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f ABSTRACT

AFractional factorial designs have long been a key tool for the industrial
statistician. They have received renewed attention recently due to the
movement toward quality improvement sparked by the success of the Japanese in
penetrating markets formerly dominated by western countries.

Fractional factorial designs are usually not replicated, so that it is
not possible to estimate error variance in the usual way from repeat
observations. Past methods of analysis have rested on an implicit hypothesis
of effect sparsity, that most of the estimated effects measure only noise.
Formalization of this hypothesis leads to a Bayesian analysis in which the
posterior probability that an effect is active can be computed. A similar
approach can be employed to obtain the posterior probability that a particular
experimental factor is active. These probabilities are readily interpreted by
graphical means, and provide a straightforward method for identifying active
contrasts and active factors. 1In addition, the model is extended to the
situation where there are possible outliers in the original observations. The
posterior probability that an effect is active can be computed taking into
account the possibility of bad values, and the posterior probability that an
observation is bad can be computed taking into account that the identity of

active effects is unknown.
(——

AMS (MOS) Subject Classifications: 62A15, 62K15, 62N10

Key Words: Fractional factorial, unreplicated, active effects, Bayesian
inference, outliers
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When many variables must be studied in an experiment, it is often too
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expensive to include repeat experimental runs for purposes of measuring the

magnitude of noise. In the past, statistical analysis of such unreplicated E;

, experiments has relied on an assumption of effect sparsity, that the measured §£
effect of most variables could be attributed to noise. Formalizing this EE

assumption in probabilistic terms leads to a method of analysis in which the T!

A

probability that the effect of a particular variable is too large to attribute fg

to noise is computed. The probabilities associated with each of the variables

& SOL

are readily interpreted when presented graphically. The analysis can be
extended to the case when it is thought that there may be misspecified values

among the experimental observations.
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¥ The responsibility for the wording and views expressed in this descriptive
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ANALYSIS OF FACTORIAL EXPERIMENTS

Lé R. Daniel Meyer

2

b CHAPTER 1

] INTRODUCTION

ey

§: 1.1. Motivation

' The use of statistical methods in industrial improvement of qﬁaiity and produc-
-.E tivity has always been an important topic. It has received renewed attention recently
k% due in part to the application of these methods by the Japanese and their success in
1 penetrating markets formerly dominated sy the United States (see, e.g., Deming,
1982).

‘Q A problem frequently encountered in this area is to identify from among many
; 3-'% variables, those which are responsible for large-changcs in the quality characteristics
| v of a particular process. Statistically designed experiments, in particular fractional fac-
: ; torial designs, are a key tool in providing an cconomicai St;luﬁon to this problem.

: . ~ 12. Fractional Factorial Designs

i

5'-; The possible value of fractional factorial designs in industry seems to have been
::;: ﬁrst recognized by Tippett (1934) (see also Fisher, 1966, p. 88). To discover the
N cause of difficulty in a cotton-spinning machine, he sﬁcccssfully screened five factors,
N

each having five levels, in just 25 runs: a 125th fraction of a 5> factorial. A general

0
o .5:5!‘

framework for fractional factorials was described by Finney (1945). More general

P
Wy . )
E} o orthogonal array designs were introduced by Plackett and Burman (1946) and Rao
)
§. (1947).
%) Sponsored by the United States Army under Contract No. DAAG29-80-C-0041, by
.#: the National Science Foundation Grant No. DMS-8420968, and by the Vilas Trust

3 Q of the University of Wisconsin~Madison, and aided by access to the research
}f} computer of the University of Wisconsin Statistics Department.
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At the preliminary stages of an investigation, a two-level fractional factorial is
very useful as a screening design. While Plackett and Burman (1946) gave a fairly
complete enumeration of two-level designs involving a moderate number of runs, the
2%P fractional factorials are an especially useful subset and a thorough description of
them was given by Box and Hunter (1961). Because the Hadamard product of any
two columns of a 2%~? design gives another column of the design, the confounding
structure is much simpler than for the general two-level orthogonal array. (The
Hadamard product of two columns is defined to be a column with i th element equal to

the scalar product of the i th elements of the original columns).

For ease of illustration, I will limit discussion here to two-level designs. It is
assumed that the design matrix X is a nxn orthogonal matrix of £1’s such that
X'X=XX"=n1,, where I, is the nxn identity matrix. The first column x4 of X is a
column of 1’s, and some or all of the remaining columns x4, . . ., X,_; are assigned to
experimental variables; -1 denoting the low or nominal level and +1 denoting the high
or altemate level. At the completion of the experiment the nx1 vector

y=(1,.-.,y,) becomes available.

Typically, a linear model is employed for describing the observations from a
two-level factorial experiment. At the screening stage of an investigation, it is often
hoped that a first order model in main effects only will be adequate. This is written,

with v the number of variables, as

y=Xx;B;+e (1.1)
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with the elements of the vector € assumed independently and normally distributed

L= b SEPSLAE AR

with zero mean and constant variance. (The main effect of variable j is usually

defined to be twice the regression coefficient P ;.) If the above model were believed to

1 4 LIIIILELH

be true, the parameters (including the error variance) could be efficiently estimated

x

provided (n-1)-v was large enough to provide desired degrees of freedom for

oy
[ PuE S AT

W

estimating the variance, or if repeat runs were included for this purpose. A model of

- -

this form would be adequate when the response was roughiy planar over the experi-
mental region examined. On the other hand, allowance should be made for the possi-
ble inadequacy of the model (1.1). Suppose the true response function was much

closer to a second-order model of the form

y=xBo+ lejﬂj*' X (x;x;)B;+e (1.2)
j= lSj

This would have the following implications. The estimate of the mean B would be
confounded with the pure quadratic coefficients P ;;. Estimates of the linear
coefficients § ; may be confoqnded with interaction terms Bij- The estimate of vari-
ance supplied by the (n~1)—v unassigned columns may also be biased by real interac-

tion effects.

To guard against the problems outlined above, one could take several

approaches.

A second-order design could be employed which allowed estimation of all
parameters of the model (1.2) (see, e.g., Box and Hunter, 1957). However, this

greatly reduces the number of factors which could be studied in a given number of
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k_ experimental runs. ;
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The inclusion of replicate runs in the two-level design would allow unbiased esti- ¢
' mation of the variance. Lack of fit of the model (1.1) could be detected by the pres-
N ence of large contrasts associated with the (n—1)-v unassigned columns, and the l
E design could be augmented to estimate the full second-order model, if necessary (Box .
and Wilson, 1951). However, the requirements of replicate runs again reduces the ;:
number of factors which could be studied in a given number of runs. 'z"
P2 by
3 A third approach relies on a phenomenon of "effect sparsity” (Box and Meyer, ’
1985). The object of a screening experiment is to isolate important factors among a E
group of many candidates. If this is possible, then even if the true response was more ' E
closely approximated by the second-order model (1.2}, many of the parameters would =
be negligible compared to the parameters associated with the important variables and :
i the effect of noise. In this case an unreplicated two-level design will yield n—1 \‘
- estimated effects, most of which will be inert and attributable to noise, the remainder
~' of which will be active and too large to attribute to noise. As above, inadequacy of ,C
: the first-order model could be detected by the presence of a large contrast associated »
} with one of the (n—1)-v unassigned columns. .'
:5 This last approach, while combining the virtues of relatively low cost and rela- i
= tively great information, does not always supply unambiguous results. Confounding
- of effects may lead to more than one plausible explanation of the data. However, a
-: follow-up experiment to resolve ambiguities would usually involve fewer variables .
and many fewer runs than the original experiment, and the combined cost would be E-
3 ;
. "
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less than the cost of a completely comprehensive experiment in all variables (Box,

Hunter and Hunter, 1978).

1.3. Analysis of Fractional Factorials

Analysis of fractional factorial experiments has traditionally involved, primarily,
identifying and estimating the active effects. In addition, estimating the error variance
may also be of interest. The process of identifying the active effects has historically
been divided into two stages (see, e.g., Box, Hunter and Hunter, 1978, Chapter 12).
The first stage involves identifying the orthogonal contrasts T; = x;"y/n, i=1,..n-1,
which are too large to be attributed to noise. These are called active contrasts. Under
the second-order model (1.2) the expected value of T; will be a linear combination of
one or more of the coefficients B, sometimes called an alias string when involving
more than one parameter. Uncicr the hypothesis of effect sparsity, however, most of
the contrasts will have expectation zero. A small proportion will have active terms in
their alias string, and these will have non-zero expectation. The second stage of the
analysis then involves determining which of the experimetal factors are associated

with the active contrasts.

1.3.1. First stage analysis

Some of the techniques which have been employed to identify active contrasts

e are as follows.

O

A

fi.::;. Analysis of variance has been used to judge the reality of the contrasts (see
I

r Davies ed., 1954, p. 464). This method relies on comparison of the contrasts with
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an independent measure of error variance. When an estimate of experimental error
variance is available from relevant genuinely replicated runs from current or past

experimentation, construction of the analysis of variance table is straightforward.

For unreplicated experiments, it has been customary to identify a priori certain
contrasts, usually those which have only higher order interactions in their alias strings,
whose magnitude could be attributed solely to random error. (In tﬁe case of quantita-
tive factors, relative smoothness of the response surface would dictate that higher
order interactions, which correspond to higher order derivatives, become successively
smaller. This is reasonable as long as the ranges for the variables are chosen
moderately. Likewise, for qualitative variables, the existence of higher order interac-
tions implies a wide difference between levels of the variables, which should be
r avoided. Alternately, if the levels of qualitative variables must be chosen to be very
‘ dissimilar, separate experiments should be run for each level. In this way the fre-
quency of large, high order interactions can be minimized, and contrasts which meas- .
ure these interactions can be assumed to measure noise). These inert contrasts are
then used to estimate error variance. This approach necessarily restricts the degree of

fractionation to be used in the design, as several columns must be reserved to estimate

effects supposedly known to be inert. Alternately when little is known about which
VI effects are inert, the required contrasts may be difficult or impossible to identify. An
E : even less satisfactory procedure for estimating the experimental error variance
E employs successive pooling of supposedly nonsignificant components in the analysis

‘»l of variance table.
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Daniel (1959) introduced the half-normal plot for judging the significance of
orthogonal contrasts from a factorial experiment. In this method the n—1 ordered
absolute contrasts |T'|(;y are plotted against @ ~1(1/2 + (i—1/2)/2(n 1)), where @ is
the standard normal distribution function. Under the completely null hypothesis of no
active contrasts, these points should fall roughly along a straight line through the ori-
gin. Contrasts too large to be exlained by noise would appear as extreme points fal-
ling off the line. Later, Daniel (1976) pointed out that any information contained in
the signs of the contrasts is obscured in the half-normal plot. A slight modification of
Daniel’s idea, the full-normal plot, i.c., plotting the signed ordered contrasts T ;)
against @ ~1((i-1/2)/(n~1)), can be interpreted in the same way as the half-normal

plot without losing the diagnostic information in the signs of the contrasts.

The advar;tages of normal probability plotting are that it requires neither repli-
cated runs nor prior identification of inert contrasts and also allows for selection
automatically. As with other graphical procedures, the normal plot may suggest
further examination of the data. In particular, it can be used to detect model inadequa-

cies (see Chapter 4).

Daniel also suggested how formal inference about which contrasts were
significantly non-zero could be implemented through the normal plot. "Guardrails” of
various Type I error rates are constructed by considering the null distributions of the
ordered absolute contrasts. In a companion paper, Bimbaum (1959) discussed several
methods for judging which contrasts measured non-zero effects, and showed that

Daniel’s procedufe could be regarded as an approximation to the optimal statistic
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when there was at most one significant contrast. In addition, Bimbaum stated that the
optimal procedure for the case of more than one significant contrast was far too com-
plicated for practical application, and concluded that Daniel’s analysis was preferable
for typical research applications. Zahn (1975) proposed some revisions to Daniel’s

procedure, including corrections to the critical values of the test.

Two other methods for analyzing unreplicated factorials wcfe given by Wilk,
Gnanadesikan and Freeny (1963) and Holms and Berrettoni (1969). Wilk, et al. sug-
gested using maximum likelihood estimation of the variance, assuming that some
number K of the original contrasts only measure error. The estimation is then based
on the M (<K ) smallest contrasts in order to avoid including contrasts measuring real
effects in the estimate of G, with suggested choice of M being 0.7K. However, their
estimate of ¢ was shown to be quite sensitive to the choice of K. Holms and Berret-
toni proposed a method for the case when it is expected that a large proportion of the
contrasts measure real effects. They considered the ordered absolute contrasts from
smallest to largest, with each one in turn compared to those smaller than it. Critical
values of the procedure, called "chain-pooling,” were derived from work done by
Cochran (1941).

1.3.2. Second stage analysis

Box and Hunter (1961) offered two guidelines for the process of associating fac-

torial effects with active contrasts in the presence of confounding:

1. Main effects are more likely to occur than two-factor interactions, which are

more likely than three-factor interactions, etc. That is, if a large contrast is

A

£ i X

e
v, -




RCRRRE T Sl P APV

sty 'n’;r‘
0

associated with more than one effect, the effect of lowest order is usually con-

.

sidered the most likely cause. This is especially true for continuous variables,

230007

when smoothness of the response surface dictates that higher-order effects,
which correspond to higher-order derivatives, become successively smaller. In

screening situations and other applications, it is common to ignore three-factor or

el RS D T

r

higher order interactions.

2 2, Variables which have farge main effects are more likely to have significant
interactions among themselves or with other variables. For example, when a
large contrast is associated with several two-factor interactions, the interactions
involving variables with large main effects are considered more likely to be the
- cause.
i The authors emphasize that these guidelines are to be employed to make tentative
\ : conclusions, subject to verification by subsequent experimentation or monitoring of
o the process after implementing changes. Exceptions to the rules appear, for example,
o when the design is located on a diagonal ridge of the response surface. This can occur
~ when the process has been fine-tuned in the past one variable at a time, in the presence
of compensating factors such as time and temperature of a chemical reaction. The
E experiment will then produce small main effects among the compensating factors, but

a large two-factor interaction.

1.4. A Bayesian Approach

The assumptions that are made when analyzing factorials and fractional factori-

als can be modeled formally, and that is the basic premise of this thesis. Once the
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assumptions are made explicit, Bayes’ theorem provides a straightforward method of

inference.

1.4.1. Identification of Active Contrasts

To model the assumption that a majority of the column contrasts are expected to
be inert, it is assumed there is some prior probability o that each column is active,
with o generally assumed to be less than 1/2. Let a ) denote the event that a partic-
ular combination of ¢ of the n—1 contrasts are active, the remainder inert. The prior

probability of the event a .y is

plagy=0o(1-ay1<,
After observing the data y from the experiment, the posterior probability of the event
a (¢) is

P@'a(c))P(a(c ))
(Z)P(’Ia(i))l’(d(i)) ’ (1.3)

P@H)ly)=

where the denominator is the summation over all possible combinations of active and
inert columns, and p(y|a,)) is the predictive density of the observations y given
acy Of pirticular interest is the marginal posterior probability that column i is

active, and this is given by

p; =P[columni active|y]= F  P(a()ly) (1.4)
(e )i active

Inference about which columns are active can be made from the probabilities { p; }.

The details of such an analysis are explored in Chapter 2.

\
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1.4.2. Identification of Active Factors

Once active columns have been identified, it remains to identify which factors

LI o

are responsible for the large contrasts. Alternately, in some situations there may only
be interest in which factors are active, regardless of how their activity can be 4
explained by main effects, interactions, etc. A modification of the Bayesian model !

introduced above is useful for this type of analysis.

Rather than contrasts being active with some prior probability a, it is assumed

that factors will be active with probability ¢, with a suitable adjustment in the value of &
o The notation a () would now refer to the event that a particular combination of f
factors (including possible interactions) was active. The posterior probability of a ¢

is then derived analagous to the expression for the posterior probability of @) given

ﬁ . previously. The posterior probability of each factor being active is then
]
pi = X p@g,ly).
i O ¥ Facive ) (1.5) ;

The details of the modified Bayesian model are given in Chapter 3, where it is

i lf-‘f‘tl';_i"_f{q e

demonstrated that the posterior probabilities { p;' } take into account the confounding

s

pattern of the design. Also included are simulation results for exploring the robust-

Ex ot L AL
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ness of the posterior probabilities to the assumption of normally distributed errors.
1.5. Bad Values in Fractional Factorials
j As noted by Daniel (1976) and others, the results of unreplicated fractional fac- _,
‘ torial experiments are sensitive to bad values among the observations. Daniel (1959)
estimated that in his experience, the relative frequency of bad values in factorial ;;-.
i
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experiments was anywhere from .01 to .1, depending on the complexity of the experi-
mental situation and on the experience of the experimenter. If, for example, each
observation in a 16-run experiment had an independent probability of .05 of being
incorrectly determined, then over half of such experiments would contain one or more
bad values. Daniel also felt that quite often the presence of large higher-order interac-
tions in factorial experiments was not due to highly curved response surfaces, but to
erroneous observations which were not identified as such. Because of the saturated
nature of unreplicated factorial experiments, bad observations can often be concealed

by mistaken identification of some combination of active effects.

Full normal plotting of the observed contrasts (Daniel, 1959, 1976) has been a
ﬁseful diagnostic tool for detecting bad values in unreplicated experiments, in addition
to its use in identifying active contrasts. If a particular observation is biased by, say, a
positive amount, those contrasts in which the observation enters positively are shifted
to the right, and those contrasts in which the observation enters negatively are shifted
to the left. This produces a "gap" among the inert contrasts of the normal plot which
is the telltale sign of a bad observation. Similarly, the presence of multiple bad values

can produce multiple gaps in the normal plot.

There is a wide literature on the general statistical issue of outliers. In their
review article, Beckman and Cook (1983) list 229 references concerning the detection

and accomodation or rejection of bad values. While some general regression diagnos-

tics could conceivably be employed in the analysis of factorial experiments, Little

(1983) for example showed that several of the common diagnostics consisted of a fac-
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tor which measured the leverage of the doubtful points in the X space and a factor
which measured the change in the residual sum of squares when suspected bad values
were deleted. Because all design points have equal leverage in two-level factorials,
for the case of one outlier the leverage factor would be the same for each observation,
and in general one would not expect to have problems with extreme points in the X
space from factorial experimcnts. Thus these diagnostics would reduce to functions of
the change in the residual sum of squares when bad values are deleted, and some
methods, described below, have been developed for factorial designs which are basi-

cally functions of the change in the residual sum of squares.

Daniel (1961) proposéd a test for bad values based on the maximum residual
after active contrasts have been identified. The observation corresponding to the max-
imum residual is identified as bad if the modulus of the residual is greater than a
 specified upper percentile of its null distribution. Stefansky (1972) derived revised

critical values for Daniel’s test.

John (1978) described a general method for detecting one or two bad values in a
factorial experiment, based on work by Gentleman and Wilk (1975a,b), John and
Prescott (1975a,b), and John and Draper (1978), which incorporates the reduction in
the sum of squares when supposed bad values are deleted. The method is similar to
one proposed by Goldsmith and Boddy (1973), énd encompasses the test based on the

maximum residual. It is described in more detail in Chapter 4.

‘The existing methodology for dealing with bad values in unreplicated factorials

supposes that a fixed model has been identified. However, the possibility of bad
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values may also be accomodated by "robustifying” the sampling distribution of y.
Specifically, it is assumed the errors in the model (1.1) come from the scale-

contaminated normal distribution denoted by
(1-ax)N(0,6,%) + &, N (0,k ;26,2

(Jeffreys, 1932; Dixon, 1951; Tukey, 1960; Box and Tiao, 1968). This provides for
assessment of the contrasts while simultaneously allowing for the possibility of bad
values, to be contrasted with the practice of checking for bad values after the active
contrasts have been identified. Using the Bayesian approach above, the posterior pro-
bability that a contrast is active can be calculated while taking ato account the possi-
bility of bad values, and the posterior probability that an observation is "bad" can be
calculated in light of the consideration that the identity of the active contrasts is not
known. In this way questionable observations can be identified and investigated, and
the sensitivity of the conclusions to the presence of possible bad values can be meas-

ured. Chapter 4 is devoted to details and discussion of this model.

