

COMPUTER SCIENCES DEPARTMENT I Diversity of WisconsinMadison

ON THE DISTRIBUTION OF THE SINGULAR VALUES
OF TOEPLITZ MATRICES
by
Seymour V. Parker
Computer Sciences Technical Report \#609
August 1985

1. AEPORTSESURITY CLASSIFICATION UNCLASSIFIE:	1b. restaictive markings			
20. Securitr classification authority	3. DISTRIBUTION/AVAILABILITY OF REPORT Approved for public release; distribution unlimited.			
20 declassification downgrading schedule				
- performing organization aeport numberist	$\begin{aligned} & \text { S. MONITOAING ORGANIZATION REPOAT NUMERISI } \\ & \text { AFOSR - TR. } 85-09.9 \\ & \hline \end{aligned}$			
6e Name of Performing organization University of Wisconsin Sb. OFFICE SYMBOL	7a. name of monitoring organization Air Force Office of Scientific Research			
oc. ADORESS (Cits. State and TIP Code Madison. Wi 53706	70. ADOAESS CIIty. State and ZIP Codel Directorate of Mathematical \& Information Sciences, Bolling AFB DC 20332-6448			
Co MAME OF FUNOING/SPONSORING ORGANIZATION ab. OFFICE SYMBOL III applicable: AFOSR NM	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER AFOSR-82-0275			
Ac ADOAESS IGity, State and ZIP Codel	10. SOURCE OF F UNDING NOS.			
	PROGRAM ELEMENT NO	PROJECT No.	TAsk	
Bolling AFB DC 20332-6448	61102F	2304		
11 TITLE (incluce Security clanaticeation)ON THE DISTRIBUTION OF THE SINGULAR VALUES OF TOEPLITZ MATRICES				
12 PERSONAL AUTHORIS) SEYMOUR V. PARTER				
13a TYPE OF REPORT Technical Report\quad13b. TIME COVERED FROM	$\begin{array}{r} \text { 14. OATE OF RE } \\ 1985 / \mathrm{Aug} \end{array}$		15.	UNT

16 SUPPLEMENTARY NOTATION

17	COSATI ODES		18. SUBJECT TEAMS ICOntinue on reverse if necemary and identify by block number, Singular Values -Toeplitz Matrices
FIELD	GROUP	SUB GR	

19 AESTRACT Conlinue on reverise if necemary and identify by block number,
in 192う, $3.5 z e g i$ proved a basic result concerning the distribution of the eigenvalues
$j(n):$ of the Toeplitz sections $T_{n}[f]$ where $f(\theta) \leqslant L_{x}(-\pi, \pi)$ is a real-valued function. Finple examp. es show that this result cannot hold in the case where $f(i)$ is not reat valued. In this note, we give an extension of this theorem for the singular values of $T_{n}[f]$ when $f(\Theta)=f_{0}(\theta) R_{0}(\Theta)$ with $f_{0}(\Theta)$ real-valued and $R_{0}(\theta)$ continuous, periodic (with period 2π) and $R_{0}(\square)=1$. In addition, we apply the basic theorem of szegō to resolve a question of C. Moler.
20. DISTAIEUTION/AVAILABILITY OF ABSTRACT
unclassifiediunliniteo \mathbb{Q} same as apt. Dotic users
22. NAME OF HESPONSIBLE INDIVIOUAL

CAPT. JOHN THOMAS

| 21. ABSTRACT SE CUAITY CLASSIFICATION |
| :--- | :--- |
| UNCLASSIFIED |

DD FORM 1473, 83 APR

ON THE DISTRIBUTION OF THE SINGULAR VALUES OF TOEPLITZ MATRICES*

 bySeymour V. Parter

> University of Wisconsin Computer Sciences Deparrment Madison, WI 53706

Abstract

In 1920, G. Szegō proved a basic result concerning the distribution of the eigenvalues $\left.\{\lambda\}^{(n)}\right\}$ of the Toeplitz sections $T_{n}[f]$ where $f(\Theta) \in L_{\infty}(-\pi, \pi)$ is a real-valued function. Simple examples show that this result canoot hold in the case where $f(\Theta)$ is not real valued. In this note, we give an 3 extension of this theorem for the singular values of $T_{n}[f]$ when $f(\Theta)=f_{0}(\Theta) R_{0}(\Theta)$ with $f_{0}(\Theta)$ real-valued and $\boldsymbol{R}_{0}(\Theta)$ continuous, periodic (with period 2π) and $\left|\boldsymbol{R}_{0}(\theta)\right|=1$. In addition, we apply the basic theorem of Szeg δ to resolve a question of C. Moler.

