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ON THE DISTRIBUTION OF THE SINGULAR VALUES OF TOEPLITZ MATRICES*
by

Seymour V. Parter

o DTIC

Umversz?y of Wisconsin Kﬁ LECTEW
Computer Sciences Department %‘
Madison, WI 53706 h NOV 13 1985

In 1920, G. Szegd proved a basic result concerning the distribution of the eigenvalues {A ('}
of the Toeplitz sections T, [f) where f(©) € Lo (—m,m) is a real-valued function. Simple examples
show that this result canaot hold in the case where £(6) is not real valued. In this note, we give an
exlensi:n of this theorem for the singular values of T,,[f] when £(6) = f,(6) Ro(6) with fo(6)
real-valued and Ry(6) continuous, periodic (with period 21) and [R(8)| = 1. In addition, we apply
the basic theorem of Szegd to resolve a question of C. Moler.
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Thias® rar "- ”'ﬁ - ] Calped e
INTRODUCTION e esmisal InforsatienDivision
The results in this note were motivated by a question raised by Cleve Moler at the Second SIAM : F;_ﬂ
Conference on Linear Algebra, Raleigh, NC, 1985. Consider the matrix
| A= (a) (.1

with

*This work supporied by Los Alsmos Naional Laborstory and U.S. Air Forcs under AFOSR coowact #82-027S, —/

Quatiry

il »b
\

sowd .-....-‘,'...",'..A‘_‘.'_ e T T e T e e, AR R R ,-.'.'-'_'-'_'.'_..'.:.'_'.'_-. Y
- l‘i’.f‘sgr.o;‘f_-."’ R PR PRI IOPY 'y * > L PEARTEREA? AEARNTARAEN




——— ey — -

AT R gl i A S At Sl Yl AR aed g i et e sath e di i addt o o e s i g W L T T W TN T T W R T Y ‘7‘1

- — e e s e e ———— A e e e e s

1

_j_-——i+—1/_2- ., ,J=12,..N 1.2

&, =

with N a number ~30. Using Matlab, Moler computed the singular values oy = a3 2 - -+ = oy 2 0 of this

matrix. The remarkable result is most of these singular values (say, the first 20 when N = 30) were equal to

7 — € with € yery small. In the case N = 20 the singular values (to four decimal places) are

g (1) =a()=3.1416 j=1.2,..14
u(15) = 3.1415

a(16) = 3.1407

/'/ o
o(17) = 3.1323 S - . o . *’“‘"i
o(18) = 3.0631 L A/S Adocuvrmerl \/frons
a(19) = 2.6463
o(20) = 1.1705 ' pd
? e

In Section 2, we give 2 qualitative explanation of this phenomena.” i:his discussion is based on a theorem of
Szegd [6) concerning the asymptotic distribution of the eigenvalues of t.’ﬁeA Ioeplin matrices T,{f] where £(6) is
a real-valued bounded measurable function which is periodic with period 21: \Simple examples show that a
similar theorem for the case where f.(O) is not real valued is impossible. In Section 3, we\p:vexan interlacing
theorem for singular valua/\w ;l;:le It;is theo:'le:: is stated in more genéra{ terms than one finds in the literature

(see [2], page 286) the proof is essentially the proof of the interlacing theorem for Hermitian matrices. We

include the proof for the sake of completeness. In Section 4, we apply this theorem to obtain extensions of the

Sebn

Szeggt’heorem to the singular values of T;'[f] when f is not a real-valued function. _,_.:) —

C - ¢

{

Let £(6) € Lo(~7,n) and have the Fourier expansion T

le @~ 3 ae® 3

Let T,[f] denote the (n + 1) X (n + 1) matrix

-
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-
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Tn[f] = (II)) ’ "J = 0,1,...,’1 (1-43)

with

‘U = Cj—l (l.4b)

Observe that when f(©) is a real-valued function

- € = C-y (1.5)

and T,[f] is a bermitian matrix.

