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ABSTRACT

The crossed-triangle macroelement has been identified as an ideal element for non-
Newtonian fluid flow calculations involving fluids with integral constitutive equations. In
spite of an instability of the pressure approximation, these elements have been shown
to have convergent velocities in Stokes flow, and there is strong evidence that pressure-
smoothing schemes recover accurate pressures. Earlier studies by the author of Newtonian
flow over transverse slots at low Reynolds numbers showed that excellent results could
be obtained using the element. Studies of non-Newtonian flows in the same geometry
showed good qualitative agreement with laboratory experiment but led to some puzzling
predictions of the pressure difference between the top and bottom of the slot (the "hole-
pressure"). In this paper, those puzzling predictions are re-examined, and the deviations
from expectation are re-interpreted. They appear to make physical sense and have impor-
tant ramifications for the calibration of devices which measure the primary normal-stress
difference by continuous measurement of the hole-pressure. " . . L,

AMS (MOS) Subject Classifications: 65N30, 76A05, 76A10
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CALIBRATION OF HOLE-PRESSURE MEASUREMENTS IN
NON-NEWTONIAN FLOW BY NUMERICAL METHODS

David S. Malkus

INTRODUCTION

In refs. 1 - 3], the linear crossed-triangle macroelement is described, and some cal-
culations using it are reported. In refs. '1 and i21, results on the pressure difference
between the top and bottom of a transverse slot in plane Newtonian flow are presented.
It was found that the element accurately reproduced the value of the slope of the curve
obtained when pressure difference, divided by undisturbed wall shear stress, is plotted
against hole-based Reynolds number 1 - 31 in the low Reynolds number regime, where
the slope is known to be approximately -1/30 '41. The value reported in refs. [1i and 121

obtained using a fairly crude mesh was -0.031. Subsequent mesh refinement and grading of
the mesh have produced a value of -0.033. All indications are the crossed-triangle element
produces excellent results in Newtonian flows.

It was with some puzzlement, then, that some of the results of refs. 1! and 31
were reported. These results involve the pressure difference over a transverse slot in non-
Newtonian flow. A relation (given below) has been proposed relating this difference to the
primary normal-stress difference, N1, a very important measure of the fluid's viscoelastic-
ity. The numerical results of refs. tI and 3 indicate strongly that the assumptions behind
the derivation of the pressure difference/normal-stress difference relation (the "HPBL re-
lation" 3' ) are violated by non-Newtonian flows at significant non-dimensional shear
rates (the "Deborah number" [11 ). Nevertheless, what seem to be extremely carefully
conducted laboratory experiments [51, 61 suggest that the quantitative prediction of the
HPBL relation is correct, in spite of the inapplicability of the derivation. Unfortunately,
the numerical experiments reported in refs. 11 and 3 i do not agree with the laboratory
experiments, at least at first sight. The pressure differences from the numerical model are
systematically lower than the HPBL prediction.

The author has some confidence in his numerical prediction of non-Newtonian pres-
sure differences, however. The systematic overestimation of pressure differences by the
HPBL relation has also been observed numerically by Dupont, Marchal, and Crochet j7,.

and the results of ref. 71 can be very accurately duplicated by this author's own code
!8. The author's code and that of ref. j7j are quite different implementations of the same
sort of approach to memory fluid problems. The author's code uses the crossed-triangle
elements, whereas ref. !7* employs eight-node rectangular elements.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041, the United
States Air Force under Grant No. AFOSR-85-0141 and the National Science Foundation
under Grant Nos. MCS 79-03542, 81-02089 and 83-01433.
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In this paper we offer a new interpretation of the numerical non-Newtonian hole-
pressure predictions. This interpretation results in a simple calibration rule for the HPBL
relation. The calibration rule leads to a modified HPBL prediction which seems to corre-
spond to a reasonable modification of the derivation of the HPBL relation which corrects
some of its observed inadequacy. At this point, we can only conjecture why the labora-
tory experiments do not require the calibration the numerical experiments require, but
an intriguing possiblity is that deformable membrane transducers may not measure pres-
sures at the points one might expect that they do, and that the deviation of the effective
measurement point of such a transducer may amount to a fortuitous self-calibration.