The results in this note were motivated by a question raised by Cleve Moler at the Second SLAM Conference on Linear Algebra, Raleigh, NC, 1985. Consider the matrix

$$
\begin{equation*}
A=\left(a_{1}\right) \tag{1.1}
\end{equation*}
$$

with
-This work supporned by Los Alenos Naiond Labormory and U.S. Air Force under AFOSR comereat 13-0275.

$$
\begin{equation*}
a_{i j}=\frac{1}{j-i+1 / 2}, \quad i, j=1,2, \ldots, N \tag{1.2}
\end{equation*}
$$

with N a number ~ 30. Using Madab, Moiler computed the singular values $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{N} \geq 0$ of this matrix. The remarkable result is most of these singular values (say, the first 20 when $N=30$) were equal to π - E with e very small. In the case $N=20$ the singular values (to four decimal places) are

```
\(\sigma(1)=\sigma(j)=3.1416 \quad j=1,2, \ldots 14\).
\(v(15)=3.1415\)
\(\sigma(16)=3.1407\)
\(\sigma(17)=3.1323\)
\(\sigma(18)=3.0631\)
\(\sigma(19)=2.6463\)
\(\sigma(20)=1.1705\)
;
```

In Section 2, we give a qualitative explanation of this phenomena. This discussion is based on a theorem of Szego [6] concerning the asymptotic distribution of the eigenvalues of the Toeplit matrices $T_{n}[f]$ where $f(\Theta)$ is a real-valued bounded measurable function which is periodic with period 2π. Simple examples show that a similar theorem for the case where $f(\theta)$ is not real valued is impossible. In Section 3, we prove an interlacing which is applied theorem for singular values \bigwedge While this theorem is stated in more general terms than one finds in the literature (see [2], page 286) the proof is essentially the proof of the interlacing theorem for Hermitian matrices. We include the proof for the sake of completeness. In Section 4, we apply this theorem to obtain extensions of the Szego theorem to the singular values of $T_{i}[f]$ when f is not a real-valued function.

Let $f(\Theta) \in L_{\infty}(-\pi, \pi)$ and have the Fourier expansion

$$
\begin{equation*}
f(\theta)-\sum_{-\infty}^{\infty} c_{k} e^{i k \theta} \tag{1.3}
\end{equation*}
$$

Let $T_{n}[f]$ denote the $(n+1) \times(n+1)$ matrix

$$
\begin{equation*}
T_{n}[f]=\left(h_{j}\right), \quad i, j=0,1, \ldots, n \tag{1.4a}
\end{equation*}
$$

with

$$
\begin{equation*}
u_{j}=c_{j-1} \tag{1.4b}
\end{equation*}
$$

Observe that when $f(\Theta)$ is a real-valued function

$$
\begin{equation*}
c_{k}=\bar{c}_{-k} \tag{1.5}
\end{equation*}
$$

and $T_{n}[f]$ is a hermitian matrix.
A basic result, which is easily verified, is the following formula for the computation of inner products. Let

$$
\begin{equation*}
x=\left(x_{0}, x_{1}, \ldots, x_{n}\right)^{T}, y=\left(y_{0,}, y_{1} \cdots y_{n}\right)^{T} \tag{1.6a}
\end{equation*}
$$

Set

$$
\begin{equation*}
\hat{x}(\theta)=\sum_{0}^{n} x_{k} e^{-i k \theta}, \hat{y}(\theta)=\sum_{0}^{n} y_{k} e^{-i k \theta} \tag{1.6b}
\end{equation*}
$$

Let $\hat{y}^{*}(\Theta)$ denote the complex conjugate of $\hat{y}(\Theta)$, that is

$$
\begin{equation*}
\hat{y}^{*}(\theta)=\sum_{0}^{n} \bar{y}_{k} e^{i k \theta} \tag{1.6c}
\end{equation*}
$$

Then

$$
\begin{equation*}
y^{*} T_{n}[f] x=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \hat{y}^{*}(\Theta) f(\Theta) \hat{x}(\Theta) d \Theta \tag{1.7a}
\end{equation*}
$$

Of course

$$
\begin{equation*}
y^{*} x=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \hat{y}^{*}(\Theta) \hat{x}(\Theta) d \Theta \tag{1.7b}
\end{equation*}
$$

When $f(\theta)$ is real valued, this formula yields the basic estimate; let $\lambda_{n+1}^{(n)} \leq \lambda_{n}^{(n)} \leq \ldots \leq \lambda_{2}^{(n)} \leq \lambda_{1}^{(n)}$ be the
eigenvalues of $T_{n}[f]$, then

$$
\begin{equation*}
m \leq \lambda j^{(n)} \leq M \tag{1.8a}
\end{equation*}
$$

where

$$
\begin{equation*}
m=\inf f(\Theta), M=\sup f(\theta) \tag{1.8b}
\end{equation*}
$$

Another basic result is the following distribution theorem.

