

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

 DEPARTMENT OF OCEAN ENGINEERING
NONLINEAR FREE SURFACE EFFECTS: EXPERIMENTS AND THEORY

by
Martin Greenhow
and
Woei-Min Lin
REPORT NO. 83-19

September 1983

This research was carried out under
Office of Naval Research Contract NOOO14-82-K-0198, MIT/OSP 91783 and

National Science Foundation, Contract 8210649-MEA, MIT/OSP 93348

This document has been approved I:r priblic release and sale; its cij :ibution is unlimited.
avoided in the real fluid by the formation of jets, which at the scale of the experiments, quickly break up into spray under the action of surface tension. Nevertheless it is known that potential theory is adequate to describe the formation of jets and therefore some local model, valid around the intersection point and based on potential theory, is being sought for later matching to appropriate far field conditions. Such far field or outer solutions may be calculated with exisifng programs, and it is hoped that when complemented by an inner solution, they will provide a reasonably complete description of many extreme wave or extreme motion problems e.g., ship capsize and slamming.

For the most part the experiments have been performed at high speed: this means that it is approximately correct to ignore gravity in the local region and this effects a considerable simplification to the theory. Indeed the known theories of jets all ignore the influence of gravity by letting the oripin be in free fall. This appears to be justified in the present context also.

The experiments are compared with the results of existing theories and earlier work as far as possible. However, the water exit problem of a cylinder (relevant to cross members in the splash zone) appears to be largely unstudied, possibly because of the extremely complex nature of the breaking as the cylinder leaves the free surface, where cortices shed by the cylinder as it moves through the fluid may influence the free surface as the cylinder leaves the fluid. For the other problems studied (the impulsive start of a wavemaker, cylinder entrv anc wedge entry) vorticity is not thought to be important and the resulting breaking appears to be closely similar to the breaking of waves. Suroort for this conjecture is being sought.

REPORT DOCUMENTATION PAGE	READ DETRUCTIONS BEFORE COMPLETUNG FOM
	7. RECIPIENT'Z CATALOG MUMIER 79
4. TITLE (End Subettic) NON-LINEAR FREE SURFACE EFFECTS: EXPERIMENTS AND THEORY	5. TrPE OF REPORT A PERIOD COVERED TECHNICAL REPORT 6. PERFORMING ORG. RETPOAT NUMEEA
$\begin{gathered} \text { 7. AUTMOR MARTIN GREENHOI: } \\ \text { WOEI-MIN LIN } \end{gathered}$	6. CONTRACT OH ORART NUMDEYO NOOO14-82-K-0198
5. PERFORMING ORGANIZATION MAME AND adDREBS DEPARTMENT OF OCEAN ENCIMEERING MASSACHUSETTS INSTITYME OF TECHNOLOGY 77 MASSACHUSETTS AVE., CAMBRIDGE, MA 02139	10. PROGRAM ELEMENT. PROJECT. TABK AREA A WONK UNIT NUMEERS
11. CONTROLLING OFFICE MAME AND ADDRESS OFFICE OF NAVAL RESEARCH	12. REPORT DATE SEPTEMBER 1983
DEPARTMENT OF THE IVAVY ARLINGTON, VA 22217	i3. MUMBER OF PAGES 95
14. MONITORING AGENCY NAME A ADDRES3(II Ulfiorent from Controlimi Office)	i5. sECURITY CLABS. (of thie ropori) UNCLASSIFIED
	TBe. DECLABSIFICATION/DOWNGRADING
16. DISTRIDUTION STATEMENT (Of thio RAPORt) APPROVED FOR PURLIC RELEASE: DISTRIBUTION UN	LIMITED
	Report)
16. SUPPLEMENTANY NOTES	
	SURFACE
 The object of this report is to present the results of some simple twodimensional experiments in which the surface of the water is displaced a good deal from its undisturbed position, and for which linear theory is likely to be in error. Particular attention is paid to the point of intersection of the free surface and a moving body, where the confluence of boundary conditions can cuase singularities in the free surface displacements and velocities, as predicted by linear theory. These singularities appear to be	

table of CONTENTS

LIST OF FIGURES 11
ABSTRACT 1
INIRODUCTION 3
THE IMPULSIVE START OF A TAVEMAEER 6
THE EIGE SPEED ENTRY OF A WEDGE INTO CALM WATER 14
TEE HIGH SPEED ENIRY OF A CYLINDER INTO CALM WATER 19
THE CYLINDER EXIT PROBLEM 21
ACENOTLEDGEMENT 23
REFERENCES 24

