. AO-R168 973  THE MOTION OF ELLIPSOIDS ll !I SEC

M m FLUID(ID 4
“ ISCONSIN- UNIV-NADISON HEM'I’ICS RESE CENTER
S KIN SEP 83 MRC-TSR-2864 DRAG29-8!
UNCLASSIFIED F/6 12/1




O 2 s AN S UICaRS SiE N
.-t -

Cadr i S B
T e Ve 8 Mo

— 3.2
£ g
flee -

N
&)

2 s

|

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS — 1963 - 4




MRC Technical Summary Report #2864

ORDER FLUID

Sangtae Kim

AD-A160 973

Mathematics Research Center
University of Wisconsin—Madison
610 Walnut Street

Madison, Wisconsin 53705

September 1985

(Received August 22, 1985)

Sponsored by

. u.
P.

S.
O.

Army Research Office
Box 12211

Research Triangle Park
North Carolina 27709

I W

THE MOTION OF ELLIPSOIDS IN A SECOND

TIC
L TCTE

. NOVT 1985

R

B

Approved for public release
Distribution unlimited

National Science Foundation RN
Washington, D. C. 20550




RSN A IR A AN S A = el i JERL RSN BIAe gait cpedh bane ou

% PR A gl AN e aras 4

UNIVERSITY OF WISCONSIN-MADISON
MATHEMATICS RESEARCH CENTER

THE MOTION OF ELLIPSOIDS IN A SECOND ORDER FLUID
Sangtae Kim
Technical Summary Report #2864
September 1985
ABSTRACT

The rigid body motion of an ellipsoid in a second order fluid (SOF) under
the action of specified (time independent) external forces and torques have

been obtained to first order in the Weissenberg number by inverting the
resistance relations for the force and torque under specified rigid body

motions. The reciprocal theorem of Lorentz was used to bypass the calculation

of the O(W) velocity field. The results agree with known analytic solutions

for a SOF with the secondary to primary normal stress ratio of =1/2.

The solution procedure was also tested by computing the torque on a

translating prolate spheroid with aspect ratios ranging from slender bodies to

near-spheres. One result is that for a SOF with zero secondary normal stress

(Weissenberg fluid), previous asymptotic results for near-spheres were found
to be accurate even at fairly large aspect ratios (e.g. 2).

New results for non-degenerate ellipsoids suggest that the orientation
(as monitored by Euler angles) and trajectory of sedimenting, non-axisymmetric
particles such as ellipsoids provide useful information on the rheology of the

suspending fluid. /-
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SIGNIFICANCE AND EXPLANATION

Viscoelastic fluids are encountered in many manufacturing processes,

especially in the form of solutions and melts of large macro-molecules
(polymers). The characterization of the flow properties of these materials is

an important step in the elucidation of the molecular structure and

processibility of the material. The work presented here show how data from

sedimentation experiments with non~axisymmetric particles e.g. ellipsoids, may e _ Y
-,
be applied to determine such rheological properties (material flow properties) RS

of the suspending viscoelastic fluid. i

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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THE MOTION OF ELLIPSOIDS IN A SECOND ORDER FLUID

Sangtae Kim

1. Introduction

It has been shown, both theoretically and experimentally, that particles
suspended in a viscoelastic fluid behave differently than when suspended in a
Newtonian fluid [1,2,3]. For example, an orthotropic particle translating in
an unbounded Newtonian fluid does not experience a hydrodynamic torque.
Consequently, such particles will settle in a Newtonian fluid without
rotation. On the other hand, experiments have confirmed the rotation of
needle-like particle settling in viscoelastic fluids, e.g. Separan solutions
[1]. These observations are consistent with theoretical predictions of a
torque on a slender particle translating in a second order fluid (SOF). This
has lead earlier investigators to consider the feasibilty of these experiments
as rheometric tools for dilute polymeric solutions.