The robustification of mo&els in this way, while philosophically attractive, has
been historically difficult to implement because it usually requires very extensive
computing. However, as the speed and sophistication of computers has advanced,
computationally intensive statistical analysis has become more feasible. At present
the amount of computing time needed to analyze the above model allowing for bad
values in full generality is not practical. Various computational shortcuts may be
used, however, based on reasonable assumptions about the maximum possible number

of bad values and active contrasts. It seems likely that future advances in computing
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technology will reduce such limitations,

1.6. Posterior Probabilities For Model Selection

For the general problem of model discrimination, Atkinson (1978) presents three

objections to the use of posterior probabilities:

1. When all of the candidate models fit badly, the best fitting of these will be chosen

with high probability for n large enough.

2.  When competing models have different numbers of parameters, the model with

fewest parameters is favored in the absence of evidence in the data.

3. When models are nested and the simplest model is true, then all models are true
and should receive equal weight. However, the simplest model will receive the
highest posterior probability (by argument 2 abqvc), and the remaining models

will receive decreasing weights depending on the number of parameters.

The type of analysis proposed in this thesis could be classified as a model
discrimination procedure. The objections listed above as they relate to the proposed

analysis, are answered as follows:

1. Any statistical estimation procedure chooses the best-fitting model from a family
of models according to some criterion. Usually this involves estimating parame-
ters which index the family of models. However, there ought to be no implica-
tion in such a procedure that the best-fitting model among those considcrcd will
be adequate. Likewise, a model identified by a high posterior probability need

not fit well. Diagnostic model-checking is an essential part of any statistical

.Ff'g 1?\ ‘-Ht (< .‘-“3\ :\?E ot 3}(' -s}-\,g.f . \,‘{- 2 A
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analysis (see Box, 1980).

The validity of this objection for the general question of model discrimination
will not be discussed here. Under the assumed condition of effect sparsity, the
favoring of a model with fewer parameters, in the absence of evidence from the

data, may be viewed as an advantage rather than a disadvantage.

When a model is "true”, the statement that "all models in which the true model is
nested are also true” is a matter of philosophy. One might argue that there is an

inherent difference between the models

M‘: Y=01X1+0(X2)
and

Mz: Y=61XI+OZX2.

In any event, the result that the simpler model receives higher posterior probabil-

ity does not seem misleading to me.

ARLS
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CHAPTER 2

IDENTIFICATION OF ACTIVE CONTRASTS

2.1. Introduction

In a typical n-run unreplicated factorial or fractional factorial experiment, n-1
orthogonal contrasts can be computed. If one hypothesizes a model in which all
experimental factors are active, thcnvall or most of the contrasts will measure real
effects. At the preliminary stage of experimentation, however, it is often felt that a
large proportion of the factors will not be active, and therefore a large proportion of
the contrasts will measure only noise. In this chapter the problem of identifying those

contrasts which are too large to attribute to noise is considered, and a Bayesian solu-

 tion is proposed.

Suppose that each contrast has some small probability & (0<a<1/2) of being
active. Let a .y be the event that a particular set of ¢ of the n—1 contrasts are active,
and T, be the vector of trug effects corresponding to @ ). The prior probability of

a(cyis p¢)=a(1-o)""1¢. The conditional distribution of y given a . is

PYIT(c)OCe8(c)) = (27‘)-",268_” X

-1 ,
°"P{2 7 X (e)Te) X (e )“(c))}- @.1)
C¢

where X () are the columns of X corresponding to a(.). (It is assumed that the
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overall mean T is always included in the model.) Suppose further that the prior distri-
bution of the the elements of T, are independent and normal with zero mean and
variance 7202. If noninformative priors are specified for Tty and o, (see Box and

Tiao, 1973, Section 1.3), then it is assumed that the resulting analysis is well approxi-

mated by using
-1 ’
P(T(c)la)0p @ (We)“cxp{ZO 7 T(e) rct(c)} 2.2)
4
p o,

where the c+1 by c¢+1 matrix

r ol o0
6‘72 0I,

and I is the ¢ by c¢ identity matrix.
To compute the posterior probability p (a . )| y), define

h(ylay= 2.3

J'gp(ylt(c,,ce,a(c,)p(t(,,-,los,a(c,)p(oc)doed'c

the marginal predictive distribution of y given a (). Then it is well known that the
posterior probability of the event a . given y is

p©nylagy

[

p@)ly=

The probability p (a( ¢)!¥) can be reexpressed as

PSP Py
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: (c)
_ p'“’h(yla(cy)
& () ? On(ylag)
AONE where

2.5)

p On(ylagy)

o xp Chlacy
oy (¢)

is the constant which makes the probabilities sum to unity. The expression (2.5) gives
p(a(c)ly) proportional to the posterior probability ratio that (i) T are the active
effects vs. (ii) there are no active effects. Specifically, this probability is written

c
o
P(c)=P(a(c)|Y)=C[T_—;] ¥~¢ x (2.6)

- ’ - o T - -1
¥ X0y X! S +Te) TeTe) e
; [CAX oy X ()l 2 5

e o

where

o - DO

A s e,

Te)= e+ X oy X (e X ey ¥ Q.7

Y

b

W S@EN=0-X (o)) O~ X(e)T(e)- 2.8

i The probabilities p (a(.)!y) can Be summed to give, for example,

-, | D= P (‘t‘- active | }') = Z p(a (c )I y) (2.9)

(c):i active

The relative importance of column i may then be judged according to the size of p;.
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2.2. Computing the Posterior Probabilities
o
1-;-'.: As described in the previous section, computing the probability p; that contrast ’
= column i is active involves summation over the 2”2 events a(c) in which i is sup-

'f":f posed to be active. For n=16 this is 16,384 separate probability calculations. While

this number can be handled rapidly enough on a high-speed computer, for n=32, say,

7 the computation becomes unfeasible. However, there is an alternative Bayes factori- :
zation which allows the calculation of the probabilities { p;} without summing over
5,:,: all possible combinations of active contrasts. (The original factorization given in

,. Chapter 1 remains useful for deriving approximations to the posterior distributions of
T and o later in this chapter, as well as other derivations in subsequent chapters).

- First of all, apply the one-to-one transformation (X’ X)~!X’y=T, and compute
:i,v'.‘"_'“j posterior distributions with respect to the new data T. The sampling distribution of T
o given {1,0}is

) ) :

N » . n-1 T -1 )

v p(Tit0) a 6™ [] exp{—_(—'—z‘—} (2.10)

::.':: i=0 20'

o

vy Thus each contast T; is independent and normally distributed. The prior distribution

\" of each expected contrast t; is

o

'L" 12,12 172 -1 Ti 2 1 =0 (2.11)

B p(t;l0) =a@r) "4k*-1)""c"lexp{~ +(1-o)I[x; .

k‘\- ﬁ ' ( P (2("2-1) 1,262 ( ) [ i ]

r e
s d
. ::::3 where k2=ny2+1 and

xR ‘

o

%
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' Oift,-#O
Iti=01= 1 1 if ¢ ;=0.

The prior distributions of log(c) and T, are uniform in the region where the likelihood

is appreciable, and are aproximated by taking p (0,T)=1/6. Therefore the joint poste-

rior distribution of { 1,0 } is

p(s|T) o o} exp{ 3 (2.12)
26

T la Ll @ L \@-2+ N
ir},(_q)ex? 202 | @ne-D% T |22 | ¢ ¥ T [ |

Integrating < out of this expression gives the marginal posterior distribution of G,

. -nn-l Tiz o T 2
p@©IT) a 6™ ] [(1-®)exp -—2-0—2- +-;exp - . (2.13)

i
i=1 2k%0?

—(To-to)z}
— X

The posterior probability p;;s that ; is active, conditional on o, is, by direct

application of Bayes’ theorem,

ap(T|o,t; active)
op (T |o,t;active) + (1-a) p (T | 6,T; notactive)

Pila =

2
a T;
k P g?

= - (2.14)
2t.exp - T’ + (1-a)exp —Iii
k 2k%2| 262

Thus, conditional on G, the posterior probability that t; is active depends only on the
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N data through the observed contrast T;. The unconditional probability p; can be com-

) &.5

‘;3 puted from the simple expressions for p;;4 and p (6| T) by .
33

Vol

e -

pi=[pyop (61T do. (2.15)

Ts 0

2 3 This integral can then be computed to the desired degree of accuracy using numerical

hes integration methods.

z

\, y 2.3. Prior Parameters k and a

o

Eys 2.3.1. Estimating a Range For k and o

i

258 In practice, o and k would be determined somewhat by the investigator’s experi-

'] ‘: {'

o5 ence with the experimental material; the expected proportion of large effects

:q % represented by a and the expected size of such effects represented by k. The investi-

o .

{ gator may estimate these parameters from past similar experiments of his own or

1223

‘/‘ . results reported in the scientific literature. To define a working range for o and & for

NN

%:‘ the purposes of this thesis, the results of several unreplicated fractional factorials were

) 43 )

& examined. For each example, an estimate of o was obtained as the proportion of

. ﬁ‘.‘, effects declared significant by the author(s) of that particular example, and k2 was

4-’4 estimated by the ratio of the mean squared significant effect over the mean squared

1 inert effect. These values are presented in Table 2.1. The estimated values of o range

"" between .13 and .27 with an average of about 0.2. The estimated values of k range :
b

.-;.;Z: from 2.7 to 18 with an average of about 10. This gives an idea of plausible ranges for

— .
ke the two parameters. |
A

2
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Table 2.1 Estimated values of « and k from published examples of 16 and 32 run
two-level designs taken from Box, Hunter and Hunter (1978), Davies ed. (1954),
Daniel (1976), Bennett and Franklin (1954), Johnson and Leone (1964), and Taguchi

and Wu (1980). In Daniel’s example the analysis is conducted after making a log

WG iof 5 WS SUSESNME Y - 1 S0 S s - L T -4_"?;

transformation in the response.

Example n o k
BHH p. 398 16 20 79

BHH p. 327 16 .27 139

RIS | - § Xl

BHHp.378 32 .16 110

Daviesp.274 16 .13 27 ]

Daviesp.462 16 .27 7.1

Danielp.71 16 .20 130

BF p. 557 16 27 180
‘ JLp. 183 32 .13 32
IL p. 196 16 271 95
TW p. 69 16 .13 97
Average 20 9.6
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The possibility of bias introduced by restricting attention to published examples
and by estimating & and k in this informal manner is recognized. However, it is
shown later that the conclusions to be drawn from the analysis are usually insensitive
to moderate changes in these parameters. In addition, convenient diagnostics exist
which can detect those instances when the posterior probabilities are sensitive to such

changes.

2.3.2. Two Examples

To illustrate an application, the following examples from Box, Hunter, and

Hunter (1978), p. 398, and Davies ed. (1954), p. 274 were studied.

Example 2.1
The effects of 8 variables on the shrinkage y in an injection molding process
were measured using a 2% resolution IV design. The data are presented in
Table 2.2a. A normal plot of the orthogonal contrasts, Figure 2.1a, revealed that
there were two large main effects, due to holding pressure and booster pressure,
and one other significant contrast aliased among four different two-factor interac-
tions. (It was assumed that interactions between three or more factors were
negligible).

Example 2.2
As described by the authors of Davies ed. (1954), this is a laboratory investiga-
tion in which interest centered on the effects of four factors on the yield of a pro-
duct which was an isatin derivative. An unreplicated full 24 factorial experiment

was run, and the data appear in Table 2.2b. Using analysis of variance with the
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Table 2.2a Design matrix, observations, and observed contrasts for Example 2.1, a 4

2% fractional factorial experiment, from Box, Hunter and Hunter (1978).

factors
rmm 1 2 3 4 § 6 7 8 y
1 - - - + + + - 4+ 140
2 4+ - - - - + 4+ 4+ 168
3 - + - - 4+ - + 4+ 150
4 + 4+ - + - - - 4+ 154
S - - + + - - + 4+ 216
6 + - + - + - - 4+ 240
7 - + + - - + - 4+ 214
8 + + 4+ + + + + 4+ 226
9 + + + - - - 4+ - 223
10 - + + + + - - - 111
11+ - + + - + - - 215
12 - - + - + + + - 115
13 + + - - + + - - 159
14 - + - + - + + - 219
15 + - - + + - 4+ - 167
6 - - - - < < - - 203
observed observed
column(effect)  contrast column(effect) contrast
: O(mean) 1975 3(8) 0.60
1(1) -0.35 9(12+37+48+56) -0.30
22) -0.05 10(13+27+46+58) 045
33) 275 11(14+28+36+57) -0.20
4(4) -0.15 12(15+26+38+47) 2.30
5(5) -1.90 13(16+25+34+78) -0.15
6(6) -0.05 14(17+23+68+45) -0.10
7M) 0.30 15(18+24+35+67) -0.30
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Table 2.2b Design matrix, observations, and observed contrasts for Example 2.2, a

full 24 factorial experiment, from Davies ed. (1954).

factors
nmn A B C D y(yield)
1 - - - . 6.08
2 + - - - 6.04
3 - + - - 6.53
4 + + - - 6.43
5 - - + - 6.31
6 + - 4+ - 6.09
7 - + + - 6.12
8 + + 4+ - 6.36
9 - - - 4 6.79
10 + - - 4+ 6.68
nmn - + - % 6.73
12 + + - 4 6.08
3 - - + =+ 6.77
4 + - + + 6.38
15 -+ + + 6.49 .
16 + + + + 6.23
observed observed
column(effect)  contrast column(effect)  contrast
O(mean) 6.38 8(D) 137
1(A) -096 9(AD) -082 .
2(B) -011 10(BD) -.126 i
3(AB) -.001 11(ABD) -051 :
4(C) 038 12(CD) -013 !
5(AC) -017 13(ACD) -003
6(BC) 033 14(BCD) 062 ‘
7(ABC) 075 15(ABCD) 010 '
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Figure 2.1a Full normal plot of observed contrasts, Example 2.1. The points are

labelled by their column numbers.
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Figure 2.1b Full normal plot of observed contrasts, Example 2.2. The points are
5 labeled by their column numbers. .
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three- and four-factor interactions serving as error, two contrasts corresponding
to one main effect and one two-factor interaction were found to be marginally
significant. The significance probabilities were close to .05; correcting for selec-
tion would have made them larger.. A normal plot of the orthogonal contrasts,
Figure 2.1b, is consistent with these results, namely, there is little evidence for

any active contrasts.

The posterior probabilities for the fifteen contrasts of Examples 2.1 and 2.2 were
calculated and are presented in Figure 2.2. The solid vertical lines labelled 1 through
15 (corresponding to contrast columns 1 through 15) represent the probabilities calcu-
lated from (2.15) with the mean values 0=0.2 and k=10. The boxes on each line indi-
cate the range of the probabilities over all combinations of a=0.1, 0.2, 0.3 and k=5,

10, 1S.

For Example 2.1, consider first the probabilities obtained with a=0.2 and k=10.

. There are three probabilities close to one, the rest more ;>r less close to zero. This sug-
gests a division into inert and active contrasts which agrees with the normal plot of

Figure 2.1a. The changes in posterior probabilities obtained by varying & and k, indi-

cated by the boxes in Figure 2.2a, are not such as to change conclusions about active

and inert contrasts. Probabilities closest to zero or one tend to change very little,

while the largest change occurs for the intermediate probability associated with

column 8.

- Example 2.2 was chosen to illustrate what can occur in a situation where the evi-

dence for active effects is much weaker. The probabilities obtained by setting a=0.2
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Figure 2.2a Posterior probabilities { p;} that columns are active, Example 2.1. Solid
vertical lines are the values for #=0.2 and k=10; boxes indicate the range of values .

over a=0.1, 0.2, 0.3 and k=5, 10, 15.
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Figure 2.2b Posterior probabilities { p; } that columns are active, Example 2.2. Solid

vertical lines are the values for a=0.2 and k=10; boxes indicate the range of values

over a=0.1, 0.2, 0.3 and k=5, 10, 15.
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and k=10 indicate that there is little evidence for any of the contrasts being active, or
perhaps a weak suggestion of activity for columns 8 and 10, agreeing with analysis of
variance results and the normal plot of Figure 2.1b. However, there is a much greater
sensitivity to variation of & and k, as indicated by the boxes in Figure 2.2b, than for
Example 2.1. To allow more detailed study the posterior probabilities for Example
2.2 are plotted individually in Figure 2.3 for each combination of o and k. In particu-
lar note that for a=0.3 and k=10 the posterior probabilities for columns 1, 7, 8, 9, 10,
11 and 14 are all greater than 1/2. The situation can be further understood by reexa-
mining the normal plot for this example in Figure 2.1b. At first glance it appears that
all of the contrasts fall along a straight line more or less. On the other hand one could
draw a line through the middle eight contrasts or so and declare the remaining seven
to be active. This second interpretation would agree with a prior belief that there was
a larger proportion of active contrasts, corresponding to the Bayesian analysis with a
larger value of c. In light of this, it would be impossible to make reliable inferences
about active and inert contrasts, because the conclusions change quite dramatically

under differing plausible model assumptions.

To more closely follow the intent of the original authors of Example 2.2, the
assumption that certain columns, corresponding to higher-order interactions, are inert
can be incorporated easily into the Bayesian analysis by assigning a prior probability
of zero to those particular columns. When this is done the postcn'c;r probabilities of
the remaining columns are very close to those obtained in the above analysis with

a=0.2 for all columns.
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Figure 2.3 Individual posterior probability plots for all combinations of a=0.1, 0.2,

R 1

0.3 and k=5, 10, 15, Example 2.2.
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It should be recognized that the troublesome behavior exhibited in Example 2.2
is not due to a shortcoming of the procedure proposed here but rather to a lack of
information in the data. This illustrates a point made by Bamard (1980), that there
exist robust and non-robust data samples. For some sets of data, analyses undertaken
over a plausible range of assumptions lead to essentially the same conclusions, while
for others the conclusions are quite sensitive to changing assumptions. Thus with the
robust data of Example 2.1 variation of o and k produces little change in the conclu-
sions, while for the non-robust data of Example 2.2 the conclusions are quite sensitive

to changing a and k.

2.3.3. Derivatives of the Posterior Probabilities

As illustrated by Example 2.2, there will be occasions when the probabilities

{p;} will be sensitive to the choice of & and k. The partial derivatives of p; with

respect to a and &k can be computed to measure the extent to which the probabilities

are sensitive to the particular choice of these parameters.

First define the following quantities:

gPﬂonlcP (©ITyde (i #j) 2.16)

p‘.j =P[‘C",'Cj aCtiVC'T] = Pi (i =j)
T_2
0,- [_;,?_kz] @.17)

Then the partial derivatives of p; with respect to & and % are given by

S Y5 ST,
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o 1 |t

3 a(l-o) Z ®ij=pip)) | @19
n-1

%”—=-§- [G10-PIE 2 0P @IT)do

+ i[p.-.c,,u-p.-.‘,)c ip(0|T)do . (2.19)

(Recall that the quantities p;, p;;, p;|c and p (0| T) in the above expressions all also
dependonaand k.)

The use of derivatives to measure sensitivity relies somewhat on a low degree of
curvature in p; with respect to o and k. In Figure 2.4 the posterior probabilities for
Examples 2.1 and 2.2 are plotted first against o for fixed k=10, and then against & for
fixed a=0.2. In all figures the relative curvature is not so extreme that the partial

derivatives would not give a good measure of change.