LIST OF FIGURES

Figure

2.1 Tank Configuration 27
2.2 Effect of water depth 28
2.3 Effect of bottom clearance 29
2.4 Effect of bottom clearance 30
2.5 Effect of side clearance 32
2.6 Impalsive motion of wavemaker, depth $=10 \mathrm{~cm}$ 35
2.7 Measured velocity 38
2.8 Comparison of theory and experiment 39
2.9 Impolsive motion of wavenaker, depth $=20 \mathrm{~cm}$ 40
2.10 Impalsive motion of wavemaker, depth $=30 \mathrm{~cm}$ 41
2.11 Experiment with smooth wavemaker front and sosp solvtion in the water 42
2.12 Comparison of wave profiles with different initial wavemaker velocities, and the same wavemaker displacement 43
3.1 Wedge data (half-section) 44
3.2 Water entry of 9 degree wedge 45
3.3 Water entry of 9 degree wedge (oblique view) 47
3.4 Water entry of 15 degree wedge 48
3.5 Water entry of 15 degree wedge (oblique view) 51
3.6 Water entry of 30 degree wedge 53
3.7 Water entry of 30 degree wedge (oblique view) 55
3.8 Water entry of 45 degree wedge 57
3.9 Water entry of 45 degree wedge (oblique view) 59
3.10 Water entry of 60 degree vedge 60
3.11 Water entry of 60 degree vedge (oblique view) 62
3.12 Water entry of 60 degree wedge (heavy wedge) 63
3.13 Comparison of experiments with existing theories 67
3.14 Selection of comparison of experiments with the $\sqrt{3}$-ellipse of New 68
4.1 Water entry of a half-buoyant circular cylinder, outer diameter $=11 \mathrm{~cm}$ 70
4.2 $D_{p}-t$ relation for half-broyant cylinder 74
4.3 Water entry of a nentrally-buoyant circelar cylinder 75
 81
4.5 Comparison of experiments with $\sqrt{3}$ - cllipse of New 82
4.6 Comparison of the jet with the overdriven standing wave of McIver and Peregrine 84
S.1 Cylinder exit problem, outer diameter $=11 \mathrm{~cm}$ 85
5.2 Cylinder exit (oblique view) 91
5.3 Measured velocities 95

ABSTRACT

The object of this report is to present the resilts of some simple two-dimensional experiments in which the surface of the water is displaced a good deal from its undisturbed position, and for Which linear theory is lizely to be in error. Particriar attention is paid to the point of intersection of the free surface and a moving body, where the confluence of boundary conditions can canse singularities in the free surface displacements and velocities, as predicted by linear theory. These singularities apper to be avoided in the real finid by the formation of jets, wheh at the scale of the experiments, quickiy break up into spray under the action of surface tension. Nevertheless it is known that potential theory is adequate to describe the formation of jets and therefore some local model, valid around the intersection point and based on potential theory, is being songht for later matching to appropriate far ficld conditions. Such far field or outer solntions may be calculated witheristing programs, andit is hoped that when complemented by an inner solution, they will provide a resonably complete description of many extrene wave or extrene motion problens e.s., ship capsize and slaming.

For the most part the experiments have been performed at high speed: this means that it is approximately correct to ignore gravity in the local region and this effects a considerable simplification to the theory. Indeed the known theories of jets all ignore the influence of gravity by letting the origin be in freefall. This appears to be justified in the present contert also.

The experiments are compared with theresults of existing theories and earlier work as far as posible. However, the water exit problem of a cylinder (relevant to cross members in the splash zone) appears to be largely unstudied, possibly because of the extremely complez nature of the breaking as the cylinder leaves the free surface, where vortices shed by the cylinder as it moves through the fluid may influence the free surface as the cylinder leaves the fluid. For the other problems studied (the impulsive start of a wavemaker, cylinder entry and wedge entry) vorticity is not thought to be important and the resulting breaking appears to be closely similar to the breaking of waves. Support for this conjecture is being sought.

As pointed out by Greenhov et al (1982) the numerical aimulation of phenomena such as ship capsize depends upon correct positioning of the points of intersection of the free surface and the body surface. In that paper these two points were put in "by hand ${ }^{0}$ and their positioning justified by appeal to earlier experiments. Although the results of the calculation and overturning of the body were predicted with fairly good accuracy, this is probably because any slight misplacement of the intersection points would have only a small influence on the very large overturaing moment. For most other problems (e.g., radiation of waves into calm water by large body motions), non-linear theory will show only comparatively small changes from the results predicted by transient linear theory (see e.g., Maskell and Orsell (1970)). In this case it is clearly essential to place the intersection points accurately, but one then runs into a fundamental problem; namely, that at least vithin linear theory, the velocity potential ceases to be analytic in some cases, resulting in infinite free surface displacements, while in other cases the velocity potential remaina regular and the free surface of finite displacement, as in the case of atanding wave against a wall. Indeed Stoker (1948) has shown that the solution to the linearised problem of waves against all can be thought of as a summation of two composite standing wave solutions: one is symmetric about the wall and is thus regular, while the other has logarithmic ingularity at the wall. Consequenty, if the wavefield is prescribed to be ancoming vave at infinity the solution becomes physically unacceptable at the wall, because one
is forced to include both types of solution to satisfy the condition at infinity. Stoker shows that no non-trivial solution which dies avay at infinity exists, and thus there is no hope of adding further solutions to avoid this singularity at the origin. This is also proved by Lewy (1950) for the case of waves against a flat dock lying along the negative x-axis. The two types of standing wave solution for this problem, one regular and one singular are precented by Friedrichs and Lewy (1948).

In botheases (walland dock) we bave what Lewy calla a "confluence of boundary conditions". The complementary problem of vaves generated by a wemaker and consideration of posible singularities at the confluences of the boundary conditions has been presented by Rravtchenko (1954). He considers the following problem:

and s hows:

$$
\left.\frac{\partial^{2} \phi}{\partial x \partial y}\right|_{\substack{x=0 \\ y=h}}=\frac{\partial}{\partial x} \frac{k^{2} \phi(h)}{g}=\frac{k^{3}}{g} f(h)
$$

while

$$
\left.\frac{\partial^{2} \phi}{\partial y \partial x}\right|_{\substack{x=0 \\ y=h}}=\left.\frac{\partial}{\partial y} k f(y)\right|_{y=h}=k f^{\prime}(h)
$$

so the condition for regularity at the free surface and wavemaker intersection is $g f^{\prime}(h)=k^{2} f(h) ; i n$ other words the wavemaker motion must itself have wave-like depthattenution at the free surface for regularity. Otherwise, Rravtchenko shows that we have a logarithmically ingular velocity potential and free surface. Similarly at the wavemar/botton confluence we must have $f^{\prime}(0)=0$ for regularity.