PRELIMINARIES

The emphasis of this paper is on the interpretation of numerical results and on the
extent to which the physical reasonability of those results reflect upon the performance
of the crossed-triangle macroelement. The details of the finite element formulation and
the physical idealizations involved in the slot-flow problem are described amply elsewhere.
The purpose of this section is to remind the reader of several points and direct him/her to
sources where further details may be found.

Flows over transverse slots
The slot-flow problem discussed here is described in most complete detail in ref. [3].

The notation and other conventions described there are adopted here. Figure 1 shows the
idealized domain of the problem and its dimensions.

This problem is also discussed in refs. '1,2,4 - 10]. There are several important
definitions and equations which will bear repeating here. First we define a Reynolds
number for a shearing flow,

p h bit".
RL( j) -M hlrj (1)

41 • ")

where p is the fluid density (p -0 0(1) for fluids considered here), h is the height of the
channel into which the slot is cut, and b is the width of the rectangular slot. The slot
is taken to be at least three times deeper than it is wide. j is the shear rate and js(j)
the viscosity. We are concerned here only with the case R,(-) 0. This is assured in
the present study by modelling very viscous fluids in which p(-) is large enough to keep
RL < 0(10 - 2 ) at shear rates -" <. 0(10') s-. The fluids being modelled here may be
thought of as polymer melts or highly concentrated polymer solutions.

When RL 0 0, the HPBL relation has an integral form 13"

Pe N dr (2)
2 r

The pressure difference between centerline measurement points at the bottom of the slot
and on the channel wall opposing the slot mouth is predicted by one-half the integral of
the stress ratio as a function of shear stress, from zero to the value a, of the wall shear
stress in the flow in which P, is to be observed. The values of N(r) are values observed
in a simple shearing flow which produces a corresponding shear stress. r. Thus the HPBL
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FIGURE 1

Domain for idealized slot-flow problem: cross-section of wide
channel of depth h with slot of width b and depth d; q is large
with respect to b and h. Q indicates direction of flow.

prediction of Eq. (2) predicts P, in slot flow based on an integral of viscometric functions.
Differentiation of Eq. (2) with respect to o yields the measurement relation

di n P
NI =2 e P, (3)

dine-

which enables viscometric values of N, to be predicted by continuous measurement of
hole-pressure !1,3.5,6].

The values of a in Eqs. (2) and (3) are nominally the values of a in undisturbed
channel flow, because this value of a can be reliably measured by streamwise pressure
differences [1,3 - 5]. However, if hib < 1, the disturbance in the channel flow induced by
the slot is significant at the wall opposing the slot i[, resulting in values of shear stress
and first normal-stress difference o < a and N °  Nj(o ° ) < NI(a) at the centerline
opposite the slot mouth. In all of the results presented here, h/b = 2, so that o - o and
N' ; N,(a). In all calculations reported here a' is used in place of a in Eq. (2), though
either a or o could be used without significantly altering the conclusions. Inspection of
the derivation of the HPBL relation [1O1 indicates that o ° is indeed the correct value of
the shear stress to use in Eq. (2).

3 a
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It is also useful to characterize the degree of nonlinearity in a given flow. To do this,
we will use the Deborah number,

De- Tj' (4)

where T is the dominant relaxation time of the fluid, and j is the shear-rate at the wall

. in undisturbed channel flow. D, may be thought of as a non-dimensional shear rate.
Following ref. I7, we will find that a non-dimensional shear stress is useful:

STo (5)

where p (0) is the viscosity at zero shear. It is often useful to consider S evaluated at the
centerline of the slot on the wall opposing it,

so o() (6)
((6)

*It should be noted that for fluids which do not have a shear thinning viscosity, De and S
are equal. For shear-thinning fluids, S is always smaller than De, and may be significantly

so. The thinning ratio, Si'De, gives a measure of the amount of shear thinning at shear
rate j, when o = o(j).

Constitutive Equations
Ref. [81 describes the general form of the constitutive equations employed to obtain

the results reported here. Ref. i91 gives the details of the specific constitutive equations.

In all cases we have taken
: (0) = 410.125 Pa - s (7)

T = 0.9666 s

* and used: Curtiss-Bird with £ 0.375 and A = 0 (see Example 26, p. 6 of ref. [9], also refs.

