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ABSTRACT
We give a proof that Total Variation {uo(-)} << 1 can be replaced by
Sup{uo(-)} << 1 in Glimm's method whenever a coordinate system of Riemann
invariants is present. The argument is somewhat simpler but in the same

spirit as that given by Glimm in his celebrated paper of 1965.

VAR O, o Lo PSR e i
: T WY PoORILvOn ) LSO W (i |

‘f‘ \] .l‘

SN

-

R

PSS

P o 3
[ A
o

e ey

i3

AMS (MOS) Subject Classifications: 65M10, 76N99, 35L65, 35L67

s
A
dﬁﬂ;'!

Key Words: Riemann problem, Random choice method, Stability,
Conservation laws, Cauchy problem

Ve . y
AN

Work Unit Number 1 (Applied Analysis) 2.
i

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This 'k
material is based upon work supported by the National Science Foundation under S

Grant No. ms-821°95°' Mod. 1. "I;é

WG WU LW
) N

% #\'\ AP ."\t

AL CI AR ANIATIER B g
)\\w'\, " IRARE "{




i l —
f ‘ SIGNIFICANCE AND EXPLANATION

%i; S A system of two conservation laws in one dimens}o: is a set of first
| ’ order nonlinear partial differential equations of ‘tt;euf;z;n‘

fﬁ' ) - S

:’; “???TT—N*_—_-""‘”” - u, + f(u,v)x =0 ,

a“ o Ve ¥ g(u,v) = OQP,: . op 2

‘where (u,v) is a vector function of (x,t), x ¢ R, t $ 0. The Cauchy

24

problem asks for a solution of (1) given the 1nit1a1;}ﬂ;1ues of u and v
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at time t = 0. Equations of type (1) arise, for example, in gas dynamics
where they express the conservation of quantities like mass, momentum and
energy, when diffusion is neglected. Typically, smooth solutiong of (1)

cannot be found. This is due to the formation of shock waves. Shock waves
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are the mechanism by which entropy is dissipated in solutions of (1). This

paper gives a proof that solutions exist even after shock waves form, so long

phot A At A

‘ as the amplitude of the ,waves are not too great initially.
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SUP-NORM ESTIMATES IN GLIMM'S METHOD
Blake Temple
We consider the Cauchy problem
u, + F(u) =0 (1)
u(x,0) = ug(x) , (2)
where (1) denotes a strictly hyperbolic system of two conservation laws, u = (u,,uz),
F=(f,g). Let xp,nb, p = 1,2 be the eigenvalues and corresponding eigenvector fields
associated with the matrix VF, A1 < xz. Assume that U is a neighborhood of a state u
in u-space in which each characteristic field is either genuinely nonlinear (VAP-RP > 0)
or else linearly degenerate (\np'li.P 2 0), and such that A1(u) < Az(v) for all
u,v ¢ U [4]. Without loss of generality, assume U = 0. In this note we give a simplified
proof of the following result which is contained in the results of Glimm (2] and which is
required for the proof in [12]. (A stronger result also follows from the analysis in [3]
. which, however, involves the theory of approximate characteristics and is much more
technical.) Let u(x,t) denote a weak solution of (1), (2) which is a limit of
approximate gsolutions generated by the random choice method of Glimm.
Theorem 1: For every vo > 0 there exists a small constant § > 0 and a large constant
G > 0 such that, if
Tv{uo(o)} < Vo (3)
and
luo(-)ls <8, (4)
then

lu(',t)ls < Gluo(-)l (5)

s [
for all t > 0. Here

luo(O)Is s Sup{uo(-)} . (6)
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It suffices to verify Theorem 1 for any approximate solution ut generated by the
random choice method. Recall that there exists a coordinate system of Riemann invariants
for (1) in a neighborhood of u = 0. (Indeed, Theorem 1 and the proof to follow apply to
any system satisfying the above assumptions and for which there exists a coordinate system
of Riemann invariants {2]).) Moreover, the Riemann problem is uniquely solvable in a
neighborhood of u = 0 by the method of Lax [4]. Such a solution consists of a 1-wave
Y1 followed by a 2-wave Yz each of which is either a shock wave or a rarefaction
wave. Assume that U is a neighborhood of u = 0 satisfying all of the above
conditions. Define the strength of a wave |YP| to be the absolute value of the change in
the opposite Riemann invariant between the left and right states of the wave. PFinally, in
order to set notation, we briefly review the consatruction of the random choice method
approximate uh.

