢ 45

B, 4 T s=012 46
€%,

We can think of positions in 0 as "balanced”, and pesitions in Q, as P, -biased, s = 1,2. We show now

that the information exchange of a given assignment is at least proportional to the number of talanced

Lan an ae ang

positions.
* Theorem 4.1. The information exchange of any assignment 7 for the {ng)<yclic-shift problem satisfies
- the inequality
: 1(m) > yqon 4.7

Proof. If j €Q,,then bothc; andn —¢, are 2 yn ,and
¢‘- =b'.(n —c,)+(n "b,)cl ;bl'yn +(n —b/)yn =yn2. 4.8
Combining the last inequality with 4.3 we obtain

Itm2WU/m) L ¢; 2(l/n)geyn®= yqond
i€Qq

Theorem 4.1 implies that 9o < I Ayn),and heace thatg, + g2 2 ¢—I Ayn).

However, in some applications we need a bound on ¢ (or ¢,) alone, which can be obrtained in
termas of the total number of inputs of P, as shown by the following theorem. f_‘:_'
Theorem 4.2. The information exchange / (7n) of any assignment m of the (ng)<yclic-shift problem, "
such that P, reads exactly B entries of Z, satisfies the bound
I(m) > B -B)), 4.9 -
and.since 81 s ndqi 2-‘:
.

Al i Al Ml Aol St Madi Al Sl ek Sl Aol Siadh Sl it T i Al e

45

g1 > (B =I(n)/y)in. 4.10
Proof. For j €QoUQa n —c, 2 yn. Thus
¢, 2 b,(n—c;) 2 b,yn, jEQ,UQ>

Then inequality 4.3 vields

¢ =1
ImM22Um)Ee, 2 (l/n.)j 6Q§ngb,yn = YB,+ B, = B -B)C

J =0

AT ? Bounds. We begin with a simple but important result due to {BK80] and [AA30].

Theorem 4.3. For the (n,])}cyclic-shift problem

AT? = Q3. 4.11
Proof. From Equations 4.3 and 4.8, for ¢ = 1, we obtain

I(n) 2 (byn =cg) + (n =by)cy)n.

If H2{n:by=n/2},then I(m) > n/2 for any ME€H . Then Iy 2 n/2,and the proof is crmpleted

by recalling from Theorem 3.6 that AT? = Q(/3).C

If we try to extend the previous result to words of arbitrary length g, we immediately realize
that bipartition techniques are not sufficient. For example, we can construct a balanced assignment 7
withd, =c, =n for j € ¢g/2=1,andb, =c, =0for j 2 g/2. I(n) isclearly zero (if we
aeglect the information exchange related to the shift size). The point is that each bit pesition can be
processed independently from the others, so that information exchanges remain coniined to small sets of
1 O variables. This is a typical situauon in which the square tessellation technique reveals its

effectiveness.
Thecrem 44. For the (ng)<cyclic shift probiem
= Qg n?. 112

Prooy. Let 'L é{Z,f 18=0,...,2 =14 =0,...4 —1] , and M = {Y'=ng. Let Hé{'n : P, reads

LA e i B

exactly n/2 input variables }. We recall from Theorem 4.2 that, for ¥€[0,1/2} /(n) > W(B —B)),
and we distinguish to cases:

(i) Q, is empty, so that, being B, = Oand B = n/2, we obuain
1(m) > (y/2)n

(i) Q, is not empty, so that at least for one j,c; > (1 - y)r. ThusC 2 ¢; > (1—yk, and

recalling 4.1 we obtain
I(N2C-B>(1—y)n =1/2n =(12 =y)n.

If we choose y=1/3 , we see that in both cases /() > n/6. In conclusion Iy >n /6, and, from

Theorem 3.6, with M = ng, m = B=n/2, and Iy > n /6, we obtain

2

AT?=Q [MI,;]—-a 2| [=a@r® .o

We will see next that, for suitably slow compﬁtatx’ons.'the saturation technique allows us to derive

better bound than that one provided by Theorem 4.4,

In formation Exchange Under Bounded Storage. We consider now the case when P, has a storage

capacity of s bits, and we show that, if s < n, the storage limitations reaily affect the information

exchange. First, we need to prove a simple, but important lemma.

Lemma 4.1. In a cyclic shifter with a place-determinate I/O protocol all bits of Z/ must be input

before any bit of W/ can be output.

.
FI'I i
R

e ...
E I
PR ST AN LR o LI PRI

Proof. For two arbitrary indices i; and i, (0 €i,i» €n — 1), we can find a suitable shift size such

that W,) = Z;/. Thus, W,/ cannot be output before Z,-fl' is input. -

Remark. A simple consequence of this lemma is that, for every j, there is a time ¢; such that all bits of

AT
R TIN

Z/ have been input, and no bit of W/ has been output. Then n bits describing Z/ are stored in the

shifter at time ¢, . It should be clear that these n bits need not necessarily be Zg,. .Z,.j-, , for the ::jf N

.......

47

system is free to encode data arbitrarily for intermediate steps of the computation. However, since
25,... ,j_, are unrelated, any encoding of them requires at least n bits for a suitable value of the

variables, i.e. for a suitable problem instance.

B e e e e e e e A S v S g A aeg Sud i cn o a2eana T T T T T P VT W W W W eY

‘- ‘l ,r

3

R
Theorem 4.5. Any (ng)-cyclic shifter satisfies the bound o
-
) AT 2 Q(gn Vn). 4.13
Proof. Let m be an I/O assignment such that P, outputs ¢; bits of position W~/ . If ¢, >s , then at
the instant z, (when all inputs of Z/ have been input, but no output of W / has been released) at least .
c,=s of the bits that have to be output by 2P, are stored in P, . Eventually, these bits have to be
transferred to P, in order to be output, thus cotributing an amount (c, -5) t the information o
€ exchange. If we let (x), denote x when x > 0, and zero otherwise, we can write
E st <
I(nis,=) 2 T (c,=5). v 4.14 g
- j a) A
R .
If we consider a value s € (1—y)n , for some y€[0,1/2], and we recall that @, ={j :c, > (1=y)n }, K
o and that ¢, = i Q, | then Equation 4.14 easily yields A
- > > -’
L [(nis,0)2 z (c;=s,) 2 ¢, ((1=y)n —s). 415 "
i€Q, -,
From Theorem 4.2, we also know that / (1), and a fortiori 7 (1) | 5,00), satisfies the bound ;
= I(nis,o) 2 YB=-ng,), 4.16
) where 8 is the number of bits input by P, according to ['O assignment m . A linear combination of
. bounds 4.1§and 4.16 with coefficients y and (1 =y — 5 /n) respectively, vields
I{n!5,00) 2 Y1=9{1=5/n))B 417
e where, as usuai, 0 S y € 1/2 aad 0 £ s /n € 1=y . The best bound is obtained when y ={1—5 /n)2
I‘ and is A
.. N
: :
i :
[i
e e T A R LR X :;\"-.‘: SEC SN "-'ﬂ- \"x::\"- '."\"\::\':\C:\::\::s"x::\::x:: """" \::- _ S ::\"\::-..;:\‘\‘:- "

-’.}-, -

47

system is free w0 encode data arbitrarily for intermediate steps of the computation. However, since
Z.’,,...,Z,.j -1 are unrelated, any encoding of them requires at least n bits for a suitable value of the
variables, i.e. for a suitable problem instance.

Theorem 4.5. Any (ng)-cyclic shifter satisfies the bound

AT 2 Q(gn Vn). 4.13

Proof. Let m be an /O assignment such that P, outputs ¢, bits of position W~/ . If ¢, >s , then at
the instant ¢, (when all inputs of Z / have been input, but no output of W / has been released) at least
¢,~s of the bits that have to be output by P, are stored in P, . Eventually, these bits have to be
transferred to P, in order to be output, thus cotributing an amount (cj ~5) to the information

exchange. If we let (x), denote x whea x > 0, and zero otherwise, we can write

g-=1
I(nis,®) 2 I (c,=s). 4.14
;=0

If we consider a value s € (1—y)n , for some y€[0,1/2], and we recall that @, =1{j :¢c, > (1=y)n},

and that g, = | Q, | then Equation 4.14 easily yields

Ins,®2 T lc;=s,)2q,((1=y)n=s). 415
j€Q, *

From Theorem 4.2, we also know that 7 (7), and a fortiori 7 (1) | 5,00), satisfies the bound
I(nis,0) 2 YB-ng,), 1.16

where B is the number of bits input by P, according to 1'O assignment 7 . A linear combination of

bounds 4.1§and 4.1§ with coefficients y and (1 — y = s /n) respectively, vields
I{nis,0) 2 Y1=y1-5/n))B 17

where, as usuai, 0 £y € 1/2 and 0 € s/n S 1=y . The best bound is votained when y = (1—5 /n)/2

and is
- o - R . ® - . L P AL I I I I - - v Ly o «
AN N AN NI RNy o TP AR g LR RNt A

[

o«

1(n 1 5,0) > 3(1~5/n)B. 418
Then, by applying Theorem 3.7 to the class of assignments 7 such that P, inputs exactly B bits, and

recalling that in our case M = ng, we obtain

T2 1] ngl?
’08.“;u“ /")‘ A hl/At
and thus
T2 -ilé-(l-izln)lnq/A. 4.19

The best bound is obtained for ! = Vn /3 and is
AT 2 Bynvn = QgnVn), 420
where 8, = 1/24V3). O

From Equations 4.20 and 4.12 we have seen that for any (ng)cyclic shifter, and constants 8, and
B,, AT 2 BgnVn ,and AT2 2 Bgn?. The latter bound is stronger for 7 < (Ba/B,)Vr , while
the former is stronger for T > (8,/8,)Vn . This fact indicates that the complexity of cyclic shift is
dominated by pure information exchange for relatively fast computations, but is affected by storage

limitations for slower computations.

4.2 SORTING.

We are finally ready to apply the general techniques described in the preceding sections to the

derivation of area-time lower bounds for the sorting problem.

For the purposes of this section we classify sorting problems according to the relationship between
the length k of the key and the number n of keys. There are three cases that need to be analyze

serarately, and for which we introduce the following terminology:

short keys: 1 €k € logn 4.21a

- m""'!'!"? iy D el i R el
A0 At i Ak A e Bl) Al e ey A B Lo P « T ..

v

'rc

49
mediurn -length keys: logn < k < 2ogn 4.21b
long keys: 2logn < k. | 421c

Between this classification of sorting problems, and the classification of multisets according to the range
of optimality of different encoding schemes there is an intimate relationship, which will become more

and more apparent as we proceed.

In each of the three cases defined above we will derive several lower bounds using different tech-
niques. The bounds will be of the AT 2 type when the dichotomy or the square tessellation techniques
are used in combination with the unconstrained information exchange, and will be of the AT type

when the square tessellation technique is combined with the saturated information exchange.

The dichotomy technique gives satisfactory results only for keys of medium length, whereas the

square tessellation technique yields the best bounds for short and long keys.

AT 2 and AT bounds complement each other in the sense that the former are better for 7 < T,
and the latter are better for 7 > T ,, whea T, is a suitable computation time for which the two

bounds coincide.

Notation. We recall from Chapter 1 that the input of the (nk/-sorting problem can be viewed as an

n Xk array of binary variables
X ={X/:i=01,...,n=1j =k =1k =2,...,0},

where X/ is the coefficient of 2/ in the binary representation of the i-th input kev. The i-th row of X,
X. . represents the i-th input key, and the j-th column of X, X - , represents the r-th least significant

position. A similar notation is adopted for the ouput array 1.

Remark. Here and hereafter n is generally assumed to be a power of 2. While this simplifies the trea:-
ment of several details, this assumption is not a serious restriction for asvmptotic anlvsis. In fact the

complexity of sorting n kevs (n being here an arbitrary integer) is never smaller than the complex:tyv

of sorting n | keys, where n, is the largest power of two not exceeding n, and it is never larger than the

PSS)

:adadhet ot

50

complexity of sorting n ; keys, where n , is the smallest power of two not smaller than n.

Finally, we recall that » = 2¢ is the cardinality of the set from which keys to be sorted are

drawn.

4.2.1 Short Keys.

Let P, and P, be two processors cooperating in solving an (nk)-sorting problem, with & £ logn
. To give some intuition, let us consider the situation in which P, reads keys X,,...,X, ;2o , and P,
reads keys X, 5X, -1 , and let us try to estimate the information exchange / necessary to complete
the sorting. We can argue as follows. From the analysis of the encoding of multisets developed in Sec-
tion 2.2, we know that each processor can encode its input using &rlog (1 +n /r)) bits, and send the
encoding to the other processor. Then each processor obtains complete information about the input, and
can compute all the outputs it is required to produce without further communication with its mate.
Thus, we can conclude that 7 = O(rlog (1 +n/r)). It would not be difficult to prove that in this
situation the outlined algorithm minimizes the information exchange, and that indeed
I = 8(rlog (1+n/r)). However, the class H of the assignments such that P, reads exactly n/2
input keys does not have the properties to guarantee A7 2= Q(/,?), because there might be no cut of
the layout such that (nearly) half of the keys are input on either side of the cut, unless we assume a
word-iocal protocol (see Section 1.1). In the next theorem we circumvent this difficulty by restricting
our attention to the least significant bit position of the input. This choice is not random, and is sug-
gested by the fact that insert-and-prune encodings allow the reconstruction of the entire input by look-

ing only at the least significant bit position of the output (see Theorem 2.1). The following result has
been obtained independently by [Sg84a]
Theorem 46. Any VLSI (nk)-sorter, with k < logn , satisfies the bound