I' and 3] ), and what is referred to in ref. [9 as "the concocted constitutive equation"

* with A = 0.3222, a = 0.87. c = 0.1 (see Example 3b, p. 7 of ref. [9], modified as described
on p. 23). This modification of the Johnson-Segalman constitutive equation was made
to imitate the Phan Tien-Tanner model (see Example la, p. 6 of ref. 191 ), which has
a bounded extensional viscosity when c - 0, as does the model discussed here when the
corresponding parameter, c 0. The modified Johnson-Segalman model is obtained by
formally adding a Wagner-like damping function, and so it will be referred to as the JSW
model here. The Curtiss-Bird model will be referred to as the CB model hereafter.

Finite Element Approximation
The most complete description of the finite element method for memory fluids can

be found in ref. I1I, and it is also discussed in refs. :3,8, and 9]. The mesh employed is the
1008 macroelement mesh pictured in ref. [9]. The mesh is graded in the neighborhood of
the singularities at the slot corners. The order of these singularities is known for Newtonian
flow i1, but they are unknown in non-Newtonian flows. The crossed-triangle macroelement
has an inherently unstable pressure approximation [2'. On many meshes, this does not seem

4
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to affect the solution pressures, but in the problem at hand it definitely does. Raw pressures
are severely checkerboarded in the non-Newtonian case, as they are in the Newtonian case
1,21. The non-Newtonian pressures seem to be improved by the pressure smoothing scheme

given in ref. 1 to the same extent the Newtonian pressures are. Since the publication
of ref. 1, the pressure smoothing scheme has been rewritten to apply to all stress and
strain-rate components, whether or not they involve a pressure contribution. All values
of stress and strain rate reported here are smoothed values. This has the advantage of
referring all stresses and strain rates to macro corner nodes, and eliminates the need to
worry about making sure that stresses and pressure differences are referred to equivalent
spatial locations 11.

Time-Htistory Quadrature

Here as in refs. j1,3, and 7, P, is predicted by integration of the viscometric function,
Nl(ir) 'r, with the same time history quadrature '1,3' as was used to solve the slot flow
problem. Since the writing of refs. [1,3, and 71, it was found that the 10-point quadrature
'3. used for the history integral does not evaluate the viscometric functions accurately at the
high shear rates which it is now possible to achieve using some constitutive equations. [The
viscometric functions are usually known analytically or very accurately.1 For the results
reported here, 18-point formulas were generated and used for Curtiss-Bird. A tabulated
16-point Laguerre formula was used for the constitutive equations with a single-exponential
memory.

For some constitutive equations - Curtiss-Bird, in particular - even 18 points do not
seem sufficient at high De. At about De = 15, there begins to be visible inaccuracy in
plots of ,1 (7)/r vs. r. We present results there nevertheless, because they represent a
perfectly valid test of the HPBL relation, with constitutive equation modified from the
Curtiss-Bird by quadrature error. So long as we use the same quadrature for slot flow as
the viscometric functions, the HPBL relation should hold if it is valid, since it proports to
be independent of constitutive equation.

NUMERICAL RESULTS

The results we present here should be viewed as results in the same vein as those pre-
sented in refs. 1] and 131, but with an improved mesh, improved time history quadrature,
and another constitutive equation. In refs. 1.3. and 7', the value of P, is predicted by
integrating Eq. (2) numerically from viscometric data. For the results presented here we
have done the same and used the trapezoidal rule with 200 points, which tests showed to
be quite sufficient. In refs. [1.3, and 71 the predicted P, was plotted on the same curve as
the actual P, taken from the finite element model. The abscissa was a, or more precisely
a'. Here we have chosen to plot P,/Nj vs. S,,. The results are summarized in Figure 2.

The systematic deviation of the actual hole-pressure from the predicted is reflected
in the departure of the trend of the points below the "Tanner-Pipkin line", P/Nj = 0.25.
Tanner and Pipkin ii ! presented an argument which implies that. at least asymptotically
as S,, - 0. P,,', - 0.25. According to the HPBL relation, any constitutive equation
for which N 1 (r) 'r is linear should have P, 'N, 0.25, whether or not the flow is slow.

.-
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0.20 ki= 0.0385
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FIGURE 2

Numerically observed Pe.'Nl for JSW (c) and CB (A) models,
plotted vs. So. Line at Pe Nl - 0.25 is Tanner-Pipkin line;
dashed line is k-line, with intercept 0.25 - k, and slope kl.

For the constitutive equations considered here, Nj(T),r is very near linear in the range
0 < S(, < 0.5, but Pe/Ni departs quite significantly from 0.25 in that region.

