
AD -ft" 972 THE NOTION OF ELLIPSOIDS IN R SECOND ORDER FLUID(U) in
NISCONSIN-UNIY-NMDISON NRTHEMRTICS RESEARCH CENTER
S KIN SEP 85 NRC-TSR-2964 0DR 29-S-C-N41

UNCLASSIFIED F/6 12/1 M

aieeaaaaamiI
llllONllEllllE/l,



14.0 2.

11111 1111J.8

14-

MICROCOPY RESOLUTION TEST CHART
N4ATOA SB'4EAU OF STANDARS- 196S

%-. .

p dl-



THE MOTION OF ELLIPSOIDS IN A SECOND

ORDER FLUID

Sangtae Kim 

-

Maheatc Reeac Cente

Maptematic ReeachCete

0 (Received August 22, 1985)B

Approved for public release
Distribution unlimited

Sponsored by

* U. S. Army Research Office National Science Foundation
P. 0. Box 12211 Washington, D. C. 20550
Research Triangle Park
North Carolina 27709

~5'/1o6 068'



UNIVERSITY OF WISCONSIN-MADISON
MATHEMATICS RESEARCH CENTER

THE MOTION OF ELLIPSOIDS IN A SECOND ORDER FLUID

Sangtae Kim .

Technical Summary Report #2864

September 1985

ABSTRACT

The rigid body motion of an ellipsoid in a second order fluid (SOF) under

the action of specified (time independent) external forces and torques have

been obtained to first order in the Weissenberg number by inverting the

resistance relations for the force and torque under specified rigid body

motions. The reciprocal theorem of Lorentz was used to bypass the calculation

of the O(W) velocity field. The results agree with known analytic solutions

for a SOF with the secondary to primary normal stress ratio of -1/2.

The solution procedure was also tested by computing the torque on a

translating prolate spheroid with aspect ratios ranging from slender bodies to

near-spheres. One result is that for a SOF with zero secondary normal stress

(Weissenberg fluid), previous asymptotic results for near-spheres were found

to be accurate even at fairly large aspect ratios (e.g. 2).

New results for non-degenerate ellipsoids suggest that the orientation

(as monitored by Euler angles) and trajectory of sedimenting, non-axisymmetric

particles such as ellipsoids provide useful information on the rheology of the P...-

suspending fluid.
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Key Words: sedimentation, spheroids, ellipsoids, viscoelastic fluid,
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SIGNIFICANCE AND EXPLANATION

Viscoelastic fluids are encountered in many manfacturing processes,

especially in the form of solutions and melts of large macro-molecules

(polymers). The characterization of the flow properties of these materials is

an important step in the elucidation of the molecular structure and

processibility of the material. The work presented here show how data from

sedimentation experiments with non-axisymmetric particles e.g. ellipsoids, may -

be applied to determine such rheological properties (material flow properties)

of the suspending viscoelastic fluid.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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THE MOTION OF ELLIPSOIDS IN A SECOND ORDER FLUID

Sangtae Kim

1. Introduction

It has been shown, both theoretically and experimentally, that particles

suspended in a viscoelastic fluid behave differently than when suspended in a

Newtonian fluid [1,2,3]. For example, an orthotropic particle translating in

an unbounded Newtonian fluid does not experience a hydrodynamic torque.

Consequently, such particles will settle in a Newtonian fluid without

rotation. On the other hand, experiments have confirmed the rotation of

needle-like particle settling in viscoelastic fluids, e.g. Separan solutions

Ei]. These observations are consistent with theoretical predictions of a

torque on a slender particle translating in a second order fluid (SOF). This

has lead earlier investigators to consider the feasibilty of these experiments

as rheometric tools for dilute polymeric solutions.