AT? = Q(rilogX1+n/r)), 4.22

where r = 2t ,

BcE A An A Ban i ke

-'.'1

- -r - v — ” " . e aera s e e e Y
R e T T e T TR———— IR I S e B et st

i‘;

~~~~~~

51

Proof. With reference to the general framework of Section 3.2 let us consider the set

a {X,” : i =0.1,....,n =1} of the bits in the least significant portion of the input kevs. Let H be the
class of /O assignments such that exactly n/2 of the variables of U are read by P, and let / be the
information exchange of /. Because of Theorem 3.6, to prove Equation 4.22 it is enough to show that

1 = Q(rlog(1+n/r)).

Given n€H , we can assume, without loss of generality, that the n/2 members of U input by P,
belong to keys X X ;,....X, 2-; - We also divide both the input and the output keys into r/2 seg-

ments of 2n/r consecutive words each (see Figure 4.1):

x-5eg(B)R{X, 20 0y 1 =O,...20/r — 1), 423
v-5eg(B) (Y00 1 oo 1 =O0Ls... 20 /r = 1), 424

forh = 0.1....,—;- — 1. We say that y-segfh) is P, -biased (s = 1,2) if at least half of the Ls.b. of keys in

the segment are output by P, . There is one processor, say P, , such that there are at least r 4 indices

Aphe.. Py 4y fOr which y-seglh) is P, - biased. Let h, WA, 40)y.. ., Py 2 De the remaining indices.

We now construct a subproblem of sorting by setting all the bits of each input key, except the

least significant one, to a constant value, such that
Xo2ireg =2h, +Xp°z.,,,,,, p=01,....2-1,¢=01,...2n /r -1,

where X%, ., is arbitrary. In the corresponding output, v-seg (h,) contains the sorted sequence of

x-segip). with the k-1 leading bits of each Kkey representing h, . The ls bits

R PR }',,‘; saire2mir- fOrm a string of zeros followed by a string of consecutive ones. The
number of zeros =, obviously equals the number of variables X%, irsesX 520 1r 420 1r =1 Which are

zero. Thus, there are 2n/r+1 possible outcomes for each y-seg. The situation is illustrated in Figure 4.1,

Let us now focus on values of h, with p < r/4. All the Ls. bits of x-segfp/ are input by 2, . and
at jeast n/r lsb. of v-seg(h,) are output by P, . Thus, P, is cagable 0 produce at least n. r~I

cifferent outcomes, and therefore to distinguisk among n/r+1 intervals in which =, can fall. This s

ce Y e W R Ll e e e e e e Lt e e e L W e e e e ey e T e e e e ‘A- ‘-'--.".."..".‘-.'A'--
o, o o oa N T e ", . o -, T T e, PO T A UL ST S P L
I, y Whe W O

[ P A A o . e, e e, St e e e e e
PRI S IR Il DI S W W IR T T WAL TR TR I TR TP WARITAL WA IR TR TP IAL TUATT I, WP W Y. PR U W R ST

Ty




S AnER S S i T i i S A e Ao e et e e e e e Saviec o R S s osal, Vet e it S e Sl Sl ad /A Sl i Al Rl it A AR A SRR A

............

52
Xk=1 *+< x1 x0 yk=1 **+  yly0
Xo lo fR 0 k)
: =) . 8
- cn .
: 7 - g
x >
X2n/e—1 lo Yan/e~1 0 ¥
X [ Yo2n/ P 0
p2n/r P p2n/r 2, zeros
. . 0
1
Xip+1)2n/r-1 'p Yio+1)2n/r-1 P 1 -
Xn—2n/e-1 le/2-1 Ya2n/r=1 r/2=1 =
Xp-1 le2-1 Yn—1 r/2—-1 iy
~
Input Array X Qutput Array Y o
Figure 4.1. Input and output arrays in the proof of Theorem 4.6. &
possible only if login/r+1) bits relative to x-segf p) are communicated to P, and P, . This being true =
for /4 unrelated segments, we conclude as desired, that




.:'u-'-._'u.-'t. ..!nfi’n,.i..h...

53

1 2 r/alog(n/r +1) = Q(r log(n/r +1)). o 425
If we combine the bound in Equation 4.25 with the bound in Equation 3.27 on the performance

of boundary chips (in our case M = nk) we obtain the following result.

Theorem 4. Any VLSI (nklsorter, with k¢ € logn , and with all its /O ports on the boundary,

satisfies the bound
AT? = Q(nkrlog(1+n/r)) 4.26
wherer = 24,

We have seen that for a protocol assigning half of the input keys to each processor the informa-
tion exchange is / = &riog (1 +n /r)), but the situation can be dramatically different for other proto-

cols, as illustrated by the next theorem.

Theorem 4.8. Given an (nk)sorting problem, with k < logn, let A be the class of the I/O assignments
such that P, inputs bit positions X°, X !,....X*/27! and P . inputs bit positions X ¢/, X¢/2+1 x¢-!

(k is even for simplicity). Then the information exchange of A is
I = Qkn). 4.27

Proof. We plan to transform the string equality problem to our sorting problem. In the string equai-
ity problem there are two input strings, W, and W, , of length h each, and there is one output bit
which is 1 if and only if W, = W,. It is easy to show that if processor P, inputs string W, ,s = L2,
then the solution of string equality requires an information exchange / = A (see for example, [Y'79] and

[V1Ss2D.

To carry out the transformation we set the first r input kevs (r < n) to the constant vaiue
X, =i,(i =0]1,...r=1). From Theorem 2.1 we know that output position ¥ ? is sufficient to recon-

Struct the entire input multiset.
Let us now defire the strings W, and W ,. W, is the row-major spelling of the arrav

X-timr,.on=1j =k-1,... k.2

vt . LT TP P A PRt R AP PO S PRI S S S S S
-~ .0.-':-..-'.-’:. LI I S I P -‘Q."h.u'-'-' ."-.h'-\-\.!..‘.,-.'-'o".\ S A O LAY

....................

2% %y Cety



W . is the row-major spelling of the array

e
{X/:i=r,...n=1;j =k /2=1,....0}
(Refer to Figure 42). Itisclear that W, = W, if and only if X/ = X/ *2fori=r,... n-l,and j=
xk—1 e 0 xk/2 xm—1 P XO .: -]
Xo - 0 T4
- . i
- . '
t’ Xt r—1
) r
N X, ) B

(n—=r) X k/2 array (n~r) X k/2 array -
that yields W, g . . that yields W, =
when read in when read in
row-major order X itki2 Xi row-major order .
1 W
. A . A :: |
L ;

Corresponding bits
in W, and W, -

Figure 4.2 Configuration of the input array X in the proof of Theorem 4.8. i |




55

0,...  /2-1. This is equivalent t0 saying that each key X, (i 2 r)in the input multiset is the con-
/s

catenation of two identical strings, a property of the multiset which is independent of its representa-
tion, and can therefore be verified once Y is known. Now let P, be the processor that outputs more
variables of ¥ ° (break a tie arbitrarily ). Let P, and P, sort the input by exchanging / * bits, and let
P, receive I° £ n /2 bits to describe the components of Y ° that it is required to output. With no
further communication, P, is now able to decide equality of W, and W, , whose length is

h=(n=r)k/2 Thenl'+ I* 2 (n=r)k/2,and ' 2 (n~r)k/2=n/2 = Qkn). O

The AT 2= Q(r%0g¥1 + n /r ) ) obrained by bipartition techniques is weaker than the IO bound
AT = Q(kn) for a wide range of values of » and T. However, we can greatly improve the AT 2 lower
bound by the square tessellation method.
Theorem 4.9. Any VLSI (nk)-sorter, with ¥ < logn, satisfies the bound

AT? = Qlnr), 4.28

where r =24 |

Proof. We plan to show that an /O assignment in which P, reads exactly r/2 bits of the least
significant input position requires an information exchange Q(r) . Equation 4.28 will then follow
from Theorem 3.6 with Y ={X,:i =0,....n =1l M =l{Y=nm=r/2,and/ = Q(r).
We begin by showing that, chosen an arbitrary set of input bits

U, ={X5.X5....x0 |} 4.29
and an arbitrary set of output bits

L] - -9y -

U('Mll - {}:OJ"‘;"'.J o

r 2=y } 4'30

with ¢, <. ., the remaining input bits can be set to constant values to enforce the condition

YO =X, i=0L..,2-1

4o
t,3
[vy

More specifically we set




56

X, =2 +X,?, i =01,...7/2-1,

and we divide the remaining n-r input keys arbitrarily into /2 + / sets such that, fori = 0.1,... r/2-1,
the i -th set contains (¢; —; ; — 1) keys whose value is set to 2 (¢ ,é 0), and the (r/2)-th set contains
(n =1—=t¢,5,) keys whose value is set to »-1. The output sequence corresponding to this input is
shown in Figure 4.3, and it satisfies Equation 4.31.

Now, let us consider a protocol that assigns exactly /2 variables of % to Pyand n -r/2(2 r /2)
0 P2 . Let P, be the processor that outputs more entries of ¥ (break a tie arbitrarily). We can
always find two sets %, and U, asin 429 and 4.30 such that U, is input by P;_, and Y. is
output by P, . Equation 4.31 implies that /2 bits input by P;_, are output by P, , for a suitable

value of input variables notin U, . Hence, I 2 r/2= Q(r), asdesired 0O

We shall now prove an AT lower bound on the performance of an (nk)-sorter for £ < logn. The
proof is based on information exchange under bounded storage (saturation). However, the technique of

Section 3.3 will be applied not to the entire computation interval [0.T] but just to suitably defined

subintervals.

Theoremn 4.10. Any VLSI (nk)-sorter, with k Slogn , satisfies the bound

AT

Qn Vr ) 4.32
where » = 26,

Proof. For some real o €[0,1/2], in any tessellation of the layout with square cells of area & r ,
there is at least one cell C that outputs m 2 n or /A bits belonging to ¥ °, the least significant output
position. Based on the output schedule of cell C, we partition the interval [0,7 ] into consecutive inter-
vals[t; + 14, ,,J(wherei=0,1,..., L-1, with toé - 1,and t,_é T ), in such a way that, in each
interval, C outputs between r/2 and r (1/2 + o) bits of Y°. We can always find such a partition, since
the cell can output at most or bits at any given time. Furthermore, since cell C outputs

m 2 nor/A bisof Y, , the number of intervalsisatleast L 2 n o/(1/2+0)A).

...............
..................
T e
at

SN e e e SR, LN
AT SO PE AT S S I AT S PP I T B T, R S V!

Eadl.

S e Sy



57

.

R R TSR I |
PRI

@——k—1 bitS——»  e—1l.5.b. .

3 -0 0

(ty—1) keys : :

1 0 0

Yrg ——>1 0 - Xgo

b i 0

{ti—t;_-,—]) keys ; 5

¥ i 0

Yt,' —y 1 pp— Xgl

] ri2—1 0

(tr.2-1—12-2—1) keys : :

v r/2—1 0

Yoy ——> r/2—1 X3,

4 ri2—1 1
(n=1—t,9_1) keys .
v
Figure 4.3, Sending /2 arbitrary ls input bits to /2 arbitrary & output nits. ]
]
" |
We now establish a lower bound on the duration ¢, ., —¢, of the {-th interval. As we have seen I:‘
in Theorem 4.9, given an arbitrary sequence of r/_ components of ¥, and an arbitrary sequence of r 2 Z;

components of X, it is possible to select the remaining inputs of the sorter ia order to realize the iden-

Lty function between the two sequences. Let us choose the /2 components of " among those output




— =" T ~" v haARA et S S ands Sl 4
B AR SaS SNEL Sl MAd A el S A e i A died Pt S i el A A St i A i SRS AN A LI A il

58

by cell Cin ¢, +14,,,], and the /2 components of X ¢ in any arbitrary way. Then, since X ° must be
completely input before any bit of Y ° can be output, during the interval [¢; +1.; ,,] cell C outputs r/2
bits that are already in the system at the beginning of the interval. Since C could store at most o7 of

them, the remaining (1/2 — o )r must flow across the boundary of the cell, whose length is 4Vor , dur-

ing the interval. Hence,

tim—=t 2R =) /aVor =Jr (172-a)N4aVo), 4.33

L.

=1
i T = Lla—2)+1 2 LVr 12-0)4Vo), 434
. i =0
?.
L Recalling the bound on L we obtain
AT 2 Vo 12-¢ Jr, 4.35

— enmmer— 0T
4 12+cC

AP N)

which completes our proof. (Inequality 4.35 yields the best bound for ¢ = (V57 =7)/4 = 0.138). T

From Theorem 4.10 and Theorem 4.9 we know that there exist constants 8, and 8, such that the
performance of any (nk)-sorter, with k € logn , satisfies the bounds AT 2 B,n Vr , and

AT? 2 B.nr . These bounds coincide at time Toé (8,/8,)Vr . The AT bound is stronger for T >T,

and the AT 2 bound is stronger for T <T . K

The next two theorems provide us with some more information on the feasibility region of the

sorting problem, for short keys.

The first theorem gives a lower bound on the area, regardless of the computation time. The same

result has been independently obtained in [Sg84a] with a different proof.

The second theorem gives a lower bound on computation time, regardless of the area.

Theorem 4.11. The area of any VLSI (nk)-sorter, with the &k Slogn , satisfies the bound

A= Q(rlog(1+n/r)) 4.3¢

Proof. As we have already seen, due to the functional dependence of the variables in }"” upon the




AR R
PR = A N AP AP R S )

59

variables in X° , and 1o the time-determinate property of the 1/0 protocol, that there is a time ¢° such
that all the components of X ® are input not later than ¢°, and all the components of Y ¢ are output
after t. We have also seen that if we set the first r input keys to the constant value X, =i,i = 0, ..
. »-1, the remaining part of the input multiset {X,,...,X, -,} can be uniquely reconstructed from ¥ °.
Thus, a representation of {X,,....X, _,} is essentially stored in the system at time ¢°, and we know

(see Eq. 2.13) that Q(~ log(1 + n /r)) bits are necessary to encode this multiser. O

Theorem 4.12. The computation time of any VLSI (nk)-sorter, with k < logn, satisfies the bound
T = Qlogn). 4.37

Proof. Equation 4.37 follows from the assumption of bounded fan-in when considering that the com-

ponents of Y © depend on all the nk input variables. O

4.2.2 Medium-Length Keys

In this section we turn out attention to the (nlogn + h)-sorting problem, and we derive bounds for

0 < h < logn.

A simple observauon, which is useful for lower bound arguments, is that by setting the logn
leading bits of the input Keys to an appropriate value, we can force the output sequence to be an arbi-

trary permutation of the input sequence. In particular the & least significant bits can be chosen arbi-

trarily to creat information flow.

This observation was originally exploited by Thompson [T80] to show that, for word-local proto-
cois. and k& =logn +®&legn), AT? = Q(n3log®n ). A straightforward generalization of Thompson's

argumert allows to prove the following theorem.

Thecrem 4.13. Any VLSI (n, logn - h)-sorer, with A > 0, and with word-local protocol, satisfies the

bound

AT = Q(nch2, 4.

(V9]
[+]

":v'

BTN S . RO

.




Proof. We will prove the theorem by showing that the class of 1/0 assignments

H ={n:P, inputs exactly n/2 keys) has information exchange / = Q(n k).

Without loss of generality we can assume that P, inputs keys X ...,X, /o—; and that P, outputs
at least n/2 keys, ay Y, .Y, p.. g, o - Lt Y, ... Y, | be the remaining keys. By setting the
logn leading bits of X; to the binary representation of integer a; we ensure that ¥, =X, i=0,...,n-
l. Thus, the h least significant bits of each key imput by P, are output by P, , and
I 2 nh/2 = Q(nh),asclaimed. O

No better bounds could be obtained on / under the word-local protocol, since &nk ) bits are
sufficient to encode the entire input. The important question instead is the removal of the “word-local”
restriction.

Some preliminary considerations and an example will help us put in the proper perspective the
nature of the problems arising when dealing with arbitrary protocols.

The output of the sorter is a permutation of the input, so that

Y, =Xﬂ(,‘) i =0,1....J2—] 4.39

where 7(0),m(1),...,m(n —1) is a permutation of 0, 1, ..., n-1. Focussing on the bit position of index j

of the date we have
Y/=X4) i=01,...n-1. 440

Thus, there is an information flow from the input to the output ports of the same position. which we
call primary flow. The primary flow of each position is, in a way, selfcontained, because each bit
involved enters the system and leaves the system maintaining its identity. However, the exact destina-
tion of each bit within its own position depends on #, which, for position j, is determined by the value
of the data in positions j, j+1,...,k-1. Thus, there is another kind of informationflowing from most

significant to least significant positions, which we call secondary flow.

As we can see from the proof of Theorem 4.13, the complexity of word-local sorting is based

exclusively on primary Jow. Let us now consider an example of protocol which requires exclusively




.-
.

61

secondary flow.

Example. We want to estimate the information exchange of the protocol that assigns the leading posi-
tions X/ ,Y/,j=k/2, ..., k-110 P, and the least significant positions X/ ,Y / , j=0,...,k/2-1 w0
P, . Since each bit position is completely input and output by the same processor, there is no primary
flow. However, P, needs information on the relative order of the most significant part of the keys in
order to know which permutation to0 apply to the least significant ones. Thus, we are in the presence of

secondary flow alone.

It is clear that, no martter how large k is, / & nlogn . In fact the leading bits of P can be sorted
ignoring the bits of P 5, so that no information transfer is needed for P, to P, . On the other hand, all
that P, needs to know about the portion of keys dealt with by P, is the relative order, which can be

eacoded in no more than nlogn bits.

We can also show that, for k = 2 logn, I 2 log (n!") =(nlogn - lower order terms). In fact, let us

consider the class of instances of the problem such that X, = 2¢2n(i) + { (i = 0...., n-1), Where
m(0),....m(n —1) is a permutation of 0. .. .. n-1. The corresponding output is ', =282 + 771 (i) (i =
0..... n-1). Thus, at least log n/ bits (to describe 7 ) are sent from P, to P . In conclusion. for k = 2

iogn, { = nlogn<lower order terms).

A more detailed analysis would show that, for 1 € & € 2logn , ! =nk /2, and that for ¢ > 2

logn [ =nlogn , regardless of X. The fact that secondary flow never exceeds nlogn has important conse-

guences, as we shall soon see. T

When analvzing arbitrary protocols, primary flow and secondary flow must be considersd simui-
w@neously. In fact, in particular situations one of the two may be negligible but, as we shall see, theyv

cannot be simultaneousiy small.

Leighton {L84] has shown how to combine primary and secondary flow hounds with the help of

cwciic shift arguments. His result was stated in the form AT 2= Q(n%log’n ) fork 2 7logn .

. D T D S S U TR R N SR U P PR S L e em e, R
........ - e . ~ e P e S T P M R IR AP N ‘
M B et YA It N AN CHStR N B ST A S . et

Ll
LAl e s

N

P T N ) DA T AT S L S IR P ., . . B ¥ =y DTN
,‘J—.‘l_,:_F'.A._A'J‘."-JLJ.‘L..‘)J'A:‘A.A' P W W RN W Uik W P W DY B, W S, A U L W0, Sl R W S TAL W8 S LA S . W




62

Exploiting similar ideas, although with a rather more elaborate construction, we will show that
AT?=Q(n%h) for 0 < h =k - logn < logn. An obvious consequence is that for k =(1 + a)logn,
(a>0), AT 2 = Q(n %log’n ) . However, some discussion is in order, to clarif v a subtle point. The Q nota-
tion is misleading here (at least it has mislead us for some time), and it is better to rewrite the bounds
in the following form : For k = (/+ a )logn, (a > 0),AT 2 2 c(a)n logn, where ¢ (a) depends on a,
but is independent of n. The crucial point we want to address is that, for reasons that the next
theorems on lower bounds will clarify and that are essentially related to the saturation behavior of
secondary flow, the dependence of ¢ (a) on « is quadratic for a << 1, but is linear for & >> 1.
This fact, together with Leighton’s observation that, when k > > logn, one can construct VLSI sorters
whose complexity is subquadratic in k [L84] shows that it would not be appropriate to consider a prob-
lem with k& = 1.1 logn and a problem with k = 100 logn in the same class, although, superficially, we
can say that AT ? = Q(n%log?n ) in both cases.

We are then motivated to distinguish between medium-length and long keys. Obviously the
choice of k = 2 logn as separation of the two classes is rather conventional.but it will serve our purpose.

With this premise, we shall now prove the AT 2 bound for medium-length keys.

Theorem 4.14. Any VLSI (n, logn + h)-sorter, with 0 < h < logn, satisfies the bound -

AT? = Q(n3n2). 4aa
Proof. We begin by partitioning the input array as X =[D, E, F] where D, E, F are blocks of d, logn -
d, and h consecutive columns respectively. The partition of the generic key X, is shown in Figure 4.4,

We shall prove Eq. 4.41 by showing that / = Q (n A ) for the class of input assignments such
that P, and P, input each exactly nd/2 of the entries of D. Below we shall derive two lower bounds

on /, and we will see that at least one of these bounds is not smaller than n /2.

Adopting the same notation as in Section 4.1 we let ¢; be the number of components of }" / out-

2
-------
2

IR

..................................
.........



NEAVAFAYS,

[l
LN
r

[\

) B

-

ne

-

d log n—d h

Figure 4.4, Partition of kev X, , for the proof of Theorem 4.14,

put by P, . We also let, for y€[0,1/2] , and Qoé{j.:j <hyn €£c S$U=y)n|

Q: é{j the;, >(1=9)n },anszélj :<h,c, <y n}. Finally we denote bv g, the cardinality
of @, ,i=0,1,2.

Primary Flow Bound. By suitably choosing the entries of D and E, we can produce any of the n cvclic

shifts of array F. Then we can use the notation of Section 4.1 anc Theorem 4.1. with Z = F, and g =i

to obtain the bound

I > vyqgon 4.42

which is valid for any v € [0,1/2], and where 4., is a function of .

Seccndary Fiow Bcund. Without loss of generality let ¢, 2 ¢4, %0 that q; 2 (A —¢,)/2 . Let also Q

be a subset of Q, conmsisting of d 2 g, btit positions (the positions of Q are not necessarily consecutive,




but they will be thought of as ordered from most to least significant as they are in X). We then con-
sider the following class of input instances, where I-A-Z‘ and a = n/L Let input array X be partitioned

into a blocks each of I consecutive rows, and let the entries of the (i+1)-st block (i =0, ..., a-1) be set so

that: (see also Figure 4.5)
0 E Q F-Q 2] € Q F~Q
%o(0) 0 o o o 0 25'10) 0
g (i=1) 0 -1 o
0 1 (0 0
3 0 g '8 0
%;{0) i 0 0
x(l=1) i =1 0
s a1 ol (s) 0
=1 0 75~ 1-1) 0
2, _,(0) -1 0 0
=11 ] a=1 -1 ] -1 -1 | =00-1) 0
—d— H—..—-“ ""—G—J‘ "‘—"d—"J
{a) The Input Array X (h) The Qutput Arrav Y

Figure 4.5. Configuration of inputs and outputs in the proof of Theorem 4.14. In the actual arrays
X and Y, the columns of blocks Q and F-Q are mixed, but the left-to-right order of the
columns in each block is maintained.




e T R R T  w  wo e w v

(1) The rows of D have values ,(0)....,m,;({ =1), where m, is a permutation of O, ..., -1
(2) The rows of E are all identical and equal to i.

(3) The rows of Q have values O, ..., [-1.

(4) The rows of F - Q are set to zero.

It can be easily shown that if we partition the output array I” into ¢ blocks each of a consecutive rows,

the (s + I)-st block from the top (s = 0. ... J-1) has the following structure (see also Figure 4.5b)

(1) The rows of D have value s.

(2) The rowsof £ have value0,...,a-1.
(3) The rows of Q have values w5 s ) Xs),...,7.3,(s).
E ( (4) The rows of F - Q have value zero.

Thus, permutations wom, ...,m,_; can be uniquely reconstructed from outputs in Q, so that Q carries
all logl - lower order terms) and bits of information relative to section D of the input. Since P, inputs
only nd/2 of the bits deribing #,,...,m, -, , and outputs at least (1 —y)nd of the bits of Q from

which ,...,7,_, can be recovered, we conclude that at least (1 ~y)nd —nd /2 bits are transferred

from P.to P,. If wechoosed = g,, we obtain
I >(2=y)g,n 202~yXh =qy)2]n, 443

where again y€[0,1/2) and ¢, is a function of ¥ .

Combining the Bounds. If we select y = 1/6 , bounds 4.42 and 4.43 become

1 > ngqo6 14
1 > n(h =g,)6. 445
Thus,

!l > max{(n ¢qo/6,n(h =q4/6)) 2 nh/12. d.d6




. — n 2 Aot _Buss Ao — Podiait i e T Ty T By
K3 B Bl St Al LR M WSt i IR i i bl diat St Lot Sar s Ao e e el L e T T T W Mkt S D LA
. - . - - - - - ~ 1 - PUR P e - - ] - . -~ . - - . - - . - - -

66
(A slightly larger constant than 1/12 is obtained if we optimize the choice of y , which yields
y=(V2=1)2and I =>nh (1 - V2122, O &

If we combine Inequality 4.46 with the bound in Equation 3.27 on the performance of boundary ;-:;j

chips (in our case M =0(nlogn )) we obtain the following result.

. Theorem 4.15. Any VLSI (n,logn+h)-sorter, with 0<h<logn, and with all its I/0 ports on the boun-
dary satisfies the bound

F AT? = Q(n3hlogn). 447
We end this section on medium-length keys with some results on minimum area and on

3
b minimum computation time. The result on the area (actually generalized to multilective /O protocols),

as well as the one on the AT -measure of ‘Iheorem 4.14 have been independently derived by [Sg84b]

¢ with a different approach.
Theorem 4.16. The area of any VLSI (nlogn + h)-sorter, with 0 < h < logn, satisfies the bound

A =Q(h) 4.48 :

Proof. Due to the functional dependence of the variables in Y/ on the variables in X/ , with
j' 2 j .and to the time- determinate property of the I/O protocol, there is a time #* such that all the
components of X‘~!.X*=2, . X¢=er" = X" are input not later than r* and all the components of

¥ 1Y A=2, . ¥ are output after *. -

Now, let us consider the same class of input instances as in Theorem 4.14, which is also illustrated

in Figure 45a. At time ¢* all entries of array D have been already input, and no entry of Q has been u..
output yet. However, Q is an equivalent encoding of D, and hence Q(a ! log!)= Q(n ) bits that s

.
represent D must be stored by the system at time ¢*. O a

Simple fan-in arguments allow us to prove the following result.

Theorem 4.17. The computation time of any VLSI (nlogn + h)-sorter with 0 < h < logn, satisfies the




T = Q(logn). 449

o 4.2.3 Long Keys

As we have anticipated in the preceding section, for k > 2 logn, bipartition techniques are not
very useful, because there are input-balanced protocols for which the information exchange does not

- exceed nlogn, regardless of k.

However, we intuitively expect the area-time complexity of the (nk)-sorting problem to be
increasing with k, for fixed n. For example, the trivial I/0 bound tells us that AT = Q(k n).But we
[ know more; in fact, a sorter of n keys of length & is trivially a cyclic shifter of n words of length X-

logn (the least significant part of the keys), and hence it satisfies the bound AT? = Q((k —logn)n?),

according to Theorem 4.4.

h . This bound can be further improved by taking into account the fact that a suitable choice of the

logn leading bit positions of the input keys of a sorter, can force at the output an arbitrary permutation

of the keys, (not only the cyclic shifts).

Theorem 4.18. Any VLSl (nk)-sorter, with ¥ 2 2 logn , satisfies the bound

2 k
AT Q lm(nlogn P 1.50

Proof. To simplify some details of the proof we assume k 2 3logn . (For 2logn € k < 3logn
the result is a simple consequence of Theorem 4.14, in any case.) Since an appropriate selection of the
logn leading bit positions of the input produces an arbitrary cyclic shift of the remaining positions, we
can use some of the results derived in Section 4.1. Let us first recall some notations. We denote by b,
[respectively ¢, ] the number of input [respectively output] kevs whose j-th bit is input [output] by
P .. Then for given y€{0,1/2], Q,éi jij <k —logn,c, <ynlandg, = 1Q ! .i= 12 Moreover

we let




It s e b e it et et bl A S S A et PR R e I I Chia AN N SAesa e 2k S hiute Anciiin * A ERAs NS B M S N A

| 68 -
) :
' & ={ogn =]
B = Z b,-. and B,‘ = 2 b}. i= 1,2. =
;=0 ]‘Ql N : .

The plan of the proof is to show that any /O assignment in which P reads B = nlogn bits that
belong to positions X ¢ ot =1, . X, requires an information exchange of / = Q(nlogn ) bits. Equa- e
tion 4.50 will then follow from Theorem 3.6 with U &{X,/:0<i Sn-1,0< j <k —logn —1},

M=1 Ul=(k ~logn)n ,m=B=nlogn,and I = Q (nlogn).

Primary Flow. By applying Inequality 4.9, and considering that, 8; 2 ¢;n, and that in our case

B = nlogn, we obtain

1 2 y(nlogn —n gq,). 4.51 e

If we reverse the role of P, and P, in Theorem 4.52, and we consider that P, reads

(k =2logn)n 2 nlogn bits of U, then lnequality 4.9 yields

I 2 y(nlogn —n g,). 4.52 ey

Secondary Flow. Let P, (s = 12) be the processor that reads the majority of the bits that belong to the o :
logn leading bit positions (break a tie arbitrarily). We will then show that the secondary flow -
increases with g, . To be specific we will assume that s = 2, and we will bound the secondary flow
from P, to P,;, which we finally combine with Eq. 4.51. (If 5 = 1, we can argue in a similar fashion

resorting on Eq. 4.52.) After selecting arbitrarily a set Q* of (logn —g¢,) bit positions of significance less

than (k-logn) and not in Q , we define the set
Q =Q,Ve U

We then consider the following class of input instances. We set:

(1) The leading logn bits of X; to the value m(i ) where #(i ) is a permutation of 0,..., a-1.

(2) The logn bits of X; which belong to positions in Q to the value i

(3)  All remaining bits to the value zero.




S e S e A O < e e e R e i T T A R s/ Ve Sy A Ml & O M S s S AN beh B An A A e AR At R e e

TV

...

> . -'.,."" LR
~ s 4
oo S

69

Then, the input array ¥ has the following structure.
(1) The leading logn bits of ¥'; represent integer i.

(2) The logn bitsof ¥, which bélong to positions in Q represent integer w~(; ).

L8

E (3)  All remaining bits are zero.

* Thus, 7 can be recovered from the output positions {Y/:; € Q} . Since P, outputs at least
¢1(1 —y)n bits of these positions, and it reads at most //2 nlogn bits among those that specify = ,

_ then

1 2 (1—9y)g,n =1/2nlogn, : 453

bits of information on 7 have to be communicated by P, P, .

Combining the Bounds. If we multiply both sides of bound 4.51 by (1 —y), and both sides of bound

4.53 by ¥, and we sum the sides of the resulting bounds, we obtain
] 7 2 y(1/2=y) nlogn. 453
Fory = 1/4,1 2 nlogn /16 . Then, by Theorem 3.6 we have completed the proof. O

We derive now an AT bound for sorting of long keys, using saturation techniques.

Theorem 4.19. Any VLSI (nk)-sorter, with k 2 2 logn satisfies the bound

AT = Q(kn Vnlogn ). 4.55

Proof. In this proof we introduce several parameters whose value will be later specified to optimize
the lower bound. The reader could find it useful to assume - in following the argurent - that
Yy =112, 0 = 5/24€ = 1/4, £ = 1and B = 3/8 . Although suboptimal, this choice of the parame-

ters will give the right feeling for their range, and will also simplif ¥ the arithmetic.

We plan 0 iower bound the information exchange with nounded storage / (m i 5,00 ), and then
L apply Theorem 3.7. We consider the class of 1/O assignments such that exactly m of the variabies in

0=1X/:08i€Sn —=1,08% j €k =logn -1} are input by P, . As usual. we denote oy c. tae

.. -
-------




m P \ o Pk —gp— o W W W T T T T N T RIS R R v Y L v - = - =
A A B R Sl A i S Rl A e i B A T A AR AL AN M S Pl . Bl - & P

70

number of bits of position Y/ which are output by P, , and - for 0 Sy £1/2 - we let
Qi=1ljie,>(1=9y)n, 08 j Sk —logn —1}, and ¢, = | Q, |. As we have repeatedly seen, a
trivial transformation of cyclic shift yields the following bound to the information exchange (under

unbounded storage):

I >y(m~ngqg;) 4.56

4 Obviously, this bound holds a fortiori when the storage of P, is bounded, but we need to combine it

i with other bounds im order to obtain the desired result. The following observations provide some

g insight on how a bound on the storage may affect the information exchange.

(a) At the time when the last bit of a given position is input, no bits of that position have been out- 7

put. Therefore n bits are stored in the system (P, and P,) at that time.

(b) If during the time interval [¢ s ;] the system outputs p bits belonging to A positions in set Q, ,
then at least p =\ y n of those bits are output by P, . (In fact, from the definition of Q, , at -
most y n bits per position are output by P,.)

(c) If, at a given time ¢, p bits that have to be output by P, are stored in the system, and P, has a

storage bound of s bits, then at least p — s bits are stored in P, at time ¢, and they will eventu-

