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ABSTRACT

We give a proof that Total Variation {u0(.) << 1 can be replaced by

Sup{u (.)} << 1 in Glimm's method whenever a coordinate system of Riemann
0

invariants is present. The argument is somewhat simpler but in the same

spirit as that given by Glimm in his celebrated paper of 1965. ' ,%
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SIGNIFICANCE AND EXPLANATION

- A system of two conservation laws in one dimension is a set of first

order nonlinear partial differential equations of the form,

.... ut  + f(u,v) x  0
(1)

V t + g(u,v) x = 0,

where (u,v) is a vector function of (x,t), x R, t 0 0. The Cauchy

problem asks for a solution of (1) given the initial -values of u and v

at time t - 0. Equations of type (1) arise, for example, in gas dynamics

where they express the conservation of quantities like mass, momentum and

energy, when diffusion is neglected. Typically, smooth solutions of (1)

cannot be found. This is due to the formation of shock waves. Shock waves

are the mechanism by which entropy is dissipated in solutions of (1). This

paper gives a proof that solutions exist even after shock waves form, so long

as the amplitude of the waves are not too great initially.
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We consider the Cauchy problem

t+ F~u), - 0()

u(x,0) - uo(x) , (2)

where (1) denotes a strictly hyperbolic system of two conservation laws, u =(uju2),

F - (f,g). Let X R , p = 1,2 be the eigenvalues and corresponding eigenvector fields

associated with the matrix VF, XI < A2 . Assume that U is a neighborhood of a state

in u-space in which each characteristic field is either genuinely nonlinear (V. *Rp > 0)

or else linearly degenerate V). *R 0), and such that Xt(u) < X2(v) for all

u,v e U (41. Without loss of generality, assume u - 0. In this note we give a simplified

proof of the following result which is contained in the results of Glimm (2] and which is

required for the proof in [12]. (A stronger result also follows from the analysis in [3]

which, however, involves the theory of approximate characteristics and is much more

technical.) Let u(x,t) denote a weak solution of (1), (2) which is a limit of

approximate solutions generated by the random choice method of Glim s.

Theorem 1. For every V0 > 0 there exists a small constant 6 > 0 and a large constant

G > 0 such that, if

TV{u0 (.)} ( v< , (3)

and

lUo(-)1 6 , (4)

then

lu(*,t)l S 4 GIuo(.)I $s (5)

for all t > 0. Here

lu0 (*) s = Sup(u0 (.)} (6)
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It suffices to verify Theorem 1 for any approximate solution uh generated by the

random choice method. Recall that there exists a coordinate system of Riemann invariant*

for (1) in a neighborhood of u - 0. (Indeed, Theorem 1 and the proof to follow apply to

any system satisfying the above assumptions and for which there exists a coordinate system

of Riemann invariants [21.) Moreover, the Riemann problem is uniquely solvable in a

neighborhood of u = 0 by the method of Lax [41. Such a solution consists of a 1-wave

Y followed by a 2-wave Y 2 each of which is either a shock wave or a rarefaction

Nwave. Assume that U is a neighborhood of u = 0 satisfying all of the above

conditions. Define the strength of a wave IyPI to be the absolute value of the change in

the opposite Riemann invariant between the left and right states of the wave. Finally, in

order to set notation, we briefly review the construction of the random choice method

approximate uh •

Let h be a mesh length in x, and let

k - Ch

be the corresponding mesh length in t, C > Sup (A (U)I}. For i,j e 3, j 0, let
p,ucU

xi = ih, tj = jk. Let a be a sample sequence, I - {aj ., 0 < aj < 1. For given

initial data u0(*) C U, define the random choice method approximate solution

uh(x,t) = uh(x,t;a) by induction on j as follows: First, for xi 4 x < xi+, define

uh(x,o S u(x) _ u0(xi +

Next, assume for induction that uh(x,t) has been defined for t < t . Define

uh(x,tJ) = uh(xi + ajh,tJ-) I

and for t. < t < tj+I , define uh(x,t) to be the solution of the Riemann problem posed

in (3.3) at time tj. By (3.1), uh is well defined so long as uh(xtj) C U for all

tj. Let YP denote the p-wave that appears in the solution of the Riemann problem thatVii

is posed at (xi,t1 ) in the approximate solution uh. Recall that the quadratic

functional associated with uh is defined by

Qt) 2 (7)

where the sum is over all waves that approach at time tit tj 4 t < t1 +1 . Let Aij denote

the interaction diamond centered at (xi,tj), and let Dii denote the products of
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approaching waves that enter AiJ[12]. We use the following notation:

Vi = t'r I I (8)

Q(tj) = Q(t3 +) (9)

Dj E Dij (10)
1

F -V + Qj (11)

S j -- h(.It )I • (12)

Note that V estimates the total variation of uh (,t) and that (7), (9) give

immediately that

Q V. (13)

We show that Theorem 1 is a consequence of the following lemma which is a restatement of

results in [2]:

Lemma 1: There exists a constant Go > 1 depending only on F such that, if

uh(xt) c U for all t ( ti, then

Vj+ 1 - V1 4 GoS1 Di * (14)

S 1.+ - S3 4 GoS D1  , (15)

Q -+ - Q ( S[GoSV 11DV - (16)

Proof of Theorem 1: Fix V0 > 1. Choose

2G0 V 
-1

So <(8GV'-e ) -8, (17)

where Go  is large enough so that

{u S Jul < G}1 ) C U (18)

We show by induction that (17) implies

s e0 0 (19)

and

GO V 1  (20)
4
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21;V2
for all j 0 0. Note that (19) gives (5) with 0 e Also note that (10) and (11)

imply

I
Go " (21)

Thus, since (a) gives

Q+lI - C { v "08 V I)Dj ( (22)

FJ+ 1 - F {%U + 4 ( * v - 1)D (23)

estimates (19) and (20) also imply that

Qj. I - Qj ". D- , (24)

r++ -  4- D • (25)

We now verify (19) and (20) by induction. The i4ea here is that (20) guarantees that both

(Qj} and (Fi) are decreasing. The decreasing of Qj controls j at the induction

step, while the decreasing of (Fj) maintains (20) at the induction step, since then

V:i 4 Fj I( F .

First, when j - 0, (10) and (11) follow ftom (17). so assme (10), (11) hold for

J. we verify (10), (11) for )' - j + 1. by (24) and (15),

Sk 1 Sk 4 2oStk - 1]'

or

OW 4 (1 + 2GO1k - Qk+l])k , (26)

for k - j + 1. Thus by (26)

j

sj 1  K (I + o o[ - ki)o . (27)
k-0

But one can easily verify that the maximum of

+II(14 a.)

k-0

over all nonnegative sequences (%)5 -0  satisfying kf0ak K is attained when

Sfor all k. Thu. by (13) and (24),

-4-
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2
k (Qk Qk+11  (Q 0 1CVO (28)

2r. ') J+ 2G 0 0
H I+ GO(k - Qk+11

1 
4 {1 + 0-1 (29)

k-O

Therefore by (27),

Sj+ 1 S 1Ca s

which verifies (19) at j + 1. moreover, (25) implies

Thus by (17),

which verifies (20) at j + 1. This completes the proof of Theorem 1.
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