The above solutions are perhaps of limited relevance to this report because they are steady state solutions, whist here we deal with essentially unsteady motion. Nevertheless, the conclusion that the only regular solution for the diffraction problems is one which has regular standing waves at infinity is interesting; if we prescribe any other boundary condition here we wust expect the behavior at the origin to be singular, and this result may bold for unsteady motions also. This is certainly the case for the impulsive startof a wavemaker described in section 2. A singular solution is predicted which agrees well with the experiments, except around the point of intersection where a jet is formed.

2. THE IMPULSIVE START OF A WAVEMAKER

In order to study the nature of the singalarity in time dependent flow we consider perhaps the simplest case posible--the impulsive start of wavemaker initially at rest in calm water of constant depthere Theciosely related problen of ingulsive acceleration of wavemaker is thought to model the initial stages of the motion of a dam under earthquake loading. The inearised theory of this probles has been studied by Chwang and Housner (1978) and also by Chwang (1978). The major concern of these papers is the hydrodynamic pressures ap the daz face, and not thefree surface displacement. Indeed the boundary conditions at the free surface are actually applied at the undisturbed free surface level. Nevertheless the free surface displacement at the dam can be calculated, and in particular it has elevation proportional to tan at the dan face. Evidentiy this is a singularity when θ, the damangle, is $\quad \pi / 2$ (i.e., the dam is vertical) and a simploanalogue is given by Housner (1980) to explain its presence. Chwang (1983), on the other hand, solves to first order the initial valie problem in amall tige expansion. He shows the free surface to be singalar at the intersection point, but does not give the simple closed form shon below in equation 2.3 for $h i s$ infinite sumeation in the orpression for the free surface elevation. Peregrine (1972) considersthe wavemaker fired and the flow at infinity to be nifiform and directed towards the wavemaker. One then solves the following problem:

Peregrine show that the amall time expansions:

$$
\left\{\begin{array}{l}
\phi=\phi_{0}+\phi_{1} t+\phi_{2} t^{2}+\ldots \tag{2.1}\\
\eta=\eta_{0}+\eta_{1} t+\eta_{2} t^{2}+\ldots
\end{array}\right.
$$

Field the first order solution:

$$
\begin{align*}
& \phi_{0}=-U x+\sum_{n=0}^{\infty} \frac{2 U h}{(n+1 / 2)^{2} \pi^{2}} \sin \left[(n+1 / 2) \frac{\pi y}{h}\right] \exp \left[-(n+1 / 2) \frac{\pi x}{h}\right] \tag{2.2}\\
& \eta_{0}=0 \\
& \eta_{1}=\frac{-2 U}{\pi} \ln \left[\tanh \left(\frac{\pi x}{4 h}\right)\right] \tag{2.3}
\end{align*}
$$

Notice that these solntions are still those of the lineaised problem with the non-linearity arising only at higher orders of t.

It is clear that the free surface does become singalar, so that further apporimations become more singular. This is alsothe conclusion drawn by Newan (1982) who treats the infinite depth case using Lagrangian analysis. (For the related problem of dam breaking using the same type of analysis see Stoker (1957).) Lin (1983) has extended this analysis to finite depth giving the same result as equation 2.3 althogh he has not been able to obtain higher order solutions fet. Nevertheless we appear to be dealing with a ingular perturbation schese (see Van Dyke (1975)), whichalthoug valid throrghout most of the fluid, ceases to be valid near the vavemaker. This suggests some sort of matching of inner and outer solutions and Peregrine (1972) attempts to find aritable inger solution. Since it is not clear whet solution should be it wes decided to photograph the flow. This apperently had not been done before and the results are interesting and surprising.

Experimental Details

In order to photograph the impulsive flow generated by the wavemaker a small tank was built of $1 / 2^{\prime \prime}$ plexiglass sheet as shown in figure 2.1. The slodgehammer was drawi. back with the wire to any prescribed stroke, and then released to fall under gravity striking a stecl plate at the rear of stiff mooden wavemaker. Contac.s, one of which was at the top of the wavemaker and the other fized, were used to triger an electronic flash unit when the wavemaker reached
any desired position. Another circuit triggered an oscilloscope when the wavemaker started moving and a signal from the flash unit to the oscilloscope provided very accurate method of timing the photographs (to within 0.001 s). We used a conventional 35 mm camera with the shuter held open before the flash in an othervise dark room. The flash, of duration less than 0.6×10^{-6} and 10^{8} peak candle power, was easily sufficient to provide good illumination and freeze the motion of the fluid and wavemeker.