ally be sent to P, , thus contributing an amount p-s to the information exchange.

(d) If during the time interval [¢ 2] P, outputs ¢ bits which belong to a set Q,'GQ, of A € logn

positions, then at least (g-s) bits are transferred from P, to P, during the same interval, for an

appropriate class of problem instances. The idea is that the outputs of P, carry ¢ bits of informa-
tion on the sorting permutation, and at most s of them could have been in P at time ¢, . The
details of the argument are similar to those of the proof of Theorem 4.17. We need to set the logn -
leading bits of X, to represent 7(i) (where #(0),...,m(rn ~1) is a permutation of (0, ..., n-1).
We also augment Q, to Q* by adding (logn - \ ) arbitrary positions, and we set the logn bits of X,
that belong to O* to the value i. Then the output position of Q* will be 7~40),...,m"(n —=1)

where o is the inverse of 7 and g bits of 7 are output by P, .




" (A v
’ R R

Y e —
RS i Al
e e 0

——

R T T S T P T Sl ST S R T A N O S L S UL NP ST SR ST E PR I O SRR NP T
S e e e e e T e T e e T e et T et e A e e N N N
- L e N O P N ST L AR LTI L e L .. - - AT LA TR .
P P I TP A Y L R T AL WA v A S PR R A0 WA P WP U R, S0 WP WL Wi R WP ol WS S Wl . W Wit VI W

7

In order to exploit the preceding observation systematically in the analysis of information
exchange, we need to define several quantities We begin by decomposing the interval [0,T] during
which the computation takes place, according to the I/O prorocol, which is assumed to be place-

determinate and time-determinate.

If we focus on a given position j, we see that the variables of X / are generally input at different
times. We are particularly interested in the time when the Ls. bit(s) of a given position are input. For
our proof, we need to consider, for each time ¢, the number A(z ) of positions in Q, whose last bit(s) are
input exactly at time ¢. (For example, A(¢ ) is zero when no bit is input at time ¢z, but also when all the
bits input at time ¢ belong to positions for which some bits remain to be input) We will treat
separately the instants when A(z ) is large from the instants when A(¢ ) is small. In fact, in the first case

we can immediately see that there must be a large saturation and secondary flow.

Formally, for a given € (0 € € € 1), we distinguish the times¢', < ¢’ < -+ < r’, when
At) 2 € logn , from the timesz®, < ¢, < ‘- < t°, when A¢) < € logn . Since for all the ¢,
positions of Q; the input is completed at some time, we have

tx(r',,)-i- z‘,x(z',,)=q1. 4.57

h =] n =]

We now consider separately the contribution to the information exchange due to positions whose input

is completed in each of the two sequences. We assume that 2 can store s = & niogn bits(0<o <1).

Sequence t' . If we apply observation (a) to each of the A(z', ) positions wWhose input is completed
exactly at time :’, . we see that at least A(z ', )n bits are in the svstem at this ume. From observation
(b) at least (1 —y)Alzr', )n of these bits have to be output by P, . Finally, observation (c.. with
t =% ,p ==\, n and s =0 nlogn , allows the conclusion that the bit positions we are
considering contribute [(1 —%)A{(¢', ) =~ logn }n bits to the information exchange. If we sum over ail
:', Wwe obtain a globa] contribution

I'=(1=v) T Ay )n —uariogn. 4.58
A=l

LR e .

S A A e s A et an e Ak sd e




—— b a4 v R Ty TrTYr Ty Ty es v ™y,
. Iy M BNt g Py S 20 2t~ i A N - L e WY . N . . N . . - N . - - . . . N - N

- 72
Since A(¢°,) 2 elogn , we obtain
1 .
- 2 AMt) 2 ue logn, o
'_f A =1
- -]
o’
g and substituting for v in Eq. 4.58 we finally can write -
I' > (Q=y—c/e )TN 459
A=l
Sequence 1°. We decompose the interval [0,7] into consecutive intervais[¢”, + 1,¢%,  lfori=0,1,..
., L . (Here indices hy,...,h; €{0,1,...,v | and we have added to the sequence ¢ * two poins.t'hoé— 1 -
and ¢°,, _‘QT .) The decomposition is chosen in such a way that, for a given (e £ § € 1) and fori =0,
1,...,L-1; =
Aoy
(6—elogn < F At®,) € € logn. - 4.60
h=h; +]
Such a decomposition always exists, since AM(¢°, ) < € logn . Moreover, -
L 2 T e AE logn), . 461 .
h =1 . e
siace at most £ logn positions complete their input in any given interval. We will evaluate the contri- '_
bution to the information exchange given by each of the intervals of the decomposition. Let us focus ' =
on one specific time interval, say [7,7,] . For a given 8 such that 0 < 8 < § —¢€, we distinguish two
cases.
(i) p < Bnlogn . If p < B nlogn , at time ¢, at least (§ — €~ Blnicgn bits are in the system, -
~ and at most y £ nlogn of them have to be output by P, . Thus, at least ((1 = y)§ — €~ B)niogn
- bits have to be output by P, and, due to storage limitations, at least o
[
- I% 2 (£(1—y)=€=B—0)nlogn 162 -]
X ~
- S
r of these bits are in P, and will eventually flow to P, contributing to the information exchange.
.; s)
(i) p 2 Bnlogn . If p 2 B nlogn , at least 8 nlogn — £ nlogn of these bits are output by 2, . -
- and observation (d) (with ¢ =(8 = y€) nlogn , and (§ —€)logn < A € § iogn ) ailows the con- -

--------------




! 73

clusion that in the intervul [7,,7,] there is a contribution to the information exchange
(] 1°, 2 (B—yé=0o)nlogn. ° 463

Now, if we chose 8 = (£ —€)/2, then J "y= I “;, and in either case the interval (7, 7,] contributes

l'o=1'1=((§-€)/2—7f—0’)nlogn bit.f. 4.64
-
Recalling Ineq. 4.61, we see that the global contribution of the L intervals of the decomposition is
I">( —e/)2=y=0c/®) T A", ) n. 4.65
- h =1
If we chose § = e(o/e + 1/2) /e — 1/2), the coefficients of bounds 4.59 and 4.65 become equal,
and by summing the contributions of the sequences of ¢’; and ¢“; we obtain

I 2(Q=-y—-c/edn g, 4.66

where we have used Eq. 4.57. A linear combination of bounds 4.50 and 4.66 with coefficients

(I =y o/€) and y respectively, vields
2 Y(1—y/(1~c/e))m 4.67
We now chose y = (1 — o/€)/2 1o maximize the right hand side, so that 4.67 becomes

I(mionlogn ,) 2 1/4(1=-0/€)m, 4.68

where we have used the appropriate notation for the information exchange. At this point we are

readv to apply Theorem 3.7, which states that
T 2 I (MI%A | h? 0)/4L 4.69

In our case M =(k - lognin,and | = V& nlogn ,and we can rearrange bounds 4.69 and 4.68 as

AT 2 _1_
16

| = —

%l k& —logrn )n “nlogn. 170
For a given ¢ . the best bound is obtained by maximizing € But € is subject o the constraint
E=eag/e+ 12Q)Mc/e—1,2) £ 1,50 that o/¢ € (1 +€)/2(1 —€)). Under this constraint the

— v . . . o~
wowar  bound on Al is maximized by the choice €= 1/V1i2 . zad




vovoow weyworre v et
PRI T L M ] o e PRI

o=((V12 + N2012 + V12)). O

From Theorem 4.19 and Theorem 4.18 we know that there exist constants 3, and 8. such that the
performance of any (nj)-sorter, with k > 2logn satisfies the bounds AT 2 B,kn vVnlogn , and
AT? 2 Bykn (nlogn) . These bounds coincide at time T, = (B,/B,)nlogn . The AT bound is

stronger for T > T, and the AT 2 bound is stronger for T < T
We complete the discussion of this section with two simpie results on the minimum area and the

minimum computation time for sorter of long keys. The first result has been onginally proved by
{L84] but it is also a trivial corollary of Theorem 4.16. The second result follows, as usual, by simple
fan-in considerations.
Theorem 4.20. The area of any VLSI (n & )-sorter, with k& 2 2 logn , satisfies the bound

A = Q(nlogn). 4.71
Theorem 4.21. The computation time of any VLSI (n & }-sorter, with k& 2 2 logn , satisfies the bound

T = Qogn + logk). 4.72

Rermark. Bound 4.72 is indeed satisfied by all sorters, but the dependence on k& becomes reievant only

for very long words, i.e. when logk = Q(logn). We conclude Section 4.2 summarizing the main

results in Table 4.1.

43 AREA-TIME LOWER BOUNDS FOR THE COMPARATOR-EXCHANGER

Usually comparison-exchange is formulated as a problem whose input consists of wo kevs X,

and X, and whose output consists of two keys ¥, and ¥ | such that

Yo = min (XX ), +73

Y, = max (XX ,). 4.74

Comparison-exchange is an interesting operation in its own right, and it is a primutive of many sorting




75

TABLE 4.1. SUMMARY OF LOWER BOUNDS FOR (n & >-SORTING

Length of the
Lower Bound Keys

Information Exchan}e

1% $logn

AT? = Q(r3logX1+n /r))

logn <k <2ogn

(h = k Zlog

n)

AT?2= Q(n3n?)

2logn Sk

S

AT? = Q(n3log’n)

{  Square Tesselation

i + AT?= Q(ar) —_ AT ? = Q(nk (nlogn ))
|__Information Exchange

| Square Tesselation

g + AT = Q(rVr) — AT = Q(nk Vniogn )
i Saturated Information

' Exchange

l

{ Storage A = Qrlog(1+n /7)) A = Qnh) A = Q(nlogn)

!

| Bounded Fan-in T = Qlogn) T = QUogn) | T = Qogn +logk)

t

algorithms. However, our main motivation to study its area-time complexity comes from the fact that

comparison-exhcnage is indeed the (24)-sorting problem, and its analysis will provide us with useful

insight into the phenomena that determine the complexity of sorting when the length k of the keys is

very large with respect to their number n.

The lower bound technique that we shall adopt is different from the ones we have applied in the

preceding sections, and it is based on the notion of f unctional dependence.

The notion of functional dependence has been introduced in the context of VLSI compuzation by

Jonnson [Jn80] . In order to derive an area-time lower bournd for binary addition, a probiem simiiar to

comparison-exchange in several respects.

SUDORNOWN 55 CRPFERSaN %




b

Ny — —— At e a1
‘—-—- LN Al A Bl Sed Sl Jnd And Sad Sk Ak Bl SRV SV S S OR A B NI s AL AR e o G SRR TR T TR L TR .

76
Let us now recall the formal definition of functional dependence.

De finition. Given a function y = f(x), where x = (xy,...,x,) and y = (y},...,y, ) are boolean vectors,
we say that y; is functionally dependent on x; if there exist two boolean vectors x' and x° that

differ only in the i -th component, such that y'=f (x'),and y*=f (x*) differ in the j-th component.

Example. In the comparison-exchange problem, Y,-f,“ is functionally dependent on X/ for any

j 2 jeandi=0,1;Y,’* is not functionally dependent on X,/ forany j < jpandi=0,1.

Time-Determinacy. For time-determinate protocols the functional dependence of y; on x; implies that
x; must be input before y; is output, because there are input instances in which y; remains indeter-
minate until x; is known. However, more complex phenomena take place when we bring into the pic-
ture the asumption of bounded fan-in, which was not needed when analyzing the aspects of the compu-

tation that depend only on information exchange.

Bounded Fan-In. We explicitly assume now that in our circuits the gates that compute boolean func-
tions have a number of input lines up.per-bounded by a coastant f; . As is well known, this assump-
tion implies that if an output variable y is functionally dependent on s input variables, then at least
7log;, s time must elapse between the instant when the first of the input variables is read, and the
instant when y is output, where 7 is the minimum delay of a boolean gate, and /; is the mazimum
fan-in. Hereafter, since the value of 7 and f; affects only constant factors, we assume for smplicity

that7 = land f; = 2.

Computarional Friction. Although the previous considerations are often useful to bound the computa-
tion time of some ~roblem, they do not exhaust all the consequences of functional dependence. In fact,

if s variables x,,...,x, , are input at the same time, and if there happen to exist s output variables

" ¥1...,ys such that, not only each y ; depends on all 5; ’s but also the y’s carry / bits of information on

the x’s, the system must be capable of storing / bits for at least logs time steps. Thus, if we make an

anaiogy in which the information is viewed as a fluid flowing from input ports to output ports, we can

1

s

—

""l} A{ 4 N

d R

| S

=

O




say that the functional dependence acts as a kind of friction that slows down the flow, keeping it

below capacity.

In a VLSI system the /O capacity is determined by the area, and implies the trivial 1/0 bound
AT = Q (input size + owrput size), already discussed in Section 3.1. When functional dependence
plays a role in slowing down the IO information flow, we intuitively expect the AT measure to satisfy

a stronger lower bound.

This in indeed the case for comparison-exchanger, as shown in the following theorem.

Theorem 4.22. Any comparator-exchange of keys of length k satisfies the bound

A = QUk/T)log(k/T)), 475
which can be also rewritten as

AT llog A = Q(k). 4.76

Proof. Fort=1,2,...,T, let S(t) be the set of bits of X,and X, that are input exactly at time z, and
let sGIR1SG) 1 . We partition Sf¢) into two subsets So(¢) and S (z) of equal size sit)/2, the
significance of the bits of S,(z) . We consider now the set C (¢ ) containing all the output bits that

belong to a position j such that at least one of X and X ,’ is input exactly at time t. Formally,
Colt Y {eX €Solt) or X{ €St MUY {:X)€Sq(e) or X{ €Syt
On set C (¢ ) we can make two important observations

(1) All variables in C (¢ ) are functionally dependent on all variables in S,(z ). Therefore, no vari-

able :n C(z ) can e outpur before time ¢ -~ logfs(¢)/2).

{ii) From the value of the variables in Cofz ) - possibly with the addition of one extra bit specif ving
whether X, or X, is the smaller key - we can uniguely reconstruct the value of the variables in
Sz ). Therefore, from time ¢ to the time when the first variable of C (¢ ) is output, at leas: siz)’2

bits of information concerning S ,{¢ ) must be stored by the svstem.




PR ML R FRCIIG Bete stwiC v st adeL SUnt ERECIASER i o s - - e TR —————1

Combining these two observations, we conclude that the s(z) variables input exactly at time ¢ give a )
contribution of at least (sit)/2)log{slt)/2) bit X time unit to the storage X time product, and hence to .
the AT product. Thus, R

AT > T2 108(s(e VD), a7

t =]

T
where obviously ). s(¢) = 2k. Under this constraint, the right hand side of 4.77 is minimized when

t =]

sft) = 2k/T foreacht = 1,...,7T. Thus,
AT 2 k log(k/T) 478 o
which proves 4.75. This can be also rewritten as 4.76 after simpie algebraic manipulations. O

It is worth comparing Theorem 4.22 with Johnson’s work [J80) from which we have borrowed e
the main idea, in order to clarify two superficial differences. First, although the area-time complexity :
of binary addition is exactly the same as the complexity of comparison-exchange, [J80] states the lower
bounds in a form different from ( and probably less ciear than) Equations 4.75 and 4.76, in an attempt -
to formulate the results as a bound on a measure of the AT © type. Second, while in our proof we bound
essentially the amount of time that the input information must spend inside the syst?m. Johnson
bounds from below the duration of intervals during which a given amount of information is output by o
the system. However, this difference is only superficial, because it is obvious that when the storage has |
been saturated by inputs on which the system is still performing some computation, both the input v

flow and the output flow must necessarily slow down.

T vy et et
v PR -ty Wt 2T, e .
Lo I R S S R ST S T T e e e T e e ta® « e tatate e

.........




- LN

F—i_-‘._ir: NC 2% 0" 0 Al g Jha et e e i« et i




CHAPTER §

L}

ALGORITHMS AND ARCHITECTURES

5.1 INTRODUCTION

In Part II of this thesis we turn our attention to the design of VLSI sorting circuits. A VLSI
design has two fundamental aspects the algorithm and the architecture. Both aspects have been exten-
'sively investigated by many researchers, and the valuable knowledge that has been accumulated is

f" very useful for our study of VLSI sorting.

In Chapter 5 we review known parallel sorting algorithms and known parallel architectures that
will be basic ingredients of our sorters. An effort has been made to give a unified presentation of the
. subject, but there is no attempt to make an exhaustive survey. Only algorithms and architectures that

we actually use in subsequent chapters are indeed described.

In Chapter 6 we propose a variety of optimal sorters for keys of length & = logn + &logn ). The
| designs are all based on previously known algorithms or simple variants thereof, and their novelty con-

sists in the development of the appropriate architectures amenabie to compact layouts.

In Chapter 7 we consider arbitrary key lengths and propose optimal or near-optimal designs.
- Several algorithms are new, and in fact it can be proven that for certain ranges of key lengths none of

the classical sorting algorithms can achieve area-time optimality.

The performance of the proposed design is contrasted with the appropriate lower bounds. How-
ever, the presentational subdivision into lower and upper bounds, which considerably simplifies the

exposition. does not reflect the real development of the problem analysis. An attempt to better relate

\_

lower bounds and upper bounds is made in Chapter 8 where the main results of the entire thesis are

sum.marized and compared with each other.




y Ry . Mg dh - ar-a o el S a8 o d S s e B i Sl 0 e Sl it Rer it Sk Jia e gt o it S
..... AR " X A Kb g A Mt e TN At ol . .

80

5.2 PARALLEL ALGORITHMS FOR SORTING

In this section we review some known algorithms for parallel sorting, which will be implemented

in the design of VLSI sorters.

5.2.1 The Combination Scheme

Several sorting algorithms can be viewed as particular cases of a rather general scheme, which we

now describe.

We call combinarion the operation that produces from m sorted sequences of l elements each one
sorted sequence of ml elements. A network implementing this operation is called an (mI)>-combiner.

When m = 2, combination reduces to merging.

Given n = m;m,...m, elements, We can sort them in d stages according to the following scheme

that we call combine-sort.

At stage 1 we perform n /m, combination operations, each on m, sequences of 1 element each. At
stage 2 we perform n /m ,m , combinations, each on m , sequences of m, elements each, and at stage i we
perform n /m,...m; combination, each on m; sequences of length m,...m;_,. Finally, at stage d we
combine m, sequences of léngm n/m, into one sequence of length n, which is the output of the
combine-sort scheme. A diagrammatic illustration of the scheme is given in Figure 5.1 in the form of a
rooted tre?. Each node of this tree is a suitable combiner. An (m, J; .,)combiner, 1<i £d, performs
the combination of m; (sorted) sequences of length /;_;; here [, = 1 and l,--,émlmg ceemoy fori > 1.
Note that each level of the tree corresponds to a stage of the combination scheme, and that there are

n,%n /I, nodes at leveli,1 € i € d.

Several known sorting algorithms can be cast in the combine-sort scheme. Each algorithm is
characterized by a particular factorization of n =m ,...my (note that the order of the factors is

ot
relevant here), and by the specification of how the combination is to be performed. - l

We shall discuss some important algorithms in the following sections.

ey 0 e




e

!

(mg,fy-1)
Combiner
| ) S |
——
(mg.1dyg2) | | (Mg-1ta-2)
Cqmbiner Combiner

!

(my,1)
Combiner

(m,,1)
Combinerr

1

Figure 5.1.

5.2.2 Merge-Sort

Merge-sort is a special case of combine-sort, obtained whenn =2, andm,=m,=...

Diagram of combine-sort scheme.

(my,1)
Combiner

TT f.__

81

nd‘
£4=n

Ng.1=Mgq
£y.1=n/my

ni=n/my

[1=ﬂu

No=n

o=l

= m, =2,

Merge-sort can be further specialized by specif ving how to perform the combination of two sequenes,

better known as merging.

3

e

g

g




82

Two important algorithms called bizonic merge and odd-even merge have been proposed by

Batcher {Ba68} Originally formulated for a network of comparators, both agorithms are also amenable

to efficient VLSI implementation.

We shall make systematic use of bitonic merge, and correspondingly of bitonic sort, which exhibit
a high degree of symmetry in the pattern of data interaction. Therefore, these algorithms are com-
pactly described below, with these conventions A[O:n-1] is the input array; 4 is a binary parameter
specif ying either increasing (d=0) or decreasing order (d=1)%; COMPEXl(ab:d) is a primitive operation
which rufmngs two numbers e and b in increasing or decreasing order depending upon the value of d.

The array A[O:n-1] is sorted by a call B-SORT(A[0:n-110) of the following procedure (where n and b
are powers of 2)!

procedure B-SORT(Aliz+b-11d)

begin if b=2 then (AliLA[i+1) ~ COMPEX(A[ilAli+1}d);

else begin B-SORT(Aliz + % - 1)}0), B-SORTCAL + .g-"." + 101

B-MERGE(Aliz+5-11d)
end
end
procedure B-MERGE(Aliz+5-1}d)
begin if b=2 then (Alil.4[i+1D ~ COMPEX(AliLAli+1}d)

else begin for each 0 € j <5 /2 pardo

(Ali+7LAL + %. - 1+jD = COMPEX(Ali+jlAli + % - 1+jka)

B-MERGE(dlii + . - 11), B-MERGE(Ali = . 5v6-1Ld)

end

end

(1) In the following algol-like program commas are used 0 separate concurrent steps, and semicolons are used to separate
Steps 10 be sequentiaily executed.




il I M-S S N g ST " AEA e A a  An_En Mt~ e St LAl i aat e S i Mus S

i 83

Odd-even merge is also 2 very interesting algorithm, but we do not describe it here, since we will
i not make direct use of it in our constructions. However, in Section 5.2.4, we shall describe the

multiway-shuffle-combination algorithm, from which odd-even merge can be obtained as a special case.

5.2.3 Merge-Enumeration Combination

A parallel algorithm for the (m.)>-combiner which we call merge-enumeration has been intro-
duced in [P78] and is based on the following ideas. The m input sequences S,...,S,~; are pairwise
merged to compute for each i, €{0,1,...,m ~1}, and each h €{0,1,...,{ =1}, and the number C; (% ) of
elements of sequence S, that are less than the h-th element of sequence S, . C,; (k) is readily obtained
as the difference of the ranks of this element in the merge of S, and S, and in §; in the output

t sequence of the combiner; thus, to complete the operation, we simply need to store each element in the

position specified by its rank. The primitive operation of the scheme — the merging of two sequences —

can be done, for example, by Batcher’s bitonic merger.

‘ It can be shown (P78] that a proper implementation of merge-enumeration combination runs ia

time O (log{ml )), that is, in time logarithmic in the size of the output sequence.

A very interesting case of the algorithm is obtained when [ =1 so that each of the input
sequences, S,...,5,_; consists of just one element, and merging degenerates to comparison-exchange.
Instead, in this case the combiner itself becomes a sorter, and - more specifically - the Muller-Preparata

sorter orginally proposed in [MP75)

In (P78), the merge-enumeration combination has been introduced to construct sorting algorithms

for the shared-memory mackine, that run in O (logn ) tume and require for their execution the smallest

;‘."' possible number of processors. In fact, Preparata has shown that, by choosing for the combine-sort
scheme the vaiues d = loglogn/log(1/(1-a )) and m,_, = n *!™" with 0 < a < I the resultiag

sorting aigorithms can be executed in time (Xlog n/a ) by O(n!=) processors. The sorting scheme

l corresponding to a given o can be described as follows. The n-input sequence is spiit into n® (m, in

our terminology) sequences of n!™ ({,_; in our terminology) eiements cach. These sequences are

.....................................
...................................

.........

- . - - - . - . . . - ~ -
BT S U S RN RN e e e T e s s e T A et e et e e et Tt S e T el N e e e
(SRR, SN, A, S SR, S A S T ST, U ST A S-S VRN A, )




sorted recursively, and then combined by an (m, !, _;)<ombiner. The recursion stops when sequences

of length 1 are obtained. We can obtain the values for 4 and m,,...,m, by a simple analysis of the

unfolded recursive process.

In Section 6.3 we shall explore new significant choices of d and m;,m,,...,m, that minimize the

complexiy of a VLSI implementation of merge-enumeration combine-sort.

5.2.4 Multiway-Shufie Combination

The Multiway-shu flle <ombination algorithm has been introduced by Leighton [L84] (under the

name of column sort), and is a generalization of the odd-even merge of Batcher [Baé8}

We recall that, if N = NN, the N, shuffle is defined as follows
N -shuffle (O;l,,...N—l) -
(O,N 5 ...N,=1N 31, N+1,... (N =1) No+1,....N=1,2N —1,..., N =1).
The N j-unshuffie is defined as the inverse permutation of the N -shuffle. It is easily seen that, on
N | N, elements, the N ;-shuffie is identical to the N ;unshuffle. A simple way to obtain the N,
shuffle of a sequence of N; N, elements is to write the sequence into an N (XN, array in row major

order, and read the same array in column major order. (See Figure 52.)

We are now ready to describe the multiway-shuffie combination, which is also illustrated by a

block diagram in Figure 5.3. §45,,...,5, -, are the m sorted sequences of ! elements each

S; = (5;00)s,(1),...,5,(I=1)), i=0,...,m=—1 5.1
and they have to be combined in the sorted sequence

S = (s, s(...,s(ml=1)) & combination (Se,...,Sn-1) 5.2
The algorithm consists of the following stages.

1. Apply a p-unshuffle to the sequence of m/ elements obtained by concatenating S S1h..., S If

we define the subsequences




AD-A1641 562 THE AREA-TIME COMPLEXITY OF SORTINGCU) ILLINOIS UNIV AT 249
URBANA APPLIED COMPUTATION THEORY GROUP G BILARDI
DEC 84 ACT-52 NO9914-84-C-9149

UNCLASSIFIED F/G 12/1




-

v v £y
Yy WAF IR TR SR,

—
N
>
==
I
(3]

o
EFEEER

L ____ ]

—

err

(e
EEF

=

mn.w
(@]

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS ~ 1963 - A

==
|||[|N
N

o

5 M
19))

N
ll>

Il

. o s samn iake saeds g > -

EACA L) ey P AT A A Y
L s A e -..._.*.—._._2.

=

rs

e
»

PR A




~ - LAt e nd Sre e art o e st SRR S
A A A M A B SR M AL L bt R L AR EAEASSE AL S EYEDE M Chd -

.....

85
\:_
‘ sequence : (0,1,2,3.4, 56,7, 5.9.10, 11)
- write in riw-ma jor
] 012 3
456 17
8§ 91011
al read in column-major
3-shuffle : (0.4,8,1,5,9,26.10,3, 7. 11)
N
Figure 5.2. Array definition of the multiway shuffle (N, = 3, N, = 4).
. S. =05, (@)s; (@a+p)h....5, {~<p=~a)) a=0,...,p=1 53
’ it is easy to see that the output of the p-unshufie is the concatentation of
SowSime-ssSm=102SorsS 1 s SmatppSop -1 S 1p~tr-- s Smopp-1-

a 2. For a=0,1,..., p—1, recursively combine the m sequences S,,S 14+..., Sy~ 0 Obtain a sorted

sequence [/, .
3. Apply a p-unshuffle to the concatenation of U o U j,.... U, ; and call the result /.

- 4. For a given even integer w 2 2(m ~1)(p —1), which divides mi, split U into ml/w “windows" of

w consecutive elements and sort each window. Call the resulting sequence U *.

ta
.

Split sequence U’ except the first w/2 and the last w2 elements, into ml'w-1 windows of w ele-

ments, and sort each window. After this operation. we obtain S, the result of the combination.

The basic property of the multiwav-shuffle combination :hat justifies the correctness of the algorithm. is

the following.




C i it et aai o s -  sad T -
A A Pt S a4 oM on S i AAIS S AW A A iy

sm-—1

p—Unshuffie of ml Elements

Il

S

|]

S

il

m-1, p—1

sm-l!,‘l So. p-1 1.'9—1

ST i slho shst
I R

(m, I/p) Combiner

HEN
[ |

(m, {/p) Combiner

(m, I/p) Combiner
[T+ [T
p—Shuffle of mi Elements

| ] |

Sorter of Sorter of Sorter of
w Elements w Elements w Elemems
Sorter of Sorter of Sorter of
w Elements w Elements ' * : w Elements
Vv .
S
Figure 5.3. Block diagram of mulitiway-shuffle combiner. Single lines carry one element, double

lines carry a sequence of [ A\mp ) elements.
Property. If a given input element has position 4, in sequence U and position hg in sequence S,

then
5.4

€ (m-1)(p=-1).

lhv - hs |

More specifically, if A, = bp +a, for some b=0,1,... ml /p =1, then




R N N T T T T T ey~ R X T T N T W T N T T e T T e o
T . ol . o e > N h

....................................

87
E Remark. As we have aready mentioned, the preceding algorithm is essentially equivalent to the one
- proposed in [L84] The proof of the above property is also similar to the one proposed by Leighton, and
o it is therefore omitted here. However, our description of the algorithm is rather different from the one
b given in [L84] because we do not restrict ourselves to the case p=m, a case in Which the unshuffling and

the shuffling operations can be described as row-major to column-major transpositions of a suitable

I Xm array where the input sequences are orginally placed.

Remark. Odd-even merge is the special case of multiway-shuffle combination obtzined form = p= 2.

A simple analysis shows that the running time of multiway-shuffie (m/)-combination when p =

m, isT = O((logl /logm )T ,,,(m?) ), where T,,, is the running time of the sorting algorithm that we

chose to deploy in stages 4 and 5.

A combine-sort scheme based on multiway-suffie combination, with
l m,=m,= --- =m, = m (a consrant independent of n), and recursively using multiway-shuffie
1o sort the windows in steps 4 and 5 results in a running time 7 = O(log’n ). The net result is a

rather cumbersome method to obtain the same performance as can be achieved by a simple merge-sor:.

Nevertheless, multiway-shuffle combination is a remarkable algorithm, and it turns out to be very

useful in some VLSI designs.

‘- 5.2.5 The AKS Network

Ajtai, Komios, and Szemeredi { AKS83] recently proposed a sorting network (referred :o hereafter

;; as the AKS network), of O(n logn) comparators and O(logn) depth. Their construction is of great
theoretical interest, for it shows that O (n logn ) comparisons suffice to sort n elements, even under the
constraint that comparisons be nonadaptively executed in ((logn), parallel stages. At present, the AKS

[ network appears not suitable for practical implementation, due to the large value of the constants;

however, improvemenis are conceivabie that could make the network more attractive for real-world




.......

s ol

applications.

The full description of the AKS network is too complex to be reported here.

WA N s

5.2.6 Summary

The notion of (mJ)-combination provides 2 common framework to classify several known algo-
rithms for parallel sorting.

In a trivial sense, every sorting algorithm falls in the combine-sort scheme, since an (m,1)-
combiner is, by definition, a sorter of m elements. Indeed, both the Muller-Preparata and the AKS algo-
rithms can be viewed as combination schemes only in this trivial sense. In fact, there is no intermediate
stage of these algorithms at which the input multiset is partitioned in sorted blocks.

However, we have also seen non-trivial examples of combination-sort including bitonic and odd-

even merge-sort, merge-enumeration combination, and multiway-shuffie combination.

In the algorithms we have just cited the same method is used to perform the combinations at all
stages of the combine-sort scheme. However, different methods can be used at different stages, obtaining
algorithms that we could generally call *hybrid combine-sort”. Hybrid algorithms are indeed useful in

VLSI applications, as we shal] see in forthcoming sections.

We conclude this section with a graphic summary given in Figure 5.4.

5.3 PARALLEL ARCHITECTURES

A parallel algorithm is executed by a parallel architecture, which is a set of processors connected

by data paths. When focussing on the interconnection pattern, the architecture can be formally viewed