Here, we examine the motion of an ellipsoidal particle in a viscoelastic
fluid in the limit of small Weissenberg number, W. The problem is solved by a
perturbation procedure in which the zero-th order solution is the Newtonian
result and the first order solution includes the O(W) effect in a SOF. The
method employed, classified as the "reciprocal theorem method" by Brunn [3],
bypasses the solution of the O(W) velocity problem and requires knowledge of

Just the Newtonian velocity field.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This
material is based upon work supported by the National Science Foundation
through an Engineering Research Initiation Grant CBT=8404451 and the
Presidential Young Investigator Award CBT-8451056, and DMS-8210950, mod. 1.
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The solution of this problem is an extension of earlier works on shapes
such as spheres and needles. However, the primary objective of this work is
to determine whether motions of nonaxisymmetric particles can differ
sufficiently from that of axisymmetric particles to the extent that such
measurements could be usefully applied in rheological studies of the
suspending fluid. To this end, the reader must keep in mind that the
suspending fluid is modelled as an incompressible fluid with a pre-specified
constitutive equation and that despite similarities in the techniques, the
present work is not an effort on the modelling of the rheological behavior of
suspensions.

The outline of the paper is as follows. The mathematical formulation of
the problem is presented in Section 2. The Newtonian case 1is reviewed,
including recently discovered [4] "singularity solutions" for the velocity
field, in Section 3. Results which have been obtained for the non-Newtonian

effects are described in Section Y4, including the effect of non-axisymmetry.
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2. Problem Formulation

In the limit of rheologically slow flows, the constitutive equation for the
suspending fluid reduces to the n-th order Rivlin-Erickson fluid [5]. We
shall confine our attention to the first deviations from Newtonian behavior by
approximating the fluid as a second order fluid. The ultimate test of whether
such a regime exists in real polymeric solutions can only be determined by
comparison with experiments. The bulk stress is given by the SOF constitutive

equation [5]

g = "P§ * uby * (Dyy=2by)h, 04y + DA,

where u {s the viscosity, b, and b,, are material properties of the SOF and

2 1
the en are the Rivlin-Erickson tensors defined by

A = T+ (WY, Ay = DA,/Dt + A (V" + (Wp)-a..

The following dimensional analysis defines the Weissenberg number for
this problem. If the stresses are divided by the viscous scale, uU/%, where U
is the particle translational speed and £ is a characteristic particle

dimension, then the constitutive equation becomes

where A = (1+a)A

and W = (-2b2)U/(u2) is the Weissenberg number. The parameter o = b11/(-2b2).
The definitions for W and a are motivated by the fact that in Couette flow,

the SOF has the primary normal stress coefficient, V1 = -2b2 and the secondary

normal stress coefficlent, ¥, = b,; [5]. Experimental results with polymeric

systems and polymer kinetic theories suggest that 0 S -a S 0.2 [3,5].




From hereon, the ﬁn are dimensionless and defined by

A, = Vu+ (W, A, = DA, /Dt + A +(V)® + (Vu)-A,.

Throughout this paper, we will use v to denote the (dimensional) velocity
field and reserve u for the velocity scaled by U.

We assume that inertial effects are small, and also assume that the fluid
is weakly elastic. More specifically, we require Re << W << 1, The field

variables can then be expanded in the small parameter W:

(0) (1) (0) (1)

u=u + Wu + een p=p + Wp + e

and substituted into the equations of change (momentum and mass conservation),
resulting in the following hierarchy of perturbation problems:

0, V-u(o) = 0,

- -~

D L2y g oy, v -0

~vp =lu=u

Thus at zero-th order, we have the Newtonian problem, which we shall

review in the following section, while the first-order problem reduces to the

forced Stokes equation (which will be considered in Section 4).
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3. The Newtonian Solutions

Consider an ellipsoid with semiaxes of lengths a, b and ¢, with a 2 b 2 ¢ and
x2 2 z!
?—+Yb1-+?--1. (3.1)

We choose £ = a. The governing equations for the velocity, v, and pressure,
p, are the Stokes equations and the equation of continuity for incompressible

flow,
2
-Vp + Wy = 0, (3.2)
V'! = 0, (3-3)

with u denoting the fluid viscosity.