Results and Discussion

Figure 2.2 show the effect of water depth when the wavemaker is struck by the sledgehamer released from its full stroke position. In all cases we note that the water rises smoothly up the wavemaker and ejects a jet from the intersection point. It should be noted that these effects are extremely difficult to see without photography because the entire sequence shown only last about 0.2 seconds. Before detailed examination of the flow we make the following remarks:
i) In the cases examined the free surface always rises up the wavemat becoming almost parallel to it before a jet is ejected at a considerable angle to the wavemaker (almost perpendicularly). The smooth free surface never approaches the wavemaker at large angles as in more moderate wavemaker behavior usually observed in wave tanks.
ii) The ejected jet quickly breaks up under the action of surface tension and possibly air currents caused by the wavemaker. This results in spray.
iii) As the wavemaker slows down the jet grows and "peels off" the wavemaker surface; see photo $\$ 1 / 2$ in figure 2.2.
iv) On the basis of $\$ 1 / 17$ and other photographs in figure 2.2 we conclude that the flow is very uniform across the tank and bence is a two-dinensional flow. (The ejected jet however quickly breaks up.)
v) The finite radius of the wavemaker results in the lover edge getting close to the free surface and flow under the wavemaker. This has an important effect upon the flow, shown in figure 2.3, for seall water depths but does not appear to be important in deep vater, at least on the "positive" side of the wavenaker.
vi) The photographs $\$ 1 / 23, \$ 1 / 24$ and $\$ 1 / 25$ in figure 2.4 are in sone ways relevant to numerical simulations of the bov and etern vave problem, where initial start-up from rest with constant velocity or acceleration would result in similar profiles. Dagan and Tulin (1972) propose a model for bow wave breaking in which a jet rises up the bov and does not return to the fluid, and this is probably good approximation in the early stages. At later times hoverer a quasi-steady turbulence region forms in front of the bow gee Dagan (1972)). Turbulence also appears to be important at the stern except in the special case where the wave leaves a transom stera at ita lowest point horizontally. (See Coleman and Haussling (1981) who show that in this case the numerical simulations of the initial value problem approach the steady state solution of Vanden-Broeck (1980).)
vii) There is some flow around the sides of the wavemaker due to the small clearance needed (about 2 mm each side). This results in some disturbance of the mooth profile on the positive side of the wavemater and the falling water on the negative side adds to an already turbulent region close to the wavemaker; see photos $\ddagger 3 / 7$, 3/8, 3/9, $3 / 10$ and $3 / 11$ in figure 2.5. (The light area on the right of these photos is due to rather poor reflection by a foil mirror used to illuminate the positive side of the wavemaker.)

Let us consider the flow for a depth of 10 cm in more detail on the positive side of the vavemaker. A time sequence is shown in photographs $\ddagger 4 / 1,4 / 2,4 / 3,4 / 4,4 / 6,4 / 7$ and $4 / 8$ of figure 2.6 , while figure 2.7 shows that over the short duration of the experiment the wavemaker velocity (taken at the undisturbed surface level) vas essentially constant at $1.39 \mathrm{~m} / \mathrm{s}$. Figure 2.8 shows a comparison of the theoretical result from equation 2.3 and the experiments. Because the wavemaker rotates rather than translates it is necessary to measure the x-coordinate out from the vavemaker at the height y. Nevertheless the agreement between the theory and experiment is excellent and inilarly good agreement is found for other vater depths (20 cms in figure 2.9 and 30 cm in figure 2.10 where we encounter a considerable vibration in the tank). Not surprisingly the theory breaks down at the actual point of intersection and we have a jet ejected at a very large angle to the wavemaker. This jet's existence does not seem to be due to either surface tension or wavemaker roughness: as an example, photo $\ddagger 6 / 19$ of figure 2.11 shows the result with a smooth plexiglass front to the vavemaker and soap solution in the water. The surface profiles are identical except for
the jet which breaks up in slightly different fashion, presumably because of the altered surface tension.

A consequence of the theoretical result (equation 2.3) is that when the wavemar reaches the same position, the free surface profile will be the same, regardless of the initial speed 0 (provided this is constant during the experiment). Photographs $\ddagger 2 / 3$ and $2 / 18$ in figure 2.12 show two runs photographed when the wavemaker reaches the same position but initially having very different velocities, as can be seen from the times (and the water falling behind the wavemaker). On the positive side of the wavemaker however the free surface profiles are virtually indistinguishable as predicted by the theory.

It therefore seems that we have an excellent description of the outer fluid region away from the wavemaker which breaks down in the inner region very close to the wavemaker. One is forced then to consider the question of whether potential theory can describe this region also, in some local model which could subsequently be matched to the outer region. It is known that jet-like solutions exist as solution to gravity free potential flow problems and Longuet-Biggins (1980) proposes that the Dirichlet-hyperbola is a suitable model for the jet in a breaking wave. Similar, perhaps non-rotating, models could be used in the present context also but we have the additional boundary condition to satisfy on the wavemaker (at least locally). An alternative, and possibly easier approach is the semi-lagrangian approach of John (1953) which has been applied to the jet region by Longuet-Higgins (1983) and also the entire overturaing region by

Greenhow (1983). It man vell be possible to extend this latter model to include the wavemaker boundary condition and some preliminary work to this end will be presented in the future.

Alternatively the position of the intersection point from the experiments could be used as input to a purely numerical calculation as in Greenhow (1982).

The analogy with, and the suitability of the breaking wave jet solutions may not be apparent in the present case. The next solution describes the high speed water entry of a wedge: here similar jets are ejected and the resulting flow looks very similar indeed to a breaking wave crest region. In any case the fluid flow for either problem is highly time dependent and will require suitable theories, like John's approach, which at present requiregravity to be neglected. This is probably realistic in the local region of the jet.

3. THE HIGH SPEED ENTRY OF A WEDGE INTO CALM WATER

Abstract

We now look at the problem of a wedge falling under gravity for some distance before penetrating the free surface of calm water. This problem is relevant to the slaming of ships and has received considerable attention in the past. Most recent experimental work hes been concerned with measuring the pressures on the body as it enters the water, especially when the deadrise angle (angle between body and free surface) is very small. In this case experinents show a considerably smaller pressure than those predicted by theoryp see Chuang (1967). Ogilvie (1963) seeks to explain this difference by allowing the finid to be compresible, but later work by Verhagen (1967), Chaang (1966), Chuang (1967) and Lewison and Maciean (1968) all show that trapped air between the body and free surface is important becanse it canses a deflection of the free surface before the body makes contact with it. Lewison and Maclean also show that if the deadrise angle is small enough ($\left\langle 2^{\circ}\right.$ or 3°) air is forced down into the water forming effectively a single phase. This effect called rcoalescencer may be important in the related problem of wave inpact on flat menbers (see Kjeldsen (1981)). In our experiments we do not enconner either of the sbove offects, and so wen ignore the air, and the compressibility of the water entirely.