as a graph whose vertices correspond to processors, and whose edges correspond to data paths. Infor-

mally, we shall often refer to such graphs as networks, or computation graphs. -

In the design of a VLSI system for the solution of a given computational problem, both the algo-

rithm and the architecture can be chosen to minimize the area-time complexity.




. ';

89

{m, l)=Combination

/
/ \
/ \

Merge—Enumeration  Multiway—Shuffle

Combination Combination

Sorting (I = 1) Merging (m = 2)

/ ~ g

y ~Na p \\

,/ Muller—Preparata - Odd—Even

) Algorithm Merging \

AKS Algorithm Bitonic Merging
Comparison—Exchange
(Mm=2,1=1)

Figure 5.4. Hierarchy of fundamental operations in parallel sorting. A solid arrow points toward a
subcase obtained by specializing the parameters defining the size of the input operands.
A dashed arrow points toward a subcase obtained by specif ying the alesrithm by which
the operation is performed.

Since the solutions of different problems requires different algorithms, it is a prior: quite plausible
that they also require different architectures. However, the experience gained by recent research in the
field of VLSI computation (a representative, but by no means exhaustive, list of reference is [BK81}
[BKS2) [BP84al [BP84bl [BS84] [GKT79] (Kus2l [L81a] [L83] (Ls80al [Me83l [MP84l [\NMB83]
[PVv80}, [PV81al [PV31b} [T30] [T83al {T83bD shows that in several cases algorithms for different
problems can be efficiently executed by the same achitecture. (For example the radix-2 Fourier

transform and bitonic merging are ooth efficiently executed by the shuffle-exchange network.)

A detailed analysis of these cases reveals that although the nature of the operations performed on
the input data may be radicaiiy different, the pattern according to which the processors exchange data

among each other is exactly the same.




......................................

Preparata {P84] proposes to classify algorithms according to paradigms, determined exclusively by
their communication patterns, and to characterize the architectures in relation to the paradigms that

they can execute efficiently.

When a paradigm encompasses algorithms for several useful problems, the supporting architecture
can be considered of the broad-purpose type, its capabilities being intermediate between those of a

special-purpose achitecture, exclusively dedicated to a given task, and those of a general-purpose archi-

tecture that can execute any conceivable algorithms.

As observed in [P84] the results emerging from current research on the design of efficient VLSI
systems for the solution of fundamental computational problems strongly suggest that a few powerful

and highly regular architectures can be used to satisfy a majority of computational requirements.

The study of the sorting problem confirms this indication. As we shall see in the next chapters;
all the known basic broad-purpose architectures, alone or combined in novel ways, are instrumental to
obtain VLSI sorters with optimal area-time performance. For this reason, we briefly review them in

the remainder of this section.

5.3.1 The Binary Cube and its Emulators

The binary cube. The v -dimensional binary cube [Pe77)] is a network of N = 2* processors -
labelled from O to N-1 as X0), A1), ... .P(N-1), with a direct connection (called a link ) between each
pair of processors whose binary numberings differ in exactly one position. If we let C;(k2) be the L
integer obtained by complementing the coefficient of 2/ in the binary representation of integer h. then

the j-th dimension of the cube is the set of edges £, 3{(k ,C ;(7):0 € h < N} (See Figure 5.5)

Among the algorithms supported by the binary cube are those whose input is an array of data
Alo} Al1] ... ,A(N-1] with component A [i] intially loaded in processors Pli), and whose execution con-
sists of a sequence of steps such that at a given step, only the edges of one dimension are active. A pair

of processors connected by an edge of that dimension exchange their data and operate on them.




I et s el el el A A bt A A A Sl A Sk i Sl B Sl Sl Sl Al

, Sos0ss0ss0sese0e e
g —t
- cevreensE,
- AN e eED %
r
. Figure 5.5. The binary cube and its dimensions. (N=8,v =3).
Such an algorithm belongs to a paradigm that can be easily described by giving the sequence of f
. the dimensions in the same order as thev have to be activated. With this convention, we can define two
important paradigms
Ascend ((E W E ..., E op) 5.6
Descend : (E ,u, E .. n EW 53
. . These paradigms have been introduced in [PV81a] and [PV81b}, where the reader can also find an
extensive list of problems and algorithms compiving with Ascend and Descend or simpie var:ants there
of. The recursive structure of Ascend and Descend algorithms is also elucidated in those papers.
['-— If the operation executed at each step takes a constant amount of time, both the Ascead and the

Descend algorithms are executed by the binary cube in O(v) = OllogN ) time.




.........................

92

Although the cube is a theoretically fundamental network, it is 1;ot very attractive for practical
implementations, because the number of edges per processor inceases with N. This drawback of the
cube has naturally suggested the search for simpler networks capable of emulating the cube without
significant loss in performance, at least in the execution of algorithms that can be cast in the Ascend
and Descend paradigms. We describe now some of these emulators.

The shu ffle-exchange network. For an even integer N, the shu fle permuzation is the bijective function
shuffle (k) = 2 h mod (N-1), for h € {0, 1,..., N-2}, and shuffie (N-1) = N-1. The shu fle-exchange is

which are bidirectional, and connect vertices 2k and 2h+1, for h=0,1, ..., N/2-1, and the transfer
edges, which are directed, and go from vertex h to vertex shuffie(h), for A = 0,1,..., N-1. (See Figure
56.) '

As a network of processors P(0),P(1),...,P (N —~1), the shu fle-exchange has several attractive
features (St71] most of which are summarized by the fact that it can emulate, in a simple and elegant

way, the Descend paradigm of the binary cube.

Figure 5.6. The shuffie-exchange graph for N = 8.

YTy TY TV, werLs''x

a graph with N vertices labelled from 0 to N-1, and with two kinds of edges the exchange-edges,

e




A Descend algorithm is in fact executed by the shuffie-exchange in v phases, each of which con-

; . sists of a transfer step. in which processor h sends its content to processor shuffie(/) along the transfer

edge (A, suffie (7)) and an operation step, in which processors connected by an exchange edge communi-
cate with each other and perform operations. An interesting property of the shuffle permutation, when
N is a power of two, is that the binary spelling of shuffie(h) is the left cyclic shift of the spelling of A.
Therefore, if N =2V, shuffie (C,_,(h)) = C, (sbuffle (h)), which means that k and C,_; will reside in
processors connected by an exchange edge after j executions of the routing step, as required by the Des-
cend paradigm on a v-dimensional cube. This proves that the shuffile-exchange emulates the cube
correctly. Moreover, since the y-th power of the shuffie is the indentity, after v steps all the items are

back in the orginal processors (although they have been transformed by computation).

l The inverse permutation of the shuffle, known as unshu flle, is also interesting. The unshuffle-
exchange would in fact emulate the Ascend paradigm in the same way as the shuffle-exchange emulates
the Descend paradigm. Indeed, the transfer edges of the shuffile-exchange are often defined as bidirec-

. tional so that both of shuffling and the unshuflling of the data can be accomplished in one transfer step.

In this case, it is easily seen that both the Ascend and the Descend algorithms have an O(logN )

rinaing time on the shuffle-exchange network.

As 10 the area performance, the shuffie-exchange graph can be laid out in A = &(V /logN )?) area,

which is optimal [KLLM83}

An actractive feature of the shuffle-exchange network is the simplicity of the emulation algo-

rithm consisting of an alternation of transfer steps with operation steps, the transfer steps being all per-

formed accorcing to the same permuration, i. e. the shuffie. A nawural guestion is whether we can

. obtain other emulators of the descend paradigm by using permutations different from the shuffle. This

S R

quest;on is aaswered ia [BJ84] where it is shown such permutations exist, but they are so closely related

to the shutfle that there is nothing to loose in restricting our attention to the shuffle itself.

!‘ However, there are other interesting emulators of the binary cube, which use schemnes to transfer j

the data more complex than a simple permutation.




The linear array. The linear array is a network of N processors P (0),P(1),....P(N =1), with a

bidirectional edge between P (i —1) and P (i ), for i =1,2,....N —1. o
The data contained in a linear array can be easiy shuffied (the content of P(h) is sent to ‘
P (shuffie(h)), or unshuffied in N/2-1 transfer steps (for N even) as shown by [PV81al e
If N = 2% an operation step requiring the use of cube dimension E;(0 € j < ») can be
peformed by the linear array as follows. (Refer to to Figure 5.7.) The entire array is decomposed in
N /2! subarrays each of 2/*! consecutive processors. Each subarray, in parallel and independently of
the others, will shuffie its data to create the correct adjacencies required by the cube dimension E;, and e
AR
to allow for the execution of the operation step. Then, the original order of the data is restored by -
unshuffling the subarrays. This process requires one operation step, and 2 (2/*1/2~1) = 2/+i=) "'m,
|
transfer steps. -
\:‘l‘
)
R
Initial 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 -
Shuffie 0 1 2 3~=4 § 6 71 8 9 10 11-—=12 13 14 15
of 0 1 2==4 35 6 7 8 9 10—12 11=-13 14 15
Subarrays O Je=d QoS 3-=6 7 § 9ee12 10=—13 1l==14 15 By
Operation O0—4 1 —§ 2—6 3—7 §—12 9—13 10—14 11—15 Ay
Unshuffle 0 41 §=2 63 7 § 12=—=9 13=10 14-—11 15 4 i
of o0 v 4=—=2 S—3 ¢ 7T & 9 12=10 13—11' 14 15 ~
Subarravs O I 2 4—=3 8§ 6 T 8 9 100 127-—11 13 14 15 -
Final o r 2 ¥ 4 5 6 T & 9 10 11 12 13 14 1¥
=

Figure 5.7. Execution of operations of cube dimension £, with a linear array of N = 16 processors.




95

Thus, the Ascend and Descend paradigms can be executed by the linear array in v operation steps

v=1
. and } (2/*!'=2)<2 N transfer steps. The same result holds for any cube paradigm in which all the ¥

;=
dimemsions are activated exactly once, in any arbitrary order. In conclusion we obtain 7 = O(N), and

clearly A = (N).

The rectangular mesh. The (s Xz ) rectangular mesh is a two-dimensional array of N = st processors

P/ i=0,...,s5-1,and j=0,1,..., -1, where each row and each column is interconnected as a linear

array.

Let N =2%, s =29 and ¢t =27 and let the mesh be loaded with the input vector A[0OL ...,

A[N —~1] of the Ascend paradigm in column-major order, so that processor P./ stores A [i +5j ] (refer to
Figure 5.8).

If the processors were connected as a cube, With cube processors P (i + js ) correspondng to mesh
. processors P,/, dimeasions E o, E ..., E,_; would remain associated with the columns, and dimensions

EnEgerr- s E gory(o+7 = v) would remain associated with the rows of the mesh (see Figure 5.8).

<
&
Qo
—
[N]
b
o
b
<
(8]
o
)
Go

-
(V.
O

13 17 21 28

~
O

10 14 18 22 26

- =
o
%

[*8)
-3

11 15 19

tI
()

2
-8
(Y]
-—

r Figure 5.8. A (4x8) rectangular mesh. When the indices of the cube processors are mapped 1ato the
array in column-major order dimensions £, and £ | are associated with columas, and
dimensions £ -, £ 3, and E , are associated with rows. (VN = 32, s =4, : =8, 0= 2, 72 3!

..........................................................
............................................... N A AT A

....... K R A LA RS . A . R S AL ST AL. S
P AL SACVAL PRE AL SO T A A A A I AL W AL VL T, AL PTPRRR PR L, 1L, P




.-_'.‘_ e et Tl etale

-----

I A S At e gl Mgl Sadi Al M i S-Sk el Sk A Aol e et g Sheii Sl i Aed Al Jesth Senee L ine il A s S0 Sondl et Si & tusl Madh Bind Jindh seut

96

The operation step associated to a given dimension can be then executed by the same technique
used for linear arrays. If 0 € j € o—1,E; is executed by suitable subarrays of the columns in 2/ *1=2
transfer steps. If ¢ £ j € ¢ + 7 —1,E; is executed by suitable subarrays of the rows in 2/ =7 *!

transfer steps.

A simple analysis shows that using each deminsion once takes a global number of transfer steps
near-square mesh (s = ¢ =N if viseven,ors = 2 = VN /2 if v is odd) which works in
(VN ) steps.

This result obviously applies to Ascend and Descend. It is useful to observe that the execution of
an Ascend algorithm on the rectangular mesh can be viewed as the execution of an Ascend algorithm
on the columns followed by an Ascend algorithm on the rows. Similarly, a Descend algorithm on the

mesh consists of 2 Descend on the rows followed by a Descend on the columns.

Summarizing, a near-square mesh of N processors can execute algorithms in the Ascend and Des-

cend paradigms in time T =0 ( VN ). The layout area is clearly A=O(N).

The Cube-Connected-Cycles. Referring to Figure 5.9, an (s xz }Cube-Connected-Cycle (CCC), with
s =29t =2,5 2 risanetwork of N = s ¢ = 2’ modules and can be conveniently thought of
as an s Xt array of processors P/ (0 € i <s5,0 € j < ) arranged as a martrix where j grows
from left to right (as usual), whereas i grows from bottom to top. (Figure 5.9 illustrates a 4x8 CCC.)
The CCC-processor P,/ has number A = j2° + i and corresponds to the cube processor 2 (k). It fol-
lows that in the CCC the original cube indices are arranged in column major order. The columns of
the s X¢ array are connected as cycles, with an edge between P,/ and P,'/*Vmds = The first r rows
(0 € < 7) are associaed wih the 7 highest dimensions of the cube; specificaily row i contains an edge
between each pair of processors who number differ exactly in bit position ¥ — 7 +i. The dimensioas of
the cube are then divided into two groups the cycle dimensions E,...,E,.; which pertain to
interactions between pairs of elements in the same cycle and the lareral dimensions which pertain to

interactions between pairs of elements of the same row.

AP P U A S L e e e T T L e e e T e e L R T S
P e e T T N T T, T T R ENCEREREP
n L/ - -




o . WA A Sl e
k'-t'-- -‘.JL;’}"".'"'.A.) PRI .A.:_p"_n A A A R AR S RO et et

Es

141822

17 21 25

8 @ %24

©O— (D
®—B—E—

E2

Figure 5.9. A 4x8 CCC. Processors are labelled with their numbers. The correspondence between
rows and dimensions is also shown. (» = §, 7 = 3).

To execute a cycle dimension E ,» the CCC works essentially as a set of N /2/*! independent
linear arrays of length 2/*! each of which performs the shuffle-operation-unshuffle procedure already

described. Thus, the execution of E, E },..., E 4-, globally require O (s ) time.

To execute a lateral dimension E,,; (0 € j < 7), a sequence of s operation steps is peformed
by the lateral connections in row a , interieaved with s cyclic shifts of the cvcless When the lateral
dimensions have to be executed in the order £ ..., £ ., , their execution can be overlapped bv a suit-

able pipelining technique, so that the total time is just O(s ).

In conclusion a (s xt }<CCC can execute an Ascend algorithm in 7 = O(s ) computation time. A

similar performance can also be achieved for a Descend aigorithm.

As to the area, it can be shown [PV81]thata (s x¢ CCC with + € 5 and: € V.V can be jaid

out in 4 = O(¢?) area which is optimal.

B I A . P . NEEREIN RSN
AT A IR SR “\..-.'..---.--\.‘---‘

‘‘‘‘‘
- e




For a given N = 2% by chosing s in the range [logN, VN ] we can achieve a perfomance
AT? = 0(2%2) = O(N?) for any computation time T €[Q(logN ),0 (VN )}

Comparison of Cube Emulators. The performance of the emulators of the cube we have

described for the Ascend and the Descend paradigm is summerized in Table 5.1. The shuffie-exchange,

.- the linear array and the mesh all have the same AT 2 = &N ?) performance, which is optimal In the
;. | following chapters we usually deploy cube-connected-cycles for the execution of Ascend and Descend
k algorithms, especially because of its area-time trade-off feature that allows to choose the value of the
. computation time from a wide range. It must also be said that, for (T =0 VN ), the mesh is usually

preferable for the simplicity of its interconnection. For T = O (log N ), the shufBe-exchange is attrac-

tive for the elegance of the emulation algorithm. However, the optimal layout of the shuffie-exchange is
very irregular, which is not a desirable feature for VLSI systems.

The linear array is indeed a poor emulator of the cube, at least when judged by its area-time per-
formance. However, it is very useful as a component of more complex networks, as we have already

seen in the case of the rectangular mesh and of the CCC.

TABLE 5.1. AREA-TIME PERFORMANCE OF CUBE EMULATORS

[ Performance
TIME AREA
Architecture ]
Suffie-Exchange T = 6(logN ) A =6(NT?) -
Linear Array T =6(N) A =6(N3T?
Square Mesh T =&(VN ) A =6N¥T?
cce T €[ QUogND.OWNI | A =6(V¥T?)




$3.2 The Tree and the Orthogonal Trees

The binagry tree. Several computations require the N-fold replication of a given data item, or some
hind of combination of N distinct data items to generate a single one. These operations are efficiently
executed 1n 0(logN ) steps by a fully balanced binary tree with N = 2 leaves and N-1 internal
nodes. Thus graph can be laid out in &N ) area if there is no constraint on the placement of the leaves,

and 1n % NlogN ) area the leaves must be placed on the boundary of the layout region (BK80L

The orthogonal trees. (Refer to Figure 5.10) The two-dimensional orthogonal tree network (OT) [LS1,
\MBS3] consists of N =n? processors P,/ (i,j = 0,1, ..., n-1), and 2n fully balanced binary trees
CT.W....CT, - (the column trees), and RT ..., RT, | (the row trees). The leaves of CT, are then

processors Py, ....PJ_, and the leaves of RT, are the processors P,%,..., P L

|
a !
r,
! b 1
P R
CTy e ; | e AT,
) T ; : ' ' AT,
B - ! ! |
- foaet aT.
-~ T — AT,

Figure 5.10.  Orthogonal-tree network for V = 16.

..........
. et e P S S T SR PP S )
P AP L L YL A AT A AR IPU TS Y




100

- Optimal layouts of the OTs have area A = 8(N log?N ) [L81] Algorithms consisting of a con-
stant number of replication and combination operations along the row and the column trees, are exe-

cuted by the OTs in time 7 = O (logV ).

The OT network is very versatile and will be used is several of our sorters. Multidimensional
OTs can also be defined. An interesting application of three-dimensional OTs to matrix mulitiplication

can be found in [PV80]

s
o« ’

B

{

.........

............




1

.....

CHAPTER 6

OPTIMAL VLSI SORTERS
FOR KEYS OF LENGTH k =logn +6(logn)

6.1 INTRODUCTION

In most of the investigations on VLSI sorting the length of the kevs has been assumed to be of the
form k =(1+ a ) log n, for some constant a > O. Since the results of those investigations are indeed
valid as long as (1+ay) log n €k € (1 + a;) log n. for some constants a,>a; >0, it is slightly more
appropriate to refer to a length of the form k=log n + 8(log n), not to suggest that, say, k=2 log n + log

log n is excluded by our considerations.

In retrospect, we can }usify the attention given to the case k=(1+ a ) log n for two reasons: (1)this
case of the sorting problem is the easiest (or the least difficult) to analvze, and (2) its complete solution
is instrumental to make progress on other cases. While the second reason will be substantiated only in
Chapter 7, where we will show that a sorter of key with k = (1+ a )log n is a useful building block or

sorters of both short and long keys, the first reason can be already explained on the basis of the lower

bound results of Part L

In fact, while short and long kevs have to be studied with the more sophisticated square-
tessellation technique, the case k=(1+ a ) log n - which partially overlaps with medium-length keys (a
< 1), and parzially with long keys (a21) - can be analized by the bipartition technique (although, as
we have observed in Section 4.2, the dependence of the complexity on a, for a > 1, can be reajly

understood only by the square tessellation bound).

Indeed, from Theorems 4.14, 4.15, 4.16, and the asumption & > (1+a,) log n for some a, , >0,

we obtain




§ 102

AT? = Q(n%log’n) 6.1 =
. T = O(logn) 62

> A = Q(nlogn) 6.3 =
N

In this chapter, we will study several VLSI sorters, the analysis of which will allow the conclu-

sion that the optimality curve of the (n, log n + 0 (log n))-sorting problem is described by

A A

A = &n2og’n /T2, T €[Qogn), 0(Vnlogn )] 6.4

3 As we shall see, the main difficulty in obtaining optimal VLSI sorters for k = logn + 0 (logn) con-

sists in designing the appropriate architecture. For the algorithms instead, it will be sufficient to resort

to (minor adaptations of) the known results reviewed in Section 5.2. The situation will be different for
g short and long keys, which will require new algorithms as well as new architectures. : F
This fact is not without explanation. The first parallel sorting algorithms have been conceived for
- either the shared-memory-machine or the network-of-comparators modeis of computation, whose prim- h
itive operations are at the word level. Thus, the keys were treated as indivisible entities that maintain ,
their identity throughout the entire computation. )

The indivisibility of the key is a very restrictive constraint in the VLSI model of computation,

and conflict with area-time optimality.

Indeed, to sort short keys it is not convenient to mamtaxn a list encoding of the input multiset in
the intermediate stages of the computation, because it is very inefficient. and requires superfluous
bandwidth in transmission. Thus, no algorithm that maintains the identity of the kevs can achieve
optimality.

The same conclusion is true also for rather long keys (logn = o(«)) but for a different reason. The

list representation is indeed efficient in this case, but we still need to fragment the keys to avoid a large

primary flow. In fact, we have already seen that even when the "indivisibility" of keys is required oniy ‘:_
- at the /O ports (word-locality) the AT 2 complexity of (nk)-sorting is asymptotically quadratic in
o

(Theorem 4.14), while without this restriction the complexity is only linear in k (Theorem 4.18).




103

The case k = logn + 6 (logn) is made special (and, superficially, simpler than others) by two cir-
cumstances. One is that the list encoding is optimal for this length (within a constant factor). The other
is that any strategy to decrease the primary flow below 6 (nlogn ) by suitably decomposing the keys
would fail to yield better area-time performance due to the presence of an irreducible 08 (nlogn ) secon-
daryv flow. |

In conclusion, for k = logn + &logn ) the indivisibility of the kevs (word-locality) is not a draw-
back, and classical sorting algorithms turn out to be instrumental to obtain area-time optimal designs.

With this premise, w: now turn our attention to the effective construction of VLSI sorters Many
designs have been proposed in the early literature, and reference [T83] surveys several of them. Here,

we recall only the designs that come closer to AT2 = Q(n2log>n ) lower bounds, which are:

(i) a mesh-connected bitonic sorter ((Ba68] [T80] [TK77] [NS79D with optimal performance
A = 8n3log?n /T2 at T = &Vn), and other four designs all with suboptimal performance
A = 8(n’log*n /T ?) which are: .

(i) a shuffle-exchange bitonic sorter at T = &(log3n ) (St71{T8OLKLLMS3])

(ii) a cube-connecred—cycles bitonic sorter, for 7 €[Qlog’n), O (Vnlogn )] (PV81D

(iv) a pipelined Batcher's network ,atT = &log*n ) {(VLSI estimate in (T83))

(v) an orthogonal-tree-connected ([L81] (NMB83D Muller-Preparata sorter (MP75] at T = &(logn ).

The &log *n ) gap between lower and upper bound for AT 2 exhibited by the last four designs has
:ndeed been ope of the original motivations for the work reported in this thesis. The remainder of this
chapter is devotad to the discussion of VLSI sorters with optimal perrormance. For several of them, a

description is already available in the literature.

Section 6.2 is devoted to bitonic sorting. Our approach wiil consist in focussing on the underlying
paradigm, which s of the cube type, but more complex than the Ascend or the Descend paradigms. and

in constructing efficient architectures for that paradigm.

P
Sl el

.
‘atala 2’




w ——— ———— YT
I A A B e e L e e e B S e g S Bt T . A

104

Section 6.3 is devoted to merge-enumeration sort, which allows to achieve minimum computation =
time 7 = (Xlogn). New architectures are also considered, based on a mixing of orthogonal trees and
cube-connected-cycles. o

Section 6.4 concludes the chapter with a brief report on other area-time optimal networks imple-’ J
menting multiway-shuffle sort and the AKS algorithm.

6.2 NETWORKS FOR BITONIC SORTING
6.2.1 The Bitonic Sorting Paradigm

The bitonic sorting of n = 2* elements (reviewed in Section 5.2.2) consists of ¥ merging phases, o
MxuM,,....M ., with phase M; performing the merging of pairs of sequences of length 2' .

Bitonic merging, on the other hand, complies with the Descend paradigm of the binary cube
[PV81a] so that the execution of phase M, on the binary cube requires the successive use of dimensions -
E E _,....E,Ey. Thus, the scheduie of use of the dimensions for a complete sorting is the one shown
below (Figure 6.1), which will be called the bizonic sorting paradigm. v

phase | active cube dimension .
-‘1 " : E “
I»’ 1 . E 1 E 0 ..
M, : E. E, E. :
1 -
‘ ,\rl._\ . E...l E_-v..: oo £
ume -
r
Figure 6.1. The bitonic sorting paradigm.
e e e e e e e T e el e e ST e T e T L IS N



[ 5

PM I et e o o ARt & en Ao

105

We shall now analyze the performance of some of the known emulators of the cube on the

bitonic sorting paradigm, and we shall thena propose new and more efficient emulators.

Some considerations will put the problem in the proper perspective, and will indicate the

difficulties to be overcome for its solution.

The area-time performance of the emulators of the cube reported in Section 5.3.1 pertains to the
Ascend and Descend paradigms. The area is estimated under the assumption that links between proces-
sors are realized with unit bandwidth, so that they can be laid out in unit width, and the computation
time is estimated under the assumption that both operation and transfer steps take unit (or constant)
time.

When the actual data processed by the algorithm have length k, the estimate on the AT 2 measure
must be muiciplied by &2, although we can usually still choose whether the penalty is to be paid in
area or in time. In fact, for a given b with 1 £ b € k& , if we realize all the links with bandwidth

k

we obtain an area A, = b2A,,and - usually -atime T, = bT,.sommA,Tf ="kA T}

The reason for which we cannot claim that T, always equals (k/b)T , is that, although a larger
bandwidth automatically yields a proportional speed-up in transfer steps. it does not guarantee a
speed-up in operation steps. However, most of the time operation steps can be performed in k/b time, at
least as long as k/b is not small. For example, in sorting, the operation step usually involves a
comparison-exchange, which can be performed in time /5 (and area 5° Jas long as k /6 = Qlog &),

or equivalently, b = Ok log k).
Thus, the optimal emulators of the Ascend and Decend paradigms, achueve a performance
AT? = O(N %?) on operands of length k. If N = n,and k = logn + 8 (logn), AT = O(n3log’n ).

In orcer to atain the AT® = Q(n3log’n) lower bound for (n ,logn + &iogn) )-sorung -v
means of the bitonic algorithm, we must e able to execute the entire bitonic sorting paradigm in the

same order of time as the muck simpler Descend paradigm. It is indeed surprising that this is possible.




. 2 -..W o P————— LBtk and g adn e g ke
a4 o I - T TT—————m, a . oA A S e AN . - o

106

6.2.2 The Linear Array ~

Although the linear array is far from being an optimal emulator of the cube even for the simple
Ascend and Descend paradigms, the study of its performance on the execution of bitonic sorting will

provide us with some useful insights.

With reference to the discussion of Section 5.3.1, we shall consider a linear array of N = n proces-
sors, where n is the number of keys to be sorted. Each processor will be endowed with O(k) bits of
memory, to allow the storage of a key of length &, and with a serial comparator-exchange that works
in Ofk) time. We can then lay out a processor in a region of Of1) width and Ofk) height. The connec-
tion between P(i-1) and P(i) can be realized with bandwidth k, to allow the execution of transfer steps

in one time unit. The entire array can then be easily laid out in O(n ) X O(k ) area. (See Figure 6.2.)

The running time of bitonic sorting on the linear array is readily estimated. The operation steps
are (v+1)v/2 = O(log®n) in number, and each takes Ofk) time, so that, globally, the comparison-
exchange steps take T, = O(klog®n ) time. As for the data transfer we recall from Section 5.3.1 that

execution of £, is done in 2/*1 =2 steps. Since the bitonic sorting uses dimension £, exactly v — j

v=1
tumes, globally the transfer steps take T, < ) (y—ji)2/"! = O(n). time. In conclusion, for

) =)
J

N |

k = logn + &logn), T, is negligible with respect to T s, and the total sorting time is 7 = Oln) .

L]

I'1

A=l

Q

=

o‘o

X
NN

RENE
I
lLvIl

L

L

!f 0(n)

Figure 6.2.  Layout of linear array for bitonic sorting. -

........
....................



R i el R

107

At first, this is.surprising since we would intuitively expect that the bitonic sorting paradigm,
which consists of ¥{¥—1) 2 steps on the cube, would require more time than the descend paradigm con-
sisting of an v steps on the cube. However, a closer analysis reveals that the dimensions more frequently

used by bitonic sorting are the lowest, which also happen to be the ones that require less time on the

. linear array. Obviously, this is a fortunate accident, but the principle that the most frequently used
dimension should be the ones with the fastest execution will be a useful guideline for subsequent
developments,

6.2.3 The Mesh
: Let n = 2¥ and, for simplicity, let ¥ be even. We consider now the execution of bitonic sorting
£

with a (VA XVr }mesh. The n processors of the mesh will be equippped with a serial comparator,
and with Ofk) bits of storage. They will be laid out in an O (54O (b ) region, with Vk €5 <k, t0
allow bandwidth b for both the horizontal and the vertical connections. The global layout area is then

A = O(bzn). .

Efj The O(logn) comparison-exchange steps globally take O(klog3n) time, which, for

k =logn +8(logn), will be completely negligible with respect to the time used for transfer steps.

As we have seen in Section 5.3.1, the execution of dimensions £, and £,5., uses 2/*1 =2
transfer steps, for j = 0,1,...,v/2—1. A simple calculation shows that the total number of transfer

steps is O (Vn logn ), and hence the computation time is of order O (Vn log2n /b).