Theorem I (Szegö). Let $f(\Theta) \in L_{x}[-\pi, \pi]$ be real valued. Let m, and M be as in (1.8b). Let $F(\lambda) \in C[m, M]$. Then

$$
\begin{equation*}
\operatorname{Lim}_{n \rightarrow \infty} \frac{1}{n+1} \sum_{j=1}^{n+1} F\left(\lambda_{j}^{(n)}\right)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} F(f(\Theta)) d \Theta \tag{1.9}
\end{equation*}
$$

Moreover, for any fixed $j \geq 1$,

$$
\begin{equation*}
\lambda_{j}^{(n)} \rightarrow M, \lambda_{n+2-j}^{n} \rightarrow m \text { as } n \rightarrow \infty \tag{1.10}
\end{equation*}
$$

Proof: See [3], Chapter 5, pp. 64-65.

Remarks. Theorems on the rate of convergence in (1.10) are given in [4], [5].
In Section 4, we prove an extension of this theorem.

Theorem II. Let $f(\theta) \in L_{x}(-\pi, \pi)$. Let

$$
\sigma_{1}^{(n)} \geq \sigma_{2}^{(n)} \geq \cdots \sigma_{n+1}^{(n)} \geq 0
$$

be the singular values of $T_{n}[f]$. Suppose $f(\Theta)$ can be written as

$$
\begin{equation*}
f(\Theta)=f_{0}(\Theta) R_{0}(\Theta) \tag{1.11a}
\end{equation*}
$$

where $f(\theta)$ is a real-valued function and $R_{0}(\Theta)$ is a continuous periodic function with period 2π which also
satisfies

$$
\begin{equation*}
\left|R_{0}(\Theta)\right|=1 \tag{1.11b}
\end{equation*}
$$

Let

$$
\begin{equation*}
M=\sup |f(\theta)| \tag{1.12}
\end{equation*}
$$

and let $F(\lambda) \in C[0, M]$. Then

$$
\begin{equation*}
\operatorname{Lim}_{n \rightarrow N} \frac{1}{n+1} \sum_{1}^{n+1} F\left(\sigma_{j}^{(n)}\right)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} F d f(\theta) b d \theta \tag{1.13}
\end{equation*}
$$

2. MOLER'S PROBLEM

Let A be the $N \times N$ matrix given by (1.1), (1.2). Let B be the $(2 N) \times(2 N)$ hermitian matrix given by

$$
B=\frac{1}{i}\left[\begin{array}{cc}
0 & A \tag{2.1}\\
-A^{T} & 0
\end{array}\right], i=\sqrt{-1} .
$$

Since B is a hermitian matrix, its singular values are merely the absolute values of its eigenvalues. At the same time, the singular values of B are the singular values of A-- each with multiplicity 2.

Let P be the permutation on $\{1,2, \ldots, 2 N\}$ given by

$$
\begin{align*}
& P(j)=2 j-1, j=1,2, \ldots, N \tag{2.2a}\\
& P(N+j)=2 j, j=1,2, \ldots, N . \tag{2.2b}
\end{align*}
$$

Let be the associated permutation matrix. Let

$$
\begin{equation*}
\boldsymbol{P}^{\boldsymbol{T}} B=D \tag{2.3}
\end{equation*}
$$

Then a direct, but detailed, calcularion shows that

$$
\begin{equation*}
D=T_{2 N-1}[g] \tag{2.4a}
\end{equation*}
$$

where

$$
\begin{equation*}
g(\theta)=\sum_{k=-\infty}^{\infty} \frac{1}{(2 k-1) i} e^{(2 k-1) i \theta} \tag{2.4b}
\end{equation*}
$$

and, in fact, $g(\Theta)$ is the "square wave" given by

$$
g(\Theta)=\left\{\begin{align*}
-\pi, & -\pi<\Theta<0 \tag{2.4c}\\
\pi, & 0<\Theta<\pi
\end{align*}\right.
$$

Remarks. To obtain (2.4a), (2.4b), it is easiest to make the change of variables

$$
\begin{gathered}
x_{j}=y_{2 j-1}, j=1,2, \ldots, N \\
x_{N+j}=y_{2 j}, j=1,2, \ldots, N .
\end{gathered}
$$

To obrain (2.4c), one can calculate or check any elementary text, e.g., see problem 3, gage 64 of [1]. Then for any $\epsilon>0$ we see that only $o(N)$ of the eigenvalues of $T_{2 N-1}[\delta]$ satisfy

$$
\mid A)^{(2 N-1)}|-\pi|>\in .
$$

To see this, we merely need apply Theorem 1 with $F(\lambda)=\lambda \downarrow$ Then

$$
\begin{equation*}
A_{j}{ }^{(2 N-1)} \leq \pi . \tag{2.5a}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Lim}_{N-\infty} \frac{1}{2 N} \sum_{j=1}^{2 N} \lambda_{j}^{(2 N-1 \eta}=\pi, \tag{2.5b}
\end{equation*}
$$