Here, we examine the motion of an ellipsoidal particle in a viscoelastic

fluid in the limit of small Weissenberg number, W. The problem is solved by a

perturbation procedure in which the zero-th order solution is the Newtonian

result and the first order solution includes the O(W) effect in a SOF. The

method employed, classified as the "reciprocal theorem method" by Brunn [3],

bypasses the solution of the O(W) velocity problem and requires knowledge of

just the Newtonian velocity field.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This
material is based upon work supported by the National Science Foundation
through an Engineering Research Initiation Grant CBT-8404451 and the
Presidential Young Investigator Award CBT-8451056, and DNS-8210950, mod. I.
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The solution of this problem is an extension of earlier works on shapes

such as spheres and needles. However, the primary objective of this work is

to determine whether motions of nonaxisymmetric particles can differ

sufficiently from that of axisymmetric particles to the extent that such

measurements could be usefully applied in rheological studies of the

suspending fluid. To this end, the reader must keep in mind that the

suspending fluid is modelled as an incompressible fluid with a pre-specified

constitutive equation and that despite similarities in the techniques, the

present work is not an effort on the modelling of the rheological behavior of

suspensions.

The outline of the paper is as follows. The mathematical formulation of

the problem is presented in Section 2. The Newtonian case is reviewed,

including recently discovered [4] "singularity solutions" for the velocity

field, in Section 3. Results which have been obtained for the non-Newtonian

effects are described in Section 4, including the effect of non-axisymmetry.
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2. Problem Formulation

In the limit of rheologically slow flows, the constitutive equation for the

suspending fluid reduces to the n-th order Rivlin-Erickson fluid £5]. We

shall confine our attention to the first deviations from Newtonian behavior by

approximating the fluid as a second order fluid. The ultimate test of whether

such a regime exists in real polymeric solutions can only be determined by

comparison with experiments. The bulk stress is given by the SOF constitutive

equation [5)

o - - U! + A (b 1 1 -2b 2 ) 1 A1 + b

where V is the viscosity, b2 and bll are material properties of the SOF and

the A are the Rivlin-Erickson tensors defined by
un

- nV -2 1 DA1/Dt AI(Vv)t +(Vv)-AI"

The following dimensional analysis defines the Weissenberg number for

this problem. If the stresses are divided by the viscous scale, UU/, where U

is the particle translational speed and Z is a characteristic particle

dimension, then the constitutive equation becomes

2 -p6 A + WA- + WA,

where A (+a)A 1

and W - (-2b2 )U/(Ui) is the Weissenberg number. The parameter a b /(-2b

The definitions for W and a are motivated by the fact that in Couette flow,

the SOF has the primary normal stress coefficient, T -2b2 and the secondary

normal stress coefficient, T 2 = b11 [5]. Experimental results with polymeric

systems and polymer kinetic theories suggest that 0 S -a S 0.2 [3,5].

-3-
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From hereon, the A are dimensionless and defined by.n

1 (Vu) t =A2 DA/Dt Al * (VU) t  (Vu).A 1 .

Throughout this paper, we will use v to denote the (dimensional) velocity

field and reserve u for the velocity scaled by U.

We assume that inertial effects are small, and also assume that the fluid

is weakly elastic. More specifically, we require Re << W << 1. The field

variables can then be expanded in the small parameter W:

u-u (0 ) +Wu1 1  ... P p(O) + Wp(1 +..

and substituted into the equations of change (momentum and mass conservation),

resulting in the following hierarchy of perturbation problems:

p(0 ) V.u2 ( (0 )
) + V O - O, u-U

-Vp ( 1  V u ( 1 ) =--Alu~u(O), V-u ( )  0 . ?

Thus at zero-th order, we have the Newtonian problem, which we shall

review in the following section, while the first-order problem reduces to the

forced Stokes equation (which will be considered in Section 4).

-4-
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3. The Newtonian Solutions

Consider an ellipsoid with semiaxes of lengths a, b and c, with a 9 b k c and

a b . (3.1)

We choose . - a. The governing equations for the velocity, v, and pressure,

p, are the Stokes equations and the equation of continuity for incompressible

flow,

-Vp + 2- 0, (3.2)

V.v 0 O. (3.3)

with u denoting the fluid viscosity.

Since the governing equations are linear in this case, we may consider

the translational and rotational motions separately. Furthermore, the

translational and rotational problems are completely decoupled in the sense

that the fluid exerts no force on a rotating ellipsoid and no torque on a

translating ellipsoid. The boundary conditions for the two problems are, in

the Cartesian coordinate system fixed with respect to the particle as

specified by equation (3.1):

Translating Ellipsoid

v - 0 on the particle surface (3.4a,b)

v -- U as I- - .