Summarizing, if k = logn + &logn), A = 0(n) and T = O(Vn log°n /). so that
AT? = O(n°log’n) which is within a factor O(log°n) of the lower bound. We observe that, since

b €[Vk k) the computation time can be chosen in the range T €{Q(Vn logn ),0(Vn log*?n)}

¥ using a more efficient implementation of bitonic sorting on the mesh, [TK77) and [NS79] have
managed to recuce the number of transfer steps to O(vn ). Using this result in the above analvsis we

]
l obtain the {ollowing theorem. ?%

Theorem 4.1, Bitonic soriing of n keys of leagth k = logn + &logn) can be executed bV a

., ,
PP P SRS




[ad
o
..

108

(Vr xvn >mesh with optimal AT? = &n log?n) for T €{Q(Vn ),0(Vnlogn )1

The original description of the algorithm in [TK77] and [NS79] is rather complex, but it can be

simplified by using an approach that focusses on the paradigm.

Indeed, in the next section we shall develop a framework in which the optimal algorithm for

bitonic sorting on the mesh can be easily obtained as a specialization of a general principle.

6.2.4 Efficient Use of Cube Emulators for Arbitrary Paradigms.

Any emulation procedure by which a given graph G={V.E), with 1V | = N =2¥, emulates the
y-dimensional binary cube is based on a one-to-one correspondence between the vertices of G and the &
vertices of the cube, such that v €V corresponds to / (v )€{0,1,..., N —1}. The emulation procedure is
correct when, if the processor associated with v €V is initially loaded with the same input data Al fTv)]
that in the cube are loaded in processor P (,) then upon termination the processor associated with v -

contains the same output data A { f (v )] that the cube contains in P, ,

We investigate now the possibility of modifying the function f for a fixed graph G. In particu-
lar, let & (0),...,0 (v—1) be a permutation of the dimensions (0, ..., ¥—1), and let #(0),..., (N —1) a
permutation of {0,..., N =1} such that if h has the binary representation h ;.3 ... hothen m(h ) has
the representation A ,-1,_;y1 o=t,ez) - - - B g-1(op ThUS, if h and k' are connected by an edge in E , then
m(h) and (k') are connected by an edge in E 4, . We consider the correspondence between G and the

cube defined by / o(v )2 £ (v)) (see Figure 6.3).

If for the pair (G,f) there is a procedure that emulates the execution of dimension £, in time T ,

for the pair (G, f ,) the same procedure will emulate the execution of dimension E 4, in time T .

Given a paradigm consisting of an arbitrary schedule of use of the cube dimensions

(E, o EipesEay, ), we can ask for which the pair (G, f ) achieves the minimum emulation time. I

The answer is not difficult. Let u( ;) be the number of times that £ , is used by the paradigm (u

is the multiplicity function of multiset {d d ... dy ) . f popyr-...p .y is the sequence of the




Figure 6.3- Correspondences fand f o petween G and the cube.

dimensions arranged from  the most 'O the least frequentl¥ used  (ie-
ulpa) Z wpy) 2 07 > wlp,-0 ) and god 1r-+ A v is the sequence of dimensions arranged 1B

order of nondecreasing execution time upder correspondence fGea Ty <7, g -+ S§T, ’-.), then

.t is relatively simple t0 realize that the minimums emulation time IS achieved by the permutation
alg,) = P h = 0.1,...»~1 6

and is given oY

w=1
7,2 LapnTon 6.6

r =)

Erampie (Bitoric ~ Sortng on the Mesh). Let G=V.El be the square mesh. and
vo= Wi, j)i0 <i,j < w2}, In Section 5.3.1 we have described an emulauon procedure Wt
respect 0 2 column ma¥or aumbering of the wertices. 0 that [ G,J V= W) oF i The corresponding

execution times are given by

e WH=2 forg = 0.1.....1/.‘2-1.




o e e - s 4 Y Y e T T T Y K T ™
CRARCEML A MAA St ek el gk Bd B Ai A S s S Aol 0l o M Sk SRS Sk sl -aili- atuls Al e it e B R e o o TETETETT R

- 110
- :

h To=Tya < T, =Typy < - < Typy = Ty

N and (Qog -+ G oer) = (OW/2,10/2+1, ... w/2=10—1).

%

b

For the bitonic sorting paradigm (E gE \,E 5...:E -}, ... .E o) dimension E, is used u(g) = v—¢
times, so that x(0) > w(1) > .-+ > uly=1)and(popy....p,~) = (0,1.... y~1). From Eg. 6.6, the

permutation ¢ that minimizes the emulation time is

o = (a(0),....0(»=1)) = (0¥/2,10/2+]),... ¥/2=1v=1).

For the emulation time, Eq 6 vields

¥=1
To= Zulp T,
h =)

v/2=]

néo(#(Pz" )T“ﬂ +”'(P2"")Tvznol)

vi2—=1

z (ﬂ(v—Zh )7.1; + [L(U-Zh —l)T”,'_ig.h )
h =

S vid=1
- = ) (Qu—4h —1X2" *1-2)

h =0

= 0(2*?) = o(Jn ).

The permutation o and the numbering f , are illustrated in Figure 6.4, for v = 4. In general, if i

and j respectively have binary representations ;j,_yj,a-2°°* j1Jjn and i, maojf, pes " iio, then A =

flij) = 2¥2 j +i has the binary representation ;,a; " joiya—1 " "im and f oli,j) = m(h) has the

binary representation j,a—jéy e fiiijeke o

The 1:0 Forma:. Usually the format of the input array A[0] ..., Aln-/] and of the output array

. A10}...,A{N —1] are imposed a priori on our emulator G by global system considerations, and must be

. consistent with the I’O format of other parts of the system that are interfaced with G. As a conse- o
guence, at the ead of the input phase, the data may be loaded into the processors of G in an order that

differs from the one required by the emulation algorithm. A similar situation might occur for the out-




Y

111

Jijo Jido
00 01 10 11 00 01 10 1
ool 0| 4] 8§ |12 oco|lo]|2]8]10
igo 011 1 | 5|9 1}13 igo O1 {11319 1]14
10} 216 ]10]14 100/ 46 [12]14
1!l 3] 711115 11| s 71315
flij)= jijokiio flij)= jiijoie

Figure 6.4. Column-major numbering / , and optimal numbering f ., for the bitonic sorting para-
digm on a (4x4) mesh.

put data.

In such a situation the emulation procedure must be preceded and followed by a suitable permu-

tation of the data. This problem can be solved by resorting to the Benes permutation algorithm.

Originally formulated for a network of switches (Be64], Benes’ aigorithm can be also cast in a

cube paradigm consisting of a Descend followed by an Ascend [PV81al The schedule of use of the

dimensions is then
(E-',_hEv.zg...,El,E()’El,.--.Ey—}Ey—l)-

At each operation step, a pair of processors connected along the active dimension, may or may not
exchange their data. according to the value of a control bit. Each permutation of size 2” can be realized

by this algorithm, by a suitabie choice of the control hits,

Aithough the parallel computation of the control bits for an arbitrary permutation is not a simpie
tack. in the application we are considering the permutations of data to be realized are known at design
time. Thus, the control bits can be precomputed and stored in the processors, provided that each proces-

sor s endowed with O(v) = G (iog.V ) storage.

NI -
------------------




112 o

In conclusion, by adding to the computation time the usually negligible overhead corresponding to -
a constant number of Ascend and Decend algorithms, ax;y (a priori known) /O format can be combined

with any correspondence of processors between the cube and the emulator.

The Benes permutation algorithm could be exploited to build emulation procedures more sophisti- -
cated than the one described in this section. In fact, for a paradigm in which the frequency of use of -
the dimensions is strongly time dependent, it may be convenient to dynamically change the allocation
of the dimensions during the execution of the algorithm. This approach, however, will be not further

pursued in this thesis (being inapplicable to the sorting problem).

| N

6.2.5 The Cube-Connected-Cycles.

We have seen that the mesh-connected bitonic sorter is area-time optimal for slow computation.
To obtain faster sorters we turn our attention to the CCC which we already know to be optimal for the

Descend paradigm in a wide range of computation times

As we have seen in Section 5.3.1, in an (s Xz -CCC (s =29 =275 27,n =51 = 2%) the cube

dimensions are naturally divided into two groups the cycle dimensions £ £ ),....E o, and the

EANY

lateral dimensions £ gE g4js - sE g4rey (+7 = ¥). A cycle dimension £, (0 € € g—1) is exe-
cuted in T, = 2/"!-2 transfer steps. A lateral dimension E,,, (0 €, < 7—1) is executed by pipe-
lining the data around the complete cycle, and therefore uses uses T 5., = s transfer steps. However,
when all the latera] dimensions have to be executed comsecutively, Ofs) transfer steps are sufficient V

(rather than O(7s)) because the pipelined mode of operation allows to overiap the execution of

differeat dimensions.

In a paradigm like bitonic sorting, where in several merging phases only some of the lateral
dimensions are executed, the emulation procedure becomes inefficient. In fact, each . the last
7 = O(logn) merging phases M ,,....W ,_,, requires the use of a set of cosecutive lateral dimeasions &

(more specifically, £,.,.....E , are used during phase M ,., ), and therefore takes (¥s/ transfer steps.

Thus, the CCC executes the sorting paradigm in O (75 ) = Ofslogn) transter steps.




113

We recall from the discussion of Section 6.2.1 that to attain the lower bound for sorting we need
10 keep the number of transfer steps in the bitonic sorting paradigm of the same order as in the Descend

paradigm, which, for the CCC, is Ofs\

At first, the problem might seem similar to the one already encountered for the mesh, Where w;e
have reduced the number of transfer steps from O (Vniogn)w O (Vr ) by a more appropriate alloca-
tion of the dimensions. However, for the CCC we face a more difficult situation because the dimensions
already obey t“+ ~—- _ le that the most frequently used ones are those with the least execution time.

The problem is that most of the dimensions have a high execution time.

Thus, a fast and efficient execution of the bitonic sorting paradigm requires the development of
new networks. In the next two sections we shall describe the pleated-cube-connected-cycles, and the
mesh of cube-connected-cycles, and show that they are area-time optimal emulators of the bitonic sort-

ing paradigm.

6.2.6 The Pleated-Cube-Connected-Cycles (PCCC)

Description. There is a basic observation that, when recursively applied, leads to the modification of
the CCC into the PCCC, and t0 a performance gain. The informal argument 2oes as follow= for any
given integer 8, the highest 3 dimensions E,_,.....E ,—s are used only during the last 8 merging
rhases. We could then depoly 2° “small® CCC's, each with n /2% processors, to execute the first v—@
phases of merging in parallel, and subsequently supply the intermediate results to a "large” CCC, with
n processors, to complete the execution of the sorting aigorithm. The advantage of this strategy is that
the smailer machines have short cycles, and work faster, while a large CCC would have o use its full
cvcie length in all stages of the algorithm. The transfer of results from the small CCC to the large
CCC can actuaily be accomplished with no data movement by simply reconfiguring the network.

Indeed, the reconsiguration of the 28 smajl CCCs to the large one can be realized by suitably embedding

o . . ; t . . - : -
the former into the latzer. We first lay out the 2% (.f-xm}-CCCs in a 2x28-1 array (see Figure 6.5).

-




114

Note (again refer to Figure 6.5) that each cycle of a CCC in the lower tier faces at its upper end the
lower end of a cycle in an upper tier CCC. Next we modify the layout by merging each pair of facing
cycles into a single cycle with s processors and by using the last available 8—1 rows of the top tier
CCCs to realize the lateral connections for E ., ....E - (see Figure 6.4). We obtain an s Xt array,
where in each column we have to provide a suitable switch to reconfigure the two original length-s/2

cycles into a single length-s cycle.

In the machine we have just described, the highest 8 -1 dimensions are lateral, but the 8 -th one is
a cycle dimension. The next 7 — 8 + 1 dimensions are again lateral and the remaining (o — 1) ones
are cycle dimension. For the first v — 8 merging phases of the sorting paradigm, the 2# CCCs are
decoupled and work in parallel. Consider now phase M, _, (1 € a € B), which corresponds to the
execution of the sequence E,_,,....Eo . The (lateral) dimensions £, _,,....E, -5, and the cycle
dimension E,_g are executed using the full cycle length; next, the cycles are reconfigured to haif

length, and £, _5_,...,.E o are executed in the "small” CCC's.

Before proceeding further, we consider the permissible values of the parameters 8, s, and ¢. Since
the top s/2 rows of the full network must support 7 lateral dimensions, (ie. ia each cvcle there must

be at least one processor per dimension), we have:

r £ 6.7

]«

Since (B8 — 1), the number of lateral dimensions connecting the "small” CCCs in Figure 6.5, must satisfy

1 € (8-1) € 7 we triviaily have:

2€EB ST+ 6.8

We shall now complete the modification of the CCC by fullv expioiting the key idea which led
to the network of Figure 6.5. This is achieved by defining as an (s Xt }-pieated CCC (PCCC) the net-

work of Figure 6.5 where each of the 28 component networks is itself a recursively defined

t
28—

(;x >PCCC (ratker than a conventional CCC). Note that 3 is a design parameter.

...................
..............
.............

L SEuic ndh So B oade re ek oied st s S ndh i AR A g S Sedl S e S Bt S P e S




118
B-1
] R
r -
ya J\
SRy
S -t
&7\ z m [ N |
cce
@ (@)
¥ Ny
B-1
rows
. e
[ o - ‘
. -]
P 1
.
Figure 6.5. Construction of the PCCC. (a) Arrangement of 2% independent small CCCs; (%) their in- =]
terconnection 0 form the CCC. ::
__J
§ :

An {5 x¢ »PCCC with given B can be viewed as an s Xz array of processors P/ (as before.

s=2% =27, s 27, 08i < £, 0K <) whose columns are organized as reconfigurable cvcies. and




R T T T R T T Ty ey "
. - N - B s - - - - b - . . N . ’

116

whose rows support lateral connections. Starting from the highest dimension E,_), lateral and cycle
dimensions are interleaved, (8—1) to one. This interleaving continues until we reach cycle dimension

E ,_\s Where the cycle length, 277, is still adequate to accommodate the 7 lateral dimensions. Thus,

from the condition 29=* 2 r we obtain

and A is called the depth of interleaving. At this point the remaining ¥ — AS dimensions are assigned
as follows: the higher 7 — (8 —1)A 2 O are lateral, and the lower o — A are cycle dimensions. Obvi-

ously we have

Bs1+%. 6.10

and the cvcles are reconfigurable to any length 2y where ¢ — A € y € & . Note that there are

J* = 1 reconfiguring switches per column.

An (8X16)}-PCCC with 8 = 3 is illustrated in Figure 6.6. Notice that conditions 6.7 and 6.8 are
automatically satisfied. Moreover, from 6.9 the maximum permissible value of A is 1, whence condition
6.7 is confortabiy satisfied. Incidentally, note that, for the same value 8 = 3, the smallest PCCC with

A = 2 has 256 processors (: =16,5 =16,8 = 3).

Due to the above interleaving of dimensions. processor P,/ in the PCCC-array corresponds to
cube-processor P,, where A = j29 + { and h' is the integer obtained by permuting the binary

regresentation of h according to the above interleaving scheme. This is illustrated in Figure 6.7.

Per formance Analysis. In this section we give an upper bound to the area of the PCCC and to
the time used to execute bitonic sorting. The PCCC is to be laid out in the rectangular grid. We will
assume that a PCCC processor is endowed with a serial comparator and Ofk/} bits of storage so that it fits
in an O(1)x0 (k) area. We also assume that edges have unit width. Data transmission takes place in
serial fashion. Then the width of the (s x¢ }-PCCC is easily seen to be Of¢), if we lay out each cycle in
a constant number of vertical tracks. It is easy to see that an array row associated with the a—th

nighest lateral dimension (a = 1,....7) (no matter what is the incex of the dimension in the cube) is

.................
.................
...........

W T W W




. q?nr"ﬁr“m sisisiaininin
<'>d o
) O
n C} \5
CLCL \>>
ik LTS
O O
N §§> {<>L ﬂpr)
\ \y
) 5?5 T AP
N 51
S
N

0-0-0'0—0
o-oolbo
—~+0-o00lo

—oolo-

st

go

@?E
>

Bas

§§§* u§ﬁ4§

Figure 6.6. An (8 x 16)-PCCC with Be3. Since A = 1 we have one reconfiguring switch per cvcle.




118
L ]
By 5,-g |Dy-g-1"" b,-28[By-20-1 - b.-ulgm-\ "“b,-x-x'“bc 2
| ‘ ' e B A
By.g D,-28 Oyra

Figure 6.7. Bit position permutation induced by the pleating scheme (the arrangements of the h’ R
and h are above and below, respectively.) L

laid out with ¢ /2® tracks. When we consider the multiplicity of each dimension, iLe. the number of )

rows associated with it as a result of "pleating”, we obtain the following formula for the height of the

PCCC:
iohe =111 + - 1 1 ... 1 TS| 1 1
height =t 3 + + 38-1 +2 EX) + * 2 AB=1; + +2 [2-‘:‘-115-“’1 * * o= | .o
+ 2| o+ L+ 0ths).

zﬁa-nﬂ + + e

By evaluating this sum, for 8 = 2 we have height = O (At +ks), while for 3 > 2 we have

¢ K'v",

height = O (¢t +%s) . Since in the case 8 > 2 the height does not depend upon A , hereafter we
further restrict 3 to be 2 3. Moreover, we add the condition s £Vn /k , so that height = Ofz). We

then conclude that 4 = O (width Xheight ) = (¢ 3). -




"Q

Al e S B R iumchds il A A

119

The analysis of thé computation time requires some additional discussion. A cycle dimension asso-
ciated with arrays of length ! uses (I-1) steps, by the technique explained in Section 5.3.1. The execu-
tion of a set of consecutive lateral dimensions on a cycle of length [ requires no more than 4 steps (A
comparison exchanges and 2/ shifts of the cycles). For our convenience we consider first the highest A8
dimensions, and we group them in X sets of size 8, which are executed B,28,...,AB times respectively.
Since the execution of each set requires € 4l steps, with [ = r/2' , for the i-th group i = 0,...,A—=1)

we can upper bound the total number of steps 7, for these dimensions as follows

2 3 A
£ .
1',\4581+.i+_+ +2x1 < 16s 8.

The remaining dimensions are handled by a set of (%xz—:r)-CCCs. which have a cycle length 8(logn )

!
(since :T = 2l°!zf| = 6(r) = Klogn)) . Thus, referring to the well-known behavior of the conven-

tional CCC, we know that the entire set of the last »—AB dimensions can be executed in Oflogn) steps.
On the other hand, the entire set is executed Oflogn) times, thus they globally require 7. = O (log3n)
steps. Finally, recalling that & is the operand length, the total computation time 7 is given by

k(ry + 7)) = O(k(s + log°n)), and. fors = QUog®n), we have T = Of.sh
We can summarize the preceding discussion as follows.

Theorem 6.2. The pleated CCC can sort keys of length % in time T = Ofks) and area
4 = 0(n?s3 for any s in the range [Q(log3n ),0(Vn /k )} For k = logn +8(logn ), the performance
s AT = Hnog®n ) for T €{Qlogn ), O(Vaiogn )}

The PCCC has been first proposed in [BP84a] where a detailed description of the control structure

1S diso given.

"

e Yy

........



——— Coc e o At SAari e Saciusdhite el A g J0e DA A e

120

6.2.7 The Mesh-of -CCC =

Another network that can execute the bitonic sorting paradigm with the same area-time perfor-

mance of the PCCC is the mesh-of-OCC (MCCC), a suitable “hybridization® of mesh and CCC.

An (NmFMCCC, with N= 2, m= 2, and ¢ 8 N /m? = 27 (r = v — 2u) consists of m? CCC

modules, each with ¢ cycles of length 7. The Nm processors of the MCCC are conveniently indexed as
Pi{p4:0$i-j< m, 0€S p< 71, 0S¢g<u 6.11

For a fixed pair (i,j) the set {P/7 : 0€p < 7,0 €¢ < ¢} is connected as an (7 }-CCC, and, for a fixed
g, the set of processors {P/4:0 € i,j < m} is mesh connected (with i and j as row and column

indices, respectively). -

The MCCC graph can be laid out in a square of area A = O (N ?/m?), since each CCC requires
O(N?/m*) area, and channels of width O(N 2/m?) allow a straightforward implementation of mesh

. connections.

We discuss now the properties of the MCCC as an emulator of the binary cube. To avoid possibie
confusion, let us immediately sav that the CCC modules will not be depioyed in the standard mode
described in Section 5.3.1. In fact a (rXx¢ )CCC will be used to process only ¢ (rather than 7Xx¢) data
items. This is accomplished by storing the data in row(0) (ie. processors 2,7 : 0<g < ¢ , for fixed i
and j) and by sending the data through the cycle for execution of the dimensions. Only the r lateral
dimensions of the CCC are then used, and therefore the length of the cycle 7 does not need to be a

power of two. An (Nm)}CCC will emulate a v-dimensional binary-cube whose processors are

P(0).P(1), ... P(N-1). We establish the following correspondence between MCCC processors and

cube processors
P.f—P, h=jN/m+iNim?+q 6.12

It is easy to see that dimensions E,,....E.., are assigned to the CCC modules, dimensions N
EL....E .., are assigned to0 the mesh columas, and finally dimensions £ .., ....E ,.2,-; are assignec

to the mesh rows. Applying the by now famuliar techniques for emulating the cube with a CCCora

..............

............




LAt AN S At it e i e

i ' 121

linear array, an Ascend (or Descend) algorithm can be executed in O (7+m ) word steps. On operands of
. length &, with bit-serial transmissions and operations, the computation time is 7 = O((r+m )k ). For

m in the range (QUogN ), O(VN /logN )], considering that r = O{(logN ), we obtain 7 = O(mk).

In conclusion, for Ascend and Descend, the MCCC achieves AT® = O(N2%?2), for
T €[Q(k logN ).0(k VN /logN )] which is optimal (A variant of this result has been proved by

{A83] for a network similar to the MCCC.)

It would not be difficult to see that the MCCC, in the form just described, does not achieve

opuumal performance when executing the Bitonic Sorting paradigm. However, it is also easy to realize

that the problem lies in the assignment of the topmost 2u dimensions. As we have already seen for the
Lf ordinary mesh, the best strategy consists in an alternate assignment of these dimensions to columns and
rows. Formally, if

u=1 u=1 1
= 2u2,j = L jp2.h = T+ 0%

13
' h = A= h =)

we then establish between the processors of the MCCC and those of the cube the correspondence:
Pip—P, h =h'N/m? + g 6.13

[ ] With this correspondence, dimensions £ .0. ...+E ;- of the binary cube are assigned to the CCC modules,
| dimensions £ £ ., ... are assigned to the mesh rows, and dimensions £ .. ,£ .,,,... are assigned to the
mesh columns. When executing the bitonic sorting paradigm O (rlogn ) word steps are used by the
CCCs. In fact there are v = logn merging phases, and each of them involves no more than r CCC
dimensions. As for the mesh dimensions, they are used exactiv in the same way as in a bitonic sorting
aigoriiam un the mesh, and therefore their execution takes Ofm/ word steps. Globally, O(m + 7 logN )
word-steps are needed. Since T =0(logN), for operands of length & and for
m €{Qog N ), O(VN 7k )] we obtain T = Ofmk). Recalling that 4 = O(N ¥/m?3) we have proved

ihe following theorem. (The number of keys n equals the parameter .V of the MCCC.)

“heorem 63. The mesh-of-CCC can sort n keys of length & in tume T = Ofkm/ and area

A = 0ia*m?, for any m in the range [Qllog’n) , O(vn ik J} For & =logn +&logn ). the

R R
PP WS M)

o N - N e N L e et el et et e
L - L S . - *

) LI SRR S AP PP S ST P S R SR . M \)" -----------------
R A N Y " . - . - .
........

.........




- T ETHETF T TV TR T A T e T
. B Ak 2 Al A it e oa sie o0tk ave A S AR SN are MARCHA sliC it A A R LA

122

performance is AT* = O(n2log?n ), for T €[Qlog3n ),0(Vnlogn )}

We have already obtained three optimal sorters implementing the bitonic algorithm and respec-
tively based on the mesh, the pleated CCC, and the mesh-of-CCC. It is indeed possible to construct
several other optimal emulators of the binary cube, by suitable combinations of known emulators (for
example the shuffle-exchange can be used to define the mesh-of-shuflles, or the shuffie-of-meshes, or the
shuffie-connected-cycles). Although a systematic classification of the emulators of the cube is a problem
interesting in its own righy, it wquld not shed further light on bitonic sorting, and therefore we do not

pursue it here.

However, there is one aspect of the PCCC and of the MCCC which is not satisfactory, namely -
that they do not achieve computation times smaller that Q(logn ), while the only obvious lower

bound is Q(log *n ), since there are (logn + 1)logn/2 consecutive steps in the bitonic sorting paradigm.

The discrepancy is obviously due to the fact that a bit-serial mode is adopted both for transmis- -
sion and comparison-exchange operations. In fact, we can speed up the execution of bitonic sorting by
resorting to parallel comparison-exchange, but - for k¥ = 6(logn) - each comparison step requires

Q(logk ) = Q(loglogn ) time, so that the global sorting time is still Q(log *nloglogn ). -

To circumvent this difficulty we need to apply the pipeline principle not only to the words of a
given sequence, but also to the bits of a given word. Prior to modifying the MCCC according to this
idea, we discuss a mode of operation of the CCC network, which we call the bit-pipeline mode is con-

trast with the standard mode, which we call the word-pipeline mode.

For concreteness, we shall illustrate the bit-pipeline mode in the case of the bitonic merge algo-

rithm, which is indeed a Descend algorithm where the operation steps consist in comparison-exchanges.

To sort a bitonic sequence of size n = 2 we display a (¥x2")}-CCC with v2" processors P/,
(0 Si< w0 €< n). All processors in row(0) (i.e PP yf.....P53 ") are also equipped with a

shift register cpable to store k-bit operands. All the edges are realized with unit bandwidth. and data

transmission is serial.

......................................................................
...............



123

A bitonic vector ([Ba68]) A[OL . .., Aln-1] is initially input with component A[;] loaded in P..
Then, at each dimension E,._,,..., E ,,E ; pairs of elements are compared and, if necéssary.exchanged to
place the smaller of the two in the cvcle with the smaller number. More specifically, each processor
reads the inputs starting from the most signi ficanz bit and compares them. As long as the two inputs
agree, they are transmitted to the next processor in the same cycle. As soon as a discrepancy is detected,

a switch is set and, from then on, the remaining substrings of each operand follew a fixed path,

independently of their value.

For operands of k bits, the algorithm takes O (k +v) units of time, in contrast with the O (k v)

units of time used in word-pipeline mode. If & =Oflogn), as for the keys considered in this chapter, then

T = Ollogn).

Let us now consider an (r,m)-MCCC for the execution of the bitonic sorting paradigm, where the
CCC modules function in the bit-pipeline mode. The only difference in performance is that the first 7
dimensions (7 = logn —2 logm ) use O (7+k ) steps, each time that a group of them is executed. namely
for each merging phase. Thus. since 7 = O(logn ), k = Oflogn), and the merging phases are v = logn,
the CCC-dimensions E,...,E._; globally take O(log>n time. Nothing is changed for the mesh

dimensions £ .....E,_,which take O(mlogn) time, so that for the entire algorithm,
T = O(logn + miogn).
By considering m in the range [Q(logm ),0(Vm /logn )] we have then proved the following

theorem.

Theorem 6.4. The mesh-of-CCC can sort in Kkevs of length & =logn +®&logn) witk

AT = 0(n*log’n ) for T €{Q(log>n ), O(Vnlogn )] .

We have now exhausted the potential of bitonic sorting. To obtaia {aster sorters we have to con-

sider other algorithms.

g

Cadi v A il o sUNh AU SEN 2 o

G P ¢

A a



124

6.3 NETWORKS FOR MERGE-ENUMERATION SORTING

In this section we concentrate on "very fast” VLSI sorters. The main objective is to design sorters
with minimum running time 7 = 6(logn ). To achieve area-time optimality, these sorters must have

area A= &n?).

The first logn ) time VLSI sorter has proposed by [L81]} and [NMB83] and it is based on the
Muller-Preparata algorithm executed by the orthogonal-tree (OT) network. We briefly review it in the

sequel.

6.3.1 The Orthogonal-Tree Sorter.

To sort n keys X ..., X, _, of length k, let us consider an OT network as the one discribed in Sec-

tion 5.3.2. The Muller-Preparata algorithm (see Section 5.2.3) is executed as follows.

1. Key X; is input at the root of row tree RT,, and broadcast to the leaf processors P,°.P !, ... P~}

(i=01,....n-1)

2. Processor P/ sends its context X to the root of column tree C7, which in turn broadcasts it to

the leaf processors P3.P1,....P. _, (j=01,...n-1).

3. Processor P/ - which we assume to be equipped with Ofk/ bits of memory, and with a serial com-
parator - compares X; and X, and producesa bit C,,. C,; isoneif X, > X, orif X, = X,
and ¢ > j,and C,, is zero otherwise (i,j = 0,1, ... 2 -1).

3. The internal nodes of row tree RT, - which we assume to be equipped with a serial adder with a

n -]

one-bit delay feedback on the carry - compute the sum C, = ZC,‘. . The sum is indeed produced
;=)

at the root and will then be broadcast to all the leaves. Obviouslv C, is the rank of X, in the

sorted output (i = Q,1,....n-1).

5. Processor P compares C, with j. If C, = j, P,/ remains idle. If C, = j. P sends its content X,

to the root of tree CT .




6.  The root of CT; can now output the number received from the leaf, which will be }', (as usual

¥ o) 4...., - is the sorted sequence corresponding to multiset X ,.X ,....X, -;)

Both operations and data transmission are done bit-serially, so that all the edges of the OT can be
realized with unit bandwidth. It is easy to see that each step of the algorithm takes at most O(k + logn)

time. Thus, for & = logn + 6(logn ), the global running time is 7 = &logn ).

The OT is area-time suboptimal because its area is A = O(n2log’n ). However, it is an interesting
network, and it is also useful as a building block of optimal networks, as we shall see in the following

sections.

6.3.2 A Network for the Merge-Enumeration Combiner

We now turn our attention to the class of merge-enumeration combine-sort algorithms (Section
5.2.3). Since the original description of these algorithms [P78] is related to the shared-memory machine,

we need to investigate possible implementations with finite degree networks

We begin by proposing a parallel network for the fundamental block of the sorter, namely the
(m.)>combiner, where we will assume that m = 2% and ! = 2* are powers of two. This network will

accept as input m sorted sequences of [ elements each,
S, = (5;(0)s;(1),...5,0 =1)),i =0,41,....n-1

and produce as output 2 single sorted sequence S, which is the combination of Si....S, -, and has

L =m [ =2 elements

S =(0s0),...5(L-1))

The (m.)combiner will execute the algorithm based on pairwise merging as outlined in the
preceding section. Its organization is illustrarted in Figure 6.8. It consists of m > modules (each capatle
of merging two sequences of length ! and of computing partial ranks), laid out as a square m X mesh

and indexed as M, .{i,j = 0,1,...,m-1). The modules of each row are interconnectad as the leaves o 1

=icary tree of bandwidth (; so are the modules of each column. Thus, the combiner has the structure




126

of the orthogonal-trees machines, whose leaves are merging modules. The interconnecting trees have the

following functions :
