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ON THE DISTRIBUTION OF THE SINGULAR VALUES OF TOEPLITZ MATRICES*

by

Seymour V. Parter

*. DTIC
Univerity of Wisconsin 'LE TEI

Madison, WI 53706 NOV 13 1985

ABSTRACT

In 1920, G. Szeg8 proved a basic result concerning the distribution of the eigenvalues {?( ") }

of the Toeplitz sections T fV where f(e) E . (- rir) is a real-valued function. Simple examples

show that this result cannot hold in the case where f(6) is not real valued. In this note, we give an

extension of this theorem for the singular values of T. Vf when f (e) - f 0(9) R0(0) with f0(9)

real-valued and R0(e) continuous, periodic (with period 21) and IRo(O)I 1. In addition, we apply

the basic theorem of Szeg8 to resolve a question of C. Moler.

WOTIC' ?7.- . T ¢ L

T1' i.A ' ,+

S. .. ..

1. INTRODUCTION e e inforuation D1V1 1of

The results in this note were motivaed by a question raised by Cleve Moler at the Second SAM rv

Conference on Linear Algebra. Raleigh, NC, 1985. Consider the matrix

vA11A -(1) (1.1)

with

*Thu work supporusd by Los Alzmos Nmaod Laboreory and U.S. Air Force und r AFOSR com w0822?S.--
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L1

i + 1/2 " i,j 1,2,...,N (1.2)

with N a number -30. Using Madab, Moler computed the singular values cI a a2 "" aN a 0 of this

matrix. The remarkable result is most of these singular values (say, the first 20 when N 30) were equal to

it - a with e y small. In the case N = 20 the singular values (to four decimal places) are

ir (1) = r(j) = 3.1416 j 1,2 .... 14

a(15) = 3.1415

r(16) = 3.1407

or(17) = 3.1323

a(Ig) =3.0631 #r-rt

or(19) - 2.6463

((20) 1. 1705

In Section 2, we give a qualitative explanation of this phenomena.,/This discussion is based on a theorem of

Szeg8 (61 concerning the asymptotic distribution of the eigenvalues of t e Toeplitt matrices T. [f] where f(e) is

a real-valued bounded measurable function which is periodic with period 21r. Simple examples show that a

similar theorem for the case where f(M) is not real valued is impossible. In Section 3, we prove an interlacing

theorem for singular values While this theorem is stated in more general terms than one finds in the literature

(see [2], page 286) the proof is essentially the proof of the interlacing theorem for Hermitian matrices. We

include the proof for the sake of completeness. In Section 4, we apply this theoremlto obtain extensions of the

Szego theorem to the singular values of T Uf] when f is not a real-valued function. ... ) .- ,

Let f(@) L L..(- ir,r) and have the Fourier expansion

f (0) - . r °  (1.3)

Let T, [f] denote the (n + 1) x (n + 1) matrix

2
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T. If] = (;j) , i,j 0,1...,n (1.4a)

with

ffi cj- 1  (1.4b)

Observe that when f(0) is a real-valued function

- Ck -k (1.5)

and T, [f I is a hermitian matrix.

A basic result, which is easily verified, is the following formula for the computation of inner products. Let

X = (X0 ,X1 .... x,)T , y f= (YOYi ... " .)
T  (1.6a)

Set

J(8) = X - i  , 9(e) T. yke - ike  (l.6b)
0 0

Let 9* (8) denote the complex conjugate of Y(O), tat is

9*(0) . 7 e (1.6c)
0

Then

lx ="± f q*(0)f(0)f(e)de (1.7a)

Of course

I-

y =I- f 9,(o)X(e)de. (.7b)
21r

When f(0) is real valued, this formula yields the basic estimate; let k(" , :s ... s X )  ki") be the

4.
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cigenvalues of T,,[f 1,then
m. 2S-(I

where

m = inff(e) , M = sup f(e) (1.Sb)

Another basic result is the following distribution theorem.

Theorem I (Szeg5). Let .f(e) E L.[-',w] be real valued. Let m, and M be as in (l.$b). Let FQ) E CIm,M].

Then

n+1
Lim - FQ (n)) - f F(ft(e))de . (1.9)

j=l i. I
n- l ,+i 2w

Moreover, for any fixed j > 1,

Xjn) - M , ?t+2-m af n - ( (1.10)

Proof. See [3], Chapter 5, pp. 64-65. 0

Remarks. Theorems on the rate of convergence in (1.10) are given in [4), [5).

In Section 4, we prove an extension of this theorem.

