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ABSTRACT

Fractional factorial designs have long been a key tool for the industrial

statistician. They have received renewed attention recently due to the
movement toward quality improvement sparked by the success of the Japanese in A
penetrating markets formerly dominated by western countries.

Fractional factorial designs are usually not replicated, so that it is
not possible to estimate error variance in the usual way from repeat
observations. Past methods of analysis have rested on an implicit hypothesis
of effect sparsity, that most of the estimated effects measure only noise.
Formalization of this hypothesis leads to a Bayesian analysis in which the
posterior probability that an effect is active can be computed. A similar
approach can be employed to obtain the posterior probability that a particular
experimental factor is active. These probabilities are readily interpreted by
graphical means, and provide a straightforward method for identifying active
contrasts and active factors. In addition, the model is extended to the
situation where there are possible outliers in the original observations. The
posterior probability that an effect is active can be computed taking into
account the possibility of bad values, and the posterior probability that an
observation is bad can be computed taking into account that the identity of
active effects is unknown.
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SIGNIFICANCE AND EXPLANATION

When many variables must be studied in an experiment, it is often too

expensive to include repeat experimental runs for purposes of measuring the

magnitude of noise. In the past, statistical analysis of such unreplicated

experiments has relied on an assumption of effect sparsity, that the measured

effect of most variables could be attributed to noise. Formalizing this

assumption in probabilistic terms leads to a method of analysis in which the

probability that the effect of a particular variable is too large to attribute

to noise is computed. The probabilities associated with each of the variables

are readily interpreted when presented graphically. The analysis can be

extended to the case when it is thought that there may be misspecified values

among the experimental observations.
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ANALYSIS OF FACTORIAL EXPERIMENTS

R. Daniel Meyer

CHAPTER I

INTRODUCTION

1.1. Motivation

The use of statistical methods in industrial improvement of quality and produc-

tivity has always been an important topic. It has received renewed attention recently

due in part to the application of these methods by the Japanese and their success in

penetrating markets formerly dominated by the United States (see, e.g., Deming,

1982).

A problem frequently encountered in this area is to identify from among many

variables, those which are responsible for large changes in the quality characteristics

of a particular process. Statistically designed experiments, in particular fractional fac-

torial designs, are a key tool in providing an economical solution to this problem.

1.2. Fractional Factorial Designs

The possible value of fractional factorial designs in industry seems to have been

first recognized by Tippett (1934) (see also Fisher, 1966, p. 88). To discover the

cause of difficulty in a cotton-spinning machine, he successfully screened five factors,

each having five levels, in just 25 runs: a 125th fraction of a 5 5 factorial. A general

framework for fractional factorials was described by Finney (1945). More general

orthogonal army designs were introduced by Plackett and Burman (1946) and Rao

(1947).

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041, by
the National Science Foundation Grant No. DMS-8420968, and by the Vilas Trust
of the University of Wisconsin-Madison, and aided by access to the research
computer of the University of Wisconsin Statistics Department.
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At the preliminary stages of an investigation, a two-level fractional factorial is

very useful as a screening design. While Plackett and Burman (1946) gave a fairly

complete enumeration of two-level designs involving a moderate number of runs, the

2 k-p fractional factorials are an especially useful subset and a thorough description of

, them was given by Box and Hunter (1961). Because the Hadamard product of any

two columns of a 2 k-p design gives another column of the design, the confounding

structure is much simpler than for the general two-level orthogonal array. (The

Hadamard product of two columns is defined to be a column with i th element equal to

the scalar product of the i th elements of the original columns).

- . For ease of illustration, I will limit discussion here to two-level designs. 1: is

assumed that the design matrix X is a n xn orthogonal matrix of ±1's such that

X'X=XX'=n I n, where In is the n xn identity matrix. The first column x 0 of X is a

column of l's, and some or all of the remaining columns x 1, .- , x.-I are assigned to

experimental variables; -1 denoting the low or nominal level and +1 denoting the high

or alternate level. At the completion of the experiment the nxl vector

Y--(y 1, ... , y.)' becomes available.