(1)  to "broadcast” a sequence to all units in which it must be merged with some other sequence;

(2) to compute global ranks from partial ranks;

(3) to rearrange the elements according to their ranks into the sorted sequence S.

CT-lines

RT-lines

Figure 6.8. Overview of (mA)>COMBINER, for m = 4.




o

127

We will now describe in some detail the merging modules and the inzerconnecting trees.
Merging modules. Merging module M/ will merge sequences S, and S, and compute C; (h), for h =
0,...,1-1. We recall that C,;(h) is the number of elements of S, that are less than (respectively less
than or equal) s, () wheni < j,(wheni > j). Each module is realized as a (A + 1x2**")-CCC (See
Figure 6.9.) We shall refer to the processors of module M,/ as micromodules and we shall index them

as P/s, withO €£p <t +1,and 0 g < 2ML,

] 2,3 m u n 2.7
> ]
¢

(3
 OH—©

‘l

RT-lines CT-lines
First sorted saguence Second sorted seguence

Figure 6.9. Merging unit M, . realized by a (3,2¥-CCC, used to merge two sequences with four ele-
ments each.

ottt

e A4

AN

WP W

.
b




el Sake A e, Bk i S Nl o aoh A A e R A af Al Pl

. 128

The layout area of a merging module is of order O (k) (Section 5.3.1).

M <o DOGOISOT S A

Interconnecting trees. As indicated earlier, the merging modules are interconnected by two families of
L = ml complete binary trees with m = 2* leaves and bandwidth 1. We will refer to these families as
the row trees and column trees.

The lines of the row trees and the column trees are respectively labelled RT";(h) and CT(h),

i =0,.../m1h=0,...,J-1. The trees and the merging modules are connected through a small inter-

face, whose structure will be fully specified in connection with the description of the combination algo-

rithm in the next section. At this point we just say that the leaves of RT, (h) are, from left to right,

m=LlA

connected to the CCC micromodules P&‘ .P‘l: voeesPrg  ; the leaves of CT(h) are connected to the

CCC micromodules PJ3 ™ pL37** .. ,P1{ 1™ in other words, the row trees and the column trees

are respectively connected to the RT and CT lines of the merging modules. The connection between
each leaf of a tree and the coresponding CCC micromodule is realized through a buffer register of the

appropriate size (adeduate to store one element to be sorted). The situation is illustrated in Figure 6.10.

CTy(3)....CTo(0) -
Mo My ‘Miz Miz

I = = ~'

RT; (0) e T - -
- — e .8 IREE o )
: - j’u vt ) l ! -
RT (3 e ASTAR Il ~

e el

Figure 6.10.  Interconnection of modules and trees.




0

[ W

o

.

129

6.3.3 The Combination Algorithm

We describe now how the merge-enumeration algorithm can be executed by the network intro-
duced in the preceding section. For convenience we split the algorithm into several phases.

(A) Inpwt of Data and Broadcasting to Merging Modules

Element s;(h ) is input at the root of tree RT;(h ), and is then broadcast to all leaves of the tree.
At this point, the left half of row(0) in module M,, contains the sequence S, . To fill the right halves of
row(0) of all modules, we proceed as follows. First, in each "diagonal” module M; the sequence S; is
copied in the second half of row(0). (This can be done by using the connection of row()) between the
left and the right half of the machine.) Next, from micromodule P/3~!**, which is a leaf of CT ;(h),
element s;(h) is broadcast (through the root) to all other leaves of the same tree. At this point, the

merging module M;; contains S; and S; in row(0) and merging can begin.

(B) Merging and Partial Rank Computation

Merging can be executed by resorting to the bitonic algorithm, and using the CCC modules in a
bit-pipeline node, as explained in Section 6.2.7. However, in order to execute bitonic merging, we first
need to reverse the order of S.. This is accomplished by an Ascend algorithm in which columns { to
21-1 of each M,, exchange their data at dimensions E,....E ,_; while columas O to [-1, remain idle.

All the columns are idle at dimension £, .

Now the data are ready and bitonic merging can be executed. At the end of merging, the result
resides in row(0) of the CCC, and the element in P,;;"~! 0 € 4 € 2 -1, has rank A 1n merge
(S;.5,). Now we want to transmit the ranks of s,(0),..., (I =1) to processors P,’,....P,’s ~!, respec-
tively. This is accomplished by retracing backwards the path traversed by each element s5,(; ). and is
easily done if each P /7 Keeps track of whether it exchanged or not the operands during the merging
sprocess. So, all we have to do is to run the machine backwards, with an Ascend aigorithm, which
applies to the ranks the inverse of the permutation that merged the elements. At the end of this pnase.

processor P:f, O Sh € [ =1, stores the number of elements in merge (S, S.) that are less than s, (71 ).



L Al gt ek Al A g i and Ani s ol St sett Jhedh il deck ks et uialh el i

130

If from this number we subtract h we obtain C; ;(h ), the number of elements of S, which are less than -

s;(h). We call the C,,'s partial ranks because from them we can compute the rank of each 5;(k) in

m =]
the sorted sequence SasC;(h) = J. C;;(h).
=0

(C) Total Rark Computation

It is immediate to see that at the end of phase B the partial ranks C;o(h )C; (R ),....C, n—(R) of
5;(h) are available exactly at the leaves of row tree RT,;(h). By having in each internal node of the
tree a full adder with 1-bit delay feedback on the carry, we can then obtain at the root of RT; the sum

C,(h) of the values stored at the leaves. The nodes work as serial adders and the tree is used in a pipe-

lined fashion, so that the time required is O (u+\), where u = logm is the depth of the tree, and A+1
is the wordlength of the operands (note that C;;(h) € 2*). Within the same order of time, we can
subsequently broadcast C,(h) from the root to the leaves. (Indeed C;(h) < 2**4 so it can be .

expressed by A + u bits)

(D) Sorting Permutation and Output of Data

We want to output the elements s(0), . . . s{L-1) of the sorted sequence from the roots of the

0

column trees, and, specifically, we want the root of CT (k) to output element s(j2*+h). This

corresponds to a natural right-to-left order of the column trees as they appear in the layout of Figure

6.10.

Considering a generic element s;(p) with rank C,(p ), the binary speilings of the integers ; and
fn so that 5,(p) will emerge from the root of column tree CT .(h ) are readily obtained by taking the
4 most significant bits and the A less significant bits of the rank C;(p) to represent h and j, respec-
tively. Thus, as a first step, we "activate” in M, the elements of sequence S; that have to emerge from
trees C7,’s, and "inhibit” all other elements. The active elements are those whose rank C,{(p ) has the u

most significant bits agreeing with the column number ;j of the merging module. Next, we rearrange -

the active elements in M, ; so that 5;{(p ) issent to P/ , withh = C,(p)mod [.




e LA s S SR MLl Yt Sa M Twa . - MR v A Sad Ja b Bar g

'l'"

131

This operation is essentially a permutation of the active (and non-active) elements, and can be
done by using the CCC as an emulator of the Benes network [Be64] The setting of the switches,
although nontrivial, is greatly simplified with respect to the general case by the fact that the active ele-
ments co not change their relative order. The desired rearrangement can be done by using the idea of
concerzration introduced in [NS82] and expansion, which could be viewed as the inverse of concentra-
tion. If ¢ elements are active in the given module, they are first sent to the ¢ leftmost colums of the
CCC (concentration), and then routed to the destination columns (expansion). A straightforward adap-
tation of the algorithm that is proposed in [NS82] for concentration in the cube-machine shows that an
Ascend and a Descend phase is all that is required to rearrange data on our CCC. Some bits required to
set the switches must be precomputed. This task could be performed by the CCC, or (to keep the micro-
module structure as simple as possible), the task can be assigned to a binary tree of full adders whose

leaves would be contained in the interface between the CCC and the row-trees.

During the entire rearrangement task, computation takes place only in the left-half of the CCC
without using dimension E ,. We then transfer each active element from 24" two P/ ~!*" with a

straightforward use of dimension E ,.

At this point element s(j2* + h)is in P,/ ~'**, (where the value of i is determined by the input
sequence to which s(j2" + h) originally belongs), and is ready to be transmitted to the root of

CT ;(h), where it is output.

Per formance Analysis and Modi fication of the Network. Since both the CCCs and the inter-
connecting trees work in pipeline in bit-serial mode, any operation takes time proportional to the sum
of the operand length and the pipe depth. For the CCC, the depth 1s A + 1 and the operand length is
either & (input words) or A + 1 (partial ranks). Since a constant number of Ascend and Descend algo-
rithms are executed, we conclude that (A + k) total time is spent in the CCCs. For the trees the depth
is 4 + 1, and the operand length is either k (input words) or A + u (total ranks). Since a constant
number of fan-in and fan-out algorithms are executed, we conclude that O(A + u + k) wtal time is

spent in the trees. Thus, the time spent in the interconnecting trees dominates that spent in the CCCs.

PAACAS YAkt gt adh gt oAl R WA aAR sl i darafiir it e ol e i S S Sl

-



132

Recalling that a full binary tree on m aligned leaves is laid out in height 8(logm ) and that there are [ -

row and column trees, we conclude

Lemma 6.1. A full-tree (2¢2*)combiner of keys of length k can be laid out in a square of width

O(u2* * #)) and operates in time 7 = O(A + u + k).

We now observe that when & = Q(2%), then 7 =O(X + k). In this case the time performance
of the trees is insignificantly degraded if we realize them as comb-trees, rather than as full binary trees.

The depth increases from u to 2% (which is tolerable in time since 2¢ = O(k)), but the layout area

decreases by a factor of O (). We conclude:

Lemma 6.2. A comb-tree (242*)combiner of keys of length ¥ = (2%) can be laid out in a square of
width O(2**+4)) and operatesin time T = O(A + k).
Summary of Symbols for an {m,))-Combiner
Sizes: m =21 =2,L =ml,k =keylength. .
Input sequences -
S = (5,(0)s;(1....5(1=1)) i=0,1.....m~1, B
Output sequence:
S=(5(0)s(1),...s(L-1)) b
Merging modules (A + 1,2*~1)-CCC'’s
M, :ij=01,...m1
Pif:0 €p< \+1, 0 £ ¢ < 2*, micromodulesof V..
Row-trees and column-trees 5
R ()CT(hR):0%i,j <m=1,0Sh <l-1
~
Y

......

..........................................
. o



...........

133

6.3.4 The Sorter

Thg combiner can be used to construct a general network for combination-sort. As an intermedi-
ate step in the construction, we introduce a new operation called coalescence. Given a collection of n
elements, partitioned into n //, _; sorted subsequences each containing [,_, elements, and given a multi-
ple {, of I,_,, which is also a divisor of n, we call (n ;, _;:l; }-coalescence the operation of combining (in

the sense defined earlier) consecutive blocks of m, = [, /l, _; sequences.

If we refer to the tree of Figure 5.1, we can easily see that each level of the tree corresponds to a
coalescence of the input sequence. If we call coalescer a network that performs a coalescence, we can

build a combination- sorter by cascading a suitable set of coalescers, as shown in Figure 6.11.

The coalescer. An (n ;l,_:l, J<coalescer can be easily conmstructed by using n, a, /L (m,, L)
combiners. Let us assume for simplicty, that n, is a perfect square. We can then lay out the combiners
in an Jn, x+/n, arrav with input and output lines running in a chosen direction, sav, parallel to the

TOWS.

To estimate the area of the coalescer, we first assume to use fuil-tree combiners, so that the side of

the combiner has a length of O ({;logm, ) (parallel to the rows). Using Lemma 6.1 we have

logm,

v e

Height = O(\/n;l;logm; +n,1;) = O

logm,

n
;ni

Width = 0(:/n, L logm;) = O

An example with n = 4 1s shown in Figure 6.12. The computation tume is readilv found as

T- = O(A+k +iogm, ). We conclude:

Lemma 43. Aa (n;l 4 ) full-tree coalescer can be laid out in a rectangie
Ciail + logm.//n;)) xO(nlogm,/~/n,) and operates in time T- = O(A + k + logm.) (k is the

iaput keviength,n, = n/l, ,m, = n). When & logm + &logn ), thea T> = O(ogn )

...... - e - - o e e e e el el

e e e T T N TP O S (SO PA NIV Nt N N S S S S N P
............................................. OIS S R 4 .

K S T R P e e T e e e e T e . A L S T A A R S '.."~.'-. DAL R R

2% 2% astaaatatal 2t alaa s a Sad ez e e o aty £ el 2 gt by SR I SIS S Tt Ba8 SAUHE ST T S R S0 Wil S 5




—
]

s 3 AEen

134

!

(n;l: ml)
Coalescer

R

(n;mfmlmz)
Coalescer

(n;my...My.oimy.. My.,)
Coalescer

Y

: (nymy...mg.y:n)
' Coalescer

¢

Figure 6.11.  Combination-sorter as a cascade of coalescers.

L




(m; ,l;.]_) (mi N 1)

Combiner | Combiner

[ —

1 lines {> | >} {; lines
> >

(m; 4-1) (m; fi-1)
Combiner|| [|Combiner

<~ -
>

Inputs Qutputs

>
>

Figure 6.12.  Layout of an (n; [ _;: [ )coalescer with n, =n /l, (m, =1, /I, _;, |, - }<ombiner. (Ia the
figure, n, =4.)

Similarty, Lemma 6.2 yields the foilowing result:

Lemma 64. An(n ;{,_,:] ) comb-tree coalescer can be laid out in a rectangle O (n ) xO (nlogm, INn)

and operates in ume T = O(7 + k + m,). If both k and m, are Oflogn), then T = O (logn ).

An Optimal VLSI Sorter. We now show that there is a combination-sorter for Kevs of length
k = logn +&logn ) that sorts n elements in time T = Oflogn/) and area A = O (n?), thus achieving the

xaown jower bound for this problem. The sorter we propose is given by the block diagram in Figure

6.13. By the previous Lemmas 6.3 and 6.4 we see that the coaiescers can be laid out In area

T3

|
-

"‘.".'Al




136

(width x height) 0(n) x O(n), O(nloglogn /logn) x O(n), and O(n) XO(n), respectively. It is

also clear that the total time is Oflogn). So we have:

Theorem 6.5. There is a VLSI merge-enumeration sorter of n keys of length k = logn +8(logn ) with

area A = O(n?), and computation time T = Ollogn).

Remark. The first coalescer stage of the sorter we have just described consists of log’n sorters, each pro-
cessing a sequence of n /log’n keys. These sorters are essentially orthogonal-tree sorters of the type
described in Section 6.3.1. Strictly speaking, for { = 1, the (n[)-combiner of Section 6.3.2 consists of two

families of binary trees (RT o(0),...,RT, -(0)) and (CT ((0),...,CT,, -,(0)) such that the j-th leaf of

RT,(0) and the i-th leaf of CT,(0) are constructed (they indeed form the merging module M,;),

whereas in the OT network they would be identified.

!

(n;1 : n/ log®n)
Coalescer
full-tree

)

(n;n/ log®n : n/ logn)
Coalescer
fuil-tree

4

{nyn/ logn: n)
Coalescer
comb-tree

Y

Figure 6.13.  An optimal VLSI merge-enumeration sorter with three coalescers.




CABS a0 Sra e tteh S ot a g Yt Shh Ak Fath s w /BN AR B2 B e it MRS S Al alh i il At AN S S0 A0t A0 SNG SER e Ab Ul alaro/mecedietefed aan San et

137

WY
.

6.3.5 Sorting in Time T €[O(logn ), O (logn )}

i_ )] We have seen that AT = &n>logn ) can be achieved for 7 = &logn ) (Theorem 6.5) and for
: T €[QUogn ).O(Jangn-)] (Theorems 6.1, 6.2, 6.4). It is natural to try to extend the result to the
interval 7 €[Q(logn ), O(logn)] For this purpose we start from the following observation. A
combine-sorter with n/s input can sort (in time Ofslogn) the area O (n?/s?)) s = 2° sequences of n/s

elements each. These sequences can then be fed, say one per column, into an (m.s)>MCCC. At this point,

the sequence in each CCC module is already sorted, and the MCCC is ready (after inverting the order
of some sequenes to comply with bitonic sorting rules) to execute the last 20 merging phases. (For the
sake of simplicity we will ignore the fact that only o phses would be really necessary after the work
done by the combination-sorter.) A simple analysis allows us to conclude that, in the process, the MCCC
executes Oflogs+s) steps using Oflogn) time for each, thus running for a total time T = Ofslogn). We can

then state:

Theorem 646. There is a VLSI sorter of n kevs of length k = logn + logn) with optimal

AT ? = &n’log*n) for any computation time 7 €[Q(logn ). O(Vnlogn )] .

With Theorem 6.6, the characterization of the area-time complexity of the (n,logn + &logn) -

sorting problem is complete (within multiplicative constant factors).

6.4 OTHER OPTIMAL NETWORKS

For compieteness, we report here two other interesting results concerning optimal

(n ,logn +8logn ))-sorters.

The first result is due to Leighton [L84] and provides a design that achieves optimal
AT = 8n?ogin) for T € [Qlogn),0(Vnlogn )} The network consists of a suitably intercon-
nected family of OT-networks. The algorithm is a combine-sort of the hvbrid type, with the first stage
of combinations performed with the Muller-Preparata algorithm. and the remaining stages {one or two

Jepeading on T) pertormed Wwith the multiway-shuifle algorithm.




138

We refer the reader to [L84] for more details. However, we shall return to Leighton’s algorithm in

Section 7.2, where we study circuits to sort keys of medium length.

The second result is due to Bilardi and Preparata {BP84c] who have shown that the AKS network
[AKS83] can be optimally laid out in area A = O(n?), while maintaining a sorting time T = Oflogn)

on keys of Oflogn) bits.

The details are rather intricate, and hence are not repeated here. An open question, as far as we
know, is the existence of optimal networks that execute the AKS sorting algorithm in time greater than
&logn ). Obviously, the answer to this question would not improve the characterization of the area-

time complexity of sorting, since we have already several optimal constructions, but could shed some

light on the algorithm itself.

T— — g g s e R el e . e e g
T\—f-‘—..v-.vw;v—“- I R N —_— g PN AR AN AL AR




CHAPTER 7

SORTING KEYS OF ARBITRARY LENGTH

7.1 INTRODUCTION

In Chapter 6, we have studied in depth the (nk)-sorting problem for the special, but important,
case when k = logn + 0 (logn). In this chapter we consider the general problem of sorting keys of arbi-

trary length.

The classification of keys into short (k < logr), medium-length (logn < k < 2 logn), and long
(2logn € k), introduced in Chapter 4 in the context of lower-bound arguments, maintains its validity
when considering circuit constructions. Indeed, a different algorithm and a different network are

appropriate to each of the above three intervals of key lengths.

The difference between the VLSI model and other models of parallel compuzation reveals its full
extent in the present chapter, where an attempt to optimize the area-time performance of VLSI sorters

leads to the formulation of novel sorting algorithms,

For short and medium-length keys the efficiency of the new algorithms is based on the use of the
appropriate encoding schemes for the multisets being processed. For long kevs the efficiency of the algo- _
rithms rests instead on the adoption of non word-local 'O protocols that induce a partition of the chip
into regions within which primary flow is confined. and among which oniv secondary fow s

exchanged.

All the algorithms we shall consider in this chapter make use at some stage, of an (n,logn + 0
(logn))-sorting procedure. Thus, the constructions confirm that the kevlength k = logn « 6 (logn) plays

a special role, as a careful analysis of lower-bound arguments had already indicated in Section 6.1.

..........
.......




grTvews 3 LA o 3 ey v e Ol ¥ AEar. ne dars i 2 S AN Aw A ST S e e BEL"aA Sl AL Ad S A W T U TwVY v e ey
~ . > .- M . .- . . S . - . - . L - - - . . - . 3 . - -

140

Sorting algorithms and networks for medium-length, short, and long keys are respectively dis-

cussed in the next three sections of the chapter.

7.2 SORTERS FOR KEYS OF MEDIUM LENGTH =

In this section we derive upper bounds for the (n Jogn +h )-sorting problem for 0<h <logn. We

recall from Theorem 4.14 and 4.15 that

AT? = Q(n%h?) 7.1
8
E and, for boundary chips,
' AT? = Q(a?h logn) . 7.2 &
When » = 8(logn ), lower bounds 7.1 and 7.2 are of the same order, and they are both achieved
by the constructions of Chapter 6. However, a careful analysis of the upper bounds reveals that they
are of the form AT ? = &nXlogn + h J), so that even if A is zero we have AT > = &nZiog’n ). Thus. :
for h = o(logn), the sorters of Chapter 6 are slightly suboptimal
In the following, we shall see that the performance of these sorters can indeed be improved by
exploiting the fact that a multiset of n keys of length k ~logn +h can be encoded with 2n (A +1) bits, t-
as it has been shown in Section 2.2.4. '
In the design of our sorter for keys of medium length: we shall use an approach very frequently .-
adopted in the design of VLSI networks, which can be formulated as follows. Let II be a problem
amenable to a divide-and-conquer solution, and let us assume that we are trying to solve II with target
performance AT 2 = O(n?) on input instances of 'size n. Additionally, let us suppose that a design for ,‘
Il is known with performance AT ¢ = O(g(n)n?), where g(n) - a2 monotone increasing function of
n - is the gap between the performance of the known design and the target. Then, if we decompose the
problem into gin) subproblems of size n /g (n ), we can solve the subproblems with g(n) networks of -

performance (A (n /g (n )T o(n /g (n ))), globally achieving




141

AT =g(r)0(gtn/graddn3g¥n)) = 0(n?.

Thus, 10 obtain the desired result, we are left with the probiem of combining the solutions to the gin)

o subproblems in area and time of the same order as A and T ; respectively.

?‘ This approach effectively transforms the task from the design of the entire system to the design of
a subsystem for the combination step of the divide and conquer strategv. According to intuition, the

better is the construction that we use for the subproblems, ie. the smaller is the gap gn), the smaller is

7 the number of subproblem. that have to be combined, and therefore the easier is the combination step.

For the sorting problem we are presently considering, we already know several designs achieving

A3 = O(n?log’n), and we can try to follow the above approach. For concreteness, we refer to the

boundary chip case, so that our target is a design with performance AT? = O(nZh logn ), and
g(n)=logn /h. Thus, we can sort logn /h sequences of nh /logn elements each within an area-time

f;i: performance allowed by our objective, and we are then left with the problem of combining these

sequences.

For this combination we shall use Leighton’s multiway-sbuffle algorithm. for reasons that will be
apparent as description of the sorter unfolds and that, at this point, we can informally explain as fol-

lows.

To attain the AT? = Q2(n2h logn ) lower bound we cannot afford to maintain the list represen-
tation of the input multiset throughout the entire algorithm. Indeed, this would imply an Q(niogn)

information exchange across a suitable bisection of the network, whereas we can only afford an O(nh)

information exchange. Thus, it is essential to compactly encode the multiset. or some par: thereos, in the

stages of the algorithm that pose the heaviest demand in terms of global rearrangement of data.

'l
STTE T
PN Aal ol "

We shail indeed use the insert-and-prune encoding scheme to solve this problem. On the other

o ht
’

. e LI SO
')Z_-}j AR

s

hand, when a multiset is compactly encoded, the individual elements are not easily accessibie for opera-
tions, sav, 1s comparison-¢xchanges, therefore it is very desirable to be able to use the compact form

oniy for daa transmission, and to recover the natural list representation wherever operations are to be

)

executed.

s %
Ad Bop P




142

The multiway-shufle combination is ideally suited to our purposes, because the only global rear-
rangement of dawa occurs when shuffling and unshuffling the keys, while the other stages of the algo-

rithm require data interactions only within the blocks of a suitable partition of the input multiset.

There is a difficulty, however. The insert-and-prune encoding is itself based on sorting a sequence
of length twice as large as the one being encoded. Thus, using the sorters of Chapter 6, we cannot encode
the entire input multiset at once without exceeding our target performance. Hence, encoding will be
applied to suitable subsets of keys. However, this entails a loss in the efficiency of the encoding. (The
reader will easily convince himself that the optimal encoding of S,US ; requires fewer bits than the
sum of the number of bits required to encode S, and S, separately.) This difficulty will be at least

partially overcome by resorting to a recursive technique.

We have presented the main ideas involved in the design of the sorter of medium-length keys,

and we are ready to give a detailed description of the construction.
The ideas we have informally presented above will be combined according to the following

scheme, illustrated in Figure 7.1, consisting of three basic steps

1. Given a sorter design, we show how to constuct an encoder/decoder of multisets based on the
insert-and-prune method. The area-time performance of the encoder/decoder will be a function

of the performance of the sorter used in the construction.

!0

Given designs of an encoder/decoder and of a multiway shuffler/unshuffler, we show how to con-
struct another shuffler/unshufiler whose performance is better than the one of the original

shuffler,unshuffler.

3.  Given designs of a shuffier/unshuffier and of a sorter, we show how to comstruct a new sorter

(with improved performance) by resorting to multiway-shuifle combination.

The scheme will be iteratively applied. The first stage of the iteration wil] use a sorter of perfor-
mance AT = O(n?log?n ), and a straightforward implementation of shuffier and unshuffler with the

same performance. Subsequent stages will use as a starting point the desigas for the sorter and for the

shuffler/unshuiller obtained in the previous stage.

A -

'
l.l,l
o

Pt
L)
PR
2 i

L4



B AA AT IS S Ren At o et 2 st BARCRARIS e b e ra A teu i aat i s i Jhait It v S ittt A A Al S A S Sedi el el sl Sedu i S s Mt g Sufl AR el Anl S 4

d
L
.

143

. Sorter Shuffler/Unshuffier

! Encoder/Decoder

New Shuffler/Unshuffler

New Sorter

Figure 7.1 Basic steps in the construction of sorters for kevs of medium length.

In Sections 7.2.1 and 7.2.2 we shall describe in detail the basic steps of Figure 7.1. Indeed one of

them, which is the multiway-shufle combination sort, has already been discussed in Section 5.2.4.

The ideas we have introduced could be applied to obtain boundarv-chip sorters as well as non-
boundary-chip sorters, although the construction of the latter is somewhat more involved. For the sake
of simplicity, we shall develop the boundary—chip case, and we shall adopt the following conventions.

All our circuits for sorting, encoding/decoding, and shufling/unshuffling will be iaid out in a region of

o

rectangular snape, witk} the input ports on the north side and the output ports on the south side of the -
Ly

.

reciangle. The width of the rectangle will then be proportional to the number of IO bits divided by o
P

computation time. The height will instead depend on the bisection flow that we are able to achieve, N
e

o

.-.\l

.'._\

N S e e T e TN e T




144

and will be our objective limitation (to be reduced). Thus, for a complete (r,logn + h)-sorter, our target

is a width O (nlogn /T )and a height O (nh /T ).

7.2.1 Insert-and-Prune Encoder and Decoder

We recall from Section 2.2.4 that the insert-and-prune encoding of a multiset {X ..., X, -} of

words of length logn +h is obtained by sorting the multiset
I XwooooXn U850 = 0,...,n =1},
and pruning the logn - 1 most significant bits of each word in the resulting sequence.

Thus, an insert-and-prune encoder can be easily realized by a simple modification of any of the
sorters described in Chapter 6. Indeed, it is sufficient to consider a (2n logn +h )-sorter such that n of the
input keys are prestored and have the fixed values 0,2 2x2*,...,(n =1)2* . The performance of such

encoder is then AT? = O(n3log’n ) for T €[Q(logn ), O (Vnlogn )]

The decoder is slightly more complex. Let the insert-and-prune encoding of {X ..., X, -} con-
sists of the sequence of 2n words (W ,W ,....W 5, ;) of h + 1 bits each, with W, = W W/~ -.- W "

The following algorithm enables us to obtain the X's from the W’s.
1. Fori=0,1,...,2n ~1, compute the value of the binary variable b, defined as

b, =0 ifeither(i=0or(i>0and W) =W , )"

b, =1 ifli >0and W/ =WA,).

!\)

Compute the cumulative sum of the sequence b, defined as B = Z b,. where
Bi = B,lo"n -lB,'lo!n =2... Bi lB,'O is a word of logn bits.
3. Formanewlist W,....Wa,_, where W ; = b Bloen=1, BIWr W

4. Sort the W ,, and prune the most significant list of each key. The first n keys of the resuiting

sequence are (Y .,...,3, ) = sort (X,,..., X, ), and they form the sorted list representation

of the multiset encoded by (W o, ..., W 5, ;).




..................

145
Step 4 poses the heaviest demand of area-time resources. Thus, the insert- and-prune decoder can be also
realized with A7 ? = O(n?log’n ), for T €[ Q(logn ),0(Vn logn )}

In general, we can use the construction outlined above to obtain an encoder or a decoder from any
given sorter. It is also convenient for our applications to combine the encoder and the decoder into one

block, whose performance is stated in the following lemma.

Lemma 7.1. Given a design for an (nk)-sorter with computation time T, (n & ) and height H,(n k),

We can construct an encoder/decoder with time and height respectively given by

Tgp(n,k) < fT,(n.k) | 7.3
and

ng(n.k) <€ nH,(n.k). ' 7.4

where ¢ and 7 are suitable constants (independent of n and k), greater than one.

7.2.2 Reducing the Bandwidth for Shuffling and Unshuffiing

The multiway-shufle combination (Section 5.2.4) is so denoted because two of the steps of the

algorithm respectiveiy consist of a p-unshuffie and of a p-shuffle of ml elements (where p divides [).

Indeed, these two steps are the only ones that require a global rearrangement of the input keys,
and therefore pose the heaviest demand of bandwidth. Thus, it is crucial to be able to perform the

shuffling and the unshuffling very efficiently.

In general, both the muitiway shuffle and the multiway unshuffie of N words of X bits can each

P
AN

Ll o
rolre)

be executed by a circuit that works in time T"g} and has width O(NK /Tl ) and height

H;; € oNKTJ = O(NK /g ) where o isa constant. The lengthy, but rather straightforward

tarese o] A

details are not given here. (A network for similar operations is described in some detail in [BS 84})

Although in the general case the performance of the circuit mentioned above is optimal, in the
specific application 'we have in mind, the shufile and unshuffle are performed on sequences that can be

decomposed into sorted subsequences, which can be compressed by eacoding techniques. As a result we




el e el Yl s Shd VLRI A it ats i Rt SRR