Consider first the derivative with respect to o, which is proportional to
a~1
X, (pij—pip;)-
. i=l
For columns for which p; is close to one, p;; will be approximately equal to p;, all
terms in the summation will be negligible, and the derivative will thus be close to

zero. Similarly, if p; is close to zero, p;; and p; p; will both be small and roughly

equal, and again the derivative will be close to zero. For moderate p; (in the neigh-
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Figure 2.4a Continuous plot of posterior probabilities { p;} versus @, k fixed at 10,
Example 2.1. Curves are labeled on the right by their column numbers. .
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Figure 2.4b Continuous plot of posterior probabilities { p;} versus k, o fixed at 0.2,

Example 2.1. Curves are labeled on the right by their column numbers.
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Figure 2.4c Continuous plot of posterior probabilities { p;} versus o, k fixed at 10,

Example 2.2. Curves are labeled on the right by their column numbers.
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Figure 2.4d Continuous plot of posterior probabilities { p;} versus k, o fixed at 0.2,

Example 2.2. Curves are labeled on the right by their column numbers.
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borhood of 1/2), it will be helpful to define
pyj=Plt ;active|T,t jactive] (2.20)
_ Pij
P;j )

Then the summand in (2.18) can be written

pij ~p;pj = i); —Pi)Pj-
Now consider p;, ; for columns j with very large contrast T;. The information that <
is active will have very little effect on the probability that t; is active (this is gen-
erally true when conditioning on an event of probability close to one), and p; j Will be

close to p;. However, as the value of T; approaches T;, the information that <; is

active gives more strength to the possibility that t; is active, and p;|; will become

- larger than p;. Thus, at least for moderate p;, the nonnegligible terms in the sum in

2.9 will be positive. Furthermore, the contribution from the term p; —p; 2 alone will
be fairly large. (For p; between o and (1-a), this term is greater than one; a deriva-
tive greater than one implies that any local change in « results in an even larger
change in p;). There will also be significant contributions from other terms for which
p; is close to 1/2, so that the value of the derivative will depend to a large extent on

the total number of probabilities p; not close to zero or one.

The expression for the derivative with respect to k is more complicated but it is
still possible to interpret it. It should be noted first that while the probabilities p; are

more or less monotonic in ¢, this is not true for k. For example, in Figure 2.4c, it is

seen that the some of the probabilities reach a maximum in the area of k£ =10, although
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the plot exhibits very little curvature. Thus the derivative with respect to k could con-
ceivably be close to zero even when the probabilities are actually sensitive to the
choice of k, if k has been chosen near this maximum. However, the derivative can be
interpreted as a measure of how well the chosen value of k fits the data. Consider the
factor

a-1 a [T,2

ZQpjic=X [—'? - 2]ij

j=1 i=1\ %
in the first integral in the expression (2.19) for the derviative of p; with respect to k.
It will be small if @ ; is small when p; 4 is close to one. For example, suppose the
observed contrasts were easily partitioned into an inert group and an active group. If
k2 was chosen to be the ratio of the mean squared active contrast over the mean
squared inert contrast, the nonnegligible terms in the sum would cancel. Thus a small
value of this derivative can indicate either insensitivity to the choice of k or, lacking

‘ that, that k has been chosen to fit the data well in the @se described above. In either

case the derivative is a useful diagnostic for this model.

While the first integral in (2.19) gives a rough estimate of how well & fits the

Ly
&S
.
4‘4
A
i

.E data, the second integral is more a function of the individual contrast T;. The factor
;\, Pi|o(1-D;jo) achieves a maximum at p;; 5=1/2, showing that the moderate p; are also
;!‘;: most sensitive to changes in k as measured by the partial derivative.

: The derivatives of p; with respect to & and & for Examples 2.1 and 2.2 are given
b” . in Table 2.3. The derivative with respect to k in the table is multiplied by 50, so that
;’.\;Z the two derivatives are roughly comparable. Certainly absolute values for these
-,:::-‘._.
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3
; Table 2.3 Posterior probabilities and derivatives with respect to o and k, Examples
§,
4 2.1and 2.2
I8
A Example 2.1
. observed  posterior
e column contrast prob. dp/dac  50(dp/dk)
" 1 -0.35 0.0455 04163 -0.1783
o 2 -0.05 0.0167 0.1517  -0.1203
e 3 2.75 0.9998  0.0025  -0.0004
4 0.15 00195 0.1784  -0.1311
35 5 -1.90 0.9987 0.0124  0.0021
< 6 -0.05 0.0167 0.1517  -0.1203
b 7 0.30 0.0342 03156 -0.1666
5 8 0.60 02548  1.4628  -0.047
‘ 9 -0.30 00342 03156  -0.1666
e 10 0.45 0.0910 0.7605  -0.1738
4 11 -0.20 0.0225 0.2062  -0.1408
L 12 230 09995  0.0050  -0.0002
13 0.15 00195 01784  -0.1311
v 14 -0.10 00177 0.1611  -0.1243
15 0.30 00342 03156  -0.1666
o
bl Example 2.2 .
Y. observed  posterior
» column contrast prob. dp/da  50(dp/dk)
. 1 -096  0.1518 1.8788  -1.1367
o8 2 -011 00293 0.1828  -0.1907
-.1 3 -.001 0.0407 05045  -0.2525
N 4 038 03683 2.7261  -1.845
5 -017 0.0275 0.1532  -0.1597
, 6 033 00285 0.1820 -0.1666
N 7 075 00339 0.3524  -0.1932
- 8 137 00887 13115  -0.6493
% 9 -082  0.1063 1.4543  -0.7989
7 10 -126 03076 2.6355 -1.7825 ;
11 -.051 0.0545 0.8433  -0.3882 |
T 12 -013 00288 0.1855  -0.1805 ;
i 13 -003 00287 0.1731  -0.1861 ©
S 14 062 00709 1.0898  -0.5362 ‘
498 15 010 00270 0.1690 -0.1615 \
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derivatives far above one indicate acute sensitivity to the particular choice of parame-
¢
g I§ ) ter, while values far below one indicate insensitivity. The values in Table 2.3 agree

< with the above arguments and also with Figure 22.
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2.4. Posterior distributions

Information about model parameters is summarized in their posterior distribution
according to the Bayesian paradigm. Parametric inference will consist of interpreting
the posterior distribution, for example, by calculating point parameter estimates or
constructing Bayesian confidence regions, also called highest posterior density
(H.P.D.) regions (Box and Tiao, 1973, p. 110). For analysis of the effect sparsity
model, identifying and estimating the active contrasts is of primary interest. In some
cases there will be interest in estimating the variance 62. These are achieved through

calculation of the marginal posterior distributions of T and G respectively.

The derivations are given in terms of the original Bayes factorization of Section
2.1, which has greater intuitive appeal. Actual computations would be done in terms
of the alternative factorization of Section 2.2. Relevant details are given following the

derivations.
2.4.1. Joint posterior of { 1,0}
Straightforward application of Bayes’ theorem would ordinarily result in the fol-
lowing expression for the joint posterior distribution of { 1,6 }:
p(xoly) a p(yit0)p(t|o)p(0). (2.21)

However, a simpler factorization is obtained by conditioning on the events a(.)and

marginalizing as follows:

p(toly)= (2) p(tolya(c)pla)ly). (2.22)
4
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The probabilities p(a()ly) have been derived previously (2.9, 2.15). The condi-

tional posterior distribution p (1,0]y,a.)) is given by:

p(T’GIYra(c )) a P(Y|T,0aa(c))l’(t|°sa(c ))P (Gla(c ))
- -1 ’
=0 "exp{-z;f(y-x(c)‘t(c)) ()'—X(c)‘t(c))}x

-1 ’ -
(o)~ exp{m—zt(c, rct(c)}x o’!

=Y"°"‘“"=xv{;’cl—zls (T () Tet(e )l}» (2.23)
where a
SEEeP=0-X(c)T(e) 0-Xie)Tc) (2.29) .
and recall I" . is defined by ;
' 1 100
= ;2- 0 Ic] . (2.25)

2.4.2. Marginal Posterior Distribution of ©
The marginal posterior distribution of < is obtained from the joint posterior distri-

bution of { 1,6} by
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o p(tly)=[p(roly)do
- 0
* =¥ P ()01¥.a()P@(c)ly)dO
o 0(c)
i
";::‘ oe
s =3 |[p@(c)0lby.apde|pac,ly)
iy (c) |0
) =(Z)P(‘t(c)|y,a(c))P(a(c)IY)- (2.26)
S c )
Thus the marginal posterior of t is a weighted sum of conditional posterior distribu-
.1717 tions given @ .). To find the conditional posterior of T, ),
<o < -1
;_\. p(t(c)ly,a(,))=j'y"‘c""‘" exp '2-&'2"[S(1(c))+‘t(c)'rc1(c)] doc :
o 0
@ YTIS@ ) +T ey Tet(e)) 2. . 2.27) .
Moy
_ ;:?-’é
7 It can be shown that
o S+ T(e) TeTe)= T e)=Te ) TetX ey X ()T ()= T(c )
o +S@ ) +T(ey Tete) (2.28)
"~
o where
)= T X (o X (o)X (Y. (2.29)
; ‘\ Thus, after normalizing, the conditional posterior distribution of T(c)is
N
[ h\}‘
3
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(n+c-1y2) ITe+X () X (o)l 12

o |Via. ) = 2.30
PE @)D= T T (r(n—1)s2(, €2 @30
~n+c)2
1+ (T (e)=T(e)) (T +X(c) X (o YT (c)=T(c)
(n-1)s ., ’
where
2 _ BEE)+TeyTete) @231)

Ser= n-1

This is a (c+1)-dimensional multivariate ¢ distribution with n—1 degrees of freedom,

mean vector i( ¢ )» and dispersion matrix
TCeX (o) X (eDs ey

The complete marginal posterior distribution of a single ; is then

P Iy)=Xp(tily.ac)p(a(Hly)
(¢)

=(1-p)I[t;=01+ T pEily.acypa)ly) (2.32)
(¢ )i active

a mixture of a discrete and continuous distribution. The continuous part is a weighted

sum of ¢ densities with n—1 dcgfccs of freedom, common mean 1'."-, different scale fac-

i‘?-ﬁ tors s (), and weights p (a (. )| ). The discrete part has mass 1-p; at zero.

It was shown previously how the relative activity of each contrast column can be

p-.
'.

KR! 48

. measured by the posterior probability p;. This accounts for the first term of (2.32), the

mass 1-p; at zero. In many instances parameter estimates an<. confidence bounds for
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the supposed active t; will be desired, that is, those for which p; is close to one. ﬂ
'
These can be obtained from the conditional posterior distribution of t; given it is f
active, 4
o ?
p(t;lyt;active)=— ¥ p(T;|¥.a())P(ae)ly), (2.33) ]
i (c):i active
the second term of (2.32) normalized to integrate to unity. An accepted point estimate j
4
of T; is the conditional posterior mean which can be written i
¥
L |™ i

Ti= [n+—2 x;'y=9T;, (2.34)
Y 1

which would be very close to the usual column contrast T;. Confidence bounds of

probability 1-9 are obtained by specifying b 5 so that

P[‘f"-b8<‘ti<“t‘i+b5|y]=l—8. (2.35) .

In general, calculation of the exact posterior distribution and corresponding .

confidence bounds for T; would be very cumbersome. In practical application of frac-

[Dedurss

tional factorials, some sort of approximation would be needed. In particular, obtain-

il R

ing confidence limits by reference to a standard table with the aid of a convenient

oy
PN

summary statistic would be much more appealing. It will be shown that in many

33

cases the posterior distribution of an expected contrast T; can be well approximated by

a single ¢ distribution with n—1 degrees of freedom, mean f,-, and scale factor

LELPCR AL ' &

X $'= T shep@ely. 2.36)

(¢ ):i active
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For illustration, I have taken the largest contrast in Example 2.1, and its “exact"
conditional posterior density was computed by evaluating the weighted sum of t den-
sities only over those a ) with posterior probability larger then 0.0001, with a=0.2,
¥=2.5. This accounted for over 99% of the total probability. The approximate density
was computed as a single ¢ density with scale factor $§2 defined above. The exact dis-
tribution is plotted as a solid curve in Figure 2.5a, and the approximate distribution is
plotted as a dashed curve. For this example approximation by a single ¢ distribution is
very good.

For Example 2.2, none of the contrasts had large posterior probability for a=0.2
and y=2.5. However, for a=0.3 and ¥=1.25, contrast 8 has posterior probability .85,
and the exact and approximate conditional posterior densities for this contrast are

shown in Figure 2.5b. The approximation for this example is less accurate than for

| Example 1.

The accuracy of the approximation depends upon the extent to which the ¢ den-
sity is linear in the parameter s2 over the range of s 2(c) in the weighted sum. To see

this, write the weighted sum of densities generically as
PEIN =Y p(cyt@ls?) 2.37)
(¢)
where t(rlsz( ¢)) is the ¢ density with scale parameter sz(c ) Then the approximate
density is just

Pily)=t(t|sD). (239)

If the function ¢(t|s2) was linear in 52, or if the scale factor sz( ¢ ) did not vary over
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Figure 2.5a Exact and approximate posterior densities for largest expected contrast,
Example 2.1, 0=0.2, ¥=2.5. The exact (solid curve) is obtained by direct calculation .

" and the approximate (dashed curve) is a single ¢ density.
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51
| Figure 2.5b Exact and approximate posterior densities for largest expected contrast, ;
Example 2.2, 0=0.3, ¥=1.25. The exact (solid curve) is obtained by direct calculation, ,‘1
the approximate (dashed curve) is a single ¢ density, and the corrected approximate Z_’
(dotted curve) is a ¢ density plus a quadratic term from the Taylor’s series expansion.
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(¢), the approximation would be exact.

The approximate density is the first term in a Taylor series expansion of the true
density about the point $2. Writing down the first three terms of this expansion, we
have

PEIN=t@IEY+ T poysk eI 1’ x1sDH)
(c)

*‘(2'.)P(c)(~‘2<c)"3'2)2 £”(x)6%), (2.39)
[4

where ¢ and ¢” are the first and second derivatives of 7 (t|s2) with respect to s2. The
second term in the above expression is identically zero, by the definition of §2. The
third term can be rewritten to givg
PElY)=t(x|$H)+CVe” (Us|1), (2.40) .

where the statistic

ZP(c )(sz(c )_‘-2) 2
cv = &) (2.4)1)
32

and ¢” (x| 1) is ¢”” with scale parameter set equal to one. The quadratic term is now
written as the product of the statistic CV which measures the relative variation of
sz(c) in the weighted sum, and #” (x/ | 1) which measures the nonlinearity of the t
density with respect to s2. Note that there will be a different value of CV for each of )

the expected contrasts T;. .
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The closeness of the ¢ approximation may now be checked conveniently accord-
ing to the size of CV, with larger values indicating a less accurate approximation. For
Example 2.1 with a=0.2, y=2.5, CV is smaller than 0.1, indicating that this is a rela-
tively safe range as shown by the closeness of the curves in Figure 2.5a. For Example
2.2 with a=0.3 and ¥=1.25, CV is approximately 0.5, and as shown in Figure 2.5b, this

indicates a less accurate approximation.

A large value of CV may signal a poor approximation in two ways. First, it
shows a non-negligible contribution from the quadratic term in the Taylor series
expansion. Second, it may also indicate that some higher order terms are also non-
negligible. Thus it is possible that including the quadratic term in the approximate
density will not provide an adequate correction for a large value of CV.

To investigate which values of CV might be considered large, four samples of 50
scale parameters s %, . . ., s 59> were generated from gamma distributions with shape
parameters chosen to give CV values of .125, .25, .375.and .5 respectively. (The ran-
domly generated samples were then shifted to give the exact CV values given above.)
Exact distributions were calculated for each sample as a weighted sum of ¢ distribu-
tions with 15 degrees of freedom and scale parameter s;2, with equal weight given to
each value in the sample. To examine the accuracy of probability statements about
Bayesian confidence intervals, which depends mainly on the tail probabilities of the
true and approximate distributions, three curves are plotted in Figure 2.6. The solid

curve is the true cumulative distribution function obtained from the weighted sum,

with the plot restricted to the left tail of the distribution. (The true and approximate
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Figure 2.6a Weighted sum of 50 ¢ distribution functions with CV=.125 (solid curve),
approximation by single ¢ distribution (dotted curve), and approximation by single ¢ .

with quadratic correction (dashed curve).
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Figure 2.6b Weighted sum of 50 ¢ distribution functions with CV =.25 (solid curve),
approximation by single ¢ distribution (dotted curve), and approximation by single ¢

with quadratic correction (dashed curve).
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Figure 2.6¢c Weighted sum of 50 ¢ distribution functions with CV =.375 (solid curve),
approximation by single ¢ distribution (dotted curve), and approximation by single ¢ .

with quadratic correction (dashed curve).
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Figure 2.6d Weighted sum of 50 ¢ distribution functions with CV =.5 (solid curve),

b, approximation by single ¢ distribution (dotted curve), and approximation by single ¢
: with quadratic correction (dashed curve).
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distributions here are symmetric). The dotted curve is the approximate distribution
function obtained as the c.d.f. of a single ¢ distribution with 15 degrees of freedom
and scale factor

Y
-

2_i=1
=30

The dashed curve is the approximation obtained by also including the quadratic term

of the Taylor series expansion.

For smaller values of CV the ¢ approximation is fairly close to the true distribu-
tion and the quadratic correction is almost coincident with the true distribution. As
CV becomes larger the ¢ approximation becomes less and less accurate while the qua-

dratic correction tracks the true function closely up to CV=0.5.

For extremely large values of CV the approximate density (including the qua-
dratic term) exhibits irregular behavior. For CV larger than 1.0667 it has a local max-
imum in each of the tails and for CV larger than 1.6 the approximate density is nega-
tive in some regions. In general, for a weighted sum of ¢ distributions with v degrees
of freedom, the quadratic approximation develops a local maximum in each tail for
CV larger than 4(v+5)/5v and becomes negative in some regions for CV larger thaﬁ

4(v+3)/3v, (v=degrees of freedom).

For values of CV greater than 0.5 the quadratic approximation may give a poor

estimate of the true coverage probability of a Bayesian confidence interval. However,

as large values of CV are caused by different values of sz(c y having significant poste-
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. 7

rior probability, they correspond to situations such as Example 2.2 where the identity :
of active contrasts is not well-determined by the experimental data. \
Table 2.4 gives quantiles of the quadratic approximation of the posterior distribu- .'il:

e

tion of active contrasts T for CV between 0.0 and 0.5, degrees of freedom v between 7 "“

)

and 31 in steps of 4, and tail probabilities .005, .025 and .05. Then, for example, 95%

confidence limits for an active contrast with CV =0.25 and v=15 are +2.188(s).