Let h be a mesh length in x, and let

k = Ch
be the corresponding mesh length in t, C > SupU {lA {u)|}. Por 1,j€c% 320, let
x; ih, ty T jk. let a be a sample aequi;::. a = {'j)j 1+ 0 < ay < 1. For given

initial data uo(-) C U, define the random choice method approximate solution

uh(x,t)

uh(x,t;g) by induction on j as follows: First, for x; ¢ x < x;,4, define
= h
uP(x,0) = u%(x) = “o(*i + 3) .
Next, assume for induction that uh(x,t) has been defined for ¢t < tj- Define
h = 0 -
u (x'tj) Eu(xg + ajh,tj )
and for tj <t < tj+1, define uh(x,t) to be the solution of the Riemann problem posed
h

in (3.3) at time cj. By (3.1), u is well defined so long as uh(x,tj) C U for all

]
is posed at (xi,tj) in the approximate solution uh- Recall that the quadratic

t:. Let ij denote the p-wave that appears in the solution of the Riemann problem that

functional associated with u"' is defined by

o) = 1 v} IIYi. | (7)
where the sum is over all waves that approach at time tj, tj <t < tj+1- Let Aij denote
the interaction diamond centered at (xi,tj), and let D1j denote the products of

-2~
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approaching waves that enter Aij[izl. We use the following notation:

v, = 1 Il (8)
:;‘ J p,i

3
5 -

frz Qj E Q(tj) = Q(tj"’) P) (9)
n
Dy = Z Dyy (10)

] 1

=

! z +
N Fy 2V + 9y (11)
el

i . .h

KA sj z b ( ,tj)ls . (12)
{?‘ Note that Vj estimates the total variation of uh(-,tj) and that (7), (9) give

:‘!

: immediately that

\

1) v2

h < o 13
3 % <% (s
h We show that Theorem 1 is a consequence of the following lemma which is a restatement of
- results in [2]):

-

o ¥

;- lemma 1: There exists a constant G, > 1 depending only on F such that, if

Y uh(x,t) €U for all ¢t < tj, then

" vj+‘l - Vj < GOSij P (14)
9

K4 Si.q = S; € GpS4D; o (15)
K I+ 3 0°373

" - - . 1
N Q4y+1 Qj < {Gosjvj 1}Dj (16)
i)

Proof of Theorem 1: Fix V5 > 1. Choose

1

5 -1

5] vz ZGOV“(;

\ so<(aG°e ) =8, (7N
t

‘b: where G, is large enough so that

t

’ fu s |u] < G;') cu. (18)
3" We show by induction that (17) implies

32 zsov%

. sj <e Sg ¢ (19)
- and

i GoSyVy € 7 (20)
iy

Ky
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%, Also note that (10) and (11)

for all j > 0.

Note that (19) gives (5) with G = e

imply
GoBy € 7 * (21)
Thus, since (8) gives
Q4q = 9y € {cosjvj - 1oy . (22)
Pyeq = By ¢ {Gbsj * 68y - t}o, » (23)
estimates (19) and (20) also imply that
Q4uy = 94 € =3 Dy s (24)

We now verify (19) and (20) by induction. The idea here is that (20) guarantees that both

{Qj} and {'j} are decreasing. The decreasing of Qj controls 8, at the induction
step, while the decreasing of {rj} maintaine (20) at the induction step, since then
Vj < Fj < '0’

First, vhen j = 0, (10) and (11) follow from (17).

8o assume (10), (11) hold for
3' € j. We verify (10), (11) for 3)' =3 + V.

By (24) and (1S5),
Seat = By € W8y 10 = eyl

or

Beay € {1+ 26,10y - 0,108y .

(26)
for k €< j + 1. Thus by (26)

8449 € kgo {1+ 26,00, -9,,l)8, - (27)

But one can easily verify that the maximum of

3

I (1 +a)
k=0 x

over all nonnegative sequences {.k})j:-o satisfying % a, < M is attained vhen
0

sy = J7 for all k. Thus by (13) and (24),
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3 2
kzo (O = Qet) € SV« (28)
80
3 2 I+ 26 vz
I {1+ ZGOIQR - Qk+1]} < {1 + 2 2 ce 00 . (29)
k=0
Therefore by (27),
2
%47
sj,” <e So .

which verifies (19) at 3 + 1. Moreover, (25) implies

2
Vj+1 < Pj+1 < Fo < ZVO .
Thus by (17),
2
26,V
00 2 1
GgSya1Vys1 € 2Ge VoS

which verifies (20) at j + 1. This completes the proof of Theorem 1.
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