The wedge data is shown in figure 3.1. Each wedge is ballasted with lead shot to depth bexept in the photos \#20 in figare 3.12 ,
where we increased the mass of the wedge to 1.262 Kg to ensure that the wedge did not slow down appreciably during the first stages of entry. This does not appear to make much difference to the free surface profile although the body dyamics are altered when the wedge penetration is large. For the other wedges considered the velocity was essentially constant during the early stages of entry as can be seen frow the photograph times (accuracy ± 0.005 s).

In all cases the deadrise angles were large and consequentif the formula for the maximum keel pressure given by Wagner (see Chuang 1967) is expected to hold. Bowever, no systematic experimental sudy of the free surface diaplacement after entry appears to be available and the current experiments attemptofillin this gap (some experimental results are shown from figure 3.2 to 3.12) so that comparison may be made with existing theories, which fall into two basic groups:
i) Transient linear theory. Yiz (1971) and Chapman (1979) have both treated the problen by linearising around the undisturbed free surface but treating the body condition exactly. Both works include gravity and Chapman gives free surface profiles which do not rise up the wedge as high as in the experiments and for which no jets are ejected (see figure 3.13). A linearised theory of vater entry in the large Froude aumber limit (esentially ignoring gravity) bas been given by Moran (1961) who regards both water entryandexitof slender bodies as equivalent probleme. (This is certainly not the case for the cylinder entering (section 4) and exiting (section 5) through the free urface, although the cyinder is clearly not a

Abstract

ii) Self-similar flows. The theories of Dobrovol'skaya (1969) and Garabedian (1953) both ignore gravity, which is probably a good approximation for the high entry speeds of the experiments, and seek solutions in terms of similarity variables $x / \nabla t$ and $g / \nabla t$ where V is the velocity of entry. Within this framework both solutions are fully nonlinear both in regard to the actual position of the wedge and the actual position of the free surface. Garabedian treats oblique vedge entry but his solution is not entirely physical since the free arface presares are unequal on either side of the vedge. Nevertheless, bis method is interesting being closely similar to the method of John (1953) for time-dependent free surface flows but with the additional assumption of self-similarity built in. We discuss John's method and its possible application below.

Dobrovol'skaya's solution is for symmetric wedge entry and gives much more realistic free surface profiles than those of linear theory (thefree surfaceoverturnsforexample). Howeverthe self-sinilarity assuption appears to be too restrictive, and the theory cannot predict the jets which estentially develop in a non-self-sinilar way (see Longuet-liggins (1983)). A comparison is given in figure 3.13. It is seen that the lack of the jet results in incorrect profiles and in particular the water rises too far up the wedge in the self-similar solution.

It is interesting to compare the surface profiles generated by the wedge entry with the ellipee solution of New (1983). In that
paper New seeks to model the underside, or loop, of a pluging breaker by a relatively simple elliptic solution of John's (1953) free surface equation:

$$
\begin{equation*}
z_{t t}=i r(w, t) z_{w} \tag{3.1}
\end{equation*}
$$

New finds that his elliptic solution has much in common with the breaking wave loop having strong rotation about the ellipse, as well as the ellipse rotating as a wole, and remarkably accurate free surface comparisons over a limited part of the wave when compared with numerical calculations and experiments. The eccentricity of the ellipse, which is left undetermined by the theory, is chosen to be $\sqrt{3}$ for good fits to the breaking waves loop, although the reason for this number is unexplained. Another interesting feature of the solution is that the r-function in equation 3.1 is $r=\left(1+t^{2}\right)^{-2}$, which in the large time limit is identical with the r-function of the Dirichlet-byperbola of Longuet-Bigging (1983). Thus Greenhow (1983) was able to combine solutions of both the loop and the jet in the large time limit to give a farly complete desciption of the overturning of the crest, although no attempt was made to match to the outer flow.

In the present case we might also expect solutions of equation 3.1 to be valid, with unknown constants arising in the theory being determined by satisfying the body boundary condition. Certainly comparison of the elliptic solutions of New with the loop region arising from the wedge entry (see figure 3.14) gives very atrong support to this conjecture. In this case we need solutions of
equation 3.1 generated with $r=\left(1+t^{2}\right)^{-2}$ instead of the large time limit as in Greenhow (1983) and Longuet-Higgins (1983). An exact parabolic flow for the jet has already been found, as well as other solutions, but as yet no attempt has been made to compare with the experiments; nor bas the body boundary condition been satisfied. Nevertheless the approach is very promising and will be developed further. It is particularly interesting that $\sqrt{3}$ - ellipses fit all the wedge experiments regardless of the wedge angle: consequently one might expect them to be valid for cylinder entry also, regarding the entry angle as variable. We explore this in the next section.
4. THE HIGB SPEED ENTRY OF A CYLINDER INTO CALM WATER

We now consider the free surface profiles caused by a cyinder dropped into calm water. The problem is of considerable importance to the offshore industry where cross members may be in the splash zone of the incident waves, and therefore continuallyentering (exiting) the water. The comparison and in some cases equivalence of the slaming problem with the splash zone problem bas recently been studied extensively by Ridley (1982). Theoretical work on the problem is somewht limited in scope: Faltinsen et al (1977) model the problem by linear theory with gravity omitted. This simple approach, probably valid for high entry speeds, sppears to be well justified by the experiments of Sollied (1976). Although Sollied has filmed the resulting flow his photographs only show elevations of the free surface and not depressions, and the fluid motion is not that clear. We present a detailed sequence of photographs (figures 4.1 and 4.3) for water entry of a half-buoyant and neutrally buoyant cylinder.