Typically, a linear model is employed for describing the observations from a

two-level factorial experiment. At the screening stage of an investigation, it is often

hoped that a first order model in main effects only will be adequate. This is written,

with v the number of variables, as

y =: Y.Xjl + C 11
j =0

-0 . J ..
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I-

with the elements of the vector e assumed independently and normally distributed

with zero mean and constant variance. (The main effect of variable j is usually

defined to be twice the regression coefficient 3j.) If the above model were believed to

be true, the parameters (including the error variance) could be efficiently estimated

provided (n-l)-v was large enough to provide desired degrees of freedom for

estimating the variance, or if repeat runs were included for this purpose. A model of

this form would be adequate when the response was roughly planar over the experi-

mental region examined. On the other hand, allowance should be made for the possi-

ble inadequacy of the model (1.1). Suppose the true response function was much

closer to a second-order model of the form

Y=XO3o+ xjj+ (xixj)[ +S. (1.2)
j=1 isj

This would have the following implications. The estimate of the mean P 0 would be

confounded with the pure quadratic coefficients 0 jj. Estimates of the linear

coefficients 3 j may be confounded with interaction terms 3 ij. The estimate of vari-

ance supplied by the (n-l)-v unassigned columns may also be biased by real interac-

tion effects.

To guard against the problems outlined above, one could take several

approaches.

F' A second-order design could be employed which allowed estimation of allVparameters of the model (1.2) (see, e.g., Box and Hunter, 1957). However, this

greatly reduces the number of factors which could be studied in a given number of

'X ;



4

experimental runs.

The inclusion of replicate runs in the two-level design would allow unbiased esti-

mation of the variance. Lack of fit of the model (1. 1) could be detected by the pres-

ence of large contrasts associated with the (n-1)-v unassigned columns, and the

design could be augmented to estimate the full second-order model, if necessary (Box

and Wilson, 1951). However, the requirements of replicate runs again reduces the

number of factors which could be studied ini a given number of runs.

-~ A third approach relies on a phenomenon of "effect sparsity" (Box and Meyer,

1985). The object of a screening experiment is to isolate important factors among a

group of many candidates. If this is possible, then even if the true response was more

closely approximated by the second-order model (1.2), many of the parameters would

be negligible compared to the parameters associated with the important variables and

the effect of noise. In this case an unreplicated two-level design will yield n-I

estimated effects, most of which will be inert and attributable to noise, the remainder

of which will be active and too large to attribute to noise. As above, inadequacy of

the first-order model could be detected by the presence of a large contrast associated

with one of the (n -1l)-v unassigned columns. :

This last approach, while combining the virtues of relatively low cost and rela-

tively great informnation, does not always supply unambiguous results. Confounding

of effects may lead to more than one plausible explanation of the data. However, a

follow-up experiment to resolve ambiguities would usually involve fewer variables

* and many fewer runs than the original experiment, and the combined cost would be
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less than the cost of a completely comprehensive experiment in all variables (Box,

Hunter and Hunter, 1978).

1.3. Analysis of Fractional Factorials

Analysis of fractional factorial experiments has traditionally involved, primarily,

identifying and estimating the active effects. In addition, estimating the error variance

-may also be of interest. The process of identifying the active effects has historically

been divided into two stages (see, e.g., Box, Hunter and Hunter, 1978, Chapter 12).

The first stage involves identifying the orthogonal contrasts Ti = x i'y/n, i=l,...n-1,

which are too large to be attributed to noise. These are called active contrasts. Under

the second-order model (1.2) the expected value of Ti will be a linear combination of

one or more of the coefficients A, sometimes called an alias string when involving

more than one parameter. Under the hypothesis of effect sparsity, however, most of

the contrasts will have expectation zero. A small proportion will have active terms in

their alias string, and these will have non-zero expectation. The second stage of the

analysis then involves determining which of the experimetal factors are associated

with the active contrasts.

1.3.1. First stage analysis

Some of the techniques which have been employed to identify active contrasts

are as follows.

Analysis of variance has been used to judge the reality of the contrasts (see

rDavies ed., 1954, p. 464). This method relies on comparison of the contrasts with

,~~~~~~~~~~~~~~~~~~~~~~~~~. -.•,...,.. .,,* .. .... .. ,..... . ;.. .. , .,-....,......... ,,.....' ..... .. •.. .. . .. . ' ,,.........+.-.
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an independent measure of error variance. When an estimate of experimental error

variance is available from relevant genuinely replicated runs from current or past

experimentation, construction of the analysis of variance table is straightforward.