A basic result, which is easily verified, is the following formula for the computation of inner products. Let

x=(x0, X1+ 0%, ¥y = oy )T . (1.62)
Set
£(©) = %xke""e , ¥©) = 3 e %0 . (1.6b)

Let y*(©) denote the compiex conjugate of y(O), that is

7*(©) = b Fe'*® . (1.6¢)
Then
y*T,(f)x = %ﬂ J 7*©)f(©)%(©)d6 . (1.72)
Of course
l n
y'x = — [ y*(©)i(©)dO . (1.7b)
2 .

When £(©) is real valued, this formula yieids the basic estimate; let A (%) = A (™ < .., < A §" < A {") be the




- -

eigenvalues of T,[f], then

m=sA"sM (1.8a)

where
m=inff(©) , M= sup f(©) . (1.8b)
Another basic result is the following distribution theorem.

Theorem I (Szegd). Let f(B) € L.[~m,w] be real valued. Let m, and M be as in (1.8b). Let F(A) € C{m ,M]).

Then

Lim "5 For M=o f F(f(©))d® . (1.9)
n- n+1l j=1
Moreover, for any fixed j 2 1,
A}"’-M » Aps2-j~m as n-x (1.10)

Proof: See [3], Chapter S5, pp. 64-65. O

Remarks. Theorems on the rate of convergence in (1.10) are given in (4], [5].

In Section 4, we prove an extension of this theorem.

TheoremIl. Let f(©) € L.[—7,n]. Let

o zoftz - oz 0,

be the singular values of T,[f]). Suppose f(6O) can be written as

f(©) = fo(O)Ry(O) (1.11a)

where £(6) is a real-valued function and R((©) is a continuous periodic function with period 27 which also
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satisfies
[Ro(©) = 1 (1.11b)
Let
M = suplf(©) (1.12)
and let F(A\) € C[0,M]. Then
N NS T | 1
Lim —— > FEfM =5 —j“ Fdf©)ao . (1.13)

2. MOLER’S PROBLEM

Let A be the N X N matrix given by (1.1), (1.2). Let B be the (2N) % (2N) hermitian matrix given by

0 4
B=l‘,[_A1-°],i=V-l. @1

Since B is a hermitian matrix, its singular values are merely the absolute values of its eigenvalues., At the same

time, the singular values of B are the singular values of A -- each with multiplicity 2.

Let P be the permutation on {1,2,...,2N} given by

PUY=2j-1, j=1.2,..,N, (2.22)

PN+ =12, j=12,...N . (2.2b)

Let P be the associated permutation matrix. Let

P’BY =D .3)

Then a direct, but detailed, calculation shows that




D = Tyn-,lg]) (2.4a)
where
. e 1 ak-nie
£©) n=2- -0 ¢ (2.4b)

and, in fact, g(©) is the ‘‘square wave’’ given by

-1, ~n<B<0
g(0)={ n, 0<O< 2.4¢)

Remarks. To obtain (2.4a), (2.4b), it is easiest to make the change of variables

X = Yzj-l ’ .’ = 1,2,...,N

INej =Y2 , J=12,...,N .

To obtain (2.4c), one can calculate or check any elementary text, e.g., see probiem 3, page 64 of [1]. Then for

any € > 0 we see that only o(N) of the eigenvalues of Tyy_[{g] satisfy

MEND[-ml>e .

To see this, we merely need apply Theorem I with F(A\) = Al Then

AN-W<m . (2.52)
and
Lim = i hEN-1) o
vaav 2N (2.5b)

Thus, ‘‘most’’ of the singular values of 4 are *‘close’’ to m. Another remark which is relevant to the limit
relations (1.10): the estimates of 5] show that, for fixed j and every integer r = 1, there is a constant C,j such

that




YN IR VYT T
e

_ ¢
S e (2.6a)
ABNSD, - = L (2.6b)
N+1—y - Nz, . .

3. AN INTERLACING THEOREM

Let B = B* be an n X n hermitian matrix. Let B, be the (n — 1) X (n — 1) hermitian matrix obtained

from B by deletion of the kth row and column. Letf, <= B3 = - - = B, be the eigenvalues of B and let
by = by = --- = b,_; be the eigenvalues of B;. Then, as is well known,
Bi=<by=PBy=by=< - b1 =B, .