146

can achieve a smaller height for the circuit.

We shall exploit the following decomposition of the multiway-unshuffle and of the multiway-

shuffle permutations, illustrated in Figure 7.2. :.Q:L':‘:

| Elements | Elements
> -

Tll L H"'l“'[

p—Unshuffle p—Unshuffle
of | Elements T of | Elements

p—Unshuffle of mp Sequences o

ml Eiements e

-— >
FP-8456 RN

A

Figure 7.2. Cascade decomposition of the p~-UNSHUFFLE of ml elements. (Arrows represent se- L
quences of [/ p elements.) -




—— T Ty

147

(1) The p-unshuffie of ml elements (where p divides !) can be performed by (1a) applving a p-
unshufle to each of the m subsequences that we can form with [ consecutive elements, and then
(1b) applying a p-unshuffle to the sequence of the mp sequences (regarded as single words) of I/ p

consecutive elements in the arrangement resulring from (1a).

(2) The p-shuffie of ml elements (where p divides ) can be performed by (2a) applying a p-shuffie to
mp sequences (regarded as single words) of L/ p consecutive elements, and then (2b) applying a p-

shufile to each of the m subsequences of { consecutive elements in the arrangement resulting from

(2a).

We plan to use a shuffier/unshufller block as part of a multiway-shuffle combiner. In this context,
the sequence to be shuffied or unshuffled consists of m soited subsequences of ! consecutive elements
each. In this case, it is easy to see that the sequences that are regarded as words in the second stage of
the decomposition are sorted. Thus, they can be encoded by the insert-and-prune method, and then be
recovered with appropriate decoding. This consideration suggests the scheme of Figure 7.3 for the entire
unshuffle operation. A similar schen;e works for the shuffie. Obviously the same method would not

work for unsorted inputs, since after encoding we would be able to recover only the multiset underiy-

ing the encoded sequence, but not the sequence itself.

If in the design of Figure 7.3 we make the unshuffling blocks bidirectional, and we replace
encoders and decoders with encoder/decoder blocks, we obtain a network that can also shuffle. We now
analyze the performance of such shuffler/unshuffier block, for the case when p = m and under the
assumption that we use building blocks with the following features (for later convenience, we use a

superscript i to denote quantities related to buiiding blocks, and a superscript (i +1) to denote quantities

related to the overall design).

(a) The eacoder/decoder blocks which operate on sequences of n /m* elements (n 2 7 ) of & bits each,

work in tume T ip\n /m3k ) and have height Htn(n im3k ).

(h) The shuffler’unshuder blocks which operate on sequences of n.m elements of & bits each. work in

time T i (n /m & ), and have keight Hi.-{(n/m k).

o,
PO




148

Sorted Sequenca Sorted Sequence

r~ A ™ r A Y
[ . | | l
p—Unshuffle L p~Unshuffle
of | Elements of | Elements

l :

o
o
O
o

Figure 7.3. Cascade decomposition of the p~-UNSHUFFLE of m elements when each of the m
subsequences input by blocks of the first stage are sorted. Encoders (E) and decoders (D)
operate on subsequences of [/p elements.

(c) The shuffier/unshuffler block, Which operates on m? (eacoded) sequences, is realized according to
the straightforward method mentioned at the beginning of this section. Here N = m?, since the

items being shuffled are m?, and each item consists of a sequence of n /m 2 words each represented

- ‘-. '.- - - ~.. - '.- .. .n- -’ '. P » . » - 0
TN A I T STRTITAL S X ALy Wy A S




.......

with h, .,9- k -logn + 2 logm bits (see the insert-and-prune encoding). Thus,

Hg € o2nh, /T4 . 7.5

It is then easy to see that the performance of the entire shuffier/unshuffler circuits obtained bv cascad-

ing the different stages is given by

HifYn k) = 20nh, ,,/Td + Hip(n /mk)+2Hp(n /m3k) 7.6

TitMn k) =Tl + Tiln/mk)+2 Tipln/m k) 7.7

7.2.3 The Sorters

We consider now a network conmsisting f a set of m (n/mkjsorters and of an m-

shufler/unshuffler of n keys Such a network can easily perform all the steps required by the

multiway-shuffle combinacion algorithm described in Section 5. Obviously, the m sorters can also

prepare the sorted sequences to be processed by the combiner, and - ‘with small adapuations - thev can

also perform the sorting operation in the "windows" (refer to Sectidn 5.2.4).

Thus, if we realize the sorters with a design with performance 7(n /m &k ). Hi{(n /m k), and the

shuffier/unshuffler with a design with performance A" n & ), T{*Y(n k& ), we obtain a sorter with glo-

bal performance given by the following relations

Hi"Mn k) € H{fMn k) + H(n/m k) 7.8

Ti"Ynk) € y\Tifn k) + yaTi(n/m k) e

where y; and y., are constants. In fact the (n/muk/-sorters, and the shuffler/unshuffler are activated a

constant aumber of times during the entire aigorithm.

With reference to Figure 7.1, we have now completed the description of the steps that ailow to

ocwain the “new shufler/uashufer” and the "new sorzer”, given a sorter and a shuffler unshusfler. We

chail repeatedly use these sters o construct a sequence of designs, as follows.

..................
----------------------
------




150

We begin with a design for the sorter having performance

HMn k) THMn k) € Cgdnk 7.10

where C¢! is a constant. Such performance can be achieved by any of the sorters described in Chapter

6, as long as
rdlogn € THn k) € #§Vnlogn .11

for suitable constants 7¢ and i"sl . For the shuffier/unshuffler we begin with the straightforward imple-

mentation that achieves

Hsi(n,k) Ts}'r(n*) s o nk 7.12

as long as
rd € Tehln k) € gy Vnk 713

. -l
for suitable constants 7, and 7.

We can then define a sequence of designs where the (i+1)-th one is obtained from the i-th one
according to the scheme illustrated in Figure 7.1. A value m; must also be chosen for the parameter m
specify‘mig how many sequences of n/m keys are to be presorted by sorters of the i-th type. We shall

choose m; = L,(n) where L, is the i-th iterate of the logarithm, formally defined by

L(n) 2 logn ) 7.14

Ln) Rlog(L,(r)), i >1 7.15
We claim that the sequence of sorters and shuffier/unshufflers so defined satisties the relations

H:T: € Cinh, 7.16

Hi Ty S Cipnh,

~3
.

—
~)

for n large enough, when C¢ and C! are constants, and




P e St e et She s S T T——————my—"
A 2 G R M o Loe e et e Pl B . el A Eadiis

151

hSk ~logn +2L,(n). 7.18

Inequalities 7.16 and 7.17 can be proved by induction. For i = 1, they follow from 7.10 and 7.12 with

any Cs} greater than or equal to 0.

In general, using 7.3, 7.4, 7.8, 7.9, 7.10 and 7.12, substituting L,(m ) for m, and taking 7.16 and

7.17 as inductive hypotheses, we obtain

HipTiy € méECinh, 7.19
Hi' € 20 nh o\ /Td 720

+Cqnh (Li(n)Ti(n/L(n)k))
+18Cinh, ALAn)Ti(n/LXn)k))

Tt S T + To(a/Lindk) + 2T /L, %n k) 7.21
H_é“ < HS‘{‘ + Hs‘(n/L,(n 1) 7.22
TiV € g Tl + ya Ti(n /L, (n )k ). 723

We are further allowed to chovse 74(n /L, Xn )k ) and T -(n/L,(n k) within the range of possibie
sorting and shuilling ‘unshuffling computation times relative to the i-th design. If we choose them to be

proportional to T j;-, then inequalities 7.20 and 7.21 imply that

HI'Tict K 2ao0n iy, + oln b /L(n) ). 7.24
T« =legn = 0Lz ) thenh /Lin! = 0(1),and we obtain
H,STio' S 2aon h oy + lower order terms T.25

Lnder the same assumptions. inequalities 7.24 and 7.25 v:eld for the sorter

7T 70 8 Jaoynh, .y + lower order forms. T8




BRI S S Ml AR B Sl el g d A At SN0 A SO0 AL s i SR S A ROR S et Ra i AN -l

152
ci82acy, 7.27

Cud2aca, 728
then 7.26 and 7.25 show that inequalities 7.16 and 7.17 hold for i + 1.
The previous discussion can be summarized as in the following theorem.

Theorem 7.1 For any i 2 1, an (n Jogn + O(L;(n)))sorter with I/O ports on the boundary can be

constructed, such that
AT? = O(n2ognL;(n)) . 129
for T € [Q(logn ),0(\/nL;(n))] Such sorter is optimal if ¥ = logn + 8(L,(n)).

The ideas exploited in this section could also be wused to design non-boundary
(n logn +0(L;(n)) )sorters with AT?=0(n2L;%n)). However the constructions are rather ela-
borate and do not add further insight to the problem of sorting medium words, and therefore are not

reported here. .

7.3 SORTERS FOR SHORT KEYS

In this section we derive upper bounds for the (nk)-sorting problem when the keys are short, ie. :'f?‘:j 5
when & € logn, or equivalently, when the size = = 2¢ of the universe is not larger than the size n of .-‘,.-:::::

e LS
the multiset being sorted. -

We recall from Chapter 4 the lower bounds for this problem. We restrict our attention to word-
local designs. In fact, as indicated by Theorem 4.8, non-word-local protocois lead to larger information

exchange than word-local ones,

. e
. e
A &’ 8

It is useful to introduce the quantity
d 3 nir 7.30

which, as we shail see below, plays an important role. Then, for boundary chips. we have ‘rom

Theorem 4.7 that




E2RACAARA A S VA A A L A St i A e A i N C A R PPN L A S N L A M i S Sul AL/l Anl il Nl Al Sl el SHE Sash

153

AT = Q(d logn r3logr) 7.31
For non-boundary chips, Theorems 4.9 and 4.10 respectively yield

AT?= Q(d r?) 7.32
and

AT = Q(d r3¥?) 7.33
Furthermore, Theorems 4.11 and 4.12 tell us that

A =Q@ logl +n/r)) 7.34
and

T = Qlogn). 7.35

7.3.1 The Algorithm

Here we propose a new sorting algirithm, specifically tailored to short Keys, and we also describe a

VLSI implementation of it, whose performance comes very close to the above lower bounds.

The main idea of the algorithm consists in using an efficient encoding for multisets of small keys
in the intermediate stages of the sorting process. We shall in fact encode a muitiset S by means of its
distribution function. Let us recall (Equation 2.15) that if S is a multiset on the universe

U =1{01.... 7 —1}, then the muitiplicity of an element i € U is defined as

ai 3 number of occurrences of element i in multiser S,
and -he distritution function {(Equation 2.19) is defined as the vector

A
(MEY2 T ulj): i =01,...0=1)

Lo

A sumpie but userul rroperty is that the distriburion of the union of two muliisets $ and R issimrlv
Mo iy Moo+ MU, =36

‘Aith abvious meaning of the svmbois. Taus, we can say that the xerging of vwo seguences is

JODDRENEA IR T A, i S A

BB




b e P P — SEaragn SRS it T A AL IR A S A SN e T

154

transformed - in the distribution encoding - into the sum of their distribution functions. This property

L

is used to design the following simple algorithm:

1. (ENCODE) Subdivide the input multiset {X o, ..., X, -y} into d = n/r submultisets of 7 keys each,

and compute the distribution function of each submultiset.

2  (TALLY) Sum the d distribution functions (as r~component vectors) obtained in Step 1, to pro-

duce the (global) distribution function of the entire input multiset.
3. (BROADCAST) Replicate the global distribution function d times

4. (DECODE) From the i-th replica of the distribution function obtain the r consecutive output keys

Y, YoapeesYirar=1 i =01,...,d —1), with a suitable decoding procedure.

The rationale for Step 4 is the wish to deploy decoders comparable to the corresponding encoders; this

creates the need for Step 3, the d-way replication of the distribution vector.

A preliminary step is the discussion of the algorithms for encoding and decoding, which turn out

to be based on merging and sorting operations.

7.3.2. Transcoding Operations

In order for the algorithm outlined above to be efficient, we need an efficient way to obtain the
distribution encoding of a multiset from its list representation, and vice versa. We propose now some

algorithms to perform these transformations of encodings.

List-to-Distribution ( Encoding). Given a multiset S represented by a list {X WX ,.... X, o} with

X, eV =1{0.1,...,r =1}, we define a sorted list
Z =(ZpZyoisZyury) Bsort (S UL ). 7.37

I u(i) is the multiplicity of i in S, then the structure of Z is a concatenation of runs of identical svm-

bols

Z =(0....,0'1.....!.....r—-l....,r—l) 7.38

gD+ u(l)+t ulr =)ol




155

If we consider the last element in a run of the form i,...,i (underscored in 7.38), we can see that its
index in the sequence Zisb = M (i) +i, where M (i ) = u(0) + u(1) + ... 4+ u(i ). The last element in

a run can be easily recognized because it differs from its successor. Thus, we can construct a sequence

W ' defined as

b-Z,, if Zh *l7 = Zb (that is v w 'b = M (Zh ))
w. = . 7.39
¢ n if 2,, =2,

If we sort W' and define W 4 sort (W), all the elements of W ' that are equal to n will occupy the
last n position of W, and we can extract the distribution of M of multiset S from the first r positions,
el

M=(M©O),....Mr=1)=(W,....W,_,) 740

If necessary, the multiplicity could be obtained as u(i ) = M (i ) = M (i ~1), where M (~1) 2o
Example.

S =10,1,1,2,4,4.4,6,7,7}, (n = 10), U = {0,1,2,3,4,56,7}, (r = 8).

Z =(00,1.1,1,2.2.3,4,4,4.4.5,66,7,7.0)

W '=(101,10,10,3,10,4,4,10.10,10,7,10,8,10,10.10)

W =(1.3,4,4,7,7,8,10,10, ...,10)

M =(1,3,4.4,7,7,8,10)

w=1(1,2,1,03012).

Distribution-to-list (decoding). Given the distribution vector M = (M (0)M (1).....M(r—1)) of a
multiset S, whose sorted list representation is (Y .37 ,,... .3, -;), We want to compute a set of p consecu-
tive elements of thus list starting at ¥, , ie. we want to compute (1,17, .p.....F ., ;& Qbviousiy. if 5
= 0,and p = n. Ve obtain the eatire sorted sequence of S. However, as we sna!l see, it is useful to be able

<0 compute difereat portions of sequence (¥ ,,...,}", _;) indepeadently of each other.

The method proposed .s tased on the following idea. If ¥°, =, then there are at least 2 ~ 1 ele-

ments of S aot larger than i and at most A elements smaller than i, o that M{i~1) €A <M )

Thus, i we :nsert A (0 € 2 € n ~1 nte the sortad sequence M = (M 0% ..., W - =1} and fnd the

L 2 e e

D L

“aC 0 s b 'y S



156

value i such that M (i—1) € h < M(i) we can conclude that ¥, =i.

Then, if we want to compute Y, .Y, 4y,.... +p=1» We have 1o simuluineously insert the elements
of the sequence B = (b,b +1,...,b +p—1) into sequence M, which can be done by merging M and B.
For later use, we first append to each of the‘keys to be merged a tag field with value zero for elements
in M, and with value one for elements in B. Then we merge M and B in a stable way obtaining a

sequence
W = merge (M ,B). 1.41

In sequence W, an element h of B follows M (0)M (1),... .M (Y, =1),as well as b,b +1,..., A =1, and
will therefore occupy the (¥, +h —b)-th position. If the g-th element of W comes from sequence B

(which we can test from the tag field) and has value A, then we update it as
W, =¢g=(W,=d)=Y,. 7.42

At this point, by a simple unmerge of the sequences of zero tags and one tags, we obtain a sequence of

one-tag elements equal w0 (Y, ¥y 4y, ... Y 4y —p)-

Example. M =(1,3,4,4,7,7,8,10). (Muitiset S is the same as in the previous example.) B = (6.7,8),

ie. b= 6, and p = 3. If we denote "tag-one” by underscoring we have

W =(1,2,4,4,6,7.7,8.38,10).
The three underscored elements W W4, and Wq-are updated according to 7.42 yielding =

We,=4-(6—6)=4,W,=7~(7-6)=6W,=9—(8—6)=7,50that Y, = 4}, = 6 and re=17.

In general, the elements of both M =(M(0),....M(r—=1)) and B =(b b +1....,6 +p—1) are

e . o
Lt
FLPNI 2 W)

numbers in the range 0,1, ... ,n-1, and their binary representation requires logn bits. We discuss now 2

=<

some modifications of the above procedure that allow us to work with numbers with k+1 bits, at least ‘--

in the case when b =ir,and p = r, which is needed in our sorting algorithm. \-"
p¥a

If B =(ir jr +1,... ir +ir —1), we can replace M (h) by ir whenever M (k) < ir, and by (i+/}r -_,:

whenever M(h) > (i+l)r, without affecting the order of elements of sequences B and M. This observa- i

tion suggests the definition of a new sequence, which we call the i-modified distribution function. i.e.

- - o e "m T
(PERE AP AP IS JEN




W D W T T T R ore—r— A LA IS SR Bl Rl A A A Aded At Yo 4" st oA SN S e e A iy

157
ir fFMMh)<ir ~
M(r)=1{ M) ifir M) <E+1)r 7.43
G+ EMMKB)>G+1r :
~‘_‘ Then, the sequence (Y, Y, 4....Y, 4 ) can be obtained by a straightforward modification of the -
e above decoding procedure, operating on the squences M, = (M, (0),...,M;(r—1)), and ;

B =1(0,1,....r =1), rather than on sequences M and B. The advantage lies in the fact that elements of

M, and B can be represented with k+1 bit (instead of logn).

In the sorting algorithm outlined in Section 7.3.1, both the encoding and the decoding procedures ¢
are applied to multisets of r elements of k = log 7 bits each. It is then easy to see that both the encoder
and the decoder can be realized as simple modifications of a (2r,log r+1) sorter. These modifications can

sie be done without affecting the (order of the) area-time performance of the sorter itself.

< 733 The Network

We discuss first a nonpipelined version of the network, and then we obtain the area-time trade-off

by means of a pipelined version. :

- We recall that n, 7 = 2*, and @ = n/7 are powers of two, and we introduce the following subse-

quences of the input and of the output sequences of the sorter:

S Xy Xy X )

RV, Yyt T o)
We also consider the distribution function of multiset S. .
M, =M {0)... Mr=1))

4 which is a vector with r (k +1)-bit components.

N The nonpipelined version of the sorting network is the cascade of four paris. iilustrated in Figurs
N

- . 7.4, 2ach performing one of the four stegs of the algorithm.




158

P U— R n/r blOCkS———-——D“
r Keys r Keys r KIr
ENC ENC s ENC

r Tally Trees

-+ Logn Bits

Broadcast Trees\

0 <

DEC DEC R DEC

r Keys rKeys r Keys
Figure 7.4,  Structure of the network for sorting a set of short keys. T
NN
: -
a—ct
(a) (ENCODERS) Encoders E ..., E4 -, each capable of computing the distribution of a given (rk)- -
multiset. Encoder £, inputs S, and computes M ,. We assume that each encoder has r input N \
lines and ~ output lines, and that 1/O operations on words are bit-serial. .-,': }
e
(b) (TALLY TREES) Tally treesTL,...,TL, ., ,each a full binary tree on d leaves, where a node at ee
distance [ from the leaves is equipped with an O()-bit storage and an [-bit operand carry-save RN
adder, and is connected to its father by O ({) wires. The j-th leaf of tally tree TL, is conneczed to ] ‘
g
the h-th output line of encoder £, from which it will read - in bit serial fashion, LSB first - the o
i
distribution value M (k). By summing M (A),....M,_(2).TL, computes M(hl. Thus each ndns
?::-':u
tree tallies d k-bit numbers to produce a (k+logd) = logn bit result. The operation of a tally tree ;t-:




159

is illustrated in Figure 7.5. First, for each bit position we obtain a logd-bit count of its 1's (this is
done by suitable adders at the nodes of the tree); next the bit—counts are added with the correct
alignment (carry-release) at the root of the tree. Each of these additions is performed in O(1)
time on a redundant carrv-save representation. The conversion from carry-save to standard is

done at the end of the step in time O (k). Note that at any time only one level of the tree is occu-

o pied by data generated by a given bit position.
(c) (BROADCAST TREES) Broadcast trees BC,....BC, _,; , are similar in structure to the tally trees,
b’ but different in the functional capabilities of their nodes. The h-th leaf of broadcast tree BC, is

connected to the h-th input line of decoder D, , to which the value M (h)mod r must be

transmitted. Let j, be such that jor € M(h) € (j,+1)r. Then leaves 0,1, ... ,jq-1 of BC,
must receive the value r, leaf j, receives M (h)mod r, and leaves j,+1,....d =1 must receive
the value O. This is done as follows. The logd = logn-k most significant bits of M(h), which are
indeed the binary expansion of j,, are used to set leaf j, to receive the X least significant bits of

Mih) and to appropriately force all other leaves This would be trivial if logn time were allowed

| 1Qutput
P d - -
) { — Carry
— .~ —1 Release
TV -
} [} .
§ .
< i 5
i . | :

s
input tr l l
| !

|
[ﬂ

Binary Counting

Figure 7.5, Tally-tree funstion.




r i LA A-dh avh ael Sal swih s o e ol aals sdin i SNRCaSelt o R RO
o ATy ad B e ScA oA R/ A Brh ek i R el Ani Sk Ank Ak S -
AN BRI AR A k

160 -

for this operation. However, since we only allow time kthe logd MS-bits are injected in parallel
into the root, and trace the path to leaf j, losing one (most significant) bit at each level; the least
significant k bits follow serially.

(d) (DECODERS) Decoders Dy»...,D,-; , €ach capable of computing the portion R; of the output

sequence from the appropriate modified distribution of the entire input multiset. The /O opera-

tions are performed with a protocol similar to the one used by the encoders.

An important remark is that the above network has period k. Therefore it can be used in a pipe-
line fashion with this period. This leads to the final sorting network. Letting d =dd,andr =rr,
(since d and r are powers of 2, so are their factors), the network has d ; encoders and d , decoders, each
with 7, input and output lines. Correspondingly, there are 7, tally and broadcast trees, each with d»
leaves. In this network, a given encoder will process d, different multisets (£; will process
S, S, +d -+ j+a~a» and 2 given decoder will compute d, different subsequences of the output (D,
computes R, R, . .- sR 4q 2> Each "wavefront” has a depth of X-bits, 50 that the period of the net-

work matches the depth of each pipelined wavefront.

7.3.4 Area-Time Performance

We shall focus on encoders and tally trees, since decoders and broadcast trees are analogous.

-

An encoder with 7, IO lines can be realized as a modification of an (r,logr + 6 (logr))-sorter (see

Chapter 6), with performance A = O(r#), T = O(kr /r,), for r, in the range Vkr < r. < r.

The tally tree structure, with d 5 leaves and edge-bandwidth r ,, can be laid out in O (d - 5 ) area,

by using the H-tree scheme. This area also accounts for the encoder modules. y

Finally, adding the contribution of the r logn-bit registers deploved to store the r values of the

P
PR

distribution, we obtain a global area

L™

A =0(dri +riogn) 7.44

where1 €4, € d.




- . . - s et . a® ", . - . . . . .
DR P PRV, LIPS EPASEIP P W L AF TS P, S W PP

............

161

The running time is of the form (for suitable constants C, and C,%

T =C l(Ckrd, + logd 2). 7.45

In fact, an encoder spends O (kr ) time to process the r, data wavefronts for each of the d, sub-
problems assigned to it. A similar performance is achieved by the tallv trees when used in pipeline,
with the addition of the terms logd. representing the depth of the pipe. Recalling that

ri=r/rnd,=d/d,and d = n/r, 7.45 can be rewritten as

T =C I(C -_.kn /(rzdz) + logd 2). 7.46

At this point, the analysis of the network performance is complete. However, we can still optim-
ize the choice of r; and d . Formally, for each feasible value T of the computation time, we should
minimize A (as given by 7.44) with respect to d, and r ., Which are subject to the appropriate con-
straints.

On an intuitive basis we expect the following facts. The minimum computation time should be
achieved by the network with the maximum degree of parallelism. ie. with maximum r.and d» To
obuain slower networks we have two possibilities one is to slow down the encoders and the decoders
(by decreasing r ,). and the other is to decrease their number (d 2). As long as it is possible, we prefer to
decrease r, because the area depends quadratically on r, and linearly on d, (see 7.44). However.

when r » reaches its lower limit Vkr , the only option left is.decreasing da

Thus, we shall obtain that for fast computations the area depends quadratically on 1.7, and for
slow computations the area depends iinearlv on 1.7 . This result is not surprising since we had aireadvy

found a simiiar behavior for the lower bounds.

On a more quantitative basis we introduce the variable
4
=

r: Eounir, Cakn Adiogd )

anc distinguisk two cases:

R P T UU T I L R PSP e ST Y
o - o S o,

- e e T
- . - . . - . «e" a " . " - - ..
PRI I IR P IR

ST T DR,




162

1. 73 > JVkr .In this case, if we let 7, vary in the interval [Vkr 3] while keeping fixed d, = d,

we obtain

AT2=0(d (kr ), for T €[Q(logn ) (V&r )]. 748
If we hold r, fixed and equal to Vikr , and we let d; vary in the interval [logn/k.d} we obrain
AT =0(d (kr ¥2), forT €(Q(Vir ), O(k¥2n A7 logn )} 749
For d, < logn/k, then the term rlogn prevails in the right-hand side of 7.43, so that no reduction

in area would result by selecting a computation time larger than &k ¥*n A Jrlogn)).

2. r3 € Vkr . From 7.46 we can see that this condition is equivalent 10 (1 + Cor )k € logn. In this
case r is so small that even with the slowest encoder and decoder, the encoding/decoding time
would be less than the tally/broadcast time, if we were to use d leaves in the tree structures.
Thus, we define a value d ; by the equation

diogds =C\Virnir, 750
and we consider the class of networks obtained when d € [logn /k d3] while ry = Vrk . The
performance is

AT = 0(d Uer P2), for T €[Qlogn ), 0(k¥*n /\/rlogn )] . 751

The above discussion is summarized by the following theorem.

Theorem 7.2. An (nk)-sorter can be constructed, for 1 € & € logn, with the following perfor-

mance (r =2, d =n/r,C,a suitable constant).

AT?=0(d (kr ) for T €[QUlogn) 0 (Vir )] 7.52
and
AT = 0(d (kr 2 ) for T €[Q(Vkr ), 0 (k¥n AVr logn))]. 1.53

If (1 + Car)k € logn, then
AT =0(d (kr ¥2) for T €[QUlogn ), 0 (k¥*n AJriogn))} 7.54

Comparing the results of Theorem 7.2 with lower bounds 7.32 and 7.33, we can make the following




163

observations. In the range of computation times Where the governing bounds are of the AT? form,
there is an O (k<) gap. In the range Where the governing bounds are of the AT form, the gap is instead

0(k32),

In fact, when manipulating multisets of r keys, in the form either of lists or of distributions, our
circuits function on an O (kr )-bit representation of the multisets, where O (r ) bits are sufficient from

an information-theoretic viewpoint.

One potentially useful modification is the use of sorter for medium-length Keys, since encoders
and decoders are based on (2r,log(27))>-sorters. However, tlus would create a new problem, that is once
we keep the multisets of size r encoded with O (r ) bits, it is not immediate to see how the multiplicity

of different multisets can be tallied.
Remark. The network described in Section 7.3.3 can also be laid out with all the I/0 ports on the boun-
dary. A simple analysis would show

A =0(d,log’d .rf + rlogn), 7.55

and a result analogous to Theorem 7.2 can be obtained.

7.4 SORTERS FOR LONG KEYS

In this section we derive upper bounds for the (nk)-sorting problem when the keys are long, ie.

when X 2 2logn.

We summar:ze irst 'what we aireadv xnow about the probiem. The case of word-iocal protocols
is eas1iv taken care of. [m fact, it 1s not difficult to realize that all construcuons proposed in Chagpter 6
achieve AT = O(%°n?) on keys of arbitrary length &, thus attuning the A7 = Qlk*=7) Jower

roura of Theorem 4.13.

Thus, a2 turz our attention 0 noa-werd-iocal protocols. it is useful to defice the juanuty




t—. Cgiaanecan - S % T Bre At Ave Sre PRI A Sal A Sn S0 Jhan fave it it Laa= ol AT 0l MLl grl 0 AL Sl An A A Rt Pt B S

.............................

164

which, as we shall soon see, plays an interesting role in the sorting of long words. Considering that k =

dlogn, the lower bounds obtained in Theorems 4.18 and 4.19 can be respectively restated as

AT? = Q(d(nlogn }) 157

and
AT = Q(d (nlogn }2). 7.58

Furthermore, Theorems 4.20 and 4.21 tell us that

A = Q(nlogn) ' 7.59
regardless of d (or k), and
T = Q(logn +logk ) = Q(logn +logd). 7.60

The performance of known constructions discussed in Chapter 6 is
AT?2 = 0(k*n?) = 0 (d%(nlogn R®) 7.61

as we have mentioned above. Comparing bounds 7.57 and 7.61 we see that there is an O (d ) gap so that

the known designs are optimal only if & = O(1). The general case, when d increases with n, needs

further investigation.

We shall present a new design of an (nk)-sorter whose performance comes very close to the lower

bounds 7.57 and 7.58.

7.4.1 A Non Word-Local Sorting Algorithm

From the preceding discussion, it is obvious that to improve the AT ® = O(d?(nlogn ) upper

bound we have to resort to non-word local algorithms. Moreover, the form of the lower bounds, which

are lipear in d, suggests the decomposition of the problem in d subproblems, whose solutions are com-

bined with small infermation exchange.

The approach that we shall follow consists of decomposing the keys in blocks of consecutive bits,

and then processing together the homologous blocks of different kevs. A similar approach has been

.......................




v ———

g

T

—veer

—

v

165

considered by Leighton.!  Some notation will be useful for our discussion. (Refer to Figure 7.6.)

For simplicityv we assume that n =2 (so that logn = v is an integer) and that
k = d logn = d v, for integer d. We observe that to require that k/logn is an integer is not a serious
constraint, since we can always comply with it by adding less than logn bit positions to the keys

without changing the input size significantly.

With the above assumptions, we can partition each key into d blocks of consecutive bits. We

denote the h-th (least significant) block of key X, by

X, (h) =X hev=t  xhv 7.62

for h =0,1,...,d —1. (See Figure 7.6). A similar partition can be also considered for the output keys,

defining
- k -
l L‘-V——'-O—V:}
(h+1 )vl hy
!
|
| L
n X
|
l
! 1
Y Q '
Figure 7.6 Mvomenclature for input data.

iPercnal communication,

................

cofd b

pd
R .' ,' I . N
PR




r_v_-,‘ R R e . i R el N N R R R A R T -~ e e T e

166
}" (h) = Y.,(I' ¢l)v—!.“Y'h v, 163 e

It is obvious that, for given h, (Y o(h),....Y,_,(R)) is a permutation of (X o(h),...,X, 4,(h)). This
permutation is functionally dependent on the values of the bits in blocks h, h+1, ... d-1, as we have

already seen in Section 4.2, where the information transfer caused by this dependence has been infor-

mally called "secondary fiow". S

The rank of key X; in the multiset {X,...,.X, _;} is the number of keys in the multiset that are

strictly smaller than X;. Formally T
rank (X,)=1{j:X, < X;}I. 7.64 -]
o
The following property of the rank is very useful for us. Suppose that each key X,.., X, is M
viewed as the concatenation of three strings, namely :
X, =Lis C* R ]
- -
where = denotes string concatenation. Moreover the number of bits of L; is not a function of & and RN
-
similarly for C; and R,. Then if we define T
rank (C,) = 1{j:C, < CI! 7.65 X
and we view rank (C;) as a binary string of v bits, we have that : }Tij
rank (X,) = rank (L,x rank (C,)* R,). . 7.66 ':'-'.i
%
1
Equation  7.66  follows from the fact that X, < X, if and only if .
L,»rank (C,)+ R, < L. » rank (C, )+ R, whose proof is almost immediate.
If we consider the decomposition
X, =X, (d=Dr...x X,(h)s ...x X,(0)
of the input keys, and we repeatedly apply Equation 7.66 we obtain
rank (X,) = rank (rank (X, (d =1))x...x rank (X,(h))+ ...+ rank (X;(0))), 7.67 T
.
which. in words, says that the rank of the concatenation is the rank of the concatenation of the ranks. ‘_::\_:

l"
iy




|

T T R T ——

167