It is not clear from ref. '71 how well the Tanner-Pipkin limit is recovered, but it
appears that those authors actually get a number slightly larger than 0.25. though it
is difficult to precisely interpret their figure in that range. Until recently. the author
believed that the failure of the numerical results to hit the Tanner-Pipkin line. at least
asymptotically when S(, : 0, was due to discretization error. The author's results at very
lo% S, do gel closer to the Tanner-Pipkin line with mesh refinement (more precisely, on
the cruder mesh of refs. 1 and i31, the results are even farther away from the Tanner-
Pipkin line than those given here). Also, the work of Webster .12 using a finite difference
met hod, the Maxwell fluid (see Example 3b, p. 7 of ref. J9] with A 0 and a = 0), and the
"Odroyd B" fluid (same as Example 3b, p. 7 of ref. i9 with A : 0 and a = 0) shows values
nearly on the Tanner-Pipkin line. Webster and this author are currently collaborating in
a re-investigation of these low S,, results, and Webster's latest results agree more with
those presented here 13'. His results on a refined mesh no longer hit the Tanner-Pipkin
line, but tend to a value somewhat below it for very small S0 . This departure from the
Tanner-Pipkin result cannot be explained at present. but, for the sake of arguement, let
us take it at face value here. What is observed in Figure 2 is that the low So results fall

6
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near a line with a negative slope and intercept. This line was obtained by interpolating
linearly to the first and third JSW values, which should have fallen nearly precisely on
the Tanner-Pipkin line, if the HPBL hypothesis had held. We observe that those values
from the CB model which sould be very near the Tanner-Pipkin line fall very near the
interpolating line, which we shall hereafter refer to as the "k-line." The difference between
0.25 and the k-line values thus represents a set of values which correct the low So values
from both the CB and JSW results when added to them. They shift the low So results
from their observed position to the Tanner-Pipkin line, where they "should be," if the
HPBL hypothesis were correct.

This procedure corrects the lower So results of Figure 2, which depart from the HPBL -

prediction, since N, (r)/r is linear, but Pe/Ni differs significantly from 0.25. However, there
is a significant deviation of the numerical results from the HPBL prediction in the higher
S(. range where NI(r)/r is no longer linear. This is illustrated in Figure 3 for the JSW

1jmodel and in Figure 4 for the CB model.

0.501

0.45

0.40-

- 0.35 0

0.30

0.25 0 -o-- -

0% O

0.20
t II

0.0 1.0 2.0 3.0 4.0

so

FIGURE 3

JSW predictions (solid line) and numerically observed (o) Pe/Ni
vs. So,. Diamonds are calibrated values.

It should be noted that the upturn in the CB prediction curve at higher So is known
to be artificial and is an artifact of the Gaussian quadrature, as mentioned earlier. The
downturn in the JSW prediction at high Sco is believed to have the same cause. Here.
we shall treat the inaccurately integrated constitutive equations as valid equations with

7
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0.0 0.5 1.0 1.5 2.0
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FIGURE 4

GB predictions (solid line) and numerically observed (AL) P.e/NI
vs. So. Diamonds are calibrated values.

viscometric functions which differ from JSW and CB somewhat at the higher So. For the
purposes of testing the HPBL relation, the upturn and downturn are "real" enough. There
are two important aspects of the observed and predicted values of Pe/NI which bear on
what follows: First, the predicted and observed curves have the same gross, qualitative
features; the CB observations even reflect the upturn of the prediction curve. Second, the
observation curves behave with respect to the k-line the way the prediction curves behave
with respect to the Tanner-Pipkin line, at least to a good approximation (but not exactly,
because the observation curves would cross each other ever so slightly or be closer than
they are, near So = 0.5). However, the departure of the the observations from predictions
are so quantitatively severe that the precision of the HBPL relation is certainly called into
question.
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A CALIBRATION RULE

The more empirical and less understandable statement of the calibration rule is
"substitute the k-line for the Tanner-Pipkin line", or quantitatively

P kNN 1 S0 + 1 f dr (8)

where k0 is 0.25 minus the intercept of the k-line, and k, is the negative of the slope of
the k-line. There does not seem to be any physical interpretation readily apparent for Eq.
(8). But a rearrangement of Eq. (8) does seem to make physical sense.