Thus, "most" of the singular values of A are "close" to π. Another remark which is relevant to the limit relations (1.10): the estimates of [5] show that, for fixed j and every integer $r \geq 1$, there is a constant $C_{r, j}$ such that

$$
\begin{align*}
& \lambda_{j}^{(2 N-1)}+\pi \left\lvert\, \leq \frac{C_{r, j}}{N^{2 r}}\right., \tag{2.6a}\\
& \lambda_{2 N+1}\left\{\left.\begin{array}{l}
2 N-1) \\
N_{2}
\end{array}-\pi \right\rvert\, \leq \frac{C_{r, j}}{N^{2 r}} .\right. \tag{2.6b}
\end{align*}
$$

3. AN INTERLACING THEOREM

Let $B=B^{*}$ be an $n \times n$ hermitian matrix. Let B_{k} be the $(n-1) \times(n-1)$ hermitian matrix obtained from B by deletion of the kth row and column. Let $\beta_{1} \leq \beta_{2} \leq \cdots \leq \beta_{n}$ be the eigenvalues of B and let $b_{1} \leq b_{2} \leq \cdots \leq b_{n-1}$ be the eigenvalues of B_{k}. Then, as is well known,

$$
\beta_{1} \leq b_{1} \leq \beta_{2} \leq b_{2} \leq \cdots b_{n-1} \leq \beta_{n}
$$

For our current purpose, we prefer to restave this theorem as follows.

Theorem 3.1. Let $S \leq \Phi_{n}$ be a $(n-r)$ dimensional subspace of C_{n}, the complex n dimensional vector space. Let P be the orthogonal projection onto S. Let

$$
\begin{equation*}
B^{\prime}=P B P \tag{3.1}
\end{equation*}
$$

Then B^{\prime} is an hermitian matrix and, viewed as an operator from S to S has eigenvalues
$b_{1} \leq b_{2} \leq \cdots \leq b_{n-r}$, and

$$
\begin{equation*}
\beta_{k} \leq b_{k} \leq \beta_{k+n}, k=1,2, \ldots, n-r \tag{3.2}
\end{equation*}
$$

Proof: The proof follows exactly as the proof of the well-known theorem cited above. We merely observe that S is characterized by r linearly independent vectors $y_{1}, y_{2} \ldots y_{r}$ which are orthogonal to S. Then the proof follows the argument given in [7; section 47, page 103].

Corollary 1. Let A be a $m \times n$ complex matrix. Let $\bar{m}=\min (m, n)$ and let

$$
\sigma_{1} \geq \sigma_{2} \cdots \geq \sigma_{\bar{m}} \geq 0
$$

be the singular values of A. Let P be the projection above and let

$$
A^{\prime}=A P
$$

Then A^{\prime} is an operator from S to Φ_{m} and has singular values $a_{1} \geq a_{2} \geq \cdots \geq a_{1} \geq 0$ where $l=\min (m, n-r)$. Finally

$$
\begin{equation*}
\sigma_{k} \geq a_{k} \geq \sigma_{k+r}, \quad k=1,2, \ldots, \bar{m}-r \tag{3.3}
\end{equation*}
$$

Proof: The values $\left(\sigma_{k}\right)^{2}$ are the eigenvalues of $A^{*} A$ while the values $\left(a_{k}\right)^{2}$ are the eigenvalues of $\left(A^{\prime}\right)^{*}\left(A^{\prime}\right)=P^{*} A^{*} A P$. The corollary now follows from the theorem. \square

Corollary 2: Let A and P be as in CornHary 1. Let $T \supseteq \Psi_{m}$ be an $m-\rho$ dimensional subspace of $\boldsymbol{\psi}_{m}$. Let Q be the orthogonal projection of $\mathbb{\$}_{m}$ onto T. Let

$$
B=Q A P
$$

Then B is an operator from S to T and has singular values $b_{1} \geq b_{2} \geq \cdots \geq \varepsilon_{\mu} \geq 0$ where $\mu=\min (n-r, m-\rho)$. Let

$$
r_{0}=\max (r, p)
$$

Then

$$
\begin{equation*}
\sigma_{k} \geq b_{k} \geq \sigma_{k+r+p}, k=1,2, \ldots, \bar{m}-2 r_{0} \tag{3.4}
\end{equation*}
$$

Proof: The singular values of A^{*} are the singular values of A. In particular, the values $\left(a_{k}\right)^{2}$ are also the eigenvalues of $\left(A^{\prime}\right)\left(A^{\prime}\right)^{*}$ while the values $\left(b_{k}\right)^{2}$ are the eigenvalues of $\left(Q A^{\prime}\right)\left(Q A^{\prime}\right) *$. That is, the values $\left(b_{k}\right)^{2}$ are the eigenvalues of $Q\left[A^{\prime}\left(A^{\prime}\right)^{*}\right] Q^{*}$. Hence, applying Corollary 1,

$$
\begin{equation*}
a_{k} \geq b_{k} \geq a_{k+p} \tag{3.5}
\end{equation*}
$$

Then, using (3.3) we have

$$
\sigma_{k} \geq a_{k} \geq b_{k} \geq a_{k+\rho} \geq \sigma_{k+\rho+r},
$$

which proves the corollary.