Since the governing equations are linear in this case, we may consider
the translational and rotational motions separately. Furthermore, the
translational and rotational problems are completely decoupled in the sense
that the fluid exerts no force on a rotating ellipsoid and no torque on a
translating ellipsoid. The boundary conditions for the two problems are, in
the Cartesian coordinate system fixed with respect to the particle as

specified by equation (3.1):

Translating Ellipsoid

v = 0 on the particle surface (3.4a,b)

v Uas x| - e

Rotating Ellipsoid

v = 0 on the surface (3.5a,b)

Y "> -gxg as |g| --> =.
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The force-translation and torque-rotation relations may be expressed as

[6’7’8]’

E = —utgog and I = -HPE'Q'

where the components of the resistance tensors t§ and rB with respect to the

particle-fixed axes are given by tK1J = r‘RU = 0 for i=j and
t 2,~1
Kyy = 16mabe(x, + aja ) (3.6)
r 16 2 2, \-1,.2 2
Ry, = —§mabc(b By * C o) (b%+c%). (3.7)

Here, Xgr %g 80 and YO are constants which are obtained by evaluating the

following ellipsoidal harmonics at A-0.1

x(A) = abe { [P(t)]_1dt, (3.8)
A
a{i) = abe f [(a2+t)P(t)J'1dt. (3.9)
A
with P(t) = [(a2+t)(b2+t)(c2+t)1"/2,

The lower limit of the definite integral, A(x,y,z), is the ellipsoidal

coordinate which is the positive root of

xz 2 zz
af+ey T BTex T orer T ¢

2 The functions B(A), Y(A) and the expressions for the other diagonal elements

of t§ and rE are obtained by successive cycling of the dependence on a, b and

‘; ¢ and the subscripts 1, 2 and 3.

1. a, 8 and Y are as defined in Happel & Brenner [9] and differ from
Jeffery's [8] definition by a factor of (abe).
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We shall see in the next section that the Newtonian velocity field is
required in the calculations for the first non-Newtonian terms in the
expansion solution. The classical solution of Oberbeck [6] for a translating
ellipsoid and Edwardes [7] for a rotating ellipsoid are rewritten as velociiy
fields forced by a distribution of Stokes singularities (hence the name
"singularity solutions") in order to highlight the common structure of the two
solutions. The velocity field of the point force, i.e., the fundamental

solution of the Stokes equation, is ;/(Swu). where ;. the Oseen-Burgers tensor

def ined by
1 1
Iy = pyy * XXy with o= x|, (3.10a)
and its pressure field, pJ - é%xj, {3.10Db)

satisfy the Stokes equation with point forcing,

-9 2; .
axi + uv IiJ 8wu61J6(§). (3.1123)
and the continuity equation, %%4J =0, (3.11D)
i

as shown in reference [9], Chapter 2.

The Newtonian solutions of Oberbeck and Edwardes can then be rewritten as

(4]

2,2
f(n)(x',y'){1 + gﬁgﬁvz} I(x-x')/(8myu) dx'dy’, (3.12)

i<
P
(1.}
~
[]
[ »
L ]
———y
] Y —

with n=1 for translation and n=2 for rotation. The two-dimensional
integration is performed over the fundamental ellipse, E, which will be

defined below. The terms in equation (3.12) are:
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(2n-1) 2n-3

Zna by ' (3.13a-e)

r(n)(xvY) =
2 2

alx,y) = [1 - §? "%?]1/2

E E

2 2,1/2 2,172

= (a"-¢”) ’ bE = (b2-c .

ag

(n) - F 1if n=1,

and

iy

SeV + T-V if n=2.

(1)

For n=1, L I = -F-I, so the translational solution is generated by a

distribution of Stokes monopoles (or Stokeslets) over the fundamental ellipse

(2)-1 = [(8+T)-V]-1, so the rotational solution

with density f(1). For n=2, L
is generated by the Stokes dipole field, $+T where S and T are respectively,

the symmetric (stresslet) and anti-symmetric parts of the stress dipole,
§ (gen)x dA.

The dyadic T is related to T, the hydrodynamic torque exerted on the
ellipsoid, by
T .- T
ij 2515k 'k°

The domain of integration, E(x',y'), is the interior of the fundamental

ellipse,
2 2
%{*{1‘*1, z = 0.
E E

The fundamental ellipse is the degenerate elliptical disk in the family of

ellipsoids that are confocal to the particle ellipsoid. The major and minor

semi-axes of the fundamental ellipse, 3 and b, are given in equation

(3.130)2. The density function f(n)(x',y') in E(x',y') may also be

2. References [10,11] use k and (k?*-h2)1/2 in place of our a

E and bE.