For unreplicated experiments, it has been customary to identify a priori certain

contrasts, usually those which have only higher order interactions in their alias strings,

whose magnitude could be attributed solely to random error. (In the case of quantita-

tive factors, relative smoothness of the response surface would dictate that higher

order interactions, which correspond to higher order derivatives, become successively

smaller. This is reasonable as long as the ranges for the variables are chosen

moderately. Likewise, for qualitative variables, the existence of higher order interac-

tions implies a wide difference between levels of the variables, which should be

avoided. Alternately, if the levels of qualitative variables must be chosen to be very

dissimilar, separate experiments should be run for each level. In this way the fre-

quency of large, high order interactions can be minimized, and contrasts which meas-

ure these interactions can be assumed to measure noise). These inert contrasts are

then used to estimate error variance. This approach necessarily restricts the degree of

:* fractionation to be used in the design, as several columns must be reserved to estimate

effects supposedly known to be inert. Alternately when little is known about which

effects are inert, the required contrasts may be difficult or impossible to identify. An

even less satisfactory procedure for estimating the experimental error variance

employs successive pooling of supposedly nonsignificant components in the analysis

of variance table.

.*.-'>;
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Daniel (1959) introduced the half-normal plot for judging the significance of

orthogonal contrasts from a factorial experiment. In this method the n-1 ordered

absolute contrasts I TI (i) are plotted against 0-1(1/2 + (i-1/2)/2(n -1)), where 4) is

the standard normal distribution function. Under the completely null hypothesis of no

active contrasts, these points should fall roughly along a straight line through the ori-

gin. Contrasts too large to be exlained by noise would appear as extreme points fal-

ling off the line. Later, Daniel (1976) pointed out that any information contained in

the signs of the contrasts is obscured in the half-normal plot. A slight modification of

Daniel's idea, the full-normal plot, i.e., plotting the signed ordered contrasts T(i)

against 0-((i-1/2)(n-1)), can be interpreted in the same way as the half-normal

plot without losing the diagnostic information in the signs of the contrasts.

The advantages of normal probability plotting are that it requires neither repli-

cated runs nor prior identification of inert contrasts and also allows for selection

automatically. As with other graphical procedures, the normal plot may suggest

further examination of the data. In particular, it can be used to detect model inadequa-

cies (see Chapter 4).

Daniel also suggested how formal inference about which contrasts were

significantly non-zero could be implemented through the normal plot "Guardrails" of

various Type I error rates are constructed by considering the null distributions of the

ordered absolute contrasts. In a companion paper, Birnbaum (1959) discussed several

methods for judging which contrasts measured non-zero effects, and showed that

Daniel's procedure could be regarded as an approximation to the optimal statistic

L L
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when there was at most one significant contrast. In addition, Birnbaum stated that the

optimal procedure for the case of more than one significant contrast was far too com-

plicated for practical application, and concluded that Daniel's analysis was preferable

for typical research applications. Zahn (1975) proposed some revisions to Daniel's

procedure, including corrections to the critical values of the test.

Two other methods for analyzing unreplicated factorials were given by Wilk,

Gnanadesikan and Freeny (1963) and Holms and Berrettoni (1969). Wilk, et al. sug-

gested using maximum likelihood estimation of the variance, assuming that some

number K of the original contrasts only measure error. The estimation is then based

on the M (< K ) smallest contrasts in order to avoid including contrasts measuring real

effects in the estimate of y, with suggested choice of M being 0.7K. However, their

estimate of Y was shown to be quite sensitive to the choice of K. Holms and Berret-

toni proposed a method for the case when it is expected that a large proportion of the

contrasts measure real effects. They considered the ordered absolute contrasts from

smallest to largest, with each one in turn compared to those smaller than iL Critical

values of the procedure, called "chain-pooling," were derived from work done by

Cochran (1941).

1.3.2. Second stage analysis

Box and Hunter (1961) offered two guidelines for the process of associating fac-

torial effects with active contrasts in the presence of confounding:

1. Main effects are more likely to occur than two-factor interactions, which are

more likely than three-factor interactions, etc. That is, if a large contrast is

C ,. .! , - ,, r -. . : ": " ,: : ' "' -. . . . . . . . S=' '' .. ' - I . . . !" I
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associated with more than one effect, the effect of lowest order is usually con-

sidered the most likely cause. This is especially true for continuous variables,

when smoothness of the response surface dictates that higher-order effects,

which correspond to higher-order derivatives, become successively smaller. In

screening situations and other applications, it is common to ignore three-factor or

higher order interactions.

2. Variables which have large main effects are more likely to have significant

interactions among themselves or with other variables. For example, when a

large contrast is associated with several two-factor interactions, the interactions

involving variables with large main effects are considered more likely to be the

cause.