For our current purpose, we prefer to restate this theorem as follows.

Theorem 3.1. Let S < ¢, be a (n — r) dimensional subspace of C,, the complex n dimensional vector space.

Let P be the orthogonal projection onto S. Let

B' = PBP . @a.1)

Then B’ is an hermitian matrix and, viewed as an operator from S to S has eigenvalues

9 by=by< -+ = b,_,,and

? B‘ = b‘ = Bk+’, ’ k= 1,2,...," -r . (3.2)

Proof: The proof follows exactly as the proof of the weli-known theorem cited above. We merely observe that §

is characterized by r linearly independent vectors y;, y2 ... y, which are orthogonal to S. Then the proof follows

the argument given in [7; section 47, page 103). O

Corollary 1. Let A be a m X n complex matrix. Let m = min (m,n) and let
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=20

Fy =09 " 20;'

P be the singular values of 4. Let P be the projection above and let

v, vy
, et

. A = AP .

Then A’ is an operator from S to €, and has singular values a; = a; = * -+ = g = 0 where

! = min (m,n — r). Finally

Tz =0y, , k=12,....m—7r . 3.3)
Proof: The values (o,‘)2 are the eigenvalues of A*4 while the values (a,‘)2 are the eigenvalues of

(A’)*(A’) = P*A*AP. The corollary now follows from the theorem. O

Corollary 2: Let A and P be as in Corallary 1. Let T D ¢, be an 7z — p dimensional subspace of ,,. Let Q

be the orthogonal projection of {,, onto T. Let

B = QAP .

Then B is an operator from S to T and has singular values b; = by = > - -+ = §, = 0 where

p=min(n — r, m - p). Let

ro = max (r,p) .

OV Z b2 Opurap , k=12,.,m - 2r . (3.9

Proof: The singular values of A* are the singular values of A. In particular, the values (a,)? are also the
eigenvalues of (4')(A’)* while the values (b,)? are the eigenvalues of (QA') (QA4°)*. That is, the values (b,)?

are the eigenvalues of @(A’(A°)*]Q*. Hence, applying Corollary 1,

a = b = au., . 3.5
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Then, using (3.3) we have

OpZay = by = Gyp = Opap4r ,

which proves the corollary. O

4. THE DISTRIBUTION THEOREM

The asympotic distribution of the singular values of Toepliz matrices can be expressed in the terminology
-
/ \‘":f. P an AP

¥

Ny

of the theory of ““‘equal distribution”’, (see (3, chapter 5]). Vel

E~
Definition: for each n = 1, we consider sets of (n + 1) real numbers a(n) = {a(n), k = 1,2,...,(n + 1)} with

a,(n) = ag,1(n). Let b(n) = {by(n)} be another set of the same kind. Assume that for all k and n

by(ni= Kk , b(nl=k @“4.1)

where KX is a constant independent of k and n. We say that {a(n)} {b(n)}, n - % are ‘‘equally distributed’’ in

3 "_; the interval [— K, K] if the following holds: Let F(t) be an arbitrary continuous function defined on the interval

h (- K,K]; then

1

- Lim T (f(a(n)) = F(b(n)) = 0 . 4.2)
n n+1
rb In our case, we may assume that gy(n) = 0. In this case, it can show that the limit relation (4.2) holds for

all continuous functions F(2) if it holds for all F(1) € C}[0,K) which also satisfy F1(¢) = 0 (see [3D).

Lemma 4.1: Let {a(n)}, {b(n)} be two sets of real numbers which satisfy the following interlacing and positivity

conditions

Kzag(n)zaq(r-1)zaq.n(r)20, 1=sk=n, (4.32)

Kzbh(n)zb(n -1z bs(n)20, Isk=n; (4.3b)




and for some fixed rp > 0

bk(n) = ak(n - rO) = bk+r°(") ’ k= 1'21-“1(’1 +1- rO) ’ (4.3C)

Then {a(n)} and {b(n)} are equally distributed.