Theorem 1. Let f(0) E L[- w, r. Let

o0

be the singular values of T [f. Suppose f(O) can be written as

f(0) f0(0)R(E) (1. I 1a)

where f(0) is a real-valued function and R0 (9) is a continuous periodic function with period 2% which also

4".



satisfies

iRo(e)j= I (I.IIb)

Let

M = spf(el (1.12)

and let F(\) E C(O,M]. Then

Lim 1 n+1
:- F(j") 2 f F (e de.(

n-Nfl+I1 2

2. MOLER'S PROBLEM

Let A be the N x N matrix given by (1.1), (1.2). Let B be the (2N) x (2N) hermitian matrix given by

8 - [ r Al i=vy . (2.1)

Since B is a hermitian matrix, its singular values are merely the absolute values of its eigenvalues. At the same

time, the singular values of B are the singular values of A -- each with multiplicity 2.

Let P be the permutation on (1,2,...,2N} given by

P(j)= 2j - 1 , j = 1,2...,N , (2.2a)

P(N + j)= 2j , j = 12,...,N . (2.2b)

* Let 4' be the associated permutation matrix. Let

-t t D (2.3)

Then a direct, but detailed, calculation shows that

S

................................................. 
........... * . * *.*I
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D = T2N-I[g] (2.4a)

where

g~e~ = 1 e(2k- 1)1 (2.4b)SOi) =k=_ (2k - 1)i e(.b['-
* and, in fact, g(O) is the "square wave" given by

gl0)= W, 0<0<w

Remarks. To obtain (2.4a), (2.4b), it is easiest to make the change of variables

Xj = Y2j-I ,j

XN+I : Y2j j=,2...N.

* To obtain (2.4c), one can calculate or check any elementary text, e.g., see problem 3, page 64 of (I]. Then for

any e > 0 we see that only o(N) of the eigenvalues of T2N- 1Ig] satisfy

To see this, we merely need apply Theorem I with F(k) = 4 Then

(2.sa)

and

Li.r n (2N -1
Nim 2N j , (2.5b)

Thus, "most" of the singular values of A are "close" to w. Another remark which is relevant to the limit

relations (1.10): the estimates of 15] show that, for fixed j and every integer r z 1, there is a constant Crj such

that

6
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N 2  , 
(2.6a)

N4N ) I ra (2.6b)

3. AN INTERLACING THEOREM

Let B = B* be an n x n hermitian matrix. Let Bk be the (n - 1) x (n - 1) hermitian matrix obtained

from B by deletion of the kth row and column. Let 013 2 5 ... 13,, be the eigenvalues of B and let

b, S b2 S-... S b,, 1 be the eigenvalues of Bk. Then, as is well known,

01 S-bl S 02 :-- b2 - S"'" b._- S .•

For our current purpose, we prefer to restate this theorem as follows.

Theorem 3. ). Let S :- 4,, be a (n - r) dimensional subspace of C, the complex n dimensional vector space.

Let P be the orthogonal projection onto S. Let

B' = PBP . (3.1)

Then B' is an hermitian matrix and, viewed as an operator from S to S has eigenvalues

"b! 1 - b2- S ' :- b, -, and

Ak - bk -Pk+, , k= 1,2,...,n-r . (3.2)

. Proof. The proof follows exactly as the proof of the well-known theorem cited above. We merely observe that S

is characterized by r linearly independent vectors Yi, Y2 ... y, which are orthogonal to S. Then the proof follows

, the argument given in 17; section 47, page 103). 0

-Corollary 1. Let A be a m x n complex matrix. Let i = min (m,n) and let

7
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U1ZO2 -2! U;

be the singular values of A. Let P be the projection above and let

A' = AP

Then A' is an operator from S to 4 m and has singular values a, a a 2 :2 a •• a> 0 where

I = min (m,n - r). Finally

(tk-a ak a >r+, , k= 1,2r.... - r (3.3)

Proof. The values (ark) 2 are the eigenvalues of A*A while the values (ak)2 are the eigenvalues of

(A')*(A') = P*A*AP. The corollary now follows from the theorem. 0

Corollwy 2: Let A and P be as in Corollary 1. Let T D be an m - p dimensional subspace of N. LetQ

be the orthogonal projection of 4:,, onto T. Let

Then B is an operator from S to T and has singular values b, 2: b2 L > .. . 0 where

pL= in(n- r,m-p). Let

r0  max (rp)

Then

t bk2tcr,+p , k= 1 ,2,..... - 2r0 .(3.4)

* Proof: The singular values of A* are the singular values of A. In particular, the values (aq) are also the

eigenvalues of (A'XA')* while the values (bk) 2 are the eigenvalues of (QA QA'). That is, the values (bk) 2

are the eigenvalues of Q(A'(A')*]Q*. Hence, applying Corollary 1,

ak b a + p .(3.5)



Then, using (3.3) we have

O'/, a a
k 

> -
b
k 

a_ a&+ p 2' oyk+p+ r ,

which proves the corollary. 0

4. THE DISTRIBUTION THEOREM

The asympotic distribution of the singular values of Toeplitz matrices can be expressed in the terminology

of the theory of "equal distribution" (see [3, chapter 5]). i ...- .