The authors emphasize that these guidelines are to be employed to make tentative

conclusions, subject to verification by subsequent experimentation or monitoring of

the process after implementing changes. Exceptions to the rules appear, for example,

when the design is located on a diagonal ridge of the response surface. This can occur

when the process has been fine-tuned in the past one variable at a time, in the presence

of compensating factors such as time and temperature of a chemical reaction. T7he

experiment will then produce small main effects among the compensating factors, but

a large two-factor interaction.

1.4. A Bayesian Approach

The assumptions that are made when analyzing factorials and fractional factori-

als can be modeled formally, and that is the basic premise of this thesis. Once the
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assumptions are made explicit, Bayes' theorem provides a straightforward method of

inference.

14.1. Identification of Active Contrasts

To model the assumption that a majority of the column contrasts are expected to

be inert, it is assumed there is some prior probability a that each column is active,

with a generally assumed to be less than 1/2. Let a (,) denote the event that a partic-

.1,* ular combination of c of the n-1 contrasts are active, the remainder inert. The prior

probability of the event a(C) is

. ~ p(a c e (I -U(-)"'-

After observing the data y from the experiment, the posterior probability of the event

a(c) is

p~ac~l) =p(yla c))p(acc))
p~a(C)Iy)= ~ Y(pya())p(a(i)) , (1.3)

(i)

where the denominator is the summation over all possible combinations of active and

inert columns, and p (y I a()) is the predictive density of the observations y given

a (c). Of particular interest is the marginal posterior probability that column i is

active, and this is given by

pi = P (column i actively]= p(a(,)Iy) (1.4)
(c).i cive

..

K Inference about which columns are active can be made from the probabilities { pi }.

The details of such an analysis are explored in Chapter 2.

_......-.,
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1.4.2. Identification of Active Factors

Once active columns have been identified, it remains to identify which factors

are responsible for the large contrasts. Alternately, in some situations there may only

be interest in which factors are active, regardless of how their activity can be

explained by main effects, interactions, etc. A modification of the Bayesian model

introduced above is useful for this type of analysis.

Rather than contrasts being active with some prior probability a, it is assumed

that factors will be active with probability a, with a suitable adjustment in the value of

a. The notation a (f would now refer to the event that a particular combination of f

factors (including possible interactions) was active. The posterior probability of a (f

is then derived analagous to the expression for the posterior probability of a (c) given

previously. The posterior probability of each factor being active is then

pi p (a(f.y). (1.5)
(f): i actve

The details of the modified Bayesian model are given in Chapter 3, where it is

demonstrated that the posterior probabilities {pi } take into account the confounding

pattern of the design. Also included are simulation results for exploring the robust-

ness of the posterior probabilities to the assumption of normally distributed errors.

1.5. Bad Values in Fractional Factorials

As noted by Daniel (1976) and others, the results of unreplicated fractional fac-

torial experiments are sensitive to bad values among the observations. Daniel (1959)

estimated that in his experience, the relative frequency of bad values in factorial

J,, I;
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experiments was anywhere from .0 1 to. .1, depending on the complexity of the experi-

mental situation and on the experience of the experimenter. If, for example, eachI

observation in a 16-run experiment had an independent probability of .05 of being

incorrectly determined, then over half of such experiments would contain one or more

bad values. Daniel also felt that quite often the presence of large higher-order interac-

tions, in factorial experiments was not due to highly curved response surfaces, but to

erroneous observations which were not identified as such. Because of the saturated

nature of unreplicated factorial experiments, bad observations can often be concealed

by mistaken identification of some combination of active effects.

Full normal plotting of the observed contrasts (Daniel, 1959, 1976) has been a

useful diagnostic tool for detecting bad values in unreplicated experiments, in addition

to its use in identifying active contrasts. If a particular observation is biased by, say, a

positive amount, those contrasts in which the observation enters positively are shifted

to the right, and those contrasts in which the observation enters negatively are shifted

to the left. This produces a "gap!' among the inert contrasts of the normal plot which

is the telltale sign of a bad observation. Similarly, the presence of multiple bad values

can produce multiple gaps in the normal plot.

There is a wide literature on the general statistical issue of outliers. In their

review article, Beckman and Cook (1983) list 229 references concerning the detection

and accomodation or rejection of bad values. While some general regression diagnos-

tics could conceivably be employed in the analysis of factorial experiments, little

(1983) for example showed that several of the common diagnostics consisted of a fac-
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tor which measured the leverage of the doubtful points in the X space and a factor

which measured the change in the residual sum of squares when suspected bad values

were deleted. Because all design points have equal leverage in two-level factorials,

for the case of one outlier the leverage factor would be the same for each observation,

and in general one would not expect to have problems with extreme points in the X

space from factorial experiments. Thus these diagnostics would reduce to functions of

the change in the residual sum of squares when bad values are deleted, and some

methods, described below, have been developed for factorial designs which are basi-

cally functions of the change in the residual sum of squares.