Let us assume that the flow at the wall opposite the slot is essentially a flow with
constant pressure gradient, P,. Numerical results verify the virtual constancy of P., even
when h/b = 1. Let x be the streamwise coordinate which is zero at the slot centerline. At
the wall, the thrust determining Pe is

P(x) = XP - P(O) (9)

Letting
P, Pi P2  (10)

where P= P(0) and P 2 is the thrust at the bottom center of the slot. Then from Eqs.
(10) and (11)

P(x) - P 2 = XPr + Pe (11)

For any choice of x,
P' =_ P(x) - P 2  (12)

is a modified pressure difference. Furthermore, if we compare Eqs. (9) and (12) we find
that cr

o

p,1I foN, dr (13)

whenever
xP., koN, + kjS oNj

P., is determined by the Poiseuille flow up and downstream of the slot, thus P. = 2o/h
and

x k + SN, (14)
2= 2a

This can finally be simplified and rewritten it terms of non-dimensionalized viscometric
functions and constants with units of length:

N TNIX C1 + C2(2.o)i-:

C= koh (15)

C 2 =kh a"
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wherein the approximation o' z- o ha been made: this essentially amounts to an assump-
tion that h/b > 1. With this same assumption, then, the calibration rule states that the
P" computed using x determined according to eq. (15), satisfies the original HPBL hy-
pothesis of eq. (2). We note that values of kc, and k, determined by numerical modelling
have always turned out to be positive (corresponding to a negative slope of the k-line and
an intercept below the Tanner-Pipkin line). Thus the point, x, at which the upper pres- %
sure measurement must be made in order to satisfy the HPBL hypothesis is found to the
upstream side of the slot centerline.

The reader unfamiliar with ref. '10 may find the second interpretation of the cali-
bration rule as arcane as the first, but the author believes that it is not. The derivation of
ref. '10' applies to flows for which, to an acceptable order of approximation, the stream-
lines and stress distribution are symmetric about the centerline of the slot. Though this
is clearly not true for elastic fluids at high enough De, the streamlines and their orthog-
onal curves always form an orthogonal, curvilinear cordinate system, and if symmetry
holds to sufficient accuracy, the centerline is then a coordinate curve on which the flow is
essentially a simple shearing flow. The HPBL equation (2) follows from integrating along
that coordinate curve. However, it is observed both numerically and experimentally that
at higher D,, the asymmetry about the centerline is severe 19]. In fact, the observed tilt
of the vortex in the slot is such that the orthogonal curve which coincides with the slot
centerline below the top vortex and passes through its center, is deformed so that it arrives
at the wall opposing the slot at a point upstream of the slot centerline. Numerical and
experimental results show there may actually be several vortices below the top one, which
is near the slot mouth, but those vortices below the top one are so faint, when they occur,
that the orthogonal curves are not visibly perturbed, and the flow is essentially still in the
slot below the top vortex. This is illustrated by schematic in Figure 5.

What the author believes the calibration rule is, then, is evidence that there exists a
modified HPBL relation which is referred to a path of integration from the bottom of the
slot to the wall opposing the slot, ending up at a position upstream of the slot centerline.
This coordinate curve connects the bottom of the slot to the center of the top vortex,
passes up through the channel, and arrives at the top wall at approximately at the point
identified by eq. (15).

That such a modified path could exist under reasonable assumptions about the flow,
and the integration of ref. '10 could be carried out on a path which is not axially aligned
and lead to the same result as the HPBL analysis, is still a very much unresolved issue
requiring a careful analytic approach to the problem. Such an analysis should also attempt
to identify the orders of approximations involved in the assumptions required to make the
analysis go through, since the assumptions are not likely to ever be satisfied exactly in an
elastic fluid. It is hoped that the results presented here will motivate such an investigation.
In Figures 3 and 4, the diamond symbols plot P" vs. So. The correction, based on observing
k,, and k, empirically for a single constitutive equation at low So, works very well in
calibrating the observations from two constitutive equations over a much wider range of
shear rates. The calibrated values were calculated by actual recomputation of the pressure
difference using P(x), with x computed from eq. (15), in place of P1 . This demonstrates
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, . .-

I I.

P2

FIGURE 5

Schematic of deformed streamline coordinate system, show-
ing orthogonal curve connecting P2 location to z; P1 is
located at x = 0.

not only that the k-line adjustment computed from low shear-rate data works at high shear
rate, but also that the assumptions involved in relating the k-line correction to a modified
pressure difference were warrented in the cases presented here.