As previously mentioned it is possible to fit the $\sqrt{3}$ - ellipse of Nev into the loops of vater caused by the cylinder entry (see figure 4.5). A new feature displayed by the cylinder is the remarkable straight lines of the cavity formed behind the cylinder. The jets thrown up eventually become unstable and the collapsing cavity behind the cylinder throws up another jet. The shape of this jet is conjectured to be very similar to a non-rotating Dirichlet hyperbola: McIver and Peregrine (1981) show that the crest of an overdrivengtanding wave is related to this flow, given by Longuet-Biggins (1972). Figure 4.6 compares the present experiment
with the profile given by McIver and Peregrine, with fairly good agreement around the crest. While thefree surface is quite difficult to define in this case, it is interesting to speculate if such flows are common to all final stages of water entry. Some recent studies of axisymetric, rather than 2-dimensional, jets of this type have been studied by Longuet-Higging (1983), Milgram (1969), Laventier and Chabat (1977), and Earlow and Shannon (1967), for a variety of methods of exciting this ejected jet. Nevertheless, all the jets appear to have very similar form and closely relate to the Dirichlet-hyperbola at least around the crest.

As mentioned previously the cylinder exit from initially calm water appears to be a very complicated and little studied problem. In the photos presented in Pigure 5.l, the neutrally buoyant cylinder rests on the tank bottom and is extracted by applying a constant force equal to the cylinder weight. This results in surface elevations above the cylinder and an interesting form of breaking, which Peregrine has termed waterfall breaking". It is likely that vortices shed by the cylinder interact with the free surface to complicate the breaking, which may be caused by a pressure inversion across the free surface. (Certainly there will be a region of very low pressure immediately behind the cylinder as it leaves the free surface.) The breaking does apdear to be truly two-dimensional and not caused by wall effect (see Figure 5.2).

Despite the lack of solution for this problem there exist some related flows which may ahed some light on the problem. A crude approximation might be to ignore the free surface altogether and consider it to be marked line of particles in an infinite fluid. The resulting deformation of this line for flow caused by aphere has been given by Lighthill (1955). As far as the body forces are concerned a good approach is probably the method of faltinsen et al (1977) mentioned in the previous section on cylinder entry.

As far as the free surface elevation is concerned, the related flow caused by a source beneath the free surface has been analysed by Peregrine (1972) and later by Vanden-Broeck et al (1978). Peregrine
shows that there is a limiting strength to the source (also dependent upon its depth) beyond which the flow will not be steady. Vanden-Broeck et al show that Peregrine's expansion always diverges. Nevertheles Peregrine's solution for large source strengths does show a pressure inversion of the type conjectured above and this may lead to breaking.

Obviously the study of this extremely complicated problem is very incomplete at present. From the practical standpoint force measurements are clearly needed; from the theoretical point of view more photographs with differentexit speds, as wellas more streamlined bodies will probably be needed to provide inspiration!

ACXNOMLEDGEMENTS

We would like to thank Mr. Paul Eberhardt for brilding the tank used in the experiments, Professor Edgerton for loaning the Peregrine for his very useful coments.

Chapman, R.B. 1979. Large amplitude motion of two-dimensional floating bodies. J. Ship Rea. Vol. 23, no. 1.

Chuang, S.L. 1966. Experiments on flat bot om slaming. J. Ship Res. Vol. 10, no. 1.

Chuang, S.L. 1967. Experiments on slaming of vedge shaped bodies. J. Ship Res. Vol. 11, no. 3.

Chwang, A.T. and Housner, G. 1978. Hydrodynamic pressure on sloping dams during earthquakes: Part I. momentum method. J. Fluid Mech. Vol. 87, part 2.

Chwang, A.T. 1978. Bydrodyuamic pressure on sloping dams during earthquakes: Part II. exact theory. J. Fluid Mech. Vol. 87, part 2.

Chwang, A.T. 1983. Nonlinear hydrodynamic pressure on an accelerating plate. Phys. Fluids. Vol. 25, no. 2.

Coleman, R. and Eaussling, H. 1981. Nonlinear waves behind an accelerating transom stern. Paper II-3. Third Int. Conf. Num. Ship Eydro., Paris.

Dagan, G. 1972. Nonlinear ship wave theory. Ninth Symp. Naval Hydro. Paris.
Dagan, G. and Tulin, M.P. 1972. Two-dimensional free surface gravity flows past blunt bodies. J. Fluid Mech. Vol. 51.

Dobrovol'skaya, Z.N. 1969. On some problems of similarity flow of fluid with a free surface. J. Fluid Mech. Vol. 36, part 4.

Faltinsen, $0 .$, Kjeerland $0 .$, Nottveit, A. and Vinje, T. 1977. Water iapact loads and dynamic response of horizontal circular cjlinders in offahore structures. O.T.C. Bouston.

Friedrichs, K . and Lewy, 日. 1948. The dock problem. Corna. Pure Appl. Math. Vol. 1, no. 2.

Garabedian, P.R. 1953. Oblique water entry of a wedge. Coman. Pure Appl. Math. Vol. 6.

Greenhow, M., Vinje, T., Brevig, P. and Taylor, J. 1982. A theoretical and experimental study of capsize of Salter's Duck in extreme waves. J. Fluid Mech. Vol. 118.