I
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interpreted as the surface singularity distribution for an elliptical disk, as

can be seen by looking at the limit ¢ = O {n equation (3.12).

The function q(x,y) which appears in f(n) plays an analogous role in the
potential theory for ellipsoidal particles (see [10]). In fact, in potential
theory, q-1 is the requisite charge distribution over the fundamental ellipse
which generates ellipsoidal equipotential surfaces. Chwang & Wu [12] have

noted that the distribution of Stokes multipoles in low-Reynolds-number

problems is similar to the distribution of multipoles in analogous problems in

potential theory, except for the presence of additional degenerate multipoles
{the Vzg term) in equation (3.12). The presence of such quadrupoles (or
potential doublet) when n=1 and octupoles when n=2 in (3.12) are consistent
with (and in fact extend) the rules stated in [12] for prolate spheroids.

To complete the solution, we must relate F, T and S in terms of the
knowns, U and w. The expressions for F and T are obtained from equations
(3.6) and (3.7). The stresslet is identically zero for a sphere undergoing
rigid body motions in a quiescent fluid. However, for a nonspherical
ellipsoid, a stresslet i3 generated by a rotational motion [13]. The linear

relation between the stresslet and the angular velocity can be deduced from

(8] as
$=-u'gw
where rQijk = 0 unless {i,3,k} is a permutation of {1,2,3} and
"Q,5 = FQy 5 = - Sruave(a’a, + b780) 7" (a%-b9). (3.14)

The remaining elements of Pg are obtained by cycling 1,2,3 and a,b,c. This
completes the description of the singularity solution. Further

simplifications of these shape-dependent tensors are possible in the
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degenerate case of ellipsolds of revolution. These and other asymptotic
expressions for ellipsoidal and spheroidal resistance functions are provided
in [4].

In summary, the basic results for the Newtonian velocity field are:

3 1) The disturbance velocity field for a translating ellipsoid (or a fixed
o ellipsoid in a uniform stream) is generated by a distribution of stokes-
hl lets and potential doublets over the fundamental ellipse.

2) The disturbance fields for a rotating ellipsoid or a fixed ellipsoid in
3 a constant vorticity field (and for a stationary ellipsoid in a rate-of-
strain field) are generated by a distribution of rotlets, stresslets and
?: Stokes-octupoles over the fundamental ellipse.

- 3) For prolate spheroids, the fundamental ellipse degenerates into a line

- segment from one focal point to the other and the singularity solutions of
1 Chwang & Wu [12] are recovered. Furthermore, if the spheroid is slender,
the Chwang & Wu distributions reduce into forms that are analogous to
those used by Leal [1].

@ﬁ In actual computation, e.g. evaluation of the volume integrals over the fluid

reglion in the following section, it is more efficient to first integrate these

representations over the fundamental ellipse to obtain the classical solutions L
(i.e. wuse the classical forms). However, in the present form, these
representations are more amenable to analyses ;uch as asymptotic expansions in
the limit of degenerate shapes. The present forms also provide a

straightforward bridge to the earlier works on slender bodies.

itk o sl o

o @ o -
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y, The.Non-Newtonlan Contributions

4.1 The Torque on a Translating Ellipsoid

We first derive the expression for the torque on a translating ellipsoid.
This relation is then "inverted" to determine the rotational motions of a
torque-free, sedimenting ellipsoid.

The perturbation expansion for the torque is:

-1 4 urM. (4.1)

As discussed in the previous section, the Newtonian term is identically zero

for a translating ellipsoid. The expression for the O(W) term is:
'E) dA }0 (atz)

The first integral in (4.2) is simply the contribution from the non-Newtonian
terms in the constitutive equation, evaluated with the Newtonian (zero-th
order) velocity field. The second integral is the contribution from the
stress fleld of WQ(1). Obviously, we need to retain only the Newtonlian terms
in this stress fleld. Thus, it would appear that, given the Newtonian
solution, the first term can be calculated directly, whereas the second term
would require the solution of the forced Stokes equation. However, as shown
in {1], the Lorentz reciprocal theorem may be applied to convert the second
integral into an expression which requires only the Newtonian velocity field,

thereby bypassing the O(W) velocity problem. Explicitly, for particles of any

shape, we have:

(1) [
JS eijkxj(; -l_l)k dA = Jvf- tlkAkﬂ.,l av, (4.3a)

where tij is the i-th component of the Newtonian solution for the particle

|
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rotating with unit angular velocity in the j-th coordinate direction and the

volume integration is over the unbounded fluid region exterior to the

A2 a e

particle. Brunn [14] has derived a more compact formula by noting that if tJi J
is used in equation (4.3a) instead of tiJ , an integration by parts cancels j
the surface integral in equation (4.2). Thus ;
3
M __ .20 [ 1
T, = -ula { Jv, 3tei,g * tei,k) Aeg 4V (4.3b)

The results of the previous section imply that the required velocity fields

may be expressed as:

u§°) - U, +F J{ £y (xy {1+ %czqzv,} I

j (x-x*)/(8w) dx'dy', (4.4)

1

r 1r
~("Qq ,* 3 Rinenye) (4.5)

ik ©
f{ v ooy ]y e 12,202 . '
] f(z)(x s ){1*30 q°v2} I (x x')/(8w)dx'dy".
E

The resulting torque-translation relation for the O(W) term may now be

expressed as

(1) 1
T1 = Nijkujuk’ (4.6)

as can be seen from combining equations (4.2), (4.3b) and (4.4). Furthermore,
NlJJ (no sum) is identically zero for i=1,2,3 because of particle symmetry.
Thus the O(W) contribution to the torque on a translating ellipsoid in a SOF

is completely characterized by three shape-dependent parameters, (N N1 )y

123 7132
1 1
231 213 312 321) 13k are linear with respect to

a, therefore, the complete solution may be determined from the solution at

(N ) and (N Furthermore, the N

(only) two distinct values of a. Before turning to the sedimentation problem,

we examine the special case when a = -1/2, for which an analytical solution is

|
x
i
4

!
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possible.

Giesekus [15] has noted that for a = -1/2, Voé is irrotational and may be
written as the gradient of a scalar potential. The O(W) equation may be
solved directly by incorporating the right-hand-side into the pressure. Brunn
[16] has applied this simplification to the general motion of a rigid particle
in a SOF. For a particle undergoing steady translation, his results reduce to

the extremely simple formula,

0)

1 - T g0 (4.7)
For ellipsoids, this reduces to
13" - Huaro)(*x YU, U (4.8)
e 22 STRUA Y )

and two analogous expressions obtained by cycling the indices. Necessarily,
the general solution described below must reproduce these results when
a==1/2.

Results for the torque on a translating ellipsoid were obtained by
numerical integration of the right-hand-side of equation (4.3b) using an
adaptive quadrature package provided by the Numerical Algorithms Group. These
results were also reproduced using three nested one-dimensional integrations
in the ellipsoidal coordinates, using the intuitively obvious procedure of
finer grid sizes in the region near the surface. The linearity with respect
to a was exploited, i.e., the integrand was split into terms independent of
and first power in a.

The (dimensionless) torque on prolate spheroids with shapes ranging from
slender bodies to near-spheres 1s presented in Figure 1. The torque for
arbitrary a may be obtained from the figure by using the plots for a = 0 and

the a-coefficlent. For a = 0, the asymptotic solution for near-spheres

-13-
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remains a good approximation even at b/a = 0.5. In contrast, there {s a
significant deviation of the a-coefficient from the asymptotic solution (the
x-axis) at this value of b/a. When a = -1/2, the results agree with equation
(4.8) over the entire range of a. Finally, the -a coefficient vanishes when
b = 0. There is a sharp "boundary layer™ in the curve which does not appear
in the scale of Figure 1. The maximum in the curve lies at a value of b/a
between 0.01 and 0.001. (In comparison, when a = -1/2 the maximum is near
b/a =0.15).

Thus the results presented here agree with those in reference [14] for
near-spheres and satisfy equation (4.8) over the entire range of aspect
ratios. In the slender-body limit, the results do not approach those
presented in [1]. At the present time, I suspect that this disagreement is
due to an error in [1], in part because that result does not agree with the
analytic solution for a = -1/2, However, it should be noted that there are
differences between slender spheroids and slender-bodies generated by uniform

distribution of stokeslets and rotlets3.