2
S

2.4.3. Computing Details

The relevant statistics to be computed in the approximation to the posterior dis-

tribution of t; are $;2 and CV;. To utilize the factorization given in Section 2.2,
: 1) )

expressions for these statistics must be derived in terms of p (6| T) and p;/ -

".I ) [4.- e e

The first step is to derive the conditional posterior distribution of t;, given ¢ and

given that ; is active, 4
p(0,T;|T,t;active) <
;16,T,T;active) = : . =~

p(;l ;active) 7 (O] T, active) (2.42) ﬁ

- 8

Both numerator and denominator of this expression are obtained by integrating the }\
£

appropriate elements of © out of -
-~

X

S

p(to|T,t;active) @ (2.43) ]
2 &

1 -1 2, Ti

c™" ex T;-t,)%+ x .
2x(k2-1)) V2o p{zo2 [ O w ]} '"3
(1-a) 5" 1, a (T-¢)2+tz &
-a)ex ex —_—
,-I},- "120%|” erte®1) "% * T |20 2 S T 2
1

:.‘.'i

e :.* ......
. ; : ‘ -~ n‘ _:,. .
:i’u":ﬁ *~'; 3 3
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Table 2.4 Approximate quantiles of the posterior distribution of an expected contrast
1 divided by its posterior standard deviation, obtained from the first three terms in a
Taylor series expansion of the exact distribution. The approximate quantile is a func-
tion of the degrees of freedom and the statistic CV. Values obtained are for tail pro-

babilities .05, .025 and .005 and degrees of freedom n-1 for n a multiple of four

between 8 and 32.
tail probability = 0.05
degrees of freedom
Ccv 7 11 15 19 23 27 31

0. 1.895 1796 1753 1.729 1714 1703 1.696
005 | 1.891 1793 1750 1.726 1.711 1700 1.692
0.10 | 1.887 1.789 1.747 1.723 1.707 1.697 1.689
0.15 | 1.884 1786 1.743 1.719 1704 1.693 1.686
020 | 1.880 1.782 1739 1715 1700 1.690 1.682
025 | 1875 1778 173§ 1711 1696 1.685 1.678
030 | 1.871 1773 1731 1707 1.692 1.681 1.673
035 | 1.866 1.769 1726 1.702 1.687 1.676 1.668
040 | 1.861 1764 1721 1.697 1.682 1.671 1.663
045 | 1856 1.759 1716 1.692 1.676 1.666 1.658
050 | 1.850 1.753 1710 1.686 1.670 1.659 1.652
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tail probability = 0.025 -

degrees of freedom

cv 7 11 15 19 23 27 31 =

0. 2365 2201 2131 2093 2069 2052 2.040 o

005 | 2373 2211 2141 2103 2079 2.062 2.050 -

0.10 | 2382 2221 2152 2114 2090 2073 2.061 -

0.15 ] 2391 2231 2163 2126 2102 2.085 2073 &

0.20 | 2400 2242 2175 2138 2115 2098 2.086 K

025 | 2410 2254 2.188 2152 2128 2112 2101 T'.:

030 | 2421 2.267 2202 2.166 2.143 2128 2116 T

035 { 2432 2280 2217 2182 2159 2144 2133 =

040 | 2443 2295 2232 2198 2177 2162 2151 -

045 | 2455 2310 2249 2216 2.195 2181 2171 o

050 | 2467 2326 2267 2235 2216 2202 2192 : ]i

S

L

-

tail probability = 0.005 o

degrees of freedom ]

cv 7 11 15 19 23 27 31 Ry

0. 3500 3.106 2947 2861 2.807 2771 2744 2

005 | 3.545 3.157 3000 2916 2.863 2.827 2.801 -

0.10 | 3.591 3208 3.054 2971 2920 2.884 2.859 -

0.15 | 3.637 3.259 3.108 3.027 12976 2942 2917 =

020 | 3.683 3310 3.161 3.082 3.032 2999 2974 s

025 | 3.728 3.360 3214 3.136 3.087- 3.054 3.030 ]

. 030 | 3.772 3410 3265 3.188 3.139 3.107 3.083 i

035 | 3.817 3458 3314 3238 3.190 3.157 3.134 :5

040 | 3.860 3.504 3362 3.286 3.238 3.205 3.182 )

045 | 3.903 3549 3408 3331 3283 3.251 3.227 =

050 | 3944 3593 3451 3375 3326 3293 3.269 _;]

1 =

. o

: ]

: 2
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e -
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Gt
. - After performing the integration we have
R ~1;~4T;)* ‘
s . aetive) = -124-1 ivii
o p(t;lo,T,T; active) = (2nd) ™ “c exp{ 2007 3 (2.44)
::5:: a normal distribution with mean ¢T; and variance ¢c 2 (Recall ¢=1-1/k2). In addi-
‘ ‘. tion, the conditional posterior of G, given t; is active, can be written
& p(©|T.;active) @ p(61T)p;o - (245)
The quantities of interest, 2 and CV;, are functions of the second and fourth
E
sk conditional posterior moments of t;, given it is active. Thus they can be obtained as
the corresponding second and fourth moments of the contitional posterior distribution
- (2.44) of t; given it is active and given o, integrated against the conditional posterior
- distribution (2.45) of G given t; is active. Doing this, the following expressions are
~ obtained: :
. ) . 2 n-=3 < 2 .
o §i'=— [¢0?p (0| T,z ;active) do (2.46)
. _; - 0
) "_3)(";5) [626%p (0] Tt active)do
(n-1) 0 (2.47)
,‘_-_"‘ CV" = 2 - l
2.4.4. Marginal Posterior of ¢
The marginal posterior distribution of ¢ is obtained from the joint posterior dis-
tribution of {,0} in the same way as the posterior distribution of T was obtained. .
'QZ::-'E Thus p (o y) is written
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P(Gl.V)=(Z)P(Gly.a(c))P(a(c)U)- (2.48)
[4
The posterior distribution of G conditional on a .y is obtained by integration, }
ra; -n—c-1 -1 ’
P(Uly,a(c))= I...IC exp{-z—;; [S(T(c))‘."t(c) I'c't(c)]}d‘t(c) ‘
[S(‘E( ))'P‘E( )’F ‘E ]
a ¢ "exp ‘ : ¢ () (2.49)
20
After normalizing, the conditional posterior distribution of ¢ is
-1 2 Y(@m-1y2
1. [(n-1 (n=1)s%c)
p©Oly.acy = [31‘[ 2 ]] [“—2—— X
-(n -1 )J' 2(‘: ) i
G "exp —_— (2.50) .
20

where sz(,_.) is defined by (2.31). The distribution of ¢ is a scaled inverted chi distri-
bution with n—1 degrees of freedom. Analogous to the posterior distribution of 1, the

complete posterior distribution of & is a weighted sum of 2”~! inverted chi distribu-

Db idendonboduchel O B .

tions with different parameters s 2( )

The Taylor series approach used to approximate the posterior distribution of t

was unsatisfactory for o, possibly because of the skewness of the densities

p(cly,a( e However, a normal approximation to the posterior distribution of

log(c2) gives a better fit and is especially convenient for obtaining Bayesian

confidence limits for 6 or 6.
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Posterior moments for log(c 2) are
Eflog(c?)|T] =Ilogo’p(o|T)do 2.51)
E[(log(62)?|T] ='£'aogc’)2p (c|Tdo (2.52)

with the variance obtained in the usual way from these. The posterior distribution of
logcs2 is approximated by a normal distribution with the above mean and variance.
While the posterior distribution of log(?) is not symmetric in general, the individual
components p(log(oz)ly,a(c)) are nearly symmetric with nearly constant variance
(Box and Tiao, 1973), and the log transformation also somewhat symmetrizes the dis-
tribution of the parameters sz( c) over a(.). Thus the posterior distribution of
log(c'2) is much closer to being symmetric than the posteriors of 6 or 62. Exact and
approximate posterior densities for Examples 2.1 and 2.2 are given in Figure 2.7.

Approximate 95% confidence limits for 62 are obtained by

exp{E[log(o 2)|T] £ 1.96 (Var{logs 2| T]) "2}. (2.53)

For Examples 2.1 and 2.2 these are

Example 2.1: (.032,.176)

Example 2.2: (.0010, .0114).




Figure 2.7a Exact posterior density (solid curve) of log(c 2 and normal approxima-

tion (dotted curve), Example 2.1.
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Figure 2.7b Exact posterior density (solid curve) of log(c2) and normal approxima-

tion (dotted curve), Example 2.2. .
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2.5. Degrees of Freedom and the Parameter k

Given the event a( that a particular combination of ¢ contrasts is active, the
posterior distribution of (. ) was shown to be a ¢ distribution with n—1 degrees of
freedom. And if active and inert contrasts are well determined by the experimental
data, the posterior distributions of the supposed active contrasts averaged over all
events a . are quite close to single 7 distributions with n—1 degrees of freedom.
This is in contrast to the usual situation where the degrees of freedom are equal to 2
minus the number of parameters estimated. The reason for this is that the prior vari-
ance of the parameters T was assumed to be a known constant involving &, times 2.
Thus in the expression (2.31) for the posterior variance of T(c) 8iven a ., there are
n-1-c degrees of freedom for the residual sum of squares plus ¢ degrees of freedom
for the active contrasts which are scaled by the matrix T, and included in the expres-
sion for the posterior variance. The extra ¢ degrees of freedom appear because it is
assumed that the squared active contrasts, scaled by a known constant, also estimate

ol

-

It was shown previously that varying k often has little effect on the posterior pro-
babilities { p;}. However, when there are several apparently active contrasts, and k is
not well-determined in advance, changing & may have a noticeable impact on the pos-
terior standard deviatio‘nssc;f the contrast.;;. When situations such as this do occur, two

possible remedies come to mind.

If the parameter k is treated as unknown, then the predictive distribution

A S K B K e
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p®)= | [pGIoDPGI0)p (@) dodt @.54)
—()

as a function of k given y can be thought of as being proportional to the posterior den-

sity of k under a locally uniform prior. Denote this function by p (k | y), and the pos-

:} terior variance of a typical t; given k by §; (k). Then an expression for the uncondi-
‘ tional posterior variance of t; is given by

oS4,

,.,"“.,.

s

§2= IEXQLIGDES
[pkiy)ak

bt} N
LA

(2.55)

‘«“

€ LN W
Ax',l,fr
,;l

3 This can be approximated by choosing a few values of k, such as 5, 10 and 15, and
.,«E estimating the integral by
R ATIAE)
N §2=2 (2.56)
32 S FIT) |
) -t* k
_ A second method for estimating the standard error of a contrast is motivated by )
b
:_ the usual linear model approach of specifying which coefficients are significant, and
.-;.‘: i
’ 'r‘% estimating variance from the residuals. The proposed variance of an observed contrast i
o is
¥ T;2(1-p))
YR 2 _ jwi
. v;¢= (2.57)
“,-C:' ' n-1 _zpf
J
Ay
i
" f}, which is analogous to the linear model approach, but accounts for the indeterminacy
[ of which contrasts are active. When all probabilities are close to either zero or one,
Lo
N
N
" I PP -v‘.'n‘,.-" CRSA
-.*.ﬁ';?‘-%."-?f VAT
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the estimate agrees closely with the standard approach. When there are probabilities
closer to 1/2, the estimate is a weighted average of the standard estimates obtained by
either including or excluding the in-between contrasts. This estimator of variance is

insensitive to changes in k as long as the probabilities are also insensitive.

These two methods are compared with the posterior variance derived in the pre-
vious section 2.4.2, using the data of Example 2.1, in particular th§ apparently active
w contrast from column 3 of the design. The posterior standard deviation of this contrast
‘ was computed with « fixed at 0.2 and k taking the values 5, 10 and 15. For each com-
bination of & and k the estimate v, was also computed. The unconditional posterior
standard deviation '3 was computed over the three values of k as indicated by the for-
mula (2.56). The posterior standard deviations $'3(k ) of column contrast 3 for k=5, 10
and 15 were 0.640, 0.534 and 0.517, respectively. The estimates v, were 0.583, 0.571

and 0.573, respectively. The marginal weighted estimate '3 was 0.570. The estimates

v4 are much less sensitive to changes in k than the regular posterior moments, and are =

also close to the weighted average §5.

The marginal weighted average estimate §; given by (2.55) is the "correct” esti-
mate from the Bayesian viewpoint when precise knowledge of k is not available.
However, because the posterior density of k£ reaches a maximum at a value close to
the ratio of the mean squared active contrast over the mean squared inert contrast, and
the posterior standard deviation of t; at this value of k is approximately equal to the
mean squared inert contrast, the integral (2.55) will also be close to the mean squared

inert contrast. The estimator v; is basically also equal to the mean squared inert con-

- SO .:.. R TRath ' e e ‘."‘..-._._"_._:‘._-f._-‘r T T AT T f‘ - '. .-. .. 7 ~. * ‘-'. NS .:: }\,
. . e L . RECEL o - - .
. oy . o '- X3 -;i _‘Jr) r e
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¥
trast and thus estimates the unconditional standard deviation s; without repeating the .
‘5 calculations for several values of k, making it a convenient and less sensitive estimate .
é of the standard error of an active contrast.
Although the integration with respect to £ is not done analytically, it is probably
: safe to say the form of the posterior distribution of T; has changed from the discrete |
' .' ' mixture of ¢ distributions with n—1 degrees of freedom, given k. Because of the anal- j
» ogy with the usual linear model, it was thought reduction of the degrees of freedom to 1
;:: n—1-3 p; would help correct for the new form of the distribution. However, compar- |
. ing nominal and actual coverage probabilities of confidence intervals for the
* apparently active contrasts of Example 2.1, the closest agreement was attained when

% approximating the posterior distribution by a ¢ density with n—1 degrees of freedom.

T
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2.6. Replication and Blocking

2.6.1. Replication

The model described here may be applied to any factorial experiment, unrepli-
cated or otherwise. Although it provides a method of analysis for the case when there
are no true replicate runs, as a general method for analyzing fractional factorials the
model can be applied successfully when there are replicate runs. For example, con-
sider the special case of an nxn design X with the properties described in Section 1.2,
with m independent observations at each point of the design. In general it is assumed g
that the experiment is run in m blocks of # runs, with each block consisting of one X
replication of the design X, each block having a different mean, with no interaction
between blocks and factors. The analysis can be reduced to the case where each block
mean is assumed the same, to be applied when the replicates are not run in blocks.

The situation where blocking is done within the design X is described in Section 2.6.3.

2.6.2. Joint Posterior for the Replicated Design ]

Let y; be the vector of observations for the jth block. Again make the one-to-

one transformation
T;=X'X)"'X’y;, j=1,..m.

The sampling distribution of T=(T;, ..., T,) is

-.-’ X . SO O RARLSLN Y J,,- '\.-“.:-* A Y ; ," Y ".'H:'.-:'u"\-:'.~:~~‘.:-~~‘-_.:-_.:-“.:-;.‘-‘.:-_.;-..'.-_.:-c'.;;-;_-._.-.:_x:_-
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e (T — )2
i§l(Tq w) (2.58)

n-1
|t0) a ¢cT™ ex
PI%o) iI;Io P 202

Utilizing the same prior distributions as given in Section 2.1, the joint posterior distri-

bution of { 1,6 } is

n-1
"Zlaﬁu'fqﬁ
P(aGIT) a o™ lexp{ L=t - % (2.59)
2c
v 2
n=1 -'EI(TU%‘) 1 o 2
€X 1= ex [}
Y = J @OE=1) %5 T |2062-1)0?
+ (1-)exp -iir 2
2°2i=l )
The quantities
m m
Y Ti-t)%, X T;?
i=1 i=1
can be decomposed to give
m 9 - ,
Z Ty =) =mT = 1)+ 5, (2.60)
j=
and
m 2 - 5
):

with

-
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X
7 ﬁ
]
. ]
Si= Y (T;-T;)°. (2.62)
i=1
Thus the posterior distribution of { 1,6 } can be written
m 2 n-1
2(c|T) a ™ lexp{ - =1 exp{— 12 X )
202 26

n-1 -m (T =T l) 1 o —; 2
eX
IL 1P| ™ 302 [@nwi=1) % T | 202102

T2
+ (l—a)exp{ 252 } ] .

This is of the same form as that derived for the unreplicated case, with the variance

reduced to 6%m by replication, the non-informative prior distribution for ¢ replaced
by an informative inverted x distribution, and k2 defined to be mny2+1. For the rest
of this section 62 will refer to the reduced variance, which is 1/mn times the original
error variance, or 1/m times the variance of an observed contrast from an unreplicated

n-run experiment. The two cases considered here are:

1. For unequal, unknown block effects, the prior estimate of olis 4
n-1 :
4
Y S; ,
g = (2.64) j
m(m-1)(n-1) :
with (m~1)(n-1) degrees of freedom. ?i
(-.-'..-"-".'f'-;' 5 - J\. -" '\ -".‘-‘ ! ‘\' ot "Q WA '\'\'.‘-'."—‘.;‘.'-"'.'-'.-‘.' et A ST .
SRy . c\ : .('\;14_ \-“ _.\ "}- ':.\} j-.'- s '-‘-‘,:4 A SRR \.‘\-‘\-'.“-n-.~..~.m.‘-...~t
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2.  For equal block effects (equivalently no block effects, but one overall mean), the
prior estimate of 62 is

n-1

%S
2__i=0

" m(n=1)n

(2.65)

with (m-1)n degrees of freedom.

In each of the above cases the extra divisor of m in the formula for s2 appears because

of the previously mentioned m -fold variance reduction.

Thus the Bayesian model applied to a replicated experiment is equivalent to the
unreplicated analysis on the observed contrasts averaged over the replicates, with a
prior estimate of variance obtained as the variance of the observed contrasts between
replicates. It is important to note that this result depends upon the orthogonality
among contrasts and replicates obtained by repeating each point the same number of

times. Unequal replication does not lead to this simplification.

2.6.3. Blocking

In situations where it is not possible to complete all n runs of the design in the
same day, or with the same batch of raw material, or with the same technician, etc., it
is common to run the experiment in blocks, associating effects of supposedly lesser
importance (high order interactions) with block differences (see, e.g., Cochran and

Cox, 1957, p. 183; Box, Hunter and Hunter, 1978, p. 336). I describe below how to

deal with block effects in the proposed analysis.
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For a first attempt one might pretend that those contrasts associated with block
effects still come from the normal population implied by the prior distribution (1.3),
and are active with probability .. This is equivalent to ignoring the fact that some of
the contrasts are biased by block differences, and continuing with the analysis as

usual. The resulting posterior distribution of ¢ may, however, be contaminated by

some effect due to blocking, and assign a noninformative prior to the magnitudes of

A

. 3

these possibly inflated contrasts. A safer method is to assume there will always be i
i

these effects. The result is that contrasts associated with block differences do not

enter into the calculation of posterior probabilities and related statistics for the con-

trasts of interest, and they are ignored just as the grand mean was ignored in the previ-

ous analysis.

Suppose then, that the design X is replicated m times, with b blocks within each

replicate of X, and the same columns are associated with blocks in each replicate.
. Assuming no interaction between blocks and factors, there are n—b contrasts for
which posterior probabilities will be computed. If m>1, there will be (m-1)(n-b)

additional degrees of freedom for estimating variance. Following the same steps as in

the previous section, the posterior distribution of ¢ and the contrasts of interest T is

N
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n-b
-mY,S;
p (‘t,O‘IT) = o.-—m(n—b)—l exp i =21 %
20

nd -m(T;-1)? | a —;?
eXpy ————"—>
i P 262 [@nk2-1) o Pl2a*1)0?

+ (1-0)e. —mﬁz
—a)ex i
P 202

(2.66)

where

Again, this is of the same form (2.12) as for the unreplicated design, with the nonin-

formative prior for ¢ replaced by the informative inverted ¥ distribution.
2.6.4. Dependence of o and k on m,n
The parameters k, y are related by the equation
k2=mnyi+ 1 (2.67)

and it is clear that as m or n increases, either k must increase, or Y must decrease, or
both. It has been an accepted notion in statistical analysis to compare an estimator
with its own variance to determine if it is "significant” or not. In this case the variance

of an observed contrast is czlmn, so that as m and n increase, smaller and smaller

contrasts should be declared active in comparison with this variance. This implies
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that the prior variance of an active contrast should decrease as a function of m and n. 2
Specifically, if the prior belief is that active contrasts should be a certain size relative
to 6%/mn, then the prior variance should be a constant times 6%mn. Thus 72 is pro-
portional to a constant over mn. This implies that the parameter k should be indepen- _-4
dent of m and n, by equation (2.67). Thus the range for k given in Section 2.3.1 will N

serve as a reasonable guide for general m, n.