Proof.

Let F ¢ C}{—K,K] with F(1) = 0. Then it is an easy matter to show that

ey

Lim inf S [F(&(n)) = F(a(n)] = 0 (4.42)
n-ox n <+ l k=1
f" {'-irg sup — l+ T2 [F(bi(n)) — F(ar(n))) =0 O (4.4b)

p—y

Let f(©) € Lo [—m,7] and have the Fourier expansion

-

ﬂ@~k§wqﬂ°- (4.5)
ﬁ Let T, ,[f] bethe (m + 1) X (n + 1) matrix
F Tmalfl=(), i=01,..m j=012_.n, (4.6a)
{; where
E; b= 6oy (4.6b)

If (m — n) < r,, afixed integer, then the results of Sec. 3 and Lemma 4.1 imply that the singular values of

T n[f) are equally distributed as the singular values of T,, ,[f] = T,[f]. Indeed, we can even aliow

mosl g
m

where m = min (m,n), that being the case, we limit ourselves to the singular values of the square matrices

10

.............................................
....................................................
...........................
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T.(f]).

Let p(0©), ¢(©) be two fixed trigonometric polynomials with non-negative indices of the same order. That is
b e
PO)= 3 pe™ , (4.7a)
k=0

r-1
q(®©) = zo g e . (4.7b)
J=

Let P ¢ €,,1, Q € €+ be subspaces described by the conditions.

x € P o £(0) = p(©) Sn+l—r(e) (4.8a)

y € Q e 5(0) = ¢(©) tp4,-,(0) (4.8b)
where S, 1-,(©) and 4, ;- ,(0) are of the form
n-r .0
3 §je’" . (4.8¢)
Jj=0

As in Sec. 3, let P, Q denote the orthogonal projection onto P and Q respectively. Let

B,f,r.q] = QT,[fIP . (4.9)

Remark: We have not required that p,_, # 0, g,—; # 0. Nevertheless, P and Q C ¢, and are both of

dimension (n + 1 — r).

We now turn to the following question. What is the relationship between the singular values of B,[f,p,q]

and the singular values of T,-,.[qfp]? We begin by recalling

Lemma 4.2: Let A be an n X n complex matrix with singular valuesoy =03 > -+ &, 2 0. Then

oy = Max Min h (4.10)




Proof: See [2, chapter 8]. O

Corollary: Let

M = suplf©) ,

and leto (™, j = 1,2,...n + 1 be the singular values of T,[f]. Then

osocfM=sM. (4.102)

Proof: This estimate follows from (4.10) and the basic formulae (1.7a), (1.7b) together with the fact that

I 1ok = uply*T,, ()l _

Letk = n + 1 — r. There is a one-to-one correspondence between the k dimensional subspaces S’ of ¢, +; and
the k dimensional subspaces S’ of P. For every vector x € S, the vector x’ € S’ is determined by the

relationship

£'(©) = p(©)x(O) . 4.11)
For each such x ¢ §, we have
ki = o | k©@Fao 4.122)
ellg = % J @R E@©Fa0 . (4.12b)
We define
W2 = el . (4.13)

Similarly, each y € C,. -, is in a one-to-one correspondence with a y’' € Q determined by




¥'(©) = ¢(©)5(O) . 4.19)

As above, we have

g = 711; f b©Rrde . (4.152)
We define
MZ = b = - | ©F b©Fao . (4.15b)
Foreverysuchx € S,y € €,_, weset
y.x) = YT, (@fpls = 5= [ OO @p©)5(©)d0 . (4.163)

We observe that [y,x] can also be interpreted as

(y.x] = (v')*Bulf,p.qlx") . (4.16b)
Therefore,
1B Lf,p,q)x’
"[f;,il(x k _ sup 5%’—]‘&& 4.172)
- whiie
IL-rlafplde —  [y,x)
TORR T bk @170

Lemma 4.3: Let f(©) € L,[—n,n] be of the form

f©) = fo(BO)Ry(O) , (4.182)

where f,(0) is real valued and R(O) is a continuous periodic function with period 2w which satisfies