Rotating Ellipsoid

v 0 on the surface (3.5a,b)

-5--
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The force-translation and torque-rotation relations may be expressed as

[6,7,8],

F_ tK.U and T- -ir - ,

where the components of the resistance tensors K and rR with respect to the

particle-fixed axes are given by tK rR - for i*j and

t 2 -1
K11 - 16%abc(XO + a0a ) , (3.6)

rR 1 6 abc(b2 c2Yo (b 2+2) (3.7)

Here, xO , aO, 
8o and Yo are constants which are obtained by evaluating the

following ellipsoidal harmonics at 
X-0. I

X(A) - abc [P(t)] -dt, (3.8)

a(A) - abc ( [(a 2+t)P(t)]- dt, (3.9)
JA

with P(t) - [(a 2+t)(b 2+t)(c 2+t)1
/ 2

The lower limit of the definite integral, X(x,y,z), is the ellipsoidal

coordinate which is the positive root of

X 
2  2  

Z
2

+ + _r+_ 1
aT+A b +A c A

The functions $(A), Y(X) and the expressions for the other diagonal elements

t r
of K and R are obtained by successive cycling of the dependence on a, b and

c and the subscripts 1, 2 and 3.

1. a, B and Y are as defined in Happel & Brenner [9] and differ from
Jeffery's [8] definition by a factor of (abc).
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We shall see in the next section that the Newtonian velocity field is

required in the calculations for the first non-Newtonian terms in the

expansion solution. The classical solution of Oberbeck [6] for a translating

ellipsoid and Edwardes [7) for a rotating ellipsoid are rewritten as velocitj

fields forced by a distribution of Stokes singularities (hence the name

"singularity solutions") in order to highlight the common structure of the two

solutions. The velocity field of the point force, i.e., the fundamental

solution of the Stokes equation, is I/(8Ow), where I, the Oseen-Burgers tensor

defined by

Itj r-6ij + -3 x x , with r = l!I',(3.10a)

and its pressure field, p 2p j, (3.1Ob)

satisfy the Stokes equation with point forcing,

+ V2 - 8 wrij6(=) , (3.11a)

ai

and the continuity equation, -ij = 0, (3.11b)
ax i

as shown in reference [91, Chapter 2.

The Newtonian solutions of Oberbeck and Edwardes can then be rewritten as

[L3:

=~x j n) t + (x-x')/(8rj) dx'dy', (3.12)

E

with n-1 for translation and n-2 for rotation. The two-dimensional

integration is performed over the fundamental ellipse, E, which will be

defined below. The terms in equation (3.12) are:

-7-

........................................



(x y (2n-) q2n-3, (3.13a-e)
E Ef q)(x, y) a =

E E

2_ 2 12 2_ 2 1/2
aE , (a-c) , bE (b-c)

a)- F if n-1,
and L .

S.V + T.V if n-2.

For n-1, L(.I = -F.I, so the translational solution is generated by a

distribution of Stokes monopoles (or Stokeslets) over the fundamental ellipse

(2)
with density f For n=2, L( I = [(S+T)-V]-I, so the rotational solution

is generated by the Stokes dipole field, S+T where S and T are respectively,

the symmetric (stresslet) and anti-symmetric parts of the stress dipole,

( (o.n)x dA.

The dyadic T is related to T, the hydrodynamic torque exerted on the

ellipsoid, by

1
T =-t T
ij ijk k.

The domain of integration, E(x',y'), is the interior of the fundamental

ellipse,

2 2x 2+y z 012 y , Z 0 ."

E E

The fundamental ellipse is the degenerate elliptical disk in the family of

ellipsoids that are confocal to the particle ellipsoid. The major and minor

semi-axes of the fundamental ellipse, aE and bE, are given in equation

(3.1c)2  The areit functio finn eqato

2(3•13c) The density function f (x',y') in E(x',y') may also be

2. References [10,11] use k and (k2-h2 )112 in place of our aE and b

E.-8- "

',€ o . . .° ° - - • . - j . - . o . . - . . . . . . - . - o . . . - . ° . . ... . ... - % -

W.,'- '' - """ """- -"" - - "' -"'"""" """- . """- " " '-.- ' " - . ..- "--". . ."-'.-". '". " ". " ". "- . " . "" . '"-"-"- ' " -"-"-



interpreted as the surface singularity distribution for an elliptical disk, as

can be seen by looking at the limit c = 0 in equation (3.12).