Definition: for each n at 1, we consider sets of(n + 1) real numbers a(n) = {ak(n), k = 1,2,...,(n + 1)} with

a (n) a ak+ 1(n). Let b(n) = {bk(n)) be another set of the same kind. Assume that for all k and n

6A(nj 5 K , Ib*(n- K (4.1)

*where K is a constant independent of k and n. We say that (a(n)) (b(n), n - = are "equally distributed" in

"'- the interval - K,K] if the following holds: Let F(t) be an arbitrary continuous function defined on the interval

(-K,K]; then

I
Ln + I f(ak(n)1 - F(bk(n))] =0 . (4.2)

In our case, we may assume that at(n) 'a 0. In this case, it can show that the limit relation (4.2) holds for

all continuous functions F(t) if it holds for all F(t) E C1 [0,K] which also satisfy F1(t) z 0 (see [31).

Lemma 4.1: Let {a(n)), {b(n)) be two sets of real numbers which satisfy the following interlacing and positivity

conditions

Kz ak(n)-> ak(n- )- ak+(n)a 0 , I-- k- n , (4.3a)

K K2t bk(n) bk(n- 1) b,+ 1(n) O a , 1 s k s n ;(4.3b)

9
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- and for some fixed r0 > 0

b&(n) a k (n - ro)- bkr (n) , k 1,2,...,(n + 1 - ro) , (4.3c)

Then ja(n)} and jb(n)) are equally distributed.

Proof.

Let F E C'[-K,K] with Fl(t) L- 0. Then it is an easy matter to show that

Mn
1 '

Lim inf - [F(bk(n)) - F(ai(n))] a 0 (4.4a)
n-m n + 1

Limn sup I [F(bk(n)) - F(ak(n))] < 0 0 (4.4b)

Let f(E) E L.[- r, 7] and have the Fourier expansion

0k0~f Ie Ck ekek  (4.5)

k-=

Let T,n,,[f] be the (m + 1) x (n + 1) matrix

= (;O) , i 0,1.....m, j 0,1,2 ..... n , (4.6a)

where

= cJ_., . (4.6b)

If(m - n) -s ri, a fixed integer, then the results of Sec. 3 and Lemma 4.1 imply that the singular values of

,,Tm,,[fI are equally distributed as the singular values of T,,, [f] = T,[f ]. Indeed, we can even allow

Im - n1 0
i'I

where n = min (ie,n), that being the case, we limit ourselves to the singular values of the square matrices

10
b . ~ - . . * * - .* h . ..



T. If I.

Let p(e), q(e) be two fixed trigonometric polynomials with non-negative indices of the same order. That is

k= 0

x q~lk$(4.7b)
J=O

* ~Let P E ,+ Q E 42+1be subspaces described by the conditions.

x E P -- i (E)) = P (0) Sn+ (4. 8a)

YE Q (00' ) q(E)) In+ I- r(EO) (4. 8b)

where Sn + 1~ r(0) and 4, +.. 1(0) are of the form

As in Sec. 3, let P, Q denote the orthogonal projection onto P and Qrespectively. Let

B"[f'p'qJ = QTMIP (4.9)

Remark: We have not required that p,-I * 0, q, I * 0. Nevertheless, P and Q C iand are both of

dimension (n + I - r).

We now turn to the following question. What is the relationship between the singular values of B,, (f,p ,qJ

* and the singular values of T,[ ,(fp]? We begin by recalling

* ~~Lemma 4.2: Let A be an n x n complex matrix with singular values a I rF2 > , 0.Te

cr MxMnJ=1 (4.10)

Xe T



-" Proof. See [2, chapter 81. o

Corollary: Let

M supf(o

and let a("), j = 1,2 .... n + I be the singular values of T.[f]. Then

0 s- (r(n) _- M .(4.1Oa)

Proof. This estimate follows from (4.10) and the basic formulae (1.7a), (1.7b) together with the fact that

U f4 sup *. if )xi

Let k -< n + I - r. There is a one-to-one correspondence between the k dimensional subspaces S' of + i and

the k dimensional subspaces S' of P. For every vector x E S, the vector x' S S' is determined by the

relationship

i'(e) - p(e)x(l). (4.11)

For each such x S S, we have

-I= ± f lI(e)de, (4.12a)

f= --" f ((e#fl(efde. (4.12b)21r

We define

-" b = b'!( .(4.13)

. Similarly, each y ( C,+I- is in a one-to-one correspondence with a y' E Q determined by

12
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' (e) (0) . (4.14)

As above, we have

= A 1¢eAde( 4.1Sa)

We define

7!