Greenhow, M. 1983. Free surface flows related to breaking waves. J. Fluid Mech. Vol. 134.

Harlow, F. and Shannan, J. 1967. The splash of a liquid drop. J. Appl. Phys. Vol. 38, no. 10.

Housner, G. 1980. The momentum-balance method in earthquake engineering. Mechanics Today. Vol. 5.

John, F. 1953. Two dimensional potential flows with a free boundary. Commun. Pure Appl. Math. Vol. 6.

Kjeldsen, S.P. 1981. Shock pressures from deep water breaking waves. Proc. Int. Symp. Hydro. Ocean Eng. Troodhein, Borway.

Kravtcheako, J. 1954. Remarques sur le calcul des auplitudes de la houle lineaire engendree par un batteur. Proc. Fifth Conf. Coastal Eng., 50-61.

Laventier, M. and Chabot, B. 1977. Effects hydrodynamiques et modeles mathenatiques. Editions de Moscou.

Levison, G. and Maclean, W. 1968. On the cushioning of water impact by entrapped air. J. Ship Res. Vol. 12, no. 2.

Lewy, B. 1950. Developments at the confluence of analytic boundary conditions. Dniv. of Calif. Publ. in Math. Vol. 1.

Lighthill, M.J. 1955. Drift. J. Fluid Mech. Vol. 1.
Lin, W-M. 1983. The impulsive motion of vavemer-finite depth case. Dapublished note. MIT.

Longuet-Riggins, M.S. 1972. A class of exact, time dependent, free surface flows. J. Fluid Mech. Vol. 55.

Longuet-Higgins, M.S. 1980. On the forming of sharp corners at a free surface. Proc. Roy. Soc. London. Series A. Vol. 371.

Longuet-Higgins, M.S. 1983. Rotating hyperbolic flow: particle trajectories and parametric representation. Q.J. Mech. Appl. Math. Vol. 36.

Longuet-Riggins, M.S. 1983. Bubbles, breaking vaves and byperbolic jets at a free surface. J. Fluid Mech. Vol. 127.

Maskell, S. and Orsell, F. 1970. The transient notion of a floating body. J. Fluid Mech. Vol. 44, part 2.

McIver, P. and Peregrine, D.H. 1981. Comparison of numerical and analytical results for waves that are atarting to break. Proc. Int. Symp. Eydro. Ocean Eng. Trondhein, Morway.

Milgram, J. 1969. The motion of a fluid in a cylinder container with a free surface following vertical impact. J. Pluid Mech. Vol. 37.

Moran, J.P. 1961. The vertical water-exit and entry of slender symetric bodies. J. Aerospace Sciences.

Nevman, J.N. 1982. The impulsive motion of a wavemaker. Unpublished note.
Ogilvie, T.F. 1963. Cowpressibility effects in ship slaming. Schiffstechnik Bd 10. Heft 53.

Peregrine, D.E. 1972. Flow due to a vertical plate moving in a channel.

Unpublished note.
Peregrine, D.H. 1972. A line source beneath a free surface. Math. Res. Center. Univ. of Wisconsin Tech. Report 1248.

Ridley, J.A. 1982. A study of some theoretical aspects of slaming. N.M.I. R158.

Stoker, J.J. 1947. Surface waves in water of variable depth. Q.J. Appl. Math. Vol. 5, no. 1.

Stoker, J.J. 1957. Water waves. Interscience Publishers Inc.
Sollied. 1976. Beregning an krefter pa stag ved slagaktige pakjenninge. Student project. Div. Ship Hydro. N.T.H. Trondheim, Norway.

Vanden-Broeck, J.M., Schwartz, L. and Tuck, E. 1978. Divergent low-Froude number series expansions of nonlinear free surface flow problems. Proc. Roy. Soc. London. Series A. Vol. 361.

Vanden-Broeck, J.M. 1980. Nonlinear stern waves. J. Fluid Mech. Vol. 96.
VanDyke, M. 1975. Perturbation methods in fluid mechanics. The Parabolic Press.

Verhagen, J.H.G. 1967. The impact of alat plate on a water surface. J. Ship Res. Vol. 11, no. 4.

Yim, B. 1971. Investigation of gravity and ventilation effects in water entry of thin foils in nonsteady flows of water at high speeds. Proc. I.D.T.A.M. Symp . Leningrad.

Figure 2.1 Tank configuration, dimension $90.2 \times 10.2 \times 116.8 \mathrm{cms}$

Depth $=5 \mathrm{~cm}$

Depth $=10 \mathrm{~cm}$

Depth $=15 \mathrm{~cm}$

Figure 2.2 Effect of water depth.

Depth $=10 \mathrm{~cm}$, Clearance $=0.0 \mathrm{~cm}$

$\# 1.4, t=0.155 \mathrm{~s}$

Depth $=20 \mathrm{~cm}$, Clearance $=5.5 \mathrm{~cm}$

$=1 / 27, t=0.11 \mathrm{~s} \quad 41 / 26, t=0.125 \mathrm{~s}$

$=3: 7, t=0.001 \mathrm{~s}$

$=3: 8, \quad t=0.038 \mathrm{~s}$

$=3 \% \mathrm{t}=0.062 \mathrm{~s}$

$=3.10, t=0.096 \mathrm{~s}$
\because : inre L.

\#3/11, $t=0.094 \mathrm{~s}$

Figure 2.5 (cont'd)

$\# 4 / 4, t=0.037 \mathrm{~s}$

Figure 2.10 Impulsive motion of wavemaker, depth $=30 \mathrm{~cm}$.

$\# 6 / 19, t=0.087 s$

Figure 2.11 Experiment with smooth wavemaker front and soap solution in the water.