4. THE DISTRIBUTION THEOREM

The asympotic distribution of the singular values of Toeplite matrices can be expressed in the terminology of the theory of "equal distribucion", (see [3, chapter 5]).

Definition: for each $n \geq 1$, we consider sets of $(n+1)$ real numbers $a(n)=\left\{a_{k}(n), k=1,2, \ldots,(n+1)\right\}$ with $a_{k}(n) \geq a_{k+1}(n)$. Let $b(n)=\left\{b_{k}(n)\right\}$ be another set of the same kind. Assume that for all k and n

$$
\begin{equation*}
\left|b_{k}(n)\right| \leq K,\left|b_{k}(n)\right| \leq K \tag{4.1}
\end{equation*}
$$

where K is a constant independent of k and n. We say that $\{a(n)\}\{b(n)\}, n-\infty$ are "equally distributed" in the interval $[-K, K]$ if the following holds: Let $F(t)$ be an arbitrary continuous function defined on the interval [$-K, K$]; then

$$
\begin{equation*}
\operatorname{Lim}_{n \rightarrow \infty} \frac{1}{n+1} \sum\left[f\left(a_{k}(n)\right]-F\left(b_{k}(n)\right)\right]=0 . \tag{4.2}
\end{equation*}
$$

In our case, we may assume that $a_{k}(n) \geq 0$. In this case, it can show that the limit reiation (4.2) holds for all continuous functions $F(t)$ if it holds for all $F(t) \in C^{1}[0, K]$ which also satisfy $F^{1}(t) \geq 0$ (see [3]).

Lemma 4. I: Let $\{a(n)\},\{b(n)\}$ be two sets of real numbers which satisfy the following interlacing and positivity conditions

$$
\begin{align*}
& K \geq a_{k}(n) \geq a_{k}(n-1) \geq a_{k+1}(n) \geq 0,1 \leq k \leq n, \tag{4.3a}\\
& K \geq b_{k}(n) \geq b_{k}(n-1) \geq b_{k+1}(n) \geq 0,1 \leq k \leq n ; \tag{4.3b}
\end{align*}
$$

and for some fixed $r_{0}>0$

$$
\begin{equation*}
b_{k}(n) \geq a_{k}\left(n-r_{0}\right) \geq b_{k+r_{0}}(n), \quad k=1,2, \ldots,\left(n+1-r_{0}\right) \tag{4.3c}
\end{equation*}
$$

Then $\{a(n)\}$ and $\{b(n)\}$ are equally distributed.

Proof.

Let $F \in C^{1}[-K, K]$ with $F^{1}(t) \geq 0$. Then it is an easy matter to show that

$$
\begin{align*}
& \operatorname{Lim}_{n \rightarrow \infty} \inf \frac{1}{n+1} \sum_{k=1}^{n}\left[F\left(b_{k}(n)\right)-F\left(a_{k}(n)\right)\right] \geq 0 \tag{4.4a}\\
& \operatorname{Lim}_{n \rightarrow x} \sup \frac{1}{n+1} \sum\left[F\left(b_{k}(n)\right)-F\left(a_{k}(n)\right)\right] \leq 0 \tag{4.4b}
\end{align*}
$$

Let $f(\Theta) \in L_{\infty}[-\pi, \pi]$ and have the Fourier expansion

$$
\begin{equation*}
f(\Theta)-\sum_{k=-\infty}^{\alpha} c_{k} e^{i k \Theta} \tag{4.5}
\end{equation*}
$$

Let $T_{m, n}[f]$ be the $(m+1) \times(n+1)$ matrix

$$
\begin{equation*}
T_{m, n}[f]=\left(i_{i}\right), \quad i=0,1, \ldots, m, j=0,1,2, \ldots, n, \tag{4.6a}
\end{equation*}
$$

where

$$
\begin{equation*}
h_{1}=c_{j-1} . \tag{4.6b}
\end{equation*}
$$

If $(m-n) \leq r_{1}$, a fixed integer, then the results of Sec. 3 and Lemma 4.1 imply that the singular values of $T_{m, n}[f]$ are equally distributed as the singular values of $T_{n, n}[f]=T_{n}[f]$. Indeed, we can even allow

$$
\frac{|m-n|}{\bar{m}} \rightarrow 0
$$

where $\bar{m}=\min (m, n)$, that being the case, we limit ourselves to the singular values of the square matrices
$T_{n}[f]$.
Let $p(\Theta), q(\Theta)$ be two fixed trigonometric polynomials with non-negative indices of the same order. That is

$$
\begin{align*}
& p(\theta)=\sum_{k=0}^{r-1} p_{k} e^{i k \theta} \tag{4.7a}\\
& q(\theta)=\sum_{J=0}^{r-1} q_{j} e^{i k \theta} . \tag{4.7b}
\end{align*}
$$