Regarding «, as the number of replicates m increases for fixed n, the increasing
number of expected active contrasts should be reflected in a larger value of o For
example, if it is believed that the inherent noise in a process will make it impossible to
uncover any active contrasts in an unreplicated experiment, replication will serve to

decrease the noise in the observed contrasts and increase the frequency of detectable

large values.

2.6.5. An Example

To illustrate, the following example is taken from Bamett and Mead (1956).

Example 2.3 The authors wished to study the effect of variations in four operating
factors, pH (P), aluminum reagent (A), carbon slurry (C) and barium chloride (B), on
the efficiency of a decontamination process for removal of radioactivity from liquid

wastes. They chose to run a 24 full factorial design, twice replicated. Because only

"

e

(L , . -

5 eight of the sixteen factor combinations could be completed in one day, each replicate
.

';Z;f was run in two blocks of eight runs, and the four-factor interaction PACB was con-
% . founded with block differences within each replicate. The design, observations and
:2 calculated contrasts are given in Table 2.5.

7

s
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Table 2.5 Design matrix, observations, and observed contrasts for Example 2.3, a
twice-replicated 24 full factorial experiment run in two blocks of 16 runs, from Bar-

nett and Mead (1956). The CABP contrast is confounded with block differences.

factors response
» nn C A B P y, Y2 _
= 1 - - - - 881 83 .
2 + - - - 650 494 ﬂ
3 - o+ - - 191 257
S 4 + + - - 183 193
K 5 - -+ - 289 178
N 6 + - + - 188 163 —
: 7 - + + - 225 370 o
3 8 + + + - 135 156 3
X 9 - - - + 1180 1193 -3
10 + - - + 1039 1146 ]
-~ 11 - + - + 466 890 3
2 + + - + 78 715 3
: 3 - - + + 298 273 i
Y 14 + - + + 238 254
: 15 - 4+ o+ o+ 420 429 ,
16 + + + + 350 389 '
, ' i
o Block Block Block Block ?
o column 1 2 column 1 2 {
~ (effect)  contrast contrast (effect) contrast  contrast N
N O(mean)  469.6 499.6 8(P) 126.9 169.0 R
b 1(C) 241 534 9(CP) 29.6 25.8
- 2(A) 1258 613 10(AP) 335 194 e
3(CA) 42.5 0.8 11(CAP) 13.3 -10.4 Tj
4(B) -201.8 -223.1 12(BP) -68.3 -109.3 -
- 5(CB) -16.0 17.4 13(CBP) -22.0 4.5 B
= 6(AB) 140.4 126.8 14(ABP) 10.4 -6.1 )
. 7(CAB) 424  -268 15(CABP)  -15.9 32.6 ‘o]
B ﬂl
N
-r't g "*

0l i uln ,ta;“"‘*‘&. .’
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Barnett and Mead used analysis of variance to analyze the results of the experi-
ment. Contrasts of magnitude larger than 94 were found to be significant at the nomi-
nal .01 level, and those larger than 68 at the .05 level (with no correction for selec-
tion). Thus main effects P, B and A and the PB and BA interactions were judged
significant at the .01 level, and the main effect C and the BAC interaction were

judged significant at the .05 level.

The Bayesian posterior probabilities of the contrasts were computed with o=0.2
and k=10 and are presented in Table 2.6a, with a prior estimate of the standard devia-
tion of an observed contrast being 30.42 with (m—1)(n-b )=14 degrees of freedom.
For comparison the posterior probabilities and related statistics were computed pre-
tending the values of the observed contrasts were obtained from an unreplicated

experiment. These values are presented in Table 2.6b.

The five largest contrasts, declared significant at the .01 level by Bamett and
Mead, all have posterior probabilities close to one. The two intermediate contrasts
have posterior probabilities of .261 and .174. One could reasonably conclude for this
example that the five largest contrasts are almost certainly measuring real effects, and
the next two largest are also possibly active and should be considered. Of course, in

practice, the conclusions will depend on the objective of the experiment.

Comparing the results to those obtained by pretending the contrasts were calcu-
lated from an unreplicated experiment, the posterior probabilities are in fairly close
agreement. However, the values for the diagnostic statistics dp /da, dp/ok and CV

are all much greater for the "unreplicated" analysis. This agrees with intuition. The
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Table 2.6a Posterior probabilities, standard errors (conditional on being active), CV

values, and derivatives for Example 2.3, with ®=0.2 and k=10 and a prior estimate of

o of 30.42 with 14 degrees of freedom obtained from replicates.

effect contrast postprob. selactive CV - dp/a  50dp/dk
none 0.050 .

C <775 0.261 31.7 001 137 -0.29
A -193.0 0.998 343 0.02 0.02 0.00
AC 41.8 0.051 333 002 032 -0.19
B -4249 1.000 344 002 0.00 0.00
BC 14 . 0024 344 002 0.15 -0.12
BA 267.1 1.000 344 002 0.00 0.00
BAC -69.1 0.174 319 002 103 -0.30
P 295.9 1.000 344 002 0.00 -0.00
PC 554 0.089 325 002 057 -0.26
PA 529 0.079 32.7 002 051 -0.25
PAC 29 10.024 344 002 0.15 -0.12
PB -177.5 0.995 343 001 0.04 0.01
PBC -265  0.033 339 002 020. -0.15
PBA 4.3 0.025 344 002 0.1s5 -0.12

- ol —
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Table 2.6b Posterior probabilities, standard errors (conditional on being active), CV :
values, and derivatives for Example 2.3, with «=0.2 and k=10, pretending the design ‘
was not replicated. |

effect contrast postprob. selactive CV  dp/da  50dp/dk

none 0.050

C -71.5 0.137 45.9 3.99 1.62 -0.18 "

A -193.0 0.711 4.5 147 459 -1.19 .

AC 41.8 0.039 66.7 258 035 -0.16 F

B -424.8 0.916 63.7 148 206 0.05 i

BC 14 0024 784 186 015  -0.12 b

BA 267.1 0.796 50.2 141 401 -1.32

BAC -69.1 0.098 49.8 386 116 -0.18

P 295.9 0.822 52.7 142 3.69 -1.28

PC 55.4 0.058 58.2 323 0.62 -0.17

PA 529 0.053 59.8 3.10 0.56 0.02

PAC 29 0.024 78.3 1.86 0.15 -0.12

PB -177.5 0.683 43.4 153 4.64 0.12

PBC -26.5 0.029 73.8 212 021 -0.14

PBA 43 0.024 78.3 1.87 0.15 -0.12
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- derivatives with respect to o and & measure dependence on the choice of these prior
n“ parameters, and dependence on the prior would be expected to decrease as additional .
o
. o data were collected. The statistic CV can be interpreted as measuring the sharpness of
:j the posterior distribution of o, which is also enhanced by adding replicate observa-
?: tions.
2.7. Conclusions
X,
2 é‘:, The incorporation of assumptions into the normal theory model used for analyz-
‘ & ing factorial and fractional factorial experiments has led to a more formal analog to
‘ "v
2 the normal plot of Daniel (1959). Assessing the column contrasts according to their
L]
-_'I_; corresponding posterior probabilities, which can be presented graphically, is intui-
tively appealing. The method does not suffer the computational limitations usually
Ly
5 associated with such elaborated models, due to the altemative Bayes factorization .
hJ presented in Section 2.2. Standard errors for supposed active contrasts are casily
obtained. The versatility of the analysis is also appealing: it can be used when designs
o _
A 3 are replicated and blocked, or when certain columns are assumed to be inert a priori.
l‘_‘
= Overall, it provides an interesting and exciting new analysis for factorial experiments.
o ) !
i .
¢ -3
2
) R
1]
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CHAPTER 3

IDENTIFICATION OF ACTIVE FACTORS

3.1. Introduction

As discussed in Chapter 1, the historical approach to the analysis of unreplicated
factorial experiments has been to identify column contrasts which are too large to
attribute to noise (see, e.g., Daniel, 1959; Box, Hunter and Hunter, 1978, p. 329). The
Bayesian analysis proposed in the previous chapter addresses this problem. Once
active contrasts have tentatively been identified, it remains to determine which
combination(s) of the experimental variables are most likely responsible for the large
observed contrasts. In this chapter I propose a formal Bayesian analysis, analogous to
the one described in Chapter 2, for the problem of identifying the active factors as

opposed to active contrasts.

Two basic guidelines for interpretation of fractional factorials given by Box and
Hunter (1961), and restated in Section 1.3, are a) significant interactions are more
likely to occur between variables which have large main effects, and b) main effects
are usually larger than two-factor interactions, which are larger than three-factor
interactions, etc. These guidelines are formalized in the model proposed in this
chapter. The first of these guidelines is modeled by considering only column combi-
nations corresponding to experimental factors and interactions among those factors.

To follow the second guideline, separate values of the parameter k for main effects
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and two-factor interactions can be specified, with k; for main effects larger than k3
for two-factor interactions. Three-factor interactions can either be assumed to have

the same (or smaller) variance as two-factor interactions, or they can be assumed to be

inert.
3.2. The Model

The following modifications to the Bayesian model introduced previously are
needed. Itis assumed that factors will be active in producing main effects and interac-
tions with prior probability . In general this value of & will be different from the
value used in the previous chapter to describe the frequency of active columns. Let
a(s) be the event that a particular combination of f factors is active. Let X(r)be
the matrix of columns of X corresponding to the active effects of a(, (including
interactions). For example, if a( 13 is the event that factors 1 and 2 are active, X )
would contain columns for the main effects of, as well as a column for the two-factor
interaction between, factors 1 and 2. Likewise let T(, be the vector of true effects

under a (). The sampling distribution of the vector of observations y, given ay ), is

-1 R
pUia)oty) o o™ °XP{;;? O-X)tyy (Y’x(f)"(f))}- (3.1)

The elements of 1, are assumed to have independent, but not necessarily identical,
prior normal distributions as before. In particular, it will be assumed that elements of
T(s) Which are main effects will have prior distributions with mean 0 and variance
M 252 and those elements which are two-factor interactions will have mean 0 and

variance 7220 2 And, though this assumption is not necessary, for ease of illustration

kil b Bl
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it will be assumed that interactions between three or more factors are inert. A nonin-

‘-‘:ﬁ formative prior distribution is assumed again for the overall mean 1, and log(c), so
3
:".‘ that p (t,0) o 1/ where the likelihood is appreciable. The posterior probability of

the event a (f)can then be written

Sl et g’ g Llj.‘l_.' NEPATRE)

T !

R P(ry=p@s)ly)= C[l_a] nT U2 x - (32)
5 T TN

o 1X o Xol SEY+Try ity

. ITy+X gy X (1)l 12 SCo)

B>

} where

§ :; a ] ’ _l ,

= [Ir+Xq) x(f)] Xy
; I’ is the diagonal matrix with the appropriate diagonal elements (the (i i) element is
1/ 2 if the i th element of ;) is a main effect, 1/y,2 if an interaction), and S (T s )

::: is the residual sum of squares obtained when estimating )by ‘E( 1) (Allowance
_‘ for possible higher-order interactions can be made by appropriate redefinition of X
N

i and T and the exponent of Y, or introduction of a third parameter ;). Making the
transformation

. k i 2. ’l‘Yj 2 +1,
;('\ . the probability p () can be rewritten
B
i
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Py o g | k7 kU2 x (3.3)
' , ~n-1)2
-6 Tmir) Tmes) _%Ti(f) Tis)
LT TT ’

where T,, (s is the vector of observed contrasts which are main effects under a ),

Ti(r ) is the vector of contrasts which are interactions under a(sy and §; = 1-1/k; 2

The probabilities p () can be accumulated to compute the marginal posterior
probability p; * that factor j is active,

pi = X Py .
T e S

It was shown in Chapter 2 that to compute the posterior probabilities { p;} that partic-
ular columns are active it was not necessary to sum probabilities over all possible
combinations of active columns, but rather these could be computed via numerical
integration at a considerable savings in computing time. The same is not true of the
probabilities { p; *1, which must be computed by direct enumeration over all events
a(r) However, for moderate experiments with fewer than 15 factors, the computa-

tions are quite manageable.

For application to fractional factorials the above definitions are consistent so
long as f is restricted to be smaller than the design resolution. In the next section I

give a a natural extension of the model which can be used when this assumption is too

restrictive.
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3.2.1. Relaxing the Bound on f

The assumption that the number of active factors is less than the design resolu-
tion will be unreasonable for fractional factorial designs of low resolution. In Exam-
ple 2.1, eight factors were screened using a 284 design of resolution four. In this

situation it was unknown which of eight factors was important, and thus unlikely that

the experimenter could be sure that at most three were active. A natural extension of
the above ideas to allow relaxation of the bound on f is given for the 2% designs

and easily extended to more general designs.

Consider a combination of f factors denoted by a (f)» Where f is greater than or
equal to the design resolution R. Suppose there is confounding among the possible
main effects and interactions of a ) 1.e., there are column contrasts which estimate
more than one of the possible effects under a( ). (Itis possible to have combinations
of f factors with f 2R for which there is no confounding, and no modification is
necessary for these). For those columns which estimaic more than one effect define
the corresponding element of T, ) to be the linear combination of effects estimated
by that column. The prior distribution of such elements of T, will still be indepen-
dent and normal, but with variance equal to the sum of the variances for the individual

components. For example, if a particular column contrast T; estimated the sum of two

two-factor interactions, the prior variance of ©; would be 2y,262. All further compu-
tations proceed as usual given this modification of the prior distribution of T 7y For
example, consider a combination of four factors which are confounded from the 284

design of Example 2.1. (The Hadamard product of the columns of any three of the
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* factors gives the column of the remaining factor). There will be three column con-

3‘ trasts each of which estimates the sum of two two-factor interactions among the four

a’ factors. The posterior probability of this combination ’is given by (assuming interac-
o tions between three or more factors to be inert)

‘ Py @ rl_ct-c—z]4"1"’(2”2162)'3 X (3-5)

Ny

1-9; Ty ):Tm(f ). .‘_.A,[l 1 Ty ):Ti(f_) -(,._m’

s T'T 2%,2) TT

" ;
‘ where T;(, ) is the vector of contrasts each estimating a sum of two interactions.
{ 3.3. Prior Parameters :
To estimate plausible values for ¢, k; and k5, the published examples given in '
'.-{ Table 2.1 are reexamined. For each example, a is estimated by the proportion of fac- _,:
X tors declared active by the authors, &, 2 is estimated by the mean squared main effect ‘ 7
j‘, among active factors over the mean squared inert contrast, and k,2 is estimated by the ‘
'7 mean squared two-factor interaction among active factors over the mean squared inert r.,i.
contrast. In this context not all active contrasts will be large, although all inert con- _‘
trasts should be small. The estimated values of , k, and k, are presented in Table ' ]
ﬁ 3.1 o]
-.: For those examples which are full factorials and the one which is a half-fraction, *
at least half of the variables were declared active. For the more highly fractionated -

L ¥

<
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designs, of course, a much smaller proportion of the variables were found to be active.
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Table 3.1 Estimated values of o, k; for main effects and & for interactions for the
modified Bayesian model, from published examples of two-level experiments taken
from Box, Hunter and Hunter (1978), Davies ed. (1954), Daniel (1976), Bennett and
Franklin (1954), Johnson and Leone (1964), and Taguchi and Wu (1980). In Daniel’s

example the analysis is conducted after making a log transformation in the response.

Example n fraction « k, ky
BHH p. 398 16 1/16 38 93 6.5
BHH p. 327 16 1 75 152 2.7 ]
BHH p. 378 32 1 60 118 8.9 b
Davies p. 274 16 1 S0 1.9 25 X
Davies p. 462 16 172 80 76 2.2 4
Daniel p. 71 16 1 75 130 1.0 ]
BF p. 557 16 1 75 268 6.3 ’
JLp. 183 32 1 60 3.0 1.1 By
JL p. 196 16 1 75 119 1.5 o
TW p. 69 16 1/32 22 95 <<1.0 o
Average low 69 110 33 N
high 30 ;Z;
N
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Thus the value of o to be specified in any particular situation depends on the degree of
fractionation of the design, or more correctly, the degree of fractionation will depend
on the experimenter’s expectation of the number of important factors, which would
also be reflected in the value of o For full factorials or half-fractions, a reasonable
range for a would be from 0.4 to 0.8, while for more highly fractionated designs, the

range would be reduced to 0.2 to 0.4.

In all but one example the value of k, for main effects is larger than &, for two-

factor interactions, and the ratio of the average & ; to the average &, is 3.33.

In practice it will often be informative to carry out the analysis under differing
set§ of assumptions, e.g., assuming higher order interactions inert or not, or trying dif-
ferent values of a and k. When results are insensitive to varying plausible assump-
tions, one can feel safe in drawing inferences from those results. On the other hand,
when the results are not robust to changes in assumptions, this indicates an inability of
the data to dominate the information provided initiall)", and any conclusions should
reflect this dependence on prior assumptions. This is illustrated by example in the

next section.
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3.4. Example

The method is illustrated by continuing the analysis of Example 2.1. The factors

and their allocation to the 16x16 design array are given in Table 3.2. Recall that in

AL S AT R Y e r:r;cr..d!

- "
L P

Chapter 2 it was discovered that column contrasts 4, 12 and 13 were very likely

active, each receiving posterior probability close to one. There was also weak evi-

«
A
.
Y
<

dence to suggest contrast 8 might also be active (see Figure 2.2a). Assuming interac-
tions between three or more factors to be inert, contrasts 8, 12 and 13 are associated
with the main effects of factors 1 (screw speed), S (holding pressure) and 6 (booster
pressure). The large contrast of column 4 is associated with the sum of four two-
factor interactions denoted by the alias string 15+26+37+48. The original authors
suggested that it was most likel); either the 15 or 26 interaction which was responsible
for the large contrast, because these involved variables with large rain effects. Ina
four-run followup experiment they were able to obtain scparate estimates of the four
interactions and deduced that the 1S interaction was indeed the major component of

the aliased contrast.

The posterior probabilities that each factor is active were computed with 0=0.3,
k ;=11 and k ,=3.3 and are presented in Table 3.3, again assuming that interactions
between three or more factors are inert. Factors 1 (screw speed), S (holding pressure)
and 6 (booster pressure) have posterior probabilities close to one and could plausibly
be considered active. Factor 2 (temperature) has posterior probability of 0.4, with all
other factors receiving very small values. Examination of the alias strings of Tabie

3.3 suggests where the evidence for factor 2 is coming from. Although it does not
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Table 3.2 Factors and column allocation to the standard 16-run two-level factorial

design for Example 2.1. .
Factors
1 (S) Screw speed
2 (T) Temperature
3 (M) Moisture
4 (V) Thickness
5 (H) Holding pressure
6 (B) Booster pressure !
7 (C)Cycletime
8 (Q)Gatesize
Column allocation
S TMVHBCG
012 3 45 6 7 8 9101112131415
1 + =+ -+ + - -+ -+ - -+
2 + + - - - - 4+ + - ~+ + ++ - -
3 + - 4+ - - ¥ - + - -+ + - 4+ -
4 + + + + - - - - - - -+ 4+ 4+ 4+
5 4 - = + + - - 4+ < + 4+ - - + 4 - “
6 + + - - + 4+ - « - o 4 4+ - - + + ‘
T + = + = 4+ = 4+ = =« + = 4+ = + - + |
8 + + + + + + + + - - 5 - - o . . - |
9 + - - 4+ - + + -+ = -+ - + + -
10 + + - - = - + + + + - « - - + ¢
11 + - + « - + = + 4+ - + - - 4+ - +
12 + 4+ + + - - - - 4+ + 4+ + - - - -
13 4+ - = + 4+ = « + 4+ = = 4+ + « - +
14 + + - - + 4+ - - 4+ 4+ - - + 4 - -
15 + - + - 4+ « 4+ = 4+ =+ 4+ - 4+ - + -
16 + + + + + + + + + + 4+ + + + + +

A W WU AR

. .
T L AT .