The function q(x,y) which appears in f plays an analogous role in the
(n)

potential theory for ellipsoidal particles (see [10]). In fact, in potential

-1theory, q is the requisite charge distribution over the fundamental ellipse

which generates ellipsoidal equipotential surfaces. Chwang & Wu [12] have

noted that the distribution of Stokes multipoles in low-Reynolds-number

problems is similar to the distribution of multipoles in analogous problems in

potential theory, except for the presence of additional degenerate multipoles

(the V 21 term) in equation (3.12). The presence of such quadrupoles (or

potential doublet) when n-1 and octupoles when n=2 in (3.12) are consistent

with (and in fact extend) the rules stated in [12] for prolate spheroids.

To complete the solution, we must relate F, T and S in terms of the

knowns, U and w. The expressions for F and T are obtained from equations

(3.6) and (3.7). The stresslet is identically zero for a sphere undergoing

rigid body motions in a quiescent fluid. However, for a nonspherical

ellipsoid, a stresslet is generated by a rotational motion [13]. The linear

relation between the stresslet and the angular velocity can be deduced from

[8] as

wr rS

where rQ - 0 unless (i,jkl is a permutation of (1,2,31 and

r = r 8 2 2  1 22
Q123 Q2 1 3 = - -vabc(a a0 

+ b280 )  (a -b (314)

r
The remaining elements of r are obtained by cycling 1,2,3 and a,b,c. This

completes the description of the singularity solution. Further

simplifications of these shape-dependent tensors are possible in the

-9-
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degenerate case of ellipsoids of revolution. These and other asymptotic

expressions for ellipsoidal and spheroidal resistance functions are provided

in [41].

In summary, the basic results for the Newtonian velocity field are:

1) The disturbance velocity field for a translating ellipsoid (or a fixed
ellipsoid in a uniform stream) is generated by a distribution of stokes-
lets and potential doublets over the fundamental ellipse.

2) The disturbance fields for a rotating ellipsoid or a fixed ellipsoid in
a constant vorticity field (and for a stationary ellipsoid in a rate-of-
strain field) are generated by a distribution of rotlets, stresslets and
Stokes-octupoles over the fundamental ellipse.

3) For prolate spheroids, the fundamental ellipse degenerates into a line
segment from one focal point to the other and the singularity solutions of
Chwang & Wu [12] are recovered. Furthermore, if the spheroid is slender,
the Chwang & Wu distributions reduce into forms that are analogous to
those used by Leal [1].

In actual computation, e.g. evaluation of the volume integrals over the fluid

,* region in the following section, it is more efficient to first integrate these

representations over the fundamental ellipse to obtain the classical solutions

• "(i.e. use the classical forms). However, in the present form, these

representations are more amenable to analyses such as asymptotic expansions in

the limit of degenerate shapes. The present forms also provide a

- straightforward bridge to the earlier works on slender bodies.

-10-
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4. The Non-Newtonian Contributions

4.1 The Torque on a Translating Ellipsoid

We first derive the expression for the torque on a translating ellipsoid.

This relation is then "inverted" to determine the rotational motions of a

torque-free, sedimenting ellipsoid.