Let $P \in \mathbb{\$}_{n+1}, Q \in \mathbb{\$}_{m+1}$ be subspaces described by the conditions.

$$
\begin{align*}
& x \in P \leftrightarrow \hat{x}(\Theta)=p(\Theta) S_{n+1-r}(\Theta) \tag{4.8a}\\
& y \in Q \leftrightarrow \hat{y}(\Theta)=q(\Theta) b_{n+1-r}(\Theta) \tag{4.8b}
\end{align*}
$$

where $S_{n+1-r}(\Theta)$ and $t_{n+1-r}(\Theta)$ are of the form

$$
\begin{equation*}
\sum_{j=0}^{n-r} \xi_{j} e^{i j \Theta} \tag{4.8c}
\end{equation*}
$$

As in Sec. 3, let P, Q denote the orthogonal projection onto P and Q respectively. Let

$$
\begin{equation*}
B_{n}[f, p, q]=Q T_{n}[f] P \tag{4.9}
\end{equation*}
$$

Remark: We have not required that $p_{r-1} \neq 0, q_{r-1} \neq 0$. Nevertheless, P and $Q \subset \Phi_{n+1}$ and are both of dimension ($n+1-r$).

We now turn to the following question. What is the relationship between the singular values of $B_{n}[f, p, q]$ and the singular values of $T_{n-r}[\bar{q} f p]$? We begin by recalling

Lemma 4.2: Let A be an $n \times n$ complex matrix with singular values $\sigma_{1} \geq \sigma_{2}>\cdots \sigma_{n} \geq 0$. Then

Proof: See [2, chapter 8].

Corollary: Let

$$
M=\sup |f(\Theta)|
$$

and let $\sigma_{j}^{(n)}, j=1,2, \ldots n+1$ be the singular values of $T_{n}[f]$. Then

$$
\begin{equation*}
0 \leq \sigma_{j}^{(n)} \leq M \tag{4.10a}
\end{equation*}
$$

Proof: This estimate follows from (4.10) and the basic formulae (1.7a), (1.7b) together with the fact that

$$
\left\|T_{n}[f] x\right\|_{k}=\frac{s u p\left|y^{*} T_{n}[f] x\right|}{\| \|_{2}}
$$

Let $k \leq n+1-r$. There is a one-to-one correspondence between the k dimensional subspaces S^{\prime} of \mathbb{q}_{n+1} and the k dimensional subspaces S^{\prime} of P. For every vector $x \in S$, the vector $x^{\prime} \in S^{\prime}$ is determined by the relationship

$$
\begin{equation*}
\hat{x}^{\prime}(\Theta)=p(\Theta) x(\Theta) . \tag{4.11}
\end{equation*}
$$

For each such $x \in S$, we have

$$
\begin{gather*}
\|x\|_{2}^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} t \hat{x}(\theta)^{2} d \theta, \tag{4.12a}\\
\left\|x^{\prime}\right\|_{2}^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} p(\theta)^{2} k \hat{x}(\theta)^{2} d \theta . \tag{4.12b}
\end{gather*}
$$

We define

$$
\begin{equation*}
\|x\|_{0}^{2}=\left\|x^{\prime}\right\|_{2}^{2} . \tag{4.13}
\end{equation*}
$$

Similarly, each $y \in C_{n+1-r}$ is in a one-to-one correspondence with a $y^{\prime} \in Q$ determined by

$$
\begin{equation*}
\hat{y}^{\prime}(\Theta)=q(\Theta) \hat{y}(\theta) \tag{4.14}
\end{equation*}
$$

As above, we have

$$
\begin{equation*}
\left\|\left\|\|_{2}^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \hat{y}(\theta)^{2} d \theta .\right.\right. \tag{4.15a}
\end{equation*}
$$

We define

$$
\begin{equation*}
\left.\|⿻\|_{G}^{2}=\|y\|_{2}^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \lg (\theta)^{2} \right\rvert\, \hat{y}(\theta)^{2} d \theta \text {. } \tag{4.15b}
\end{equation*}
$$

For every such $x \in S, y \in \mathbb{\Phi}_{n-r}$ we set

$$
\begin{equation*}
[y, x]=y^{*} T_{n-r}[\bar{q} f p] x=\frac{1}{2 \pi} \int_{2 \pi}^{\pi} \hat{y}^{*}(\Theta) \bar{q}(\Theta) f(\Theta) p(\Theta) \hat{x}(\Theta) d \Theta, \tag{4.16a}
\end{equation*}
$$