RO S N B Pl S 3% BS A% Y
R ou R utats

< ~ f - ‘a ® ~.
< '\t‘- {




e m s s wmriw!‘mmm

93

Table 3.3 Posterior probabilities p;* of factors being active, Example 2.1, 0=0.3,
k=11, k,=3.3, interactions between three or more factors assumed inert. Below are

the column contrasts and their alias strings.

Factors Posterior probability
1 (S) Screw speed 875
2 (T) Temperature 400
3 (M) Moisture .002
4 (V) Thickness 004
5 (H) Holding pressure 1.000
6 (B) Booster pressure 998
7 (C)Cycle time 003
8 (QG)Gatesize .009
column contrast alias string
1 -0.6 12+34+56+78
2 04 13+24+57+68
3 -0.6 14+23+58+67
4 4.6 15+26+37+48
5 09 16+25+38+47
6 -0.2 17428+35+46
7 03 18+27+36+45
8 -1.2 1
: 9 0.7 2
10 0.1 3
11 0.3 4
12 -5.5 5
13 33 6
, 14 0.1 7
5 15 -0.6 8
3
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have a large main effect, the two largest interactions could be explained by the effect
of variable 2 (as well as variable 1) interacting with the active variables 5 and 6. Vari-

able 1 received higher posterior probability because of its larger main effect.

Alternatively, if variables 1, S and 6 were truly the active factors, there is one
other variable which would be difficult to separate from those three, and that is vari-
able 2. The design collapses into a full factorial in any combination of four factors

which includes variables 1, 5 and 6 except the combination 1, 2, § and 6, for which the

design collapses into a replicated half fraction. Thus the three two-factor interactions

among the variables 1, 5 and 6 are confounded with the three two-factor interactions
between 1, 5 and 6 and variable 2. The structure of the design dictates that, given that
1, 5 and 6 are the active factors, it will be more difficult to accumulate evideni:e
against variable 2 than the remaining four factors. This phenomenon is reflected in

the results of the Bayesian analysis.

In Figure 3.1 the posterior probabilities are plotted as a bar plot, with boxes indi-
cating the range for each probability over different combinations of a=0.2, 0.3 and
04, k (=5, 11, and 15, and k 5=2, 3.3 and 6, only taking those combinations with
k 1>k 5. The posterior probability for factor 2 is the only on¢ which changes enough
to affect conclusions about the experiment. Conclusions about this factor depend
upon assumptions about the frequency of active factors and the relative size of main
effects, interactions and inert contrasts, and these assumptions are reflected in the

values of a, k ; and k 5. In particular, if knowledge of these parameters is vague, vari-

able 2 can not be safely eliminated.
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Figure 3.1 Posterior probabilities {p;'} that factors are active, Example 2.1. Solid

UV TS o FAURPRINETLIL: ., -‘-“'}’}.l"'l:!tmé

R
d . lines indicate values for a=0.3, k ;=11, k,=3.3, boxes indicate range of values for dif-
ferent combinations of «=0.2, 0.3, 0.4, =5, 11, 15, and k,=2, 3.3, 6.

-

»
Lol
* e o.. —
PR

g 1.0 - e e ppp e e e

:l 0' [+ ] []’ :
. 2
i £y
3
§

}

o _

& p

3 g
¢ R Y o ¥ e e o d e eceoesoe e d e o afe 2o e o coeenaaea

. 8
I
n n 00
none 1 2 3 4 5 6 7 8
active
factor number

?.Q‘
ﬁz,i
4

PINCINR S -
- K -
o .

R, W A A ST W, T, B A

RS R AR SRR RS (X
AL CARR SO \.'_-.‘C:V\' =
e \

S NN
S NS LS - A
TGS HEELILREY P8 SRS

s




RS
N : 96
Suppose now that the assumption that three-factor interactions are inert is
dropped. Although this is a very reasonable assumption in practice, it will be interest- .

ing to observe what occurs when it is dropped. The posterior probabilities of the fac-

tors were recomputed based on the new set of assumptions and are presented in Table

N
E- 3.4. The evidence for variables 5 and 6 is still strong, but the posterior probabilities
e for variabies 1 and 2 are now almost equal. The reason can be found in the revised
v alias strings for each contrast in Table 3.4. The contrast associated with the main
': effect of variable 1 is confounded with the 256 interaction. Now that this contrast,
% which is a bit too large to attribute entirely to noise, can be associated with an effect
'.: of variables 2, 5§ and 6, the evidence for variable 2 is stronger, and the evidence for
\J variable 1 is somewhat weaker. This alternative analysis was presented to demon-
) strate that an experimenter who might have eliminated variable 2 based on the previ-
% ous analysis would have depended heavily on the assumption that three-factor interac-
g ‘ tions were inert. ‘ .
: : There are two separate issues to consider when making assumptions: the reasona-
3:\: bility of the assqmptions, and the dependence of the conclusions on the assumptiﬁns.
» It was shown for Example 2.1 that conclusions could be sensitive to cﬁoice of prior
}'} parameters and the assumption that three-factor interactions are inert. While the
", f‘ reasonability of such assumptions is not questioned, it is important to know when con-
;. clusions depend on assumptions even when the assumptions are well-based. :
E: To demonstrate further the point made about confounding when there are R-1 .

active factors for a design of resolution R, consider the following exercise. Suppose
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, Table 3.4 Posterior probabilities of factors being active, Example 2.1, a=0.3, k=11,

.-”Js;

33 3 k,=3.3, interactions between four or more factors assumed inert. Below are the i
2 d column contrasts and their alias strings (only three-factor interactions among the plau- |
sl sibly active factors 1, 2, 5 and 6 are shown). |
N

N ’ |
N Factors Posterior probability

1  (S) Screw speed .608

oo 2 (T) Temperature 537

32Y) 3 (M) Moisture .000

10 4 (V) Thickness .000

e 5 (H) Holding pressure 991

1 6 (B) Booster pressure 942

o 7 (C)Cycle time 000

¥ 8 (G)Gate size 000
«'-:'.'Q column contrast alias string

. - -0.6 12+34+56+78

M 04 13+24+57+68
o 06  14+23+58+67
e 46 15+26+37448

T 09 16+25+38+47

-0.2 17+28+35+46
-0.3 18+27+36+45

-1.2 1+256
0.7 2+156
0.1 3
0.3 4

-5.5 §+126
38 6+125
0.1 7
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the three factors 1, 5 and 6 were the onl); active factors. Their activity could be mani-
1;3: fested in several different combinations of main effects and interactions. Assuming .
the 156 interaction is inert, that leaves three main effects and three two-factor interac-
tions among the active factors. For purposes of illustration, artificizl data will be
v created to explore the relationships among the factors 1, 2, 5 and 6 under these cir-

cumstances. Suppose main effects are always either 2 or 0, and two-factor interac-

';3 tions are either 1 or 0. Since each effect can take on either of two values, there are
f. 26=64 possible combinations of main effects and interactions. For each combination,
_ a vector of observations y is generated, with no error component, and the posterior
f probabilities { p;" } are computed, with 0:=0.3, k ;=11 and k ,=3.3.

Of the 64 possible combinations of the six effects, 23 correspond to situations

! ": when not all three factors are active, for example when all six effects are zero. These
: " are eliminated from further consideration. The remaining 64-23=41 can be
, | represented by 12 distinct combinations. For example, there are three ways to have .
1-: three non-zero main effects and one non-zero interaction, but each of these gives the
E: same pattern of values for the posterior probabilities. The 12 distinct combinations
-1 and the probabilities { p;*} for factors 1, 2, 5 and 6 are presented in Table 3.5. (The
_3 % remaining factors received posterior probability of zero, to two decimal places, for all
E 12 combinations).
4. As seen in the table, there are many situations in which factor 2 receives ’
'j.' significant posterior probability, despite the fact it is actually inert and there is no

error component in the data. The combinations for which it was easiest to detect the
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Table 3.5 Posterior probabilities of factors being active over the 12 distinct combina-

tions of active effects for the active factors 1, 5 and 6, @=0.3, k ;=11, k5=3.3. The first
six columns give the values assigned to the main effects and interactions among fac-

tors 1, 5 and 6, and the last four columns give the posterior probabilties for factors 1,

2,5and 6.
Posterior
Effects Probabilities
bl bS5 b6 b1S5 bl6 bS6 1 2 5 6
2 2 2 0 0 0{100 .01 100 1.00
2 2 2 1 0 0] 100 .09 100 100
2 2 2 1 1 0] 100 .21 100 100
2 2 2 1 1 11100 30 100 1.00
2 2 0 0 1 0| 100 .54 1.00 54
2 2 0 1 1 0| 100 .59 100 .59
2 2 0 0 1 1110 59 100 59
2 2 0 1 1 1100 .62 100 .62
2 0 0 1 1 0| 100 .74 74 74
2 0 0 1 0 1({100 .74 74 74
2 0 0 1 1 1} 100 .76 .76 .76
2 0 0 -0 0 1} 100 .99 01 01

PP SO
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truly active factors were those in which all main effects were large. As main effects
were dropped it became more difficult to separate factor 2 from the other three factors. .
This is because the assumption that main effects are larger and occur more frequently
than interactions has been incorporated into the model, and situations for which this
does not hold can lead to these unexpected patterns of probabilities. However, on the
premise that the assumption about main effects is basically sound, these troublesome
situations should not be frequent. Note also there was only one corabination where
active factors did not receive large probabilities, and this was the combination where
there was a nonzero interaction between factors 5 and 6, but their respective main

effects were zero.

Two conclusions are apparent from this exercise. First, whea there are R-1
active factors in a design of resolution R, it is sometimes not possible to identify the
correct factors exactly, even though the design projects into a full factorial in the R -1
factors. Fortunately, it will usually be possible to restrict attention to Some subset of o
variables, and it would be rare that active factors would be excluded from this subset
due to inherent properties of the design and analysis (active factors may be concealed
by noise). In the example above it was possible to narrow down to four of the original
eight variables. A follow-up experiment such as the one described in Box, Hunter and
Hunter (1978), p. 413, can be implemented to eliminate any remaining inert factors.
Second, the Bayesian analysis provides a good method for identifying the likely sub- -

set of variables by combining prior assumptions, properties of the experimental design

and information in the data. Factors such as factor 2 in the above example
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which cannot be safely eliminated because of the structure of the design, are identified
by their non-negligible posterior probability, as well as those factors which are more

obviously active.

The above exercise was repeated with pseudo-random normal errors added to the
artificially generated observations, 100 trials for each combination. The average pos-

terior probabilities achieved over the 100 trials agreed closely with those in Table 3.5.
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3.5. Robustness and the Assumption of Normal Errors

Sensitivity of the Bayesian analysis to the assumption of normal errors is
explored in this section. As described by Box and Tiao (1973), the idea of robustness
has two facets, criterion robustness and inference robustness. Criterion robustness is
concerned with the performance of a statistical procedure derived from one set of
assumptions when a different set of assumptions is true. A procedure, or criterion,
would be robust if it performed similarly under both sets of conditions. For example,
when estimating the mean of a population, normal theory confidence limits around the
sample mean may still apply approximately when the data are non-normal, because of
the central limit theorem. Inference robustness is concerned with the comparison of
procedures derived from different sets of assumptions. If the procedure derived from
assumptions A ; leads to nearly the same inference as the procedure derived from
assumptions A ,, then that inference would be robust. For example, measuring the
sensitivity of the posterior probabilities to choice of o and k, Section 2.3.2, dealt with
the question of inference robustness. As a general principle one would only be con-

cerned about robustness over reasonably plausible assumptions.

To assess the robustness of inferences from the posterior probabilities { p;} or
{p;"} with respect to choice of érror distribution, it would be necessary to derive new
formulas for these probabilities based on some non-normal distribution. However,
working with reasonable alternative distributions such as the ¢, double exponential,
rectangular, etc., the numerous integrations in the expression for the posterior proba-

bilities cou!d not be handled analytically, Multi-dimensional numerical integration
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1 ]
A also proved to be intractable, and this issue is left for future consideration. "
E The issue of criterion robustness to the assumption of normality is more straight-

.' forward. In the following sections the results of simulations designed to explore this

}: issue are described.

= 35.1. No Active Effects

::_",- For the first set of simulations data were generated with no active effects present.

Behavior of the posterior probabilities { p;} and { p;"} was observed over four error

« distributions: normal, rectangular (a platykurtic or light-tailed distribution), # with 3

::j degrees of freedom, abbreviated by ¢3 (a leptokurtic or heavy-tailed distribution), and

\ skew normal (errors were generated from a normal distribution with zero mean, and

'j\..:: positive values were multiplied by a constant greater than one to create a skewed dis-

- tribution; the constant was chosen to give a coefficient of skewness of 1, equal to the

. skewness of a chi-square random variable with 8 degrees of freedom, for example).

For each of these distributions, 100 pseudo-random samples of size n=16 and stan-

;’ dard deviation 1.0 were generated, and for each sample the n~1 othogonal contrasts

" were obtained from the design array in the usual way. From these, the posterior pro-

babilities { p;} and {p;"} were computed for each sample, assuming a 2% two-level

design was carried out, with a=0.2 and k=10 for computing { p;} and a=0.3, k ;=11
.j': and k ,=3.3 for computing {p;" }.
‘;‘ For each error distribution the 100 sets of posterior probabilities were summar-
f ’ ized and plotted in the following way. Because there were no real effects, the varia-

*’ tion in the probabilities for each column (or factor) are roughly the same. Thus it is
".'
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more informative to order the probabilities for each sample and then examine the
behavior of these, and the probability of no active columns (or factors), over the 100
generated samples. For example, the location and variation of the maximum probabil-
ity from each sample in relation to the probability of no active columns is of primary
interest. In Figures 3.3 and 3.4 the median probability for each category (none active,
largest probability, second largest probability, etc.) is plotted as an asterisk. A box
around the asterisk represents the inter-quartile range over the simulations. Vertical
lines from the ends of this box extend to the upper and lower fifth percentiles (5%,
95%). This is illustrated in Figure 3.2.

On the left in each of Figures 3.3a-d the posterior probability of no active
columns is plotted. Since the data were generated with no real effects, this value is
expected to be larger than the other probabilities. Although it is apparent from Figure
3.3 that this does not always occur, i.e., the largest column posterior probability is
often larger than the probability of no active column§, this is partly due to the low
prior probability of no active columns, which is (1-.2) 1 = .035. Likewise the prior
probability that the largest contrast is active is something in the neighborhood of one
minus this probability, or .965. Thus it is difficult with only 16 observations to
reverse these probabilities. It is encouraging just the same that 75% of the time the

largest column posterior probability is still less than 1/2 over all four distributions.

Comparing the patterns of variation in the posterior probabilities across the four

error distributions, they are in excellent agreement. The only notable deviation is the

smaller column posterior probabilities when the ¢4 and skew normal distributions
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Figure 3.2 Plotting convention for Figures 3.3-3.6. The asterisk indicates the median
value over the simulations, the box extends from the lower to the upper quartile, and

vertical lines extend to the upper and lower fifth percentiles.

upper 5%

upper 25%

* median

lower 25%

lower 5%
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Figure 3.3a Plot of posterior probabilities { p;} over 100 simulations, normal errors,
no real effects, ®=0.2, k=10. The column probabilities p,,...,p ;5 were ordered for .

. each simulated sample so that, for example, the label 1 on the x-axis refers to the pro-
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bability associated with the largest contrast. See Figure 3.2 for explanation of plotting
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Figure 3.3b Plot of posterior probabilities {p;} over 100 simulations, rectangular 3

3 , : . p
) errors, no real effects, ®=0.2, k=10. See Figures 3.2, 3.3a for plotting conventions. :
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Figure 3.3c Plot of posterior probabilities {p;} over 100 simulations, ¢4 errors, no

)
b real effects, @=0.2, k=10. See Figures 3.2, 3.3a for plotting conventions. .
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Figure 3.3d Plot of posterior probabilities { p;} over 100 simulations, skew normal

errors, no real effects, ®=0.2, k=10. See Figures 3.2, 3.3a for plotting conventions.
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were used. This difference from the observed pattern for normal errors is small and in
the direction of being more correct, i.e., a smaller posterior probability of being active .
when the contrast is indeed not active. For comparison, the numerical values of the
percentiles of the posterior probability of no active columns and the maximum column

probability are given in Table 3.6.

The behavior of the factor posterior probabilities {p;*}, Figures 3.4a-d, was
very similar to that observed for the column posterior probabilities { p;}. The proba-
bility p (0)‘ of no active factors was larger than 1/2 almost 50% of the time for all four
distributions. The overall patterns of variation of p (0). over.the different distributions
agree very closely. The largest factor posterior probability is often larger then p (0).'
but by the same argument as for the column probabilities, this is neither surprising nor \ H
alarming.

The patterns of variation in the factor posterior probabilities for the rectangular
and t 3 distributions differed somcwﬁat from that observed for the normal case.
Again, the probabilities for the ¢ 3 distribution were lower, but deviations in that &w- i
tion are not troublesome. For the rectangular distribution, there was a tendency to get
slightly higher probabilities, although, for example, the median maximum probability
is the same as for the normal. The fear is that the Bayesian analysis will find active

contrasts when there are none, because the errors are not normal. The difference

ALY XTI R L

observed for the rectangular error distribution is not large enough to validate that fear.
The numerical values of the percentiles of the posterior probability of no active fac-

tors and the maximum factor probability are given in Table 3.7.
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Table 3.6 Percentiles of the distribution of a) the probability of no active columns and
b) the maximum column probability, over 100 pseudo-random error samples of size n
= 16 from the normal, rectangular, ¢3 and skew normal distributions, added to a data

vector y of zeroes (no real effects present). Probabilities were computed with & = 0.2,

and k = 10.
Probability of None Active

Percent Normal Rectangular ¢3  Skew Normal
95% 496 494 496 493
75% 451 448 462 454
50% 393 389 422 398
25% 314 280 336 315
5% 13§ 050 171 .190

Maximum Column Probability

Percent Normal Rectangular f;  Skew Normal
95% 929 939 755 756
75% 472 494 388 434
50% 281 310 233 .288
25% .165 185 153 170
5%  .100 114 104 102
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Figure 3.4a Plot of posterior probabilities { p;° } over 100 simulations, normal errors,
2 no real effects, a=0.3, k=11, k,=3.3. The probabilities p,",..., pg_ were ordered so
that, for example, the label 1 on the x-axis refers to the largest probability from each

g sample, etc. See Figure 3.2 for explanation of plotting symbols.
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Figure 3.4b Plot of posterior probabilities {p,-'} over 100 simulations, rectangular

—

errors, no real effects, a=0.3, k=11, k,=3.3. See Figures 3.2, 3.4a for plotting con-

ventions. 1
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. Figure 3.4c Plot of posterior probabilities { p;*} over 100 simulations, ¢4 CITors, NO

AL

:3 real effects, @=0.3, k=11, k5=3.3. See Figures 3.2, 3.4a for plotting conventions. ©)
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B B B

Figure 3.4d Plot of posterior probabilities { p,-'} over 100 simulations, skew normal

errors, no real effects, ®=0.3, k=11, k,=3.3. See Figures 3.2, 3.4a for plotting con-

ventions.
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« Table 3.7 Percentiles of the distribution of a) the probability of no active factors and
v\{:

b) the maximum factor probability, over 100 pseudo-random error samples of size n =
o 16 from the normal, rectangular, ¢ and skew normal distributions, added to a data
“ vector y of zeroes (no real effects present). Probabilities were computed pretending a
: 2 284 design was carried out, with &= 0.3, k; = 11, and k5 = 3.3.

“»‘-.