This property allows us to reduce the computation of the rank of long kevs to the computation of the
rank of small substrings of “the kevs themselves, but we do not know vet how to compute the rank of

the substrings. This problem can be solved by the following procedure, Which is based on sorting.

(1) (EXTEND) To compute the ranks of the elements of {X o.X },....X, —;} form a new set of keys

X =X 1+i, i =0,...,n=1 where { is represented with » bits.
(i) (SORT) Sort {X o»....X, —;} 10 obtain a sorted sequence T ,.... Y, -, - Then

T, =Xnuyrmi), i=0,..n=-1

where 7{0),...,7(n —1) is a permutation of 0,...,n —1.

~

(iii)  (RANK) Compute rank (X ,;)) as one plus the maximum index j such that X ;) < X If
no such index exists, then let rank (X ;,) = 0.

(iv)  (EXTRACT) Form a new set of keys Z, = m(i)* rank (X 4 )% X xyand sort {Zon....Z, s

to obtain the sequence (Ji,....,i,,-l) where X =i * rank(X,)* X,.

Example. An example will illustrate the ranking algorithm. For simplicity we use digits instead of

T,

bits.

(Xopeon Xg) = (7.6,1.44,7.9)

(X,%0,...,X = 6) =(70,61,12,43,44,75,96)

oo [ 4
"J ?" Pt ot ? 1
CPLATR N RS R A

(X oy * 70),..., X mey* 76)) =(12,43,44.61,70.75,96) NS
RS
(X Oy X 7'(6)) = (1'474’6'7’7'9) '““..i

(rank (X nom--.,rank (X me))) =(0,1,1,3,4,4,6).

Once the ranks have been computed thev can be used to sort each of the blocks (into which the kevs

have been partitioned) independently of one another. Indeed, if
Vo= rank (X ) X, (2), }

ana (W.,....W, _,) is the sorted sequezce corresponding 0 ‘v .,....3 , _;!, then it is easv to see that

W= rane (Y, Y. (0l




168

Summarizing the preceding discussion, we obtain the following divide-and-conquer sorung algo-

rithm

[

ta

(DIVIDE) Decompose the input keys X o, ...,X, -, into d blocks of ¥ = logn consecutive bits each,
sothat X, = X;(d=1)» ...+ X;(A ) ...x X,(0).

(SUBPROBLEMS) For each h=0, ... d-1, compute rank (X o(h)),... rank (X, _(h)) with respect
to multiset {X o(2),....X, _(r)}.

(MARRY) Compute the ranks of the X,’s using Equation 7.66. More specifically, with the simpli-
fying assumption d = 2% we compute the right-band side of 7.66 with a fully balanced tree of

operations. Each operation has two input sequences and produces as output the sequence of the

ranks of their concatenation.

(ROUTE) Replicate the sequence (rank (X),... rank (X, _;(h))d times - one for each block -
and sort the sequence (rank (X o)* X (h),...rank (X,_)* X, _(h)) for h =01, ... d-1, t0

obtain the seqence (rank (Y o)= Y o(h),...,rank (¥, )= Y, _i(h))
(OUTPUT) Obtain the output keys ¥ o,....} , a8t = ¥, (d=1)x ...5 ...« ¥, (0)

The algorithm we have just described has a shortcoming. In fact all the input keys must be read

(step 1) in order to compute rank (X ,)...rank (X, ;) (steps 2 and 3), and no data can be output uatil

step 5. This shortcoming can be eliminated by modifying the algorithm according to the observation

that to arrange in the correct order the bits of a given block it is sufficient to know the ranks of the

blocks of greater significance.

We can proceed as follows. For simplicity, let d = d ;d 5. Let us 2also denote by X(h} the portion

of the array X corresponding to the h-th block of the kevs. (The rows of X(h)are X o(2),....X, _i(h).)

Then, we organize X (d =1),X (d =2),..., X (0) in a d ;xXd , array with the index of the biock in row-

major order (see Figure

-
telle

a'ad et )

"." "'.."."’. T

[ l‘
W7

' [N
” l"- " .'."'
: ‘L.LI' calala




169

———— dblocks -

Xi0) XD C. X(d 1)

Xld.) Xldyl) C X(2d 1)

d,
. . . wavefronts
Xid-d 2, Xid-d 24'1) e e X‘d'l’ 1

Figure 7.7. Organizing of the input for the pipelined sorting algorithm.

We propose a pipelined sorting algorithm with d; wavefronts of data. each of which is a row of

the array just defined, and consists of 4 - blocks.

The topmost wavefront is processed exactly as describéd in the nonpipelined version of the algo-
rithm. However, the ranks computad at step 3 are stored for later use. In fact for the second wavefroat,
once the ranks are computed they have to be further concatenated with the raanks of the first wave-
front, and the ranks of the concatenation will drive the permutauon of the datwa in the second wave-

front. The computation proceeds in a similar fashion for the remaining wavefronts.

7.4.2 The Network

We now describe a network carable of executing :he pirelined version of the sorting algor:thm

cescrited above. ‘aith efficient area-time performance.

4 voal

[ S
P

AL

e

)
2ty N

P s

Ay 1y -'.l'

'o'.'f"- "'
[

P
)




R —" ——

170

Figure 7.8 shows a high level representation of the network consisting of two tree structures and

a family of linear arrays, whose interconnection and nodes are to be described in the following.

(a) The ranking tree. This component is a fully balanced binary tree on d , leaves, and d ;—1 internal
nodes. Both the leaves and the internal nodes are essentially sorting modules with some further

capabilities to compute the ranks of a sequence, although a leaf module performs a function

Figure 7.8. Structure of the network for sorting a set of long kevs.




e LB i Bl St I et e Pt

o

v

' 3unindwod [$A JO L1033 2aISTIYad oD
e Jo 183wmdofaAdp Yl 01 ANQLIUOD [[Im AY: ey oy os[e apy A9 Y1 IPISIq PIIY Jaoue
ST 31373 319y Sp1033z Jo Suruos Jo Surdsew oy “Sutiios 01 parea: swatqosd I9MI0 sZATRUT 01 [NJASN aq

A[UTRLI [[1A STSOU3 STQI U1 Padonponul 53da0Uod [eINIdNIYaTe PUE OIUILIOS[E ‘PUNOQ-1amo] ]

FAINIDNIYME [STA JO AJ0SY3 SNBWANSAS PUR 1T2I2Y0D B

Joj adoy 3jqeuoseal e 51 a13Y1 ‘Swajqosd J9GI0 Jo uonn[os Y3 J0J ArneINT Iq Wt pasodord suSwsep [SA

UT pasn SYI0M1I9U Y3 JO OSTR INI3 ST ST DWS “aqnd AJetiq 3 pUe ‘3an Areulq Iy ‘Aeire seeur] oy

SIMIdINNS JIseq I Jo NIUIWJO[IAIP SB PamIlA 3q UTD WIYL JO [[© ‘SHIOMIST JO LI3LIVA © PIIIPISTOd

aAeg am YSnomI[V SISO SIY3 UI PIUTINEXS SIFIOS JO SPUIY [RIIAIS Y3 JO JIMIdAIYIIE 3y Uo SuIssnao P
£q spem 3q osje Ted UoNEINdWOd [SIA J0J 1SIINUT [EIIUIZ JO STONLAINGO SuUnNSINTT 3wog

*uritos jo Lirxajdwod swm-vare Y3 Jo UONTZLIN

-oureyd Iq) 319]dwos 01 PapaIT 51 YIoM JIYLIn 1eT: Sunesrpum ‘wﬁﬁoq I3mo] uone[isssn-arenbs sq3 £q

se [[oA Se stsA[eUe sA0Qe a3 AQ p9saS8ns asoyy weyy Jadrep A13ydys are £ sadeyn) jo spunoq saddn amy

‘popu] "WAY3 UTRIQO 01 PIPIIU SOY3 JO IIPIO JWTES YL JO 150W 18 JB SWI[qoidqns Y3 v1 SUONIN{OS 371 1
JUIQWOD 01 $IIINOSIT JWN-TITe YL 181 SIWNSSE 17 INEeq Newrxosdde L{uo st stsA[eue sa0qe YL ..ﬁl
S
[f_.:j
8.1 NN

..........

...............




e - 00w ce I Sban e ShAE L Aacd e TRt rgrararrwe "'1(-'_--‘-'\'~..'.‘-'.'"._‘u~'-_'2.'-‘._"."-_'-

e - X7l o T oyte e -
QW21  MO(S, 2T VITIQ0 oM pue 7= :p™ ™03 1o Ip s
104 REG P = Fop = IV pre Sp/pX¥aiz o= v voneniis sTUL
T c Sz i t31 ta1grssod STO[[TWIS ST S2MPOU AUl SZUTAL 01 PUR R[NPOW [OBZ AG PIsSINIC SW]

-3013a05 < p; P 9ARY 01 ST A591BIIS 153G 2Y1 UIY3 ‘S NPOIC 2 > ©p Yty paadimbs s NIoalal 3y ]

-oundal asey i s syy iUy
10} (:! p)U= :'L‘f.' 1YY 0s i = J ‘op =V .{C‘ uaMﬁ ST YI0MITU 3l 10 aaU’BmJo_uOd [1eI3A0 3} *7 TN

puT p TalT U! Walgqolddgns © Suissasoad Jo ajqedes yore sznpow p Yila paddinbs s yioxaeu oy j]

(udopupyo = %12
pue (udopo = Vi udonyg= | SKaY | jo sSutnsqns  11q-w8o; w  jo Sumnouad pur

Sumyue: a1 swajqoidgns uSo[/y = p a1 ‘s83Y Suo] JoJ 4ApMyo= ¥ pue (w800 = TT1 (g = ]

‘4 aTis Jo swesninw  jo Sulpossuell are swalqoidgns 4 = p 31 ‘SAIY 0TS Jog

10§ Yz J)U = ;P W10 3G JO DONE[aI © AQ PIQLIINP 210JAIY) ST U pUR MOY UONINIG AQ PIUTILINID

st Luxerdwos awm-vale as0Um ‘adA1 sures ay1 jo [[® ‘SwIlqoidqns jo p JXGWNnU T 01Ul UOTIISOdWO3ID

e jrwpe swajqoid ay1 eyl Sutasssqo peurerdxs 3q UTD SHUISI WAIIPIP O0m1 JOo dusead YL

‘e 1Oy

{euorzodosd St NI ay1 JO vaIe AWy aJaym uoneandwod 1sej Joj Juo pue ‘[/] 01 [euontodosd (1sowrte)
ST SUN3IIY . 1 JO Tele Yl aIIYm uonmndwiod MO[s J0J U0 ‘PW [euonTIndwWod TP 0M3
1UqIYx? suSisop asay2 ‘paapu] Sonbruysey uone[(assN £q pIUTe2q0 ST 0TPWIOIA JI9Y1 UO SPUNOq Jamo[

a3 9outs s£aY Suo[ pue I0US Ios 18 SUBISSP Y1 JO UONRUTWIEX? Y ST 1$a1A1TT Jepnonred 3O
9suewLIo J1ad aum-gare [ewTido-I29U Jo [ewmdo MIlM paudmaldut ag Ted YaNym
sarqiuoSie mau pasodoid aaey am sse[d gsed Joj pue ‘(udorz £ ) Suol pue (udorz > y > udop)

q18us| wnipaw ‘{(ud07 3 Y) WOYS SB SAIY U1 DPIYISSRd dAB M q8us] Asenigre jo SAIY -

1105 UTY 12Y2 SN Y10 JOJ S15Bq I U daeq ( u807)g + u307 = y 1oy suauios (ewmndo ag) ]
e

-3urnios uonesawnuU-sdIaw pue Sumnios N
3
swoilq se yons ‘Suridos [af(ered Joj swyitioB[e [eISSE[d JO UOTINNXS Y1 JOJ ssamdArgare seudoidde 1
o

it -

o' . TR « SRIET NN
L O S tet et et cTetet

......
.......




oy Suidojaasp £q ‘seum uoneindwod [niSutoesw jo 28Ul aInus Y1 Ul siduos [eumdo paudisep

2ABY A ImimIA [STA U UT UONUINE J[QRIIPISUOd JO IUD 31 oty ¢ uSopyg + uBo) =

$1 Midue] A2Y oW1 3y ‘Sumizos Jo asTo [ewdads ® Jo Aprmis [njaied © Gium undaq aaey am

spunoq Jaddn 03 TONITIIE JNO PauIMm ARy am senbiu

~4591 PUNOG-13mo] Ino &q patnided are uoneandwod 3yl Jo S153dSE IVEBAII Y3 [[34 MOY 335 O]

saw8al 10IIPIP 0M1 NIQTYXI A[jeal voneandwod 3y
1BY1 05 'SIUO 1SBJ UI SNEUTWOP JIWLI0] 271 o[IYAa suoneandwod mo[s DI SABUTWOP JIe] SY] “pouTRIqo
2q U®> punoq [V U® PUE , IV U U10q ‘spiom Suoj jo Suriios pue ‘spiom w0Us Jo Sunios 1IGs SIIAD
S [ons swejqoad oy1dads 1o INSEIW Y Y3 UO SPUNOQ JIMO] SPIIA GONRINIES JO 3SNEdIq UOTIR[[36S9
® JO [132 32 AQ paSuehsxs UONIPIIIONNT ay) JO SSA[eUE Y] -a8eJois Aresodwrs) J0j 21810 511 01 DOIEW
-1oJUT Juwlos SPUas pue ‘uwoneindos 3y3 STunp suonedo] Lloww st dn [y sJosssvoid omy 9y jo suo

UM SIN30 “UONEBINIES SB 01 P3LISJ3] PUE ‘9WNI 1SIY aG3 JOJ AI3Y PaIIpPISUCd “WSTURYIIW OG0T

*2MIBIANI] ITALIND 3 JO ISOW UT
3UOP ST 31 ST 4 )| JO SUOIIdRIJ JUBISUOD 3Te 18Ul W JO SIN[BA 01 TONUAIE 5q1 Sumndwnsa wey: Jagies ‘w Jo
UOTIdUNJ © SB 7 JO INIdNIIS 31 312S11S9ATT 01 SUTISIIANUT SIWO0Aq 31 ‘SNY] PUNOG JIMO[ 153G Y3 SIAIS
310Ja19Y3 pUE ‘ w/( W), [ SITTWIXEW 18Y1 W JO IN[eA © ST 311 WI[qodd Yoes Jof (w/( W), [)U = ; IV
Se pANEIS 3q WeY punoq UONER[IsSy arenbs aM ‘UonmOU ST Wiip IAI0 Y 01 PIUBISSE Iv WAy |
pue Jossadoid Juo 01 PauSIsSE ade ), JO SI[QRLIBA w UIYM SJ0sSadoud omi a3 £q paSueyaxs uonewioyul
WNWTUTar 3q3 (W)7 AQ N0UIP A “IIPISUO) 01 YSIA I SIQELIRA O/ JO S IYI ST ), J] “Jossadoad 1330
au3 jo sejqetrea Indur I3 JO SUONIOUNJ re Jossd0dd U0 Jo sIqewrea IndIno Y1 JO IWOS UIYA Jusad

ST QUIWUOIIAUS JOSSI0IA-0M1 3 TT SIOINE [RISAS AQ PATINSIATT L[FAISTNII “WSTUEYSIW U0
~3ueys1s vonvwoyuT oY) 3urazoj wstweyxew [euoneindwod 3 uwodn spuadap anbru

-4331 UOTIB[[9553) 2Y3 &4Q PIUTLIQO SPUNOQ Y3 JO WLIOY A3 18y U3IQ STY UTPUY SUNSANUT AI9A ¥
SpuUNoq J28U0S YINW SIPIA
-oud 11 {s19q10 Auew £[qeqoid pue) spiom Suof jo Sumtos pue ‘spiom woys Jo SuTiios IIYS I MY

swqold IuIos 103 ‘pue ‘esed [e1dads © sp anbruyssn wondasIq Y3 sIwmnsqns nbruygren vone(iessay arenbs

9Ll




R
c ety
P :

eaanntd R
. P . LT e [

3U1 AT JO ST Ul PUTTUIP 1SITATAY Aus $250 11 TITISNS 0L AJBSSEIAT YIPIMPURG 21 G [3Ad] s
1T MO0 UONTWIONUI a1 aInides 01 SN s2IYELa AZIS [{3d Y1 10 d10Y> eldoidde T ‘U083 1NoAT] 2y
2P j25s21 181 ST1a) a2tnbs 10 135 3[QTINS T J¢ AIEPUNOQ U SSO127 DISURYIXE UONTWLIOJUI UL UO PISES
SPUNOG J3M0] USTIQEIS? 01 [001 [niJemod € *anbruusa uonip[iassd alenbs 3yl PIINPONUI 3.4BY am
‘20 = LV wio)
2y: aavy pur ‘gdesS uoneindwos Y1 Jo UONIIASIQ |QEIUNS B SSOIOE PI3UBLIX2 J UOTITLIICIUT 32 TO Paseqy
uaaq 24PY SPUNOY Jamo] awli-eale ‘Afjeuontpes] -drys reueld G U1 COMIBWIOIUI JO MO 3Y: AG PIITL!

-wop aJe suonEandwod [SA 18Ul Jea)d u3aq Sy 1! AI0aW1 AIrReldwWod [SIA JO SUISLIO I IUIG

-£10571 Tonwindwod [S7A JO PIIY Y1 J03 1$IANTT [TI30a3 JO $3130]0POYIAW pUe S[O0) JO
1uamdo]aaap 241 02 Peal OSIT Sey 31 1ng ‘mala Jo autod Tesnideld T W@ol3 PUT [BINAI0IY) B WAl YI0g [T

-uawrepun; JIesIt Aq weiqoud ® ‘Surlos Jo SUTPUTISIIPUN N0 PauadaIp Sey SISL[eUR INO AUO 10N

‘[eAlUT Yoed
Joj avtadozdde ae syuswnSie punoq -IeM0] PUE ‘SAINIMIMYIE SWHILIOI® UL JIP 103 08 ‘nuo:nouaqd
1WAEIp Aq pareuTmop st Kxa(dwoed SWN-BIE Y UOYM JO U JOJ PIYNTIP! 9q UTD SYISUI)
A9Y JO STRAJIIUT J3JU1 1SBI] 1B ‘PIRIPU] “UMEBIP It s£3Y U1 UIMYM WOJJ ISIIATEN 32 JO 32ZIS a1 pue
poros SUTeq 19STINW Y3 JO IS dATIR[RI I YIlM A[QRIIPISUOD SaLrea SUTLIOS JO 3INEU AW *TIS aaey

am sy -monendwod Jo [pOW [STA Y1 Ul SISA[RUR S1I AQ P3[reAal Udq daeq tma[qoid STqy jo sadey

49U Auew ‘saperp om3 sed ag: UT SUTLIOS 01 PAOAIP SUONESNSIAT IAISTNXI |1 Jo ands Ul

b2

suSsep ewndo-Jesu Jo [ewrndo pasodosd

PUE SPUNOq 12M0] PIALIIP JABY a4 ¥ PUR U 7 JO 3SURI 3IMUI 32 304 °J WM UT SIKUWINT 1IG-Y ¥ SLI0S -

Sead ok

1271 3TNOND € 1noAe| 01 parmbas ( 7) 7“0 = V' BaJe WNWITUTW Y3 PIIPNIS IARY Ia SIS ST U]

SN AR

SNOISNTONOD -

8 YILAVHO




r:'_ “.‘“.“,‘“.‘-~'-~"-m‘- - v Ml e e e Sl e S sl Jand e S SRttt i A el M S A

...............................

S
=
[

soum uoneindwos a[qrssod Jo 35Ut 111U Y1 UT [ewTido awTi-vale ST ¢

Wa109y ] JO JaSueydXa-Joi1eIedWOd Y3 1BY2 SMOYS T WAL JO INSaI 3yl Yim uosLredwod v

O 7= upUe‘y= psuonnisqns Jage [/°, WOIJ PIUTRIQO ST g/, UONe[Y */004d
[; 8LL ‘(DO BNy LwI((L NN N0 = V
: ssuewIoiad Smmoro) M UIA PIINNSUOS aq Ted JISUBYIX-I01ered WD ¥ 4/ WBL0Y |

-£Ie110105 SUnisaza1ut SUIMO[[0] Y3 SPIALA €7/ WAI0IY]L Y = P pue ‘| = uS0[ AL = ¥
F vey 12yl SULIAPISUOS ‘sny] -ojdws £1da ST 1A Suninsal oy pue syed sjdwis 01 sersuadp

3 YIOMIIU Y1 JO SIMPOW Y3 [[T ‘PIJPU] ‘135UeyIX-JoILIRdWI0d € SIWO33q JILIoS Y ‘T = u 0 (M)

Spunoq J9mof a2 Suauep m paoldxs

ua3aq 100 SBY 1BU1 UONIPUOd ® ‘Lrepunoq a3 uo suiod Q/f [Ie Seq PIQLINIP IARY IM S0 YL (V)

‘SurtgonuIw YiIom Ie UOMIIS STYL JO N[NSIL 3 TO SUONIRAIIQO OM ]

(p8ol + udoy) U = .St eum uonenduiod Uo punoq Jamof 3 A p3orudoy) 0 = [ saadtyoe
uSissp 159158} INO 1P ST Wajqoid Jeqioue ‘Jpasit ded sya sepisag Aarxajdwod Iwm-eare a1 JO UONEZ!
-191501eY) 939[d1WW0) © UTRIGO 01 PIP3IT ST Y104 JaYuIng SA3Y 8uo] Sunos jo wdjqoid o Jo sisAteue o

U1 apew U39q 2ARY UONIP 13U Yy Ut sdws aeyy sneorput ded a1 Jo azs [[ews aM1 YSnomnay

“eale 1NOA®] Y1 UO PUNOQ Jomo[ (uBon)3 = V I3 SUTENIR A[SNOITTY
-[nuns uSisep STY L *9A0QR PIdNIOU APBAI[R JARY IM ST “TSISIP 1S3MO[S 3 10 (1) O SIWO33Q pUe ‘L i
soysturanp gorga ‘ded (( L/ udoqup p)3ono we st asemy {( uSopup p)O( uSorup P 3o1)U) 3 UL
I0g spunoq Jamol pue Jaddn UM de3 ((udoy X}, 801)0 = (Pz301)O
8

ue st an [( uBopup p 8op O (udor p o)V 3 L J04 SUOTIBAIISQO

-MO[[0] 973 INCW TES am §¢°L PUL £$°( SPUNO] JamO[ QI £, WAL0IL Jo s[nsas 3y Zurredwo)

rLl

...............
s e »




= C[Flplitaa;uiaq m Ares ' p STiiie] pue udopun Y = ¢
SUCOTY  AQ  PATIPIQO ST JOIATYYG JF Yl PIXY Py s 'p S[Ga T(W)O uderin Y§ ]
sducs ayy W syTA ¢ Sumia pur ‘gz, uUonemby o061 Suipiende ('p uBoyyy 8oy = ip

eyl yons lp anjea s 'p Joj Suisooy> Aq pauteaqo st JOLABURY . JV AUl C‘Aleoysads

2001\ '69’, DUT QG suouenbj jo suoneindiuew 2jduNS U0 paseq Aj[THIGasse ST 100id Ayl Soc4d

1L [ uBonip YO udopun P3O} D L 0] ( e uBoquy( I/ uBoup pySoipyO = IV
pue
9.2 {( udorun p8op) 0 udoy poyt3] > L 03 (  udoqu) p.301P)0 = ; IV

oueWwIo Iad SUIMOTI0] Y1 im ‘u80) T £ ¥ JOJ ‘PAIDNNISUOD 3G UED JNIOS(YU) UV { w209y ]
W02 SUIMOI[0] 31 AQ PI1TIS SB ‘sI01ATYq
ANBIPAUHINT JO Wnaidads SUNSAUAUI Ue ST 131 USISIP 1S9MOfs 9§31 pUT WNSe] dY1 UPM1ag
"R$", PUNOQ $IAINYOL 31 se ‘Tewnido paIput 51 USISIP Mmofs ST
SLL ( udopup P)O =
(P =tp/p = 'paoum)pue
vLL (uSop)0 = vV
£q uaAI8 st uSrsap STQ? jo aduemioziad oy ‘yesd
~Jestp s1gnq a1 pue 3pou I{3ULs © 01 SNEBIITISIP 330 YRR IBWI 05 [ = TP pue { UBOUA)O = ¢ UM
paAdIgoe §1 STq] < p pue @ Y10G IZMUIUTW 01 PRU A ‘BIe Y3 IZTWTUTW O3 1URM M ‘PTASTI *J]
ELL ‘(p8oquBoy) 0 = ((udoy y)807 uBon)0 = L

pue

WL ;¥ PO = (uwd0)/;u )OO = ¥

. ..

. .
[ v e e e 4 e

. PR
.o AR I
LI I Veirprarpay s ol

s

"
R
P

AR
L




- - T w - i A hadt Sad etk Mg mndit dinadt Seanis s sl nlk Sedl St il RN Siadh JER SRS SR
At e e e i . T e i iy Mt S N w0

UTe1qo 3 “UOISN{3UO0) U

1272 ((u8oy x)8oy/(udoy ¥3)0 = (Wdoptpy y = tp
sng] < jo wed 1a8aur ey ‘A1estaaad azow ‘3o

0LL (("p udoyy y)817 = tpBorz = 'p
uon
-tnbs 241 sausnies 1241 INEA Y2 ! p 103 350075 am ‘sny] WM uoneindwiod 31 Jo IIpJo Y3 Ul Ured ou st
291 © p 801 T URYy) II[[RWS SAW03aq | p USYA ‘JIAGIIOA *(§9°L336) Bale a1 103393 pue ¢ p saseatom ! p
Sutsea1sap ‘Iansmoly 7 = !p asooys pinoys am ‘w80 ¥ = ¢ plp 1uTensuod aq spun CpSojg + 'p
aZITTUTWm 0] < W)g = q S s8uel Jqisstwirad Y3 UT Infes WnWIXeW 32 ‘g Jo <p 3ol ¢ + ! p szrmruTw
01 pUE @ SZTWTXEW 01 JABY M IBYL JLI[D ST 1 “UONNOIX3 I[QqIssod 159158 oY1 UTLIQO 03 AIMSIP 4 1oy

*surasur 103 ‘esoddng -UONINIUT SWOS UTES 01 JIPJIO UT SasTd [erdads swos Sursapisuos Aq widaq ap
1(¥yo ¥ vdoup YU3] 3 g pue u807p!p = ynuuTRNISUG I
Surmiesas ‘duemioiiad swmn eale ay3 ZTWNdo 01 ¢ pue ¢ p ¢l p J0j san[eA Y1 I3[ 01 SUTRWAI 1]
69'L (g/udoppioiz+'P))O =
51 swm uonwndwod [eqof8 a1 (RUOLFaARA JO JaqunT am) ‘! p snid (adid
an Jo qadap am) <€ p 301 7 01 [euonsodord st sdais diseq Jo Jequnm [eqoid aM rewy SullapISTO)
«80; jo spdnnu [{ews e st
M18ua] 950Um SK9Y v Jo seduanbss wo pawiojiad are pue ‘od£1 Butiros a3 Jo [[® are Japiey A[jeuoneind
-mo> are 383 suonedado M ‘paIpu] {( ¥) 04 uBopA)IT)3 ¢ 3eW pepracad Sum (g udonu)p Ul pawiog
-13d [[® 3q ue> saynpow Y1 jo suontesado dSiseq Y3 1BYL 33 03 AR §1 I ‘Wn uonwmndwod N 03 SV
89°L (c9%P3P)0 = Vv
ale UT 3NO pre| A[ISed 3q TEd NI0MIIU AMTI 3N SNYL RPIMPULY ( §) O MM PIZI[EAL 318 STONIIUTOD

M1 [[® 183 PUE *BaIe ( §) OX( 9) O U AU YIOAISU Y3 JO SI[NPOW Y3 (¢ 183 JWNSSE MOU I

OUVULIOLIS W L-V3TV €9,

Ll




Bl et A e i Tl Tl U A B At A _anex _'“—'_ Phaai tal S Al A A A SR i AN S A A e i AR ToFrTesT

SYT®I 16 9dtanber BUipuodssilon 251 0 W
2WES 9UI 1T 3321 SUILI0S AL1 JO JTA] T SAYDTAI Y2OIQ UIAIS ® Jo SASY JO 20USNDIs aul 12YL saivwlrni
siapnc eyl Ysourwoilad snoadwase 2 SundarT MOWIIA. Pasdiyde 3Q SABMIE UBY UdIYM)

Wy SLWES U3 Ut UOTIBIAdO 21STQ Lroyl Wiloizad XI0AL13U ay: IO sTnpow Y3l [T 12U SUTWNSSY

SINPOW [— © 7 80] T 10 ATLIE
IESUT] £ ST Da13aUUO0D ‘SI2JING Ul Palois AJLILIOdWa: aIe N0[q Y1 Jo SASY ay1 [ealaiu) stq: Stung
-Iapdo [BUD Y1 UT PISUBLIEAI & 02 ‘3351 MJO0S-DpUR-ISEOPEOIG Y2 Jo yeal ® £q indul s1 N>01G aures
2Y3 Uay.m JWIT: ayl pue ‘ssJi SUTYUEJ 3Ul Jo jed] ® AQ Indut ST ¥20[q dYI TIGA JWT1 a1 TMIN

Smsdrie aWM JO [BAINUT UE ST 3J3Y2 1BUL 335 aM ()X N0[q URAIS © JIPISUODd am J] s fng aug (d)

‘wnioSie aul JO + Jais UT paqLISS3p ST ‘SYUR) SUTPUOdsaliod 3§ 01 SUpIodde ¥20iq usald ® Jo

SAaY a1 Sunnwzad Ul SISISUOS UOTIRIAdO ISEq JISY ] SINPOW SUTLIOS A][BIIUISS? I SIARI] Y]

*JBa] §oEe JOJ 3UO *J[qelIBAT ate 1UeIjaaem ndm
G218 e 03 Sutpuodsaniod sduanbas Suryues oy Jo sa1dod ¢ p S[IAI © P<80[ 1arye “em 05 aduanbes
indut ay1 a1ednidnp 1BY) (SI2PNQ) SS[NPow JWITS I SIPOU [RUINUL Y] SHURI Y1 JO a>uanbas
S SeATa3RI 11 WIM WOJJ ‘9311 SUTYURI I JO 100 Y2 01 PAIITUOD ST 3311 ST JO 1008 YL

S0A®I| © p UO 3an Areulq pasueieq A(InJ e osie §1 10suodwod SIY] ‘292 140$-pup-15D0PDOLG Y[ (Q)

uos 14811 3y £Lq pednpold IO puUL *wos 133]
a3 Aq peanpoid syues ay3 *dais snotaasd aqa 1e paandwod sYUR! a3 (143U 01 339 Wosj) Klewreu

‘s30Uanbas 991 JO UONBUIEIUOD Y3 SYUR YU ‘A[NPOtl 1001 33 Aq paAeid st afo1 [etdads v

- S3pou
Suudsgo om1 aq1 Kq pednpoid sesuanbas ay1 Jo uoneunwdUod stmsred £q pauTIqo IduInbas

1 UT SIUBWIYS Y3 JO sYues ay1 Surindwiod Ul siSISUOD Ipou [euINnU Ue Jo wonelado oweq dyj

(O UX) yuos (Y X) yups
syues nag1 Sunndwod jo pue (y)IT YX*c(y)' X ATS “X20[Q B UT SAIY IY) Smiatazal jo sistsu0d

Jea ® Jo uoneado 3tseq Ayl ‘A[[EOYINAS IOJA INPOW IPOU-{TUINUT UR WOLJ WP A1ydns

1

T P S Y Y PP T T P TR P LT T AN UL AR YL A L APV S
A T T N N T N e T e T e e T e e e TR T T e e T et e T st et Tt e et T,
P, R M L, S IR . . PR T N) - et . PR A TS VY LW T . .

- - . _'» _‘- _'~ _‘\ _'-
PR VR VR VY T




L 12d

[AA 80]
[AG 83)
[AKS 83)

[ALY 83]

(Ba 68]
{Be 64]
(BG 82]
(BJ 84]
(BK 80}

[BK §1]

(BK 82]
[BL S4]
(BP 84a]

[BP 84b]

'BP 84¢]
(BPP 82]
ES $4i

ICM 81)

‘DGS 54]

‘GHT 79}

179

REFERENCES

H. Abelson and P. Andreae, "Information transfer and area-time trade-offs for VLSI multi-
plication.” Communications of the ACM, vol. 23, n 1, pp. 20-22; January 1980.

A. Aggarwal, "On /O placement in VLSI circuits,” Proc. 215t Annual Allerton Con ference
on Communication, Control, and Computing, Monticello, IL, pp. 236-243; October 1983.

M. Aitai, J. Komlos and E. Szemeredi. "An O(nlogn) sorting network,” Proc. I5th Annual
ACM Symposium on Theory of Computing, Boston. MA, pp. 1-9; April 1983.

A.VAho, JD. Ullman and M. Yannakakis, "On notions of information transfer in VLSI
circuits.” Proc. 15th CAM Symposium on Theory of Computing, Boston, MA, pp. 133-139;
April 1983,

K. E. Bauwcher, "Sorting networks and their applications,” Proc. AF/PS Spring Joint Com-
puter Con ference,vol. 32, pp. 307-314; April 1968.

V. E. Benes, "Optimal rearrangeable multi-stage connecting networks,” Bell Syst. Tech. 1,
vol. 43, n. 4, pp. 1641-1656; July 1964,

M. P. Brent and L. M. Goldschlager, "Some area-time tradeoffs for VLSL" SIAM J. on Com-
put, vol. 11, a. 4, pp. 737-747; November 1982,

G. Bilardi and X. Jin, "Permutation exchange graphs that emulate the binary cube,’
Mathematical Systern Theory, vol. 17, n. 3, pp. 193-198; June 1984.

R. P. Brent and H. T. Kung, "On the area of binary tree layouts,” /n formation Processing
Lerters,vol. 11, n. 1, pp. 46-48; August 1980.

R. P. Brent and H. T. Kung, "The chip complexity of binary arithmetic,” Journal of the
ACM, vol. 28, n. 3, pp. 521-534; July 1981.

R. P. Brent and H. T. Kung, "A regular layout fpr parallel adders,” JEEE Trans. on Comp.,
vol. C-31, n. 3, pp. 260-264; March 1982.

S N. Bhatt and F. T. Leighton. "A framework for solving VLSI graph lavout problems.” J.
of Comp. and Syst. Sci, vol. 28, n. 2, pp. 300-342; April 1984.

G. Bilardi and F. P. Preparata, "An archnecture for bitonic sorting with optimal VLSI per-
formance.” /EEE Trans. Comp., vol. C-33, n. 7, pp. 646-651; July 1984.

G. Bilardi and F. P. Preparata, "A minimum area VLSI network for O{log\) time sorting,”
Proc. 16th Annual ACM Symposium on 1 heor\ of Compuing, Washingron, D. C,, pp. 64-
70: April 1984,

G. Bilardi and F. P. Preparata. "The VLSI optimality of the AKS sorting network,” /n for-
mation Processing Letters, to appear.

G. Bilardi, M. Pracchi, and F. P. Preparata. "A critique of network speed in V'LSI models of
compuuation.” [EEE J. of Soiid-State Circuits, vol. SC-17, 2. 4, pp. 696-702; August 1982,

G. Bilardi and M. Sarrafzaden. "Optimal discrete Fourier transtorm in VLSL" /neernational
Workshop on Parallel Computing and VLSI, Amalf, Ialy, May 1984.

B. Chazelle and L. Monier, "A model of computation for VLSI with related complexity
resulis.” Proc. 13th Annual ACM Symposium on Theory of Computing, Milwaukee, W1,
pD. 318-325: May 1981.

P. Duris, Z. Gali! azd G. Schnitger, "Lower bounds on communication compiexity,” Proc.
16th Annuai ACM Symposium on Thecry of Computing, Washungton, D. C, pp. $1-91:
August 1984,

L. J. Guibas, H. T. Kung and C. D. Thomrson. "Direct VLS! :mplementation of combina-
torial algorithms.” Proc. Conference on VLSI Archutecture, Design, Fadrication, Talif.
Lnst. of Techns jazuary 1979,

.........................
.............................
PR LS R U T T R A e T T EEE aY




(3n 80]

(JK 84]

[KL 78]

[Km 83]

[KR 82]

(Ku 82]
L 81a]
(L 81b)
(L 82]

(L 83]
(L 84]

[Lo 83]

(Ls 80a]
[Ls 80b}
{Ls 81]

(Me 83]
{MC 79]
[MP 75)

[MP 83]

[MS 82]

T Ty

180

R. B. Johnson, "The complexity of a VLSI adder,” /n formation Processing Letters, vol. 11,
n. 2, pp. 92-93; October 1980.

J. Ja’ Ja’ and V. K. P. Kumar, “Information transfer in distributed computing with applica-
tions to VLSL" Jowrnal of the ACM, vol. 31, n. 1, pp. 150-162; January 1984.

H. T. Kung and C. E. Leis:rson, "Systolic arrays (for VLSI),” Symposium on Sparse Matrix
Computations, Knoxville, TN, pp. 256-282; November 1978.

[(KLLM 83] D. Kleitman, F. T. Leighton, M. Lepley, and G. L. Miller, "An asyvmptotically optimal lay-

out for the shuffle-exchange graph,” J. of Comp. and Svst. Sci, vol 6, n. 3, pp. 339-361;
June 1983.

V. K. P. Kumar, Communicarion Complexity of Various VLSI Models, Ph.D. Thesis, Dept.
of Comp. Science, Pennsylvania State University; August 1983.

K. Keutzer and E. Robertson, "The M-shuffie as an interconnection network for SIMD
machines,” Proc. of 20th Annual Allerton Conference on Communication, Corurol, and
Computing, Monticello, IL, pp. 264-271; October 1982.

H. T. Kung, "Why systolic architectures? Computer Magaczine, vol. 15, o. 1, pp. 37-46;
January 1982,

F. T. Leighton, Layouts for the shu ffle-exchange graph and lower bound technigues, Ph.D.
Thesis, Dept. of Mat..ematics, MIT, August 1981.

F. T. Leighton, "New lower bound techniques for VLSL" Proc. 22nd Annual Sym posium on
the Foundations of Computer Science, Nashville, TN, pp. 1-12; October 1981.

F. T. Leighton, "A layout strategy which is provably good,” Proc. 14th Annuai ACM Sym-
posium on Theory of Computing, San Francisco, CA, pp. 85-98; May 1982.

F. T. Leighton, "Paralle] computation using meshes of trees,” submitted for publication.

F. T. Leighton, "Tight bounds on the complexity of parallel sorting,” Proc. 16th Annual
ACM Symposiurn on Theory of Computing, Washington, D. C,, pp. 71-80; April 1984.

M. C. Loui, "The complexity of sorting on distributed systems,” Tech. Report ACT-39,
Coordinated Science Laboratory, University of Illinois,Urbana, [1; September 1983.

C. E. Leiserson, Area e ficiert VLSI computation, Ph.D. Thesis, Dept. of Comp. Science,
Carnegie-Mellon University; November 1980.

C. E. Leiserson, "Area-efficient graph layouts (for VLSI)," Proc. 2lst Annual Symposium on
Foundations of Computer Science, Syracuse, NY, pp. 270-281; October 1980.

R. I Lipton and R. Sedgewick, "Lower bounds for VLSL" Proc. I3th Annual ACM Sympo-
sium on Theory of Computing, Milwaukee, W1, pp. 300-306; May 1¢31.

K. Mehlhorn. "4T ? optimal VLSI integer division and integer square rooting,” submitted
for publication.

C. A. Mead and L. Conway, [ntroduction to V LS/ Svstems, Reading, M4, Addison-
Wesley; July 1979.

D. E. Muller and F. P. Preparata, "Bounds to complexities of networks for sorting and
switching,” Journal of ACM, vol. 22, n. 2, pp. 195-201; April 1975.

K. Mehlhorn and F. P. Preparata, "Area-time optimal VLSI integer muluplier with
minimum computation time,” /n formation and Corurol, vol. 58, nos. 1-3, pp. 137-156; Ju!v
1983,

K. Mehlhorn and E. M. Schmidt, "Las Vegas is better than determinism in VLSI and disto:-
buted computing,” Proc. I4th Annual ACM Symposium on Theory of Computing. -
Francisco, CA. pp. 330-337; May 1982,

W



. AD-A161 362 THE AREAR-TIME COMPLEXITY OF SORTING(U)> ILLINOIS UNIV AT
URBANA APPLIED COMPUTATION THEORY GROUP G BILARDI
DEC 84 ACT-52 NO0®14-84-C-0149
UNCLASSIFIED F/G 12/1




10 ke K
Ll = e 120
= |8
125 i, e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAY OF STANDARDS -1963-A




e | LA

[Mu 82)
[\NMB 83)

(Ns 79]
[Ns 82]
[P 73]

(P 84]
[Pe 77]
[PS 84]
(Pv 80]
[PV 81a]

{PVS1b]

[Sa 79]

(Se 79]

(Sg 84a]
[Sg 84v]

[St 71]

{T 80i

S. Muroga, VLS System Design, J. Wiley, New York; 1982.

D. D. Nath, S. N. Maheshwari and P. C. P. Bhatt, “Efficient VLSI networks for parallel pro-

cessing based on orthogonal trees,” JEEE Trans. on Comp, vol. C-32, n. 6, pp. 569-581;
June 1983

D. Nassimi and S. Sahni, "Bitonic sort on a mesh-connected parallel computer,” /EEE
Trans. on Comp.,, vol. C-25, n. 1, pp. 2-7; January 1979.

D. Nassimi and S. Sahni, “Paralle]l permutation and sorting algorithms and a new general-
ized connection network,” Jowrnal of ACM, vol. 20, n. 3, pp. 642-667; July 1982,

F. P. Preparata, “New parallel sorting schemes,” /EEE Trans. Comp, volL C-27, n. 7, pp.
669-673; July 1978.

F.P. Preparata, “VLSI algorithms and architectures,” Proceedings of 1lth Symposium on
Mathematical Foundations of Computer Science, Praha, Czechoslovakia; September 1984.
M. C. Pease, “The indirect binary n-cube microprocessor array,” /EEE Trans. on Comp,
vol. C-26, n. 5, pp. 458-473 May 1977.

C. H. Papadimitriou and M. Sipser, "Communication complexity,” J. Comput. System Sci.
vol. 28, n. 2, pp. 260-263; April 1984.

F. P. Preparata and J. Vuillemin, "Area-time optimal VLSI networks for multipiying
matrices,” /n formation Processing Letters, vol. 11, n. 2, pp. 77-80; October 1980.

F. P. Preparata and J. Vuillemin, "The cube-connected-<cvcles A versatile network for
parallel computation,” Communications of the ACM, vol 24, n. 5, pp. 300-309; May 1981.

F. P. Preparata and J. Vuillemin, "Area-time optimal VLSl networks for computing integer
multiplication and discrete Fourier transform,” Proc. of 1. C. A. L. P, Haifa, Israel, pp. 29-
40; July 1981.

J. E. Savage, "Area-time tradeoffs for matrix multiplication and related problems in VLSI
models,” Proc. of the 17th Annual Allerton Con ference on Communications. Control. and
Com puting, Monticello, IL, pp. 670-676; October 1979.

C. L. Seitz, "System timing,” in /ntroduction to V'LSI Systems, C. Mead and L. Conway,
Eds., Reading, M.\, Addison-Wesley, ch. 7; July 1979.

A. Siegel, "Optimal area VLSI circuits for sorting,” submitted for publication.

A. Siegel. "Tight area bounds and provably good AT ? bounds for sorting circuits.” Tech.
Report #122 Courant Institute, New York University; June 1984.

H. SStone, “Parallel processing with the perfect shuffle,” /EZZ Trans. on Comp. vol. C-20,
n. 2. pp. 153-161; February 1971.

C. D. Thompson, A compiexicv theory for VLSI, Ph.D. Thesis. Dept. of Comp. Science,
Carnegie-Metlion University; August 1980.

C. D. Thompson. “Fourier transtorms in VLSL® /EEE Trans. Comp, vol. C-3, n. 11, pp.
1047-1057; November 1983.

C. D. Thompson, “The VLSI complexity of sorting,” /EEE Trans. Comp, vol. C-32, a. 12,
pp. 1171-1184; December 1983,

C. D. Taompson and H. T. Kung, "Sorting on a mesh~connected computer,” Communications
of the ACM, vol. 20, n. 4, pp. 263-271; Apnil 1977.

J. D. Ullman, Ccmputational Aspects of VLS, Computer Science Press; 1983,

L. G. Valiant, "Universality consideratioes in VLS] circuits,” JEEE Trans. on Comp. voi.
C-30, o 2, pp. 135-140; February 1981.

L. Vuiilemin, "A combinatorial limit o the computing power of VLSI circus” JEEE
Jrans.un Comp, vol, C-32, o 3, pp. 294-30C; March 1983,

" . '|'0
i'. o 0l

l"...l
atet e S 0 e
atalatale s

L ORI
2Ll

A
l.. -
[ .I




182

(Y 79)] A. C. C. Yao, "Some complexity questions related to distributive computing,” Proc. Ilth
Annual ACM Symposium on’ Theory of Computing, Atlanta, GA, pp. 209-213; April 1979,

[y 81] A. C. C. Yao, "The entropic limitations on VLSI computations,” Proc. I13th Annual ACM
Symposiumn on Theory of Computing, Milwaukee, W1, pp. 308-311; April 1981.




.........

VITA

TR T

Gianfranco Bilardi was born in Reggio Calabria, ltaly, on March 8, 1956. He received the Laurea

in Ingegneria Elettronica degree from Universita di Padova in 1978 and the M.S. degree in Electrical

. o
Pt !

L4

Engineering from the University of Ilhinois at Urbana-Champaign in 1982, where he was a Research

Assistant in the Coordinated Science Laboratory until 1984. He was awarded an International Rotary

Fellowship in 1980, and an IBM Graduate Fellowhip in 1982 and 1983.




LRl v L2l el ~—y -
b AR S St Nal A "'ﬁ_'_.)'-"‘-“___', DS AL NN A e st st e S Y YR, "'N’-."-")""Iw

4%-“\-;..4.4..1.._..'. P o g

T Y

DTIC

R ¢
-.. v, '.'_"ﬁ—'v*\—‘r—’f '-' . TS . ety g e - g
I‘ a,.,f L .,._.-, ,-‘ o T e e e e e e e

IO NSO N