DISCUSSION

The author believes that the effectiveness of the calibration described is better than
* coincidental, though it is clearly not exact. The Pe/Ni curve for the CB model has less
* curvature than the predicted curve, and this cannot be corrected by a linear calibration

curve. The calibrated JSW curve tails off before the predition curve does; There are not
enough observation points to tell whether the observed curve has a misplaced maximum or
fails to have a maximum at all. An important point to be made is that one cannot expect
perfect calibration accuracy everywhere. The hypothesis put forward here explaining the
success of the calibration suggests it corrects only for the deformation of the streamline
Coordinate system, but as explained in refs. [I] and j3], there is expected to be an error

* in prediction due to the history dependence of the constitutive equations, which would
imply that -even on a modified integration path -the existence of a simple shearing -

flow locally does not imply the flow is viscometric. What is hoped is that the calibration
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S-rule presented here has identifitd the first-order effects in the deviation of original HPBL
prediction and numerical observation.

There are at least three issues which are potentially detremental to the hypothesis put
forward here. The first is that the new results of Webster !131 are for different constitutive
equations than those used here (Maxwell and Oldroyd B), and they seem to imply nearly
the same value of C1 as the CB and JSW imply, but a value of C 2 that is less than one
half the value for CB and JSW. There is no a-priori reason to expect that the calibration
constants should be the same for all constitutive equations, or that the deformation of the
streamline coordinate system should depend on Nj/'2o and TN/2p(o) in a constitutive-
invariant way. If the calibration rule is eventually to prove useful as a tool to calibrate
devices for the measurement of N] in fluids of unkown properties, the rule obviously must
be constitutive-invariant. There are many ways out of this dilemma; the simplest would
be to provide a convincing argument that Maxwell and Oldroyd B, which are known to

i be inadeqtte fluid models, do not produce the correct deformation of the streamline
coordinate system. This is speculation, and investigation is called for.

The second issue bothers the author more than the first; either the numerical results
presented here are inaccurate, invariant to treatment by finite differences or finite elements,
and even more inaccurate when the finite-difference grid is refined, or else the applicability

-of the Tanner-Pipkin argument is called into question in the flow involved here. The
Tanner-Pipkin argument would be called to question even as an asymptotic argument as

-. De -+ 0; the author is as uncomfortable with such a suggestion as he is with the suggestion
that there is not numerical convergence of Pe/NI at a fixed, low De with mesh refinement.
Something has to give.

The third and final issue is an intriguing one, and there seem to be so many ways to
-reconcile what is presented here with the troubling evidence that one hardly knows where

to begin. The fact is that the limited experimental results with laboratory pressure mea-
surements do not seem to uncover the deviation of the observed pressure differences from
the HPBL prediction which numerical results predict. Numerical results could be wrong

- -pressure differences are a numerically delicate quantity to predict, and the numerical
. methods are as yet unanalysed for discretization errors. Experiments could have made

". errors which compensate for the inaccuracy of the HPBL prediction, and more compre-
hensive investigations could lead to better numerical/experimental correspondence. It is
perhaps more intriguing ( and certainly more comfortable) to speculate that real fluids

*have C, = C 2 = 0, whereas our attempts at constitutive theories give nonzero values.
A final speculation involves the actual measurement procedures; these involve transduc-
ers with deformable membranes. The membrane at the wall opposing the slot is so large
compared to the width of the slot mouth that, for all practical purposes, the whole upper
channel wall is a deformable membrane. It is believed that the effective measurement point
for P is the slot centerline, but we should note that the calibrations made here involve

• ithe movement of the measurement point of less than 0.32b - an extremely small fraction
of the length of the transducer - which can make a 50% difference in the hole-pressure!
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If the deformable membrane were also subtly deformed, along with the streamline coate
system, so as to move the effective measurement point in an upstream direction in the
right way, the measurement could be self-calibrating.

Acknowledgements: The numerical techniques for integral constitutive equations described
here were developed jointly by the author and B. Bernstein (Dept. Mathematics, 1. 1. T.).
The contents of this report will be presented at the A.S.M.E. Winter Annual Meeting,
Miami Beach, November 18, 1985 and will appear in a subsequent printed volume.
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