Probability of None Active
Percent Normal Rectangular ¢3  Skew Normal

- 95% 636 625 639 .619

i 75% 556 555 560 536

o 50% 491 468 522 479

0 _ 25% 373 302 443 335

o 5% 135 052 213 113

{8 | Maximum Factor Probability

E“ Percent Normal Rectangular t5  Skew Normal

e 95% 817 926 707 832

. 75% 444 561 333 500 '
Y 50% 283 281 227 279

i 25% .168 .186 .148 175

z:;-: 5% 103 115 095 .100

5
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-l

When there are no real effects present, non-normality of the errors does not

appear to sigﬁﬁcantly bias the posterior probabilities. As the frequency of having no

At il Pl alad 5

real effects may tend to be low in practice, another set of simulations was carried out

for the case where there are real effects present.

3.5.2. Five Active Contrasts

The second set of simulations is concerned with the behavior of the posterior
S probabilities under different error distributions when there are real effects present. A
< standard observation vector y was generated by taking the five largest contrasts from

Example 2.1 corresponding to columns 3, 5, 8, 10 and 12, and setting the remaining

PR el el

contrasts equal to zero. Thus y is the vector of 16 observations which would give the
five non-zero contrasts mentioned above and ten contrasts exactly equal to zero. For

each of the four error distributions, normal, rectangular, ¢ 3 and skew normal, 100

et Sl e

samples of pseudo-random errors were generated with mean zero (median zero for the

skew normal) and second moment of 1.0. The value of 1.0 was chosen because it was

¥ o 7%

o

close to the estimated variance for the real data of Example 2.1. Each individual error

G

vector was added to the vector y, and the posterior probabilities { p;} and { p,-'} were

computed, again assuming a 2 ¥4 design was carried out, with @=0.2 and k=10 for

ey

o

computing { p;} and @=0.3, k =11 and & 5=3.3 for computing the { pi'}

—-ta

{ b

For each error distribution the 100 sets of posterior probabilities were plotted

with the same plotting conventions described in Figure 3.2. Because there were real

- g

’ effects present, the probabiiities weren't ordered as in the previous set of simulations.

3

. The probabilities {p;} are plotted in Figure 3.5a-d, and the probabilities {p;"} are
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plotted in Figure 3.6a-d.

The posterior probability p gy of no active contrasts as well as the probability
P (0). of no active factors remained essentially zero over all 100 simulations for each
of the four error distributions. Non-normal errors do not tend to inflate the probability

of none active when real effects are present.

Now consider the probabilities { p; } of Figure 3.5. The probabilities p 3, p 5 and
P 12 corresponding to the three very large contrasts remain uniformly close to one
over the 100 simulations and over all four distributions. Similarly the probabilities
corresponding to the ten inert contrasts tended to be fairly close to zero, and exhibited
the same sort of variation for each distribution. One could safely conclude that non-
normal errors would not ‘lc_ad to a gross error of judging an unquestionably active

effect as inert or an obviously inert one as active.

The probabilities p g and p ;¢ corresponding to the marginally active contrasts of
columns 8 and 10 exhibit the most variation over the 100 simulations, and the patterns
of variation among the four distributions are different. The skew normal case agreed
quite closely with the normal case, while the rectangular and ¢ 5 distributions tended
to give larger values to probabilities p g and p ;o. The implications of this are not par-
ticularly worrisome. First of all, the preferred error in most instances would be to
mistake an inert contrast for an active one, rather than missing a real effect. Larger
posterior probabilities for marginal contrasts would have that effect. Secondly, con-
trasts with probabilities in the interval (0.2,0.8) would generally be judged to need

further investigation before very firm conclusions could be made. If a probability of
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. Figure 3.5a Plot of posterior probabilities { p;} over 100 simulations, normal errors,
_;' o=1, a=0.2, k=10, columns 3, 5, 8, 10 and 12 have real effects equal to those from
N
b Example 2.1. The remaining columns were assigned zero effects. See Figure 3.2 for
5 explanation of plotting symbols.
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o Figure 3.5b Plot of posterior probabilities {p;} over 100 simulations, rectangular
:,-_:- errors, 6=1, 0=0.2, k=10, columns 3, 5, 8, 10 and 12 have real effects equal to those .
o from Example 2.1. The remaining columns were assigned zero effects. See Figure

3.2 for explanation of plotting symbols.
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Figure 3.5¢ Plot of posterior probabilities { p;} over 100 simulations, 75 errors, 6=1,
a=0.2, k=10, columns 3, 5, 8, 10 and 12 have real effects equal to those from Exam-
ple 2.1. The remaining columns were assigned zero effects. See Figure 3.2 for expla-

nation of plotting symbols.
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. Figure 3.5d Plot of posterior probabilities { p;} over 100 simulations, skew normal
%E errors, 6=1, 0=0.2, k=10, columns 3, 5, 8, 10 and 12 have real effects equal to those "
-
X ]
from Example 2.1. The remaining columns were assigned zero effects. See Figure )
3.2 for explanation of plotting symbols. :
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0.6 were observed rather than 0.4, the investigator’s suspicions about that contrast

would be essentially the same.

Considering now the probabilities {p,-‘} of Figure 3.6, the patterns of variation
in these are in close agreement for all four distributions. The probabilities
corresponding to factors 3, 4, 7 and 8 are uniformly close to zero for each distribution,
and the probabilities for factors 5 and 6 are uniformly close to onc.';. The most varia-
tion was observed in the probabilities associated with the factors 1 and 2, but the pat-
terns of variation were very similar across the four distributions. Thus there is no evi-

dence that non-normal errors would have an adverse effect on the { pi' }.

Overall, the variational pattern of the posterior probabilities { p;} and { p‘-.} are
quite similar for the four error distributions with and without active columns, validat-
ing a claim of criterion robustness to the normality assumption for the Bayesian
analysis. At the same time, the results of the simulations also verified that the poste-
rior probabilities lead to sensible inferences, as inert columns and factors consistently

received low posterior probability and active columns and factors consistently

[/

".'4: | received high posterior probability.

“

-

N 3.6. Conclusions

Rey
,ii“' The method derived in this chapter provides an interesting new way of analyzing
t:ﬁ:;- factorial experiments. Its major attraction is how it combines prior assumptions, pro-
t’t perties of the design and information in the data to identify active factors. A unified

analysis of this sort has never really been available before. Varying assumptions

about the size and relative frequency of main effects and interactions can also indicate
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Figure 3.6a Plot of posterior probabilities { p;*} over 100 simulations, normal errors,
o=1, a=0.3, k=11, k,=3.3, five active columns from Example 2.1, factors 1, 2, 5§ and

6 possibly active. See Figure 3.2 for explanation of plotting symbols.
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Figure 3.6b Plot of posterior probabilities { p,-'} over 100 simulations, rectangular
errors, 0=1, =0.3, k=11, k,=3.3, five active columns from Example 2.1, factors 1,

2, 5 and 6 possibly active. See Figure 3.2 for explanation of plotting symbols.
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Figure 3.6¢ Plot of posterior probabilities { p;* } over 100 simulations, ¢ errors, 6=1,

a=0.3, k,=11, k,=3.3, five active columns from Example 2.1, factors 1, 2, 5 and 6

.

possibly active. See Figure 3.2 for explanation of plotting symbols.
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Figure 3.6d Plot of posterior probabilities { p;*} over 100 simulations, skew normal

B T R

errors, 0=1, 00=0.3, k=11, k,=3.3, five active columns from Example 2.1, factors 1,

2, 5 and 6 possibly active. See Figure 3.2 for explanation of plotting symbols.
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. how conclusions depend upon these assumptions.

The robustness study gave very satisfying results. The performance of the pro-

cedure is not heavily affected by a non-normal error distribution.
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‘ CHAPTER 4
BAD OBSERVATIONS IN FACTORIAL EXPERIMENTS
..:' q
:E;’ 4.1. Introduction {
o .
x: i
’ Daniel (1959) has estimated that the frequency of mistaken or bad observations *!
in factorial experiments can reach 10% or higher. Identification of these bad observa- ,
\ tions is especially difficult for unreplicated experiments, when they may be hidden by
1‘\

A biased contrasts wrongly identified as active. The Bayesian methods described in ear-

P
e i

lier chapters are extended here to accomodate the possibility of bad observations, and

Dy 2w

compared with the test (John, 1978) for bad values based on the reduction in the resi-

dhusalRL i\

Y dual sum of squares when suspected observations are deleted.
2, :
:‘.. 4.2. Fixed Model 1
] .
P John (1978) employs the following model for testing for suspected outliers in
\,
S:Z fractional factorials. He supposes the general model
L
o y=Zt+e 4.1)
g
i;:j has been fit by least squares, where Z is the matrix of columns of the design X
l“:
; corresponding to plausibly active effects. If all columns of X could plausibly be
active then active columns must be identified in some way before continuing, and Z
defined to be the active columns. Define r, to be the vector of residuals obtained
o ‘ i from the least squares fit of y. If there are m outliers suspected the model is rewritten
)
\
:
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m
y=ZT+ . 9,-d,- +e, (42)

i=1

where d; is a vector with 1 in the row corresponding to the i th bad value, and 6; is the

(unknown) bias in this value. Suppose each of the models

d,=Zt+e i=1...m 4.3)
is fitted by least squares, and let R be the m xm matrix whose (ij )th element is the

residual from the least squares fit of d; corresponding to the jth suspected outlier of y.
Then the portion of the original sum of squares r,’r, due to the m suspected bad

values is
SSp=Tp'R7'T,, , 4.4)

where r,, is the vector of elements of r, corresponding to the m supposed bad values.
The sum of squares SS,, can be compared to the new resdidual sum of squares
r,’r,~SS, in an F-type test of significance, and for m=1 or 2, John (1978) gives
details of the correction to the significance probability t:or selecting the largest residu-
als for testing.

For a two-level orthogonal design with

Z’Z=nl, ,

p the number of columns of Z, and one suspected bad value, the sum of squares for

outliers is

ri
8§y = 4.5)

1-pin

v v s -
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where r; is the residual corresponding to the suspected bad value.

John’s method is conceptually simple and quite easy to use for one possible bad
value. The test statistic is computed easily and the significance probability can also be
estimated easily. However, for two suspected bad values, obtaining the maximum
SS ; and its estimated significance probability is more difficult, and a subsequent test
is necessary to determine if both or only one of the suspected bad values is actually an

outlier. John presents no theory for the possibility of more than two bad values.

There are some drawbacks to the approach. The possibility of more than one bad
value is handled only with difficulty or not at all. The method also depends upon a
fixed model identified in advance which may be in error due to the presence bf bad
observations. This is often a minor error as the model can be corrected if and when

bad observations are identified.

4.3. A Bayesian Approach

Box and Tiao (1968) detailed a Bayesian approach to the outlier problem in con-
junction with the use of the scale-contaminated normal error distribution, which can
be written

(1 -)N(©0,6%) + ayN(0,k%6%).

With high probability 1-0i; an observation is generated by the usual normal model
with variance 62, and with small probability o, the observation has much larger vari-

ance k 220 2, (The subscripts on &, and &, are to distinguish them from the parameters

a and k used previously and henceforth denoted by @, and k;). This outlier model
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can be incorporated into the models employed in previous chapters for analyzing fac-
torial experiments. Below are described the details for extending the model for deter-
mining active column contrasts, Chapter 2. Extending the model for active factors,

Chapter 3, is exactly analogous.

Let o, be the prior probability that a particular column is active, and c, is the
probability that a particular element of y has inflated variance & 226 2, The following

notation is used in describing the model:
a (. )= event that a particular set of ¢ columns is active.
a(,) = event that a particular set of » observations are “outliers", i.e., have
inflated variance.
A(re)=8(r)M3(cy
X (¢) = columns of X corresponding to a . ).
T(c)= vector of true contrasts corresponding to a(cy .

X(rc) = rows and columns of X corresponding to active columns and bad

valuesof a(, o).
¥(-) =Trows of y corresponding to bad values of a(, ().

&y =1- k2

Then, the sampling distribution of y, givena, . ), is
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pItoiag ) =2r) "6 "k, x (4.6)

-1 ,
CXP{;"; [(.‘I- Xe)te) 0=X(c)tcy-

%U(r)‘x(r.c)‘(c))'(’(r)‘x(m)f(c))] } :

The prior distribution of t (. and © are again given by (2.2). The posterior distribu-

tion of T(.)givena(, c)is

P(T(c)|B(repy) & {0"‘"“?‘%” x @7

-1 ’
exp{—zzi [S(,.c)(‘t(c))'l'f(c) l‘c‘t(c )] }dc

~{n+c)/2
=¥ k™ [s(r.c)(‘(c))”(c )'rc‘(c)]

where
Sire)Fe) =0 =Xyt GT-X(c)Tc) 4.8)
=020 ()~ X(re) e Otr) = X(re) (e ) -
Now let
Gire)=Te +X (o)X ()= 02X (rc) X(r) (4.9)
and
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by p Tre)=Gire)X ()Y = 02X () Y (r)) - (4.10)

Then it follows that
Stre)TeP+ Ty Tetc)= (4.11)

h a ’ a L) a ’ -
Hi Ce)=Tre ) Gre)Te) = Tre D+ Sr e )T r e D+ ey TeTire) -

J‘j Thus the posterior density of T () given a, . ) must be

T(n+c-1)2) |G(re)l 2
N((r-1)2) (a(n-1)s(, )2

PR(c)larepy)= 4.12)

A

Peets
SN
TWE N W

~(n+c)2
1+ ®(e)=Tre) G (re)Te) = T(r )
(’l-l)S(,")

U,

e

.,.
ARLLAT
A S S

A
v,

which is a (c+1)-dimensional multivariate ¢ density with n~1 degrees of freedom,

LA
o ~—
il

mean vector T, . ), and dispersion matrix $(re)2G (r ) Where

Y N

*

| RN
e

Stre)Ere D * Trey Telre)

4.13
n-1 ¢ )

‘(r.c) =

ol

P

Py
Qs o

Then, following equations (2.3)-(2.5), the posterior probability of the event a(,c)can

Y

A

A

be written
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o °[@ 1" . I

p(a(r.c)IY) o - 1— Y~"ky X 4.14) :
1 @ | :

[ ~(n-1)2 ’

1G 00)l 2 |5¢r.c) :

1G (r.c)l 12 L-‘(om2 4

which depends mainly on the prior probability of the event and the sum of squared
residuals when the supposed bad observations are downweighted by the factor k5.

Then the posterior probability that column i is active is

= X pP@uely) (4.15)
(r£):i active

and the probability that observation y; is bad is

i= X P@unly. (4.16)
(re) jbud

4.3.1. Some Computational Aspects

To obtain the probabilities { p;}, i =1,...,n-1, and { g;}, j=1,...,n, the probabili-
ties p(a(,)|y) must be computed for all 22*~! combinations of possible active
columns and bad observations. For n=16 there are over two billion such combina-
tions. However, the grand majority of these will have negligible posterior probability.
Then, for example, attention may be restricted to events a re) with r and ¢ less than
some reasonable upper bounds. The number of possible bad observations especially

could be reasonably assumed to be less than two or three in most cases for a 16-run

design. Once this assumption is made, most events of interest will have » <c, so that
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) the following derivations will also reduce the computing time somewhat.

3

A

"; The following identity follows from the formula for the inverse of a sum of ' :
g matrices: |
o !
Gl y=Gey+

- (re) = (0c) {
N -1 1
Y - ’ - ’ -1

‘ G 0 X (7 ) [I—%X(,,,G(o‘,, X(re) ] X(re)G0e)-

o : ]
o It then follows that

b |
e Tre)=T(0c) = @.17) ;
1

-1 N
0.6 (0c X (r ey [1‘4’zx(r.c)G('ol.c X (re) ] Oy =Xre)re)

5, forp @ieHly) must still be computed. This determinant can be related to the deter-

) ; If A is defined by \
\‘
g t ’ -l ’ -l a
A= 1-0X (G0 X (re) | Giry=Xre)Poe) (4.18) .
' .
,‘f then
Cd
‘:‘3 ~ - h
g T(re) = T(00) = $:G (0.0 X () A - (4.19) -'
N Note that A is the solution of a 7 xr linear system involving the residuals correspond-
E W
S ing to suspected bad observations, obtained from the calculations assuming no bad ¢
o
. values, whereas ‘E(, «c ) previously was defined as the solution of a (c+1) x (c+1) sys- %
¢ :
o .
:l*' tem. The matrix inverse G (-ol.c) in (4.18) can be obtained easily because the matrix 5
"
Y .
N G (0. is diagonal. The (c+1)x (c+1) determinant |G (r.c)| in the expression (4.13) . !
:
)
)

s,
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minant
1= ¢2x(r,c )G(-Ol.c )x(’-l-' )' I
which is the determinant of the 7 x 7 system from which A is computed.

Note that
G(r.c)=G(0.c)[1-4’:3(3.:)"0.:)"‘0.:)] |
so that

1G ()l = 1G (o)l 11=02G 0 ) X(re) Xrie ) -

Rao (1973) shows for A, D nonsingular, not necessarily of the same dimension,

AB
det[c D]= |A| ID-CA-'B| =|D| |JA-BD"!C].

Therefore let

. A=-G(°.c)/¢2, B=X(,;c)'
C=-X(,.¢). D=I' .

This implies that

1-G (0, )/ $2] 1T, = 02X (, £1G G ) X (rcy |
=1-G(0e)/ 902+ X(rc) X(re)l »

which implies

L =0X (616 0 X (riey 1= e w1 =626 0 )X (ricy X (10|

b= 4 g
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so that
1G (v )l =1G (o)l 1L =0 X ()G @B X (r ) | - (4.20)

The implication of these identities is that for each combination of ¢ active con-
trasts assessed, the probabilities p (, . can be obtained from p (¢ over all values of

r by solving a r X r linear system rather than a c+1 xc+1 system.
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44. Example
The following example is taken from Box and Draper (1986).

Example 4.1 Four factors were studied in a full 24 factorial experiment. The design
array and observations are presented in Table 4.1. Applying the Bayesian analysis of
Chapter 2 to identify the active contrasts of the experiment, with a=0.2, k=10, the
posterior probabilities are plotted in Figure 4.1. Main effects of factors 2 and 3 stand
out from the other effects, but evidence for their activity is dubious because of the
relatively low probabilities obtained. A plot of the residuals, Figure 4.2, taken after
including terms for main effects 2 and 3 as well as the mean, reveals that the residual
corresponding to observation y 13=59.15 is much larger in absolute value than the oth-
ers. A normal plot of the contrasts, Figure 4.3, reveals a gap in the cluster of contrasts
near zero, another sign (Daniel (1959); see Chapter 1) that there is a possibly bad
observation.

Applying the Bayesian analysis now allowing for the possibility of bad values,
with a,=.05 and k=5, the posterior probabilities { ;} of observations being bad and
{p;} of contrasts being active were computed and are plotted in Figure 4.4. The
values of oy and k 5 chosen for illustration were suggested as moderate values by Chen
and Box (1979). (The computaﬁons were carried out assuming there were six or
fewer active contrasts and two or fewer bad values, an event of prior probability .94).
The value of ¢ 3 is very close to one, suggesting strongly that observation y 4 is bad.

The affect on the probabilities { p;} of the automatic downweighting of y ;3 achieved

by the Bayesian analysis is to make the posterior probabilities for main effects 2 and 3
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j {:4 Table 4.1 Design array and observations for Example 4.1, a full 2* factorial experi-

x ment from Box and Draper (1986).