The perturbation expansion for the torque is:

T =T + WT(1 ) + .. (4.1)

As discussed in the previous section, the Newtonian term is identically zero

for a translating ellipsoid. The expression for the O(W) term is:

TM= Pu 21 S x x(A.n) dA + S xx( (1).) dA (4.2)

The first integral In (4.2) Is simply the contribution from the non-Newtonian

terms in the constitutive equation, evaluated with the Newtonian (zero-th

order) velocity field. The second integral is the contribution from the

stress field of Wu(I ). Obviously, we need to retain only the Newtonian terms

in this stress field. Thus, it would appear that, given the Newtonian

solution, the first term can be calculated directly, whereas the second term

would require the solution of the forced Stokes equation. However, as shown

in El], the Lorentz reciprocal theorem may be applied to convert the second

integral into an expression which requires only the Newtonian velocity field,

thereby bypassing the O(W) velocity problem. Explicitly, for particles of any

shape, we have:

!(1) dA- V, (4.3a)Js ijkj - )k JVf tijAk(jLdV

where t is the i-th component of the Newtonian solution for the particle
ij

-11 -'.
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" rotating with unit angular velocity in the J-th coordinate direction and the

volume integration is over the unbounded fluid region exterior to the

particle. Brunn [14] has derived a more compact formula by noting that if tji

is used in equation (4.3a) instead of ti , an integration by parts cancels

the surface integral in equation (4.2). Thus

T i - _jjUa 2  Vf (tk,1 + t i,k) AkX dV. (4.3b)

The results of the previous section imply that the required velocity fields

may be expressed as:

u( -) Ui + F f f(1)(x',y')1 + 1 cq2V I j(x-x')/( 8w) dx'dy', (4.4)

E

t = Q + IrRm ) (4.5)

,. J91 1,2 f(2 (,y f 22" I, j(x-x')/(8w)dx'dy'.~

E

The resulting torque-translation relation for the O(W) term may now be

expressed as

i( N1 UU (4.6)

* as can be seen from combining equations (4.2), (4.3b) and (4.4). Furthermore,

N 1 (no sum) is identically zero for 1=1,2,3 because of particle symmetry.

Thus the O(W) contribution to the torque on a translating ellipsoid in a SOF1 1
is completely characterized by three shape-dependent parameters, (N 3N

1 1123 132

(N1 N and +N Furthermore, the N are linear with respect to231 213 '312 321)* ij k

a, therefore, the complete solution may be determined from the solution at

(only) two distinct values of a. Before turning to the sedimentation problem,

we examine the special case when a = -1/2, for which an analytical solution is

-12-
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possible.

Giesekus [15) has noted that for a - -1/2, V.A is irrotational and may be

written as the gradient of a scalar potential. The O(W) equation may be

solved directly by incorporating the right-hand-side into the pressure. Brunn

[16) has applied this simplification to the general motion of a rigid particle

in a SOF. For a particle undergoing steady translation, his results reduce to

the extremely simple formula,

X 11  - F/ !(O)Eu. (4.7)

For ellipsoids, this reduces to

- 1 t t3 2 (a/U)(tK 2 2- K1 1 )U1U2, (.8)

and two analogous expressions obtained by cycling the Indices. Necessarily,

the general solution described below must reproduce these results when

-1/2.

Results for the torque on a translating ellipsoid were obtained by

numerical integration of the right-hand-side of equation (4.3b) using an

adaptive quadrature package provided by the Numerical Algorithms Group. These

results were also reproduced using three nested one-dimensional integrations

in the ellipsoidal coordinates, using the intuitively obvious procedure of

finer grid sizes in the region near the surface. The linearity with respect

to a was exploited, i.e., the integrand was split into terms independent of

and first power in a.

The (dimensionless) torque on prolate spheroids with shapes ranging from

slender bodies to near-spheres is presented in Figure 1. The torque for

arbitrary a may be obtained from the figure by using the plots for a = 0 and

the a-coefficient. For a = 0, the asymptotic solution for near-spheres

-13-
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remains a good approximation even at b/a = 0.5. In contrast, there is a

significant deviation of the a-coefficient from the asymptotic solution (the

x-axis) at this value of b/a. When a - -1/2, the results agree with equation

(4.8) over the entire range of a. Finally, the -a coefficient vanishes when

b = 0. There is a sharp "boundary layer" in the curve which does not appear

in the scale of Figure 1. The maximum in the curve lies at a value of b/a

between 0.01 and 0.001. (In comparison, when a - -1/2 the maximum is near

b/a -0.15).