-1:f -I'l? - 2 L k,9 b(e~de. (4.15b)
27r

For every such x E S, y E n-rwe set

[y,x] Y*T-, [jfp]x = 21 f 9*(0)i(e)f(e)p(8)i(8)de , (4.16a)2w 2

We observe that [y,x] can also be interpreted as

(y,xJ = (y')*5f,p,q(x') . (4.16b)

Therefore,

" B f ~' = (4.17a)

_ while

-p Mp (4.17b)

Lemma 4.3: Let f(0) L[-ir,7r] be of the form

f (O) f olO)Ro(1) , (4.ISa)

where fO(e) is real valued and Ro(0) is a continuous periodic function with period 2,w which satisfies

13
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IR0(E~= 1 .(4. 1l8b)

Let e, 0 < e < 1 be given. There are polynomials p(E)), q(e)) of the form (4.9a), (4.9b) which satisfy

G-E:5p(8j I+ E , q~ 1 .(4.19)

Let la k(nl r); k l, 2,..., n + I -r) be the singular values of T,. [~jpJ while 10jk(n r)

k =1,2,..., n + I - r are the singular values Of Bn [f p, q]. Then

CL :S ok(4.20)
1+E1

Finally, let {,yk(n -r), k 1,2,...,(n + I -r)J be the singular values of Ta..-., Lfol. Then

6k- vi~s em (4.21a)

where

supf(= M (4.21 b)

Proof.

* Applying Fejer's Theorem 18, pp. 89, 90] we find a trigonometric polynomial.

* such that

Or, since (4.20b) holds

1R(e)g(e) 11i < IE .(4.23)

Let

14



P()=e g() , q(e)=r, , (2r (4.24)

Then (4.19) holds. Applying Lemma 4.2 (4.17a), and (4.17b), we have (4.20). Finally

fo if ORop = fol - 9R.

Hence

I'o - jORopI S ME

Thus, (4.21) follows from standard perturbation arguments, see [2]. 0

Proof of Theorem !I:

Let {lk(n), k = 1,2,...,n + 1) be the singular values of Tn[f]. By Corollary 2 of Theorem 3.1 and Lemma

4.1, the set {Ok(n)) and {ilk(n)) are equally distributed. By (4.20) and (4.21) we see that

Nfk(n) - it(n-< 2ME ( 4.25)

Let e > 0 be given. Choose the appropriate p(O), q(0). Let Fit) E C110,M] and IF(tl S 8. Then

IF(ok(n)) - F(,yk(n))] = [F(a(n)) - F(Pk(n))] + [F(lk(n)) - F(,y&(n))]

Hence

n + IF(o&(n)) - Flj (n))l Is 2Mbe + T,

where

S[F(ck(n)) - F(l3k(n))JI= T, -0 as n -®
n +

therefore

.1

4 . - - .. * -



0O5-Lim 5"p Ij[~T() (yn)1 Mf

inf n + I 'Fa() Fy()]s2S

Hence, {a k(n)) and 1-y,, (n) I are equally distributed. The Theorem now follows from Theorem 1. 0

* 5. REMARKS

Lemma 4.3 has some striking consequences. Let 4ri',k 1,2,..., n + I be the singular values of T,, f.

* Suppose Vf(E)I= f 0(0) and

0 < ms (O5M(51

Applying Corollary 2 of Theorem 3. 1, we see that

(Jk Pk(fl) a A.n2r, k n + I2r. (5.2)

From (4.25) we see that

car+ 2M* a 'k(n) a U'+ 2 7 -2Mf k, k n + I2r .(5.3)

* However, (1. 10) implies

m !5y,(n) M

* Hence, since a k' s Ul [see (4. 1Oa)], we have

m - M* sa"+1- 2 S 1" 5 M(5.4)

That is, all but .4 finite number, at most 2 r, of the singular values of T,,[fJ are within 2Me of the range of t(e8*

Example: Let g(O) be a real valued continuous function with period 2w, (g(-iw) g (wr)). Let

f (o)=a) (5.5)

*Let t > 0 be given. Then for all n z no, all hut 2 finitp number of tho togur value a kV) of Tn,[f I satisfy

16



k <'-11< . (5.6)

One can easily verify that

f()= e 2 sgne , -- w

is the function used by Moler. That is

f()- y k +

However, because e 2 is not continuous, we are unable to apply Theorem II or the remarks above. Hence,

the trickery" used in Section 2. It seems reasonable to conjecture that one can weaken the hypothesis of

Theorem II. We do not see how to do this at this time.
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