$\# 2 / 18, \mathrm{t}=0.110 \mathrm{~s}$
Figure 2.12 Comparison of wave profiles with different initial wavemaker velocities,

$$
\begin{aligned}
& a=11.4 \mathrm{~cm} \\
& b=9.0 \mathrm{~cm}
\end{aligned}
$$

$\mathrm{a}=6.3 \mathrm{~cm}$
$\mathrm{b}=5.0 \mathrm{~cm}$

Figure 3.1 Wedge data (half-section)

$\# 17 / 21, t=0.21 \mathrm{~s}$

Figure 3.3 Water entry of 9° wedge (oblique view).

\#14/11, $t=0.225 s$

$\# 17 / 1, t=0.20 \mathrm{~s}$

$\# 17 / 2, t=0.21 s$
Figure 3.5. Water entry of 15° wedge (oblique view).

[^0]
$15 / 2, t=0.20 \mathrm{~s}$

$\# 15 / 3, t=0.205 \mathrm{~s}$

$\# 15 / 8, \quad t=0.245$

$\pm 15 / 9, \quad t=0.255$

Tifure 3.6 (cont'd)

$416 / 18, t=0.20 s$

$\# 16 / 21, t=0.21 s$
Figure 3.7 water entry of 30° wedge (oblique view).

$\# 16 / 22, \mathrm{t}=0.22 \mathrm{~s}$

Figure 3.7 (cont'd)

$\# 15 / 13, t=0.205 s$

$\# 15,14, t=0.215 \mathrm{~s}$
Fipure 3.8 water entry of 45° wedce.

$\# 15 / 15, \mathrm{t}=0.225 \mathrm{~s}$

Figure 3.8 (cont'd).

Figure 3.9 Water entry of 45° wedge (oblique view).

$\# 17 / 14, t=0.205 s$

$\# 16 / 2, \mathrm{t}=0.21 \mathrm{~s}$
Figure 3.10 Water entry of 60° wedge.

$\because 16,4, t=0.225$

$\# 16 / 11, t=0.275 \mathrm{~s}$

[^1]
$\# 16 / 12, t=0.22 s$

Figure 3.1160° wedge. (oblique view).

$\# 20 / 8, t=0.205 \mathrm{~s}$

Fiqure 3.12 water entry of 60° wedge, heavy wedge.
-63-

$\# 20 / 9, t=0.205 \mathrm{~s}$

Eigure 3.12 (cont'd)

$\# 20 / 11, t=0.21 s$

$\# 20 / 12, \mathrm{t}=0.21 \mathrm{~s}$

Figure 3.12 (cont'd).

$\# 20 / 15, \mathrm{t}=0.215 \mathrm{~s}$

$\# 20 / 19, t=0.235$

Figure 3.12 (cont'd).

Figure 3.13 Comparison of experiments with existing theories

Figure 3.14 Selection of comparisons of experiments (-) with the $\sqrt{3}-$ ellipse of New (---)

$\# 8 / 3, t=0.285 \mathrm{~s}$

Figure 4.1 Water entry of a half-buoyant circular cylinder outer dia $=11 \mathrm{~cm}$.

$\# 8 / 7, t=0.32 \mathrm{~s}$

Figure 4.1 (cont'd)

$\# 8 / 10, t=0.385 \mathrm{~s}$

Figure 4.1 (cont'd)

Figure $4.2 D_{p}$ - t relation for half-buoyant cylinder

$\# 8 / 15, t=0.305 \mathrm{~s}$

$\# 8 / 16, t=0.315 \mathrm{~s}$
Figure 4.3 Water entry of a neutrally-buoyant circular cylinder.

$\# 8 / 20, t=0.39 \mathrm{~s}$

$\# 8 / 21, t=0.41 \mathrm{~s}$
Figure 4.3 (cont'd)

$\# 10 / i, t=0.505$

Figure 4.4 D_{p} - t relation for neutrally-buoyant cylinder

Figure 4.5 Comparison of experiments with the $\sqrt{3}$ - ellipse of New

Figure $4.6 \begin{aligned} & \text { Comparison of the jet (-) with the overdriven standing } \\ & \text { wave of McIver and Peregrine (---) }\end{aligned}$

$\# 10 / 11, \mathrm{t}=0.065 \mathrm{~s}$

Figure 5.1 Cylinder exit problem, out dia $=11 \mathrm{~cm}$.

$\# 10 / 14, t=0.110 \mathrm{~s}$

Figure 5.1 (cont'd)

$\# 10 / 19, t=0.190 \mathrm{~s}$

$\pm 10 / 21, t=0.195 \mathrm{~s}$
Figure 5.1 (sont'd)

$\# 11 / 2, t=0.205 \mathrm{~s}$

$\$ 11 / 3, t=0.220 s$
Fifure 5.1 (cont'd)

$=11 / 4, t=0.248 \mathrm{~s}$

$\$ 11 / 5, t=0.2815$
-i:uro 3.: (ront'a)

$\# 11 / 6, t=0.290 \mathrm{~s}$

$\# 11 / 8, t=0.330 s$
Figure 5.1 (cont'd)

$\# 12 / 3, t=0.208 \mathrm{~s}$
Figure 5.2 Cylinder exit, oblique view.
-91-

Figure 5.2 (cont'd)

$\# 12 / 18, \mathrm{t}=0.240 \mathrm{~s}$

$\# 12 / 16, t=0.252 s$
Figure 5.2 (cont'd)

Figure 5.3 Measured velocities.

[^0]: Figure 3.5 (cont'd)

[^1]: a:ire 3.10 :cont' 1 .