Thus the results presented here agree with those in reference [14] for

near-spheres and satisfy equation (4.8) over the entire range of aspect

ratios. In the slender-body limit, the results do not approach those

presented in [13. At the present time, I suspect that this disagreement is

due to an error in [1], in part because that result does not agree with the

analytic solution for a - -1/2. However, it should be noted that there are

differences between slender spheroids and slender-bodies generated by uniform

3distribution of stokeslets and rotlets

4.2 Sedimentation

We shall first consider the general formulation for the translational and

rotational velocities of a particle whose motion is driven by specified

(time-independent) forces and torques. The sedimentation problem is a special

case. The relations between the force and torque and the translational and

rotational velocities are, accurate to o(W),

F tKiU j + (Mk1 UU + M2 U k + M3  WkW + 0(W), (4.9a)
i iii ijk jk Mijk j k ijkWW)+0(k

3. Chwang & Wu [17] note that there are fundamental differences between
slender spheroids and those generated with a uniform distribution of
rotlets.

-14-
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T - r (NlU U+ N Uw N3  )W + (W). (4.9b)
iii j i NI kk* ijk j k J'

For ellipsoids and other orthotropically-symmetric particles, M -o as shown by

[1). The consequences for sedimentation are now considered.

The force-translation relation implies an 0(0) translational velocity,

which when inserted into equation (4.9b) implies that a is O(W) smaller than

U. Thus (4.9a) and (4.9b) may be inverted to arrive at the following

expressions for the sedimenation and rotational velocities:

U (PtK )lFext + O(W2 ), (4.10a)

Wi . ( 1 )r-1 (NkLUkUt) + 0(W2). (4.10b)

i ~ ~~ ij ii

Since the sedimentation and rotational motions are small, the sedimentation

trajectory and the evolution of the particle orientatation may be determined

by using small time steps and (4.10a) and (4.10b). The trajectory of the

ellipsoid center and the three Euler angles (defined by Figure 2) are traced

for different ratios of the normal-stress coefficients (Figures 3a-3d) for the

representative case with b/a - 0.25 and c/a - 0.05. Several points pertaining

o the use of non-axisymmetric particles are raised by these figures.

The projection of the trajectory of the particle center onto a horizontal

plane deserves special mention. Since the ellipsoid eventually achieves the

"vertical" orientation and falls without horizontal drift, the plane curve of

Figure 2 approaches a limit point at large t. Moreover, the fluid rheology

affects the shape of this plane curve only through the ratio, a. In contrast,

for axisymmetric particles, the projected curve does not provide as much

-15-
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useful Information since it is simply a straight line in the X-Y plane. A

change in a results in a change in the length, but not the direction of the

line.

Another behavior which may be exploited is the different time scales in

the decay of the Euler angles e and i. The particle of Figure 3 represents

the case where , decays faster than 8. In general, the two time scales may be

adjusted relative to each other by varying b/a and c/b.

In conclusion, the theoretical analyses presented here suggest that the

sedimentation configurations and trajectories of non-axisymmetric particles

may ion

is being initiated to follow this lead.
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Captions for Figures

1. The torque, Tz - WUa
2 (f - ag)Ux U y/U2, on a prolate spheroid

translating in a SOF, with W - T 1U/(Ua) and a - T2/4i,

f (---) and g (- - -). The solid curve is Brunn's [14] asymptotic result

for f(b/a) for near-spheres. The asymptotic curve for g(b/a) is coincident

with the horizontal axis.

2. The definition for the Euler angles of the subsequent figures. The body-

fixed axes, x, y, and z are obtained from the laboratory-fixed axes,

X, Y and Z as follows: rotation about the Z-axis by an angle f until

the X-axis coincides with the line-of-nodes, followed by rotation about

the line-of-nodes by an angle e until the Z axis coincides with the

x-axis. The third Euler angle, i, is the angle between the y-axis and

the line-of-nodes.

3. The initial orientation is 8-450, ,=0° and *-450 and the

initial location of the center is (0,0,0). The curves are for a-O (-),

cL-O.l (---) and a-0.2 (- - -). All time axes have been scaled with

the characteristic time, (a/U)W

a. The trajectory for the ellipsoid center projected onto the X-Y plane.

b. The evolution of e.

c. The evolution of *. Without loss of generality, the X and Y axes are
defined so that 0-0 initially.

d. The evolution of w.
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