“e
-
W
-,
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Ro@) =1 . (4.18b)

Lete, 0 < € < 1 be given. There are polynomials p(©), ¢(©) of the form (4.9a), (4.9b) which satisfy

I-esph@Olsl+e, g@®I=1. (4.19)

Let {a,(n — r); k = 1,2,...,n + 1 — r} be the singular values of T,,_, [gfp] while {Bi(n — r),

k=1,2,...,n + 1— r}are the singular values of B,[f,p,q]. Then

B B
11’15«:;,‘51_e (4.20)
Finally, let {yx(n — r), k = 1,2,...(n + 1 — r)] be the singular values of T,,_, [fo]. Then
by - yd=eM (4.21a)
where
suplf©) = M (4.21b)
Proof.
Applying Fejer’s Theorem [8, pp. 89, 90] we find a trigonometric polynomial.
'l )
£§©) = 3 get (4.22)
Jj==r
such that
k® - Rg'@i<e .
Or, since (4.20b) holds
Ro(®)g(®) - Nl < € . (4.23)

R Sl *Aud

E Nad
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P®©) = e"‘ex(e) , q(©) = M®, r= 2r, . (4.29)

Then (4.19) holds. Applying Lemma 4.2 (4.17a), and (4.17b), we have (4.20). Finally

fo = afoRop = foll ~ gRx] .

Hence

lfo - a_foRoplﬁ Me .
Thus, (4.21) follows from standard perturbation arguments, see {2]. O

Proof of Theorem II:

Let {u,(n), k = 1,2,...,n + 1} be the singular values of T,[f]. By Corollary 2 of Theorem 3.1 and Lemma

4.1, the set {o,(n)} and {B;(n)} are equally distributed. By (4.20) and (4.21) we see that

bi(n) - Bi(nl = 2Me . (4.25)

Lete > 0 be given. Choose the appropriate p(9), 9(6). Let F(1) € C![0,M] and IF!(z) < . Then

[Fox(n)) = F(yx(n))) = [F(oi(n)) = F@x(n)] + [FBx(n)) = FOyx(n))] .

Hence
— 1 B [F@(n) = FOa()ll= 2MBe + 7,
where
n 1 1 5 [Foi(n) = Fu(n))l= 1, ~0as n -
therefore

15
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sup 1

0= Lim if 7+ 1

BIF(en(n) = F(y(n)ll = 2M3e .

Hence, {o,(n)} and {y,(n)} are equally distributed. The Theorem now follows from Theorem I. O

5. REMARKS

r" Lemma 4.3 has some striking consequences. Let {o 7,k = 1,2,...,n + 1} be the singular values of T, [f].

Suppose |f (©) = fo(O) and

O<m=<lf®l=M . 5.1)

Applying Corollary 2 of Theorem 3.1, we see that

ofzBy(n)z=zoley, , k=n+1-=2r . (5.2)

From (4.25) we see that

o'+ 2Me =y, ()= 0l - 2Me , k=n+1-2r . (5.3)

However, (1.10) implies

m=<+y,(n)sM .

Hence, since o' = M [see (4.10a)], we have

m-2Mesu., -3, =s0ol's M. 5.9

That is, all but 4 rinite pumber, at most 2r, of the singular values of T, [f] are within 2Me of the range of |f (O)L

. - Example: Let g(©) be a real valued continuous function with period 2w, (g(—7) = g(w)). Let

f(©) = ¢5® | (5.5)

Lete > O be given. Then for all n = ng, all buta finite number of the singular value o /\(f) of T, [f] satisfy




br-ice . (5.6)

One can easily verify that

8
f(9)=1i0 ‘2 -5gn® , —m=<O=n

is the function used by Moler. That is

e ik©

FO~% 1%

-]
However, because ¢ 2

is not continuous, we are unable to apply Theorem II or the remarks above. Hence,
the trickery’’ used in Section 2. It seems reasonable to conjecture that one can weaken the hypothesis of

Theorem II. We do not see how to do this at this time.
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