We observe that $[y, x]$ can also be interpreted as

$$
\begin{equation*}
[y, x]=\left(y^{\prime}\right)^{*} B_{n}[f, p, q]\left(x^{\prime}\right) \tag{4.16b}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\frac{\| B_{n}[f, p, q]\left(x^{\prime} \|_{b}\right.}{\left\|x^{\prime}\right\|_{2}}=\sup _{y \neq 0} \frac{[y, x]}{H_{y} H_{q}\|x\|_{p}} \tag{4.17a}
\end{equation*}
$$

while

$$
\begin{equation*}
\frac{\left\|T_{n-r}-[\bar{a} f p] x\right\|_{2}}{\|x\|_{2}}=\sup _{y \neq 0} \frac{[y, x]}{\|x\| d u b \|_{2}} \tag{4.17b}
\end{equation*}
$$

Lemma 4.3: Let $f(\Theta) \in L_{\infty}[-\pi, \pi]$ be of the form

$$
\begin{equation*}
f(\Theta)=f_{0}(\Theta) R_{0}(\Theta) \tag{4.18a}
\end{equation*}
$$

where $f_{0}(\Theta)$ is real valued and $R_{0}(\Theta)$ is a continuous periodic function with period 2π which satisfies

$$
\begin{equation*}
\left|R_{0}(\Theta)\right|=1 . \tag{4.18b}
\end{equation*}
$$

Let $\epsilon, 0<\epsilon<1$ be given. There are polynomials $p(\Theta), q(\Theta)$ of the form (4.9a), (4.9b) which satisfy

$$
\begin{equation*}
1-\epsilon \leq \operatorname{lo}(\Theta)|\leq 1+\epsilon,|q(\theta)|=1 . \tag{4.19}
\end{equation*}
$$

Let $\left\{\alpha_{k}(n-r) ; k=1,2, \ldots, n+1-r\right\}$ be the singular values of $T_{n-r}[\bar{q} f p]$ while $\left\{\beta_{k}(n-r)\right.$, $k=1,2, \ldots, n+1-r\}$ are the singular values of $B_{n}[f, p, q]$. Then

$$
\begin{equation*}
\frac{\beta_{k}}{1+\epsilon} \leq \alpha_{k} \leq \frac{\beta_{k}}{1-\epsilon} . \tag{4.20}
\end{equation*}
$$

Finally, let $\left\{\gamma_{k}(n-r), k=1,2, \ldots,(n+1-r)\right]$ be the singular values of $T_{n-r}[f 0]$. Then

$$
\begin{equation*}
\left|x_{k}-\gamma_{k}\right| \leq \epsilon M \tag{4.21a}
\end{equation*}
$$

where

$$
\begin{equation*}
\sup |f(\theta)|=M \tag{4.21b}
\end{equation*}
$$

Proof.

Applying Fejer's Theorem [8, pp. 89, 90] we find a trigonometric polynomial.

$$
\begin{equation*}
g(\theta)=\sum_{j=-r_{1}}^{r_{1}} g_{k} e^{i k \theta} \tag{4.22}
\end{equation*}
$$

such that

$$
\left|\lg (\Theta)-R_{0}^{-1}(\Theta)\right|<\epsilon .
$$

Or, since (4.20b) holds

$$
\begin{equation*}
\left|R_{0}(\Theta) g(\Theta)-1\right|<\epsilon . \tag{4.23}
\end{equation*}
$$

Let

$$
\begin{equation*}
P(\Theta)=e^{i r_{1} \Theta} g(\Theta), q(\Theta)=e^{i r_{1} \theta}, r=2 r_{1} . \tag{4.24}
\end{equation*}
$$

Then (4.19) holds. Applying Lemma 4.2 (4.17a), and (4.17b), we have (4.20). Finally

$$
f_{0}-\bar{q} f_{0} R_{0 p}=f_{0}\left[1-g R_{\infty}\right] .
$$

Hence

$$
\left|f_{0}-\bar{q} f_{0} R_{0} p\right| \leq M \epsilon .
$$

Thus, (4.21) follows from standard perturbation arguments, see [2].

Proof of Theorem II:

Let $\left\{\sigma_{k}(n), k=1,2, \ldots, n+1\right\}$ be the singular values of $T_{n}[f]$. By Corollary 2 of Theorem 3.1 and Lemma 4.1, the set $\left\{\sigma_{k}(n)\right\}$ and $\left\{\beta_{k}(n)\right\}$ are equally distributed. By (4.20) and (4.21) we see that

$$
\begin{equation*}
\left|\psi_{k}(n)-\beta_{k}(n)\right| \leq 2 M \epsilon . \tag{4.25}
\end{equation*}
$$

Let $\epsilon>0$ be given. Choose the appropriate $p(\Theta), q(\Theta)$. Let $F(t) \in C^{1}[0, M]$ and $\left|F^{1}(t)\right| \leq \delta$. Then

$$
\left[F\left(\sigma_{k}(n)\right)-F\left(\gamma_{k}(n)\right)\right]=\left[F\left(\sigma_{k}(n)\right)-F\left(\beta_{k}(n)\right)\right]+\left[F\left(\beta_{k}(n)\right)-F\left(\gamma_{k}(n)\right)\right] .
$$