2 factors

. ron 1 2 3 4 y

b 1 - - - - 47146

¥ ‘.4:{ 2 + - - - 49.62

e 3 - + - - 4313

: 4 + + - - 4631

o 5 - - + - 5147

r 6 + - + - 4849

o 7 - + + - 4934

P 8 + + + - 4610

e 9 - - - + 4676

A5 10 + - - + 4856

e 11 - + - + 44383

= 12 + + - + 4445

- 13 - - + + 59.15

4 + - + + 5133

o 15 - + + + 4702

\; 16 + + + + 419

- observed ' observed
2N column(effect)  contrast column(effect)  contrast
ol O(mean) 48.25 8(4) 101
us 1(1) -0.80 9(14) -0.58
o 2(2) 422 10(24) -1.18
I 3(12) 0.91 11(124) 0.72

- 4(3) 3N 12(34) -1.49

. 5(13) -2.49 ] 13(134) 0.40
e 6(23) -0.80 14(234) -1.58
e 7(123) 1.20 15(1234) 1.52
o :




Figure 4.1 Plot of posterior probabilities { p;} for Example 4.1, 2=0.2, k=10, assum-

ing no bad values.
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Figure 4.2 Plot of residuals versus run order after fitting model with 2, 3 main effects,
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!
’ Figure 4.3 Full normal plot of observed contrasts, Example 4.1. g ‘
N p—
*+ 3
* 1234 4
- L .
g
¥ * 123
o * 4
<) . 12 |
: 8 * 124
— o - - 134
g * 14
. a * 1
c * 23
. 24
- * 234
i v I
| * 13
F 2
. o i ] ! ! ] ) <
] ' b
e -3 -2 -1 0 1 2 3 !
T
NN size of conrast
-

A "




LA R R N '2\",",

.lrl' 3y .A, 'A. .l. .(.

Al WgTana

144

Figure 4.4a Plot of posterior probabilities {¢;} that observations are bad, Example

4.1, 0,202, k=10, @,p=0.05, k ,=5.
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Figure 4.4b Plot of posterior probabilities { p; } that contrasts are active, Example 4.1,

‘ allowing for possible bad observations, &;=0.2, k=10, 0;=0.05, k 5=5.
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much closer to one. The 13 and 134 interactions, previously hidden, also receive

much higher posterior probabilities.

Applying John’s method for testing for the significance of the possible outlier
¥13, an F-statistic of 33.04 on 1 and 12 degrees of freedom is obtained. The
estimated significance probability, correcting for selection of the largest residual, is
.0015. Thus y 3 is judged to be an outlier, and assuming subsequeht investigation did
not reveal the correct value for this observation, it is replaced by its least squares
missing value estimate of y(3=51.56. The posterior probabilities { p;} were recom-
puted based on the revised data pretending y ;3 was actually observed, and are plotted
in Figure 4.5. The values are very close to those obtained from the complete Bayesian
analysis in Figure 4.4.

It has been demonstrated that for this example testing for bad values by examina-

tion of residuals after a model has been identified leads to the same conclusions as the

simultaneous identification of active contrasts and bad observatibns via the Bayesian
analysis described earlier. However, the observation identified as bad in this example
was so far removed from the pattern of the rest of the data that any procedure which
! failed to flag it would be a poor one indeed. Thus the procedures compared here meet
| this minimum standard. Suppose now the observation y,3 is replaced by a value
somewhere between the original value of §9.15 and 51.56, namely let y ;3=55.15. The

data shall be reanalyzed by both methods and the results compared.

The Bayesian analysis applied to the new data, not allowing for bad observa-

tions, leads to the posterior probabilities { p;} plotted in Figure 4.6. Main effects of

o
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Figure 4.5 Plot of posterior probabilities { p;} that contrasts are active, assuming no

bad observations, Example 4.1 with y,; replaced by its least squares missing value

estimate.
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Figure 4.6 Plot of posterior probabilities { p;} that contrasts are active, assuming no *

bad observations, Example 4.1 with y ;3=55.15 (midway between the original value

[ LN P

and the missing value estimate).
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variables 2 and 3 are apparently active, and there is some evidence for the activity of
the 13 interaction. A normal plot of the contrasts, Figure 4.7, agrees with this assess-
ment, but the gap which appeared among the apparently inert contrasts for the original
data has now largely disappeared. A plot of the residuals after fitting a model with the
three possibly active effects indicated above, Figure 4.8, again reveals the residual
corresponding to observation y ;5 is the largest in absolute magnitude. Application of
the F -test for rejection of observation y 4 as bad yields an F -ratio of 8.35 on 1 and 12
degrees of freedom and an estimated significance probability of .24. (Applying the
test to the residuals after fitting a model with main effects 2 and 3 only, gave an
estimated significance probability of .16). Thus the observation y ;3 would not be
rejected as bad and the conclusions about active effects stated above would hold bar-

ring any further developments from diagnostic checking.

Applying the Bayesian analysis to the new data allowing.for possible bad obser-
vations, with &;=0.2, 0,=0.05, k ;=10 and k,=5, the posterior probabilities { p;} and
{q;} are plotted in Figure 4.9. The plot of the column posterior probabilities reveals
that when the possibility of bad observations is taken into account, there is evidence
for the activity of the previously hidden 134 interaction, as well as stronger evidence
for the other three effects identified previously, Figure 4.6. The plot of the posterior
probabilities of observations being bad shows there is substantial evidence that the
observation y 4 is faulty. The F -test for bad values failed to identify it as bad because

the fixed model was misspecified due to the presence of the bad observation. If the

model had been specified to include the 134 interaction and the F -test for bad values
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Figure 4.7 Full normal plot of observed contrasts, Example 4.1 with y ;3=55.15 (mid-

-

way between the original value and the missing value estimate). .
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Figure 4.8 Plot of residuals versus run order after fitting model with 2, 3 and 13

o o

effects, Example 4.1 with y4=55.15 (midway between the original value and the

missing value estimate).
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Figure 4.9a Plot of posterior probabilities { p; } that contrasts are active, allowing for
possible bad observations, ©,=0.2, k;=10, 0,=0.05, k,=5, Example 4.1 with .

¥13=35.15 (midway between the original value and the missing value estimate).
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Figure 4.9b Plot of posterior probabilities {q;} that observations are bad, &,=0.2,

k=10, 0p=0.05, k,=5, Example 4.1 with y 3=55.15 (midway between the original
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had been carried out on those residuals, an F -ratio of 29.83 on 1 and 10 degrees of

freedom would have been obtained with an estimated significance probability of .004.

It is not claimed that the 134 interaction would not have been discovered eventu-
ally without the Bayesian analysis, for example by plotting residuals against the vari-
ous factor levels. It has been shown, however, that straightforward application of
existing methodology could have led to incomplete conclusions. Also, it is not sug-
gested that the Bayesian analysis led to the "correct” answer, but it did uncover a plau-
sible explanation of the data, i.e., observation y ;3 might be wrong and the 134 interac-

tion might be active.

The two methods compared here are not that different mathematically in that
both assess the possibility of bad observations according to the reduction in the resi-
dual sum of squares when observations are deleted, or downweighted as in the Baye-
sian analysis. The difference comes from the fact that the Bayesian model, in com-
plete generality, assesses all possible combinations of .active effects or contrasts and
bad observations, whereas the F -fest generally does not. The test for bad values could
theoretically be applicd to all possible niodcls and combinations of bad observations,
but this leads to an exceedingly complex repeated-testing problem, whereas the proper

weighting of all combinations comes automatically in the Bayesian analysis.
The premium paid for the generality of the Bayesian analysis is a sharp increase
in computing requirements. Reasonable assumptions about the number of active con-

trasts and bad observations helps to reduce these requirements. For example, for the

analyses carried out in the previous example, it was assumed there were six or fewer
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active contrasts and two or fewer bad obseﬁaﬁons, eliminating 99.94% of the number
of combinations to be considered while losing events of prior probability less than .07.

Yet, four hours of computing time were required to compute the posterior probabili-

ties { p;} and { ¢;}.
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4.5. Approximating the Posterior Probabilities

An approximation to the full Bayesian analysis is motivated by the (model
identification)-(fitting)- (diagnostic checking) iteration discussed, for example, by Box
and Jenkins (1976), p. 18. At the first iteration the model identification step would
entail identifying active contrasts or factors according to the methods described in ear- |
lier chapters, assuming that errors were independent and normally distributed with
constant variance. Then, residuals are obtained after fitting the model in the usual
way. These are examined for possible departures from model assumptions, and the
model respecified if any appear.

At the first iteration then, it is assumed all errors are independent from the
N(0,62) distribution. The posterior probabilities {p;} that contrasts are active are
computed, not‘ allowing for bad values. All contrasts receiving posterior probability
greater than some value P are identified as agﬁve, P to be chosen possibly after e*z.l-
mining { p;}. The probabilities { q;} that observations are bad can be computed, con-
ditional on the model fixed at the previous step. Those observations with posterior

Aprobabilitics greater than @, @ to be chosen, are assumed to be bad, i.e., they have
variance k,262 If there are no bad observations, the iteration stops. If there are
observations identified as bad, the model is respecified by computing the probabilities
{p;} conditional on bad observations having larger variance. If the contrasts
identified as active at this step are the same as a previous iteration, the iteration stops.

If a new set of contrasts is identified as active, the iteration continues with the compu-

tation of { q;}, etc.
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There is no guarantee that this procedure will converge to a state close to the true

probabilities {p;} and { ¢ j}. It may oscillate; for example, the assumption of no bad

values may lead to one set of active contrasts, which leads to the identification of a

R 18 R

bad observation, which implies a different set of active contrasts, which in turn

implies no bad observations, completing the circle. (This type of oscillation has not

been observed in any examples up to this time). Also, the procedure can and often
does converge to different states depending on the choice of P and Q. However, it
does perform well in discovering various possible explanations of the data, especially
when the approximation is repeated for different values of P and Q. In the end, too,
competing hypotheses can be compared according to their posterior probability ratio,
which can be computed exactly. The procedure is illustrated for the original and
revised data of Example 4.1.

Starting with the original data, the first step is to compute the probabilities { p;}
assuming ho bad values, which was done previously. These are plotted in Figure 4.1.
Choosing P =0.4, main effects 2 and 3 are tentatively identified as active. The proba-
bilities {¢;} were computed conditional on the identified model, and are plotted in
Figure 4.10. Observation y ;3 has posterior probability close to one and any reason-
able choice of Q would lead to this observation being identified as bad. The probabil-
ities { p;} were recomputed based on that identification, and are plotted in Figure
4.11. Main effects 2 and 3 now have much higher probability, and the 13 and 134
interactions could now also be identified as active. The {q;} based on these four

effects being active are almost indistinguishable from the previous iteration and thus
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Figure 4.10 Plot of posterior probabilities { q;} that observations are bad, after one

s e s
P

step of iterative approximation, Example 4.1, 0,=0.2, k=10, 0,=0.05, & ;=5. -
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Figure 4.11 Plot of posterior probabilities {p;} that contrasts are active, after two

-t . steps of iterative approximation, Example 4.1, a;=0.2, k=10, 0;=0.05, & ,=5.
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convergence has been achieved. As a check the posterior probability ratio of the
event that the 2, 3, 13 and 134 effects are active and observation y ;5 is bad, versus the
event that effects 2 and 3 are active with no bad observations, was computed. The

value of 17,186 indicates that there is much stronger evidence for the former event.

For the revised data with y(3=55.15, the probabilities {p;}, assuming no bad
values, are plotted in Figure 4.6. Tentatively identifying the effeéts 2,3 and 13 as
active the probabilities { ¢;} were computed and are plotted in Figure 4.12. The pro-
bability that y ;4 is bad is .37. Choosing Q greater than .37 ends the iteration. Choos-
ing Q so that y;3 is identified as a bad observation, the probabilities {p;} were
recomputed conditional on that assumption and are plotted in Figure 4.13. Effects 2,
3, 13 and 134 all received fairly high pbstcrior probabilities and can be identified as
active. Recomputing the { ¢;} based on this new model gives the values plotted in
Figure 4.14. The probability that observation y ;5 is bad is now close to one and any
reasonable choice of Q results in convergence. Cher;king the posterior probability
ratio of the event that 2, 3, 13 and 134 are active and y 5 is bad, versus the event that
2, 3 and 13 are active and no observations are bad gives the value 47.9, thus giving

more weight to the former combination.

Comparing the "exact" probabilities in Figures 4.4a-b for the original data and
Figures 4.9a-b for the revised data, with the approximate probabilities in Figures
4.10-4.11 for the original data and Figures 4.13-4.14 for the revised data, the values

are in reasonable agreement. While the actual numerical values are not as close as

one might prefer, the inferences following from the computed probabilities agree quite
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’ Figure 4.12 Plot of posterior probabilities { g;} that observations are bad, after one
. step of iterative approximation, Example 4.1 with y(3=55.15, &;=0.2, k=10, 22
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' Figure 4.14 Plot of posterior probabilities {q;} that observations are bad, after two a
G '
2N steps of iterative approximation, Example 4.1 with y3=55.15, 0y=0.2, k=10, 3
2 0y=0.05, k 5=5. 1
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well.
i :
| N
r Reduction in computing time is a major benefit of this method of approximation. i
v For the examples above, while the exact calculations required four hours computing j
time for each complete set of probabilities, the approximations required only 2-1/2
|
! minutes. Both sets of calculations were done assuming six or fewer active contrasts
and two or fewer bad observations. The lower computing requirements would allow
: this assumption to be relaxed when using the approximate method. P
N 4.6. Posterior Distribution of © .'
.ﬁ The posterior distribution of an effect t; for the Bayesian model not allowing for .
& 3
. the possibility of bad observations, Chapter 2, was shown to be a mixture of -2, :
| distributions with the same mean and different variances, together with mass 1-p; at (_
; zero. Allowing for the possibility of bad observations, the posterior distribution of <; €
” will have the same form, i.e., L
X PEIN=-ppllv=01+ X P@Gla¢ ) P@u)Y)- (a21) Bt
) (r.c )i active T
- 2y
However, the ¢ densities in the mixture have different means as well as variances (see ks
't - equations 4.12, 4.13). Following the approximation method of truncated Taylor series ;\_
;_ expansion, Chapter 2, three quadratic terms would be required rather than one because '3 ‘

the expansion would be in terms of two variables, the mean and variance. The added
complexity of such an approach does not seem practical given the computational limi-

tations. N
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The posterior mean and variance of t;, given it is active, are

‘E.- =E[t" lT" SCﬁVe,YI = z E[ti 'a(r,c )vy]P(a(r,c )ly) ’ (422)

(r.c ):i active
and

Var(t; | ; active,y) =V, +V, (4.23)

where
Vi= X Var(mla ) Y)p@eHly), (4.24)

(7,c )i active
- )2
V2= Z [E[tila(r,c)’y]"ti] P(a(r,c)ly) . (4.25)
(r.c )i active

If the term V5 in the posterior variance is negligible, then the methods of Chapter 2
will apply. That is, if the means of the ¢ distributions in the mixture (4.21) do not
vary significantly, the statistic CV defined by equation (2.41) can be used to construct
a confidence interval for ;. Thus there would be two statistics to examine when
deciding if using a single ¢ interval is appropriate, the CV statistic and the proportion
of the posterior variance due to variation in the mean,

Va
VI+V2 )

At present the adequacy of this approach can not be explored due to the heavy

computing requirements involved. It is hoped that future computing advances will

allow this issue to be clarified.
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4.7. Conclusions

The extended Bayesian model to allow for the possibility of bad observations has
been demonstrated to lead to reasonable conclusions. Given the frequency of bad
observations in industrial and other applications of factorial experiments, the analysis
can be quite valuable. This is especially true for screening situations when a fixed
model cannot be identified in advance, and the presence of bad obsérvations may lead

to erroneous identification of inert effects as active, or vice versa.

The computational limitations of the method are, of course, troublesome. The
iterative approximation method described in this chapter is rationally motivated and
; leads to sensible results for the eiamples illustrated, but much more could be done

from a numerical and algorithmic viewpoint.

s o SR YO SR ""\." a9 s.'\;. AT L «.'," Y .'
g S:"J- 3:"; ol .-J‘?{C‘ My &'.'.. S 3 P$$-r,u ; t -4"

A e ‘*'4"'4"“&"':&5'% 0 Y .M"a‘-'::'a"'e‘ oM‘!:x f:.?i o T X !'a. . ;.- )}

-vrl
)JJ‘ 4‘
I

" 1

[

‘et

| Aese)

[

iy gt 0 ared > AL TRENSRLINUI
o, s ) A

v
. . 4""!‘ 'l

TE A

o -

k 4

At



(d _ 167

CHAPTER §

SUMMARY

[l
i Vol u'n
>
o T I IWLPE Y P

2 Unreplicated factorial designs have been and still are a valuable tool in industrial

. experimentation, despite the fact they do not allow for the estimation of error variance

‘ usually obtained from repeat runs. Methods of analysis used in the past have
depended more or less on an implicit assumption about the sparsity of real effects. If

- such assumptions are explicitly incorporated into the usual linear model employed for
such experiments, inference about active and inert contrasts is more straightforward,

and dependence of the inference on the prior assumptions is more easily assessed.

It is assumed that there is a prior probability & that each of the orthogonal con-

~ trasts is active, i.e., measures a real effect, and contrasts are active independently of
one another. Assuming a normal prior distribution for the expected value of an active
o contrast, the posterior probability that a contrast is active can be computed. While
’ computations of this sort generally require extensive computing time, an alternative

Bayes factorization allows the posterior probabilities to be obtained by numerical

integration at a considerable reduction in computing requirements. Dependence of the ;]
posterior probabilities on the choice of & and k, the inflation factor for an active con- j‘

trast, can be measured by carrying out the calculations for different values of the

parameters. Computation of the partial derivatives of the probabilities with respect to b

‘ o and k& will also give a measure of sensitivity. It was demonstrated in Chapter 2 that

probabilities associated with in-between contrasts are the most sensitive to choice of
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2 |
A prior assumptions. :
Z The posterior density of a true effect T; was shown to be a mixture of 2*~2 ¢ den- ’ ‘
e sities along with discrete mass at zero of 1-p;, where p; is the posterior probability f.
s
:,_3 that the effect t; is active. The continuous part of this distribution is often well *
:lc. approximated by a single ¢ distribution, and by a Taylor series argument there is a
. coefficient of variation-like statistic CV which conveniently measures the closeness of
: the approximation.
G ’
.: Further assumptions about the size and relative frequency of main effects and ;
interactions were incorporated into the model in Chapter 3. It was shown that the pos- ,
’ terior probabilities that experimental factors are active combines prior assumptions, {
i properties of the design and information in the data. Factors which can not be safely |
climinated as inert due to the confounding pattern of the design will receive ( i
significant posterior probability in addition to those factors which are more obviously !
.’ active. ’ ’
: A simulation study of sensitivity of the analysis to the assumption of normally i
f distributed errors was carried out for two situations: with and without active effects
; present. Pseudo-random errors were generated by computer from three alternative g
distributions (one light-tailed, one heavy-tailed and one skew) as well as the normal. t
7 There was no evidence from the simulations that non-normal errors would affect the
'. . Bayesian analysis to any substantial extent. The posterior probabilities performed )
~ well in identifying active contrasts and factors for all four distributions tested. )
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> The model was extended in Chapter 4 to allow for the possibility of bad observa-

tions. Observations were assumed to have inflated variance with prior probability o,.
Given this model, the postcriﬁr probability that a contrast (or factor) is active could be ]
computed taking into account the possibility of bad observations, as well as the proba- i
bility that a particular observation is bad, i.c., has inflated variance. It was shown that '
the approach of testing residuals for outliers after active contrasts are identified is i

sometimes inferior to the Bayesian model-based approach.

The extension to the possibility of bad observations greatly increases the com-

puting requirements of the analysis, so that they are often unfeasibly high. An itera-

tive analysis was proposed as an exploratory method rather than a numerical approxi-

mation. A method of approximating the posterior probabilities which possessed good
numerical properties would be one area of future research. ?
|
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