4.2 Sedimentation

We shall first consider the general formulation for the translational and
rotational velocities of a particle whose motion is driven by specified
(time-independent) forces and torques. The sedimentation problem is a speclal
case. The relations between the force and torque and the translational and

rotational velocities are, accurate to O(W),

Fo= -, U, + M, uu 2

3
1 1373 13k % * MigUyue * Migeeqe )W ¢ o(w?), (4.9a)

3. Chwang & Wu [17] note that there are fundamental differences between
slender spheroids and those generated with a uniform distribution of
rotlets.

-14-
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T, = Ry ey ¢ (NlijJUk . Niijka . N?dkwjmk)w + o(wd). (4.9b)

P

o

For ellipsolids and other orthotropically~symmetric particles, M1-0 as shown by :E
[(1]. The consequences for sedimentation are now considered. ia
The force-translation relation implies an 0(1) translational velocity, i?
which when inserted into equation (4.9b) implies that @ is O(W) smaller than ii
U. Thus (4.9a) and (4.9b) may be inverted to arrive at the following ;€
expressions for the sedimenation and rotational velocities: %j
U, - (utxn)"r‘j’“ + o(w), (4.10a)

-4

w, = (u"RiJ)'1 ‘";kz”k”z) + o(W). (4.10b) 7

<

Since the sedimentation and rotational motions are small, the sedimentation :f
trajectory and the evolution of the particle orientatation may be determined ii
by using small time steps and (4.10a) and (4.10b). The trajectory of the E§
ellipsoid center and the three Euler angles (defined by Figure 2) are traced :j
for different ratios of the normal-stress coefficients (Figures 3a-3d) for the :E
representative case with b/a = 0.25 and c¢/a = 0.05. Several points pertaining f
o the use of non-axisymmetric particles are raised by these figures. ij
The projection of the trajectory of the particle center onto a horizontal .
plane deserves special mention. Since the ellipsoid eventually achieves the }%
"vertical™ orientation and falls without horizontal drift, the plane curve of i:
Figure 2 approaches a limit point at large t. Moreover, the fluid rheology \}
affects the shape of this plane curve only through the ratio, a. In contrast, ﬁ
for axisymmetric particles, the projected curve does not provide as much i:
7y

-15- ’
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useful information since it is simply a straight line in the X-Y plane. A
change in a results in a change in the length, but not the direction of the
line.

Another behavior which may be exploited is the different time scales in .
the decay of the Euler angles 8 and ¥. The particle of Figure 3 represents
the case where y decays faster than 6. In general, the two time scales may be
adjusted relative to each other by varying b/a and c¢/b.

In conclusion, the theoretical analyses presented here suggest that the
sedimentation configurations and trajectories of non-axisymmetric particles
may ion

is being initiated to follow this lead.
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Captions for Figures

1.

The torque, Tz = quaz(f - ag)Uny/Uz. on a prolate spheroid
translating in a SOF, with W = W1U/(ua) and a = WZ/W1,

f (---) and g (- - -). The solid curve is Brunn's [14] asymptotic result

for f(b/a) for near-spheres. The asymptotic curve for g(b/a) is coincident

with the horizontal axis.

The definition for the Euler angles of the subsequent figures. The body-
fixed axes, x, y, and z are obtained from the laboratory-fixed axes,

X, Y and Z as follows: rotation about the Z-axis by an angle ¢ until

the X-axis coincides with the line-of-nodes, followed by rotation about
the line-of-nodes by an angle 6 until the Z axis coinclides with the
x-axis. The third Euler angle, ¢, is the angle between the y-axis and

the line-of-nodes.

The initial orientation is 6=45°, ¢=0° and y=45° and the
initial location of the center is (0,0,0). The curves are for a=0 (—),
a=-0.1 (---) and a=-0.2 (- - -). All time axes have been scaled with

the characteristic time, (a/U)w-1.

The trajectory for the ellipsoid center projected onto the X~-Y plane.
The evolution of 6.

The evolution of ¢. Without loss of generality, the X and Y axes are
defined so that ¢=0 initially.

The evolution of .
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Figure 3b.
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particles such as ellipsoids provide useful information on the rheology of the .
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