Hence

$$
\frac{1}{n+1}\left|\sum\left[F\left(\sigma_{k}(n)\right)-F\left(\gamma_{n}(n)\right)\right]\right| \leq 2 M \delta \epsilon+\tau_{n}
$$

where

$$
\frac{1}{n+1}\left|\sum\left[F\left(\sigma_{k}(n)\right)-F\left(\beta_{k}(n)\right)\right]\right|=\tau_{n}-0 \text { as } n \rightarrow \infty
$$

therefore

$$
0 \leq \operatorname{Lim} \sup _{i n f} \frac{1}{n+1}\left|\sum\left[F\left(\sigma_{n}(n)\right)-F\left(\gamma_{n}(n)\right)\right]\right| \leq 2 M \delta \epsilon .
$$

Hence, $\left\{\sigma_{k}(n)\right\}$ and $\left\{\gamma_{n}(n)\right\}$ are equally distributed. The Theorem now follows from Theorem I.

5. REMARKS

Lemma 4.3 has some striking consequences. Let $\left\{\sigma_{k}^{n}, k=1,2, \ldots, n+1\right\}$ be the singular values of $T_{n}[f]$. Suppose $|f(\Theta)|=f_{0}(\Theta)$ and

$$
\begin{equation*}
0<m \leq|f(\Theta)| \leq M . \tag{5.1}
\end{equation*}
$$

Applying Corollary 2 of Theorem 3.1, we see that

$$
\begin{equation*}
\sigma_{k}^{n} \geq \beta_{k}(n) \geq \sigma_{k+2 r}^{n}, k=n+1-2 r . \tag{5.2}
\end{equation*}
$$

From (4.25) we see that

$$
\begin{equation*}
\sigma_{k}^{m}+2 M \epsilon \geq \gamma_{k}(n) \geq \sigma_{k+2 r}^{n}-2 M \epsilon, k \leq n+1-2 r . \tag{5.3}
\end{equation*}
$$

However, (1.10) implies

$$
m \leq \gamma_{n}(n) \leq M .
$$

Hence, since $\sigma_{k}^{n} \leq M$ [see (4.10a)], we have

$$
\begin{equation*}
m-2 M \epsilon \leq \sigma_{n+1-2 r}^{n} \leq \sigma_{l}^{n} \leq M . \tag{5.4}
\end{equation*}
$$

That is, all but * inite number, at most $2 r$, of the singular values of $T_{n}[f]$ are within $2 M \in$ of the range of $\mid f(\Theta)$,

Example: Let $g(\theta)$ be a real valued continuous function with period $2 \pi,(g(-\pi)=g(\pi))$. Let

$$
\begin{equation*}
f(\theta)=e^{\operatorname{tg}(\theta)} \tag{5.5}
\end{equation*}
$$

Let e >0 be given. Then for all $n \geq n_{0}$, all buta finite. number of the singular value $\sigma_{k}^{n}(f)$ of $T_{n}(f)$ satisfy

$$
\begin{equation*}
\left|b_{k}^{n}-1\right|<\epsilon . \tag{5.6}
\end{equation*}
$$

One can easily verify that

$$
f(\Theta)=\frac{\pi}{i} e^{-i \frac{\theta}{2}} \cdot \operatorname{sgn} \theta,-\pi \leq \theta \leq \pi
$$

is the function used by Moler. That is

$$
f(\theta)-\Sigma \frac{e^{i k \theta}}{k+z_{2}} .
$$

However, because $e^{-\frac{i \theta}{2}}$ is not continuous, we are unable to apply Theorem II or the remarks above. Hence, the trickery" used in Section 2. It seems reasonable to conjecture that one can weaken the hypothesis of Theorem II. We do not see how to do this at this time.

REFERENCES

1. R. V. Churchill, Fourier Series and Boundary Value Problems, (McGraw-Hill) New York, 1941.
2. G. H. Golub and C. F. Van Loan, Matrix Computations, (The Johns Hopkins University Press) 1983.
3. V. Grenander and G. Szego, Toeplitz Forms and Their Applications, (University of California Press) Berkley, 1958.
4. S. V. Parter, On the Extreme Eigenvalues of Toeplit Matrices, Trans. A.M.S. 100:263-276 (1961).
5. S. V. Parter, On the Exreme Eigenvalues of Truncated Toeplit Matrices Bull. A.M.S. 67:191-196 (1961).
6. G. Szegō, Beiträge zur Theorie der Toeplitzschen Form en, I, Mathematische Zeitrchriff 6:167-202 (1920).
7. J. H. Wilkenson, The Algebraic Eigenvalue Problem (Clarendon Press) Oxford, 1965.
8. A. Zygmund, Trigonometric Series (Cambridge University Press) Cambridge, England, 1968.

END

FILMED

12-85
DTIC