Daniel (1961) proposed a test for bad values based on the maximum residual

after active contrasts have been identified. The observation corresponding to the max-

imum residual is identified as bad if the modulus of the residual is greater than a

specified upper percentile of its null distribution. Stefansky (1972) derived revised

critical values for Daniel's test

John (1978) described a general method for detecting one or two bad values in a

factorial experiment, based on work by Gentleman and Wilk (1975a,b), John and

Prescott (1975a,b), and John and Draper (1978), which incorporates the reduction in

the sum of squares when supposed bad values are deleted. The method is similar to

one proposed by Goldsmith and Boddy (1973), and encompasses the test based on the

maximum residual. It is described in more detail in Chapter 4.

The existing methodology for dealing with bad values in unreplicated factorials

supposes that a fixed model has been identified. However, the possibility of bad

%-_--
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values may also be accomodated by "robustifying" the sampling distribution of y.

Specifically, it is assumed the errors in the model (1.1) come from the scale-

contaminated normal distribution denoted by

(1--a 2) N (0,oe 2) + a 2 N(0,k2 2y 2)

(Jeffreys, 1932; Dixon, 1951; Tukey, 1960; Box and Tiao, 1968). This provides for

assessment of the contrasts while simultaneously allowing for the possibility of bad

values, to be contrasted with the practice of checking for bad values after the active

contrasts have been identified. Using the Bayesian approach above, the posterior pro-

bability that a contrast is active can be calculated while taking .ito account the possi-

bility of bad values, and the posterior probability that an observation is "bad" can be

calculated in light of the consideration that the identity of the active contrasts is not

known. In this way questionable observations can be identified and investigated, and

the sensitivity of the conclusions to the presence of possible bad values can be meas-

ured. Chapter 4 is devoted to details and discussion of this modeL

The robustification of models in this way, while philosophically attractive, has

been historically difficult to implement because it usually requires very extensive

computing. However, as the speed and sophistication of computers has advanced,

computationally intensive statistical analysis has become more feasible. At present

the amount of computing time needed to analyze the above model allowing for bad

values in full generality is not practical. Various computational shortcuts may be

used, however, based on reasonable assumptions about the maximum possible number

of bad values and active contrasts. It seems likely that future advances in computing

I iPji%
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technology will reduce such limitations.

-' 1.6. Posterior Probabilities For Model Selection

For the general problem of model discrimination, Atkinson (1978) presents three

objections to the use of posterior probabilities:

1. When all of the candidate models fit badly, the best fitting of these will be chosen

with high probability for n large enough.

2. When competing models have different numbers of parameters, the model with

fewest parameters is favored in the absence of evidence in the data.

3. When models are nested and the simplest model is true, then all models are true

and should receive equal weight. However, the simplest model will receive the

highest posterior probability (by argument 2 above), and the remaining models

will receive decreasing weights depending on the number of parameters.

a The type of analysis proposed in this thesis could be classified as a model

discrimination procedure. The objections listed above as they relate to the proposed

analysis, are answered as follows:

1. Any statistical estimation procedure chooses the best-fitting model from a family

of models according to some criterion. Usually this involves estimating parame-

ters which index the family of models. However, there ought to be no implica-

tion in such a procedure that the best-fitting model among those considered will

Z' be adequate. Likewise, a model identified by a high posterior probability need

not fit well. Diagnostic model-checking is an essential part of any statistical
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analysis (see Box, 1980).

2. The validity of this objection for the general question of model discrimination

will not be discussed here. Under the assumed condition of effect sparsity, the

favoring of a model with fewer parameters, in the absence of evidence from the

data, may be viewed as an advantage rather than a disadvantage.

3. When a model is "true", the statement that "all models in which the true model is

nested are also true" is a matter of philosophy. One might argue that there is an

V inherent difference between the models

M.: Y=9Xl+0 (X 2)
and

M 2: Y =9X I +0 2X2.

In any event, the result that the simpler model receives higher posterior probabil-

ity does not seem misleading to me.

N

.9t

' . . ' ...' ..q .' .'.. ' % .'.- '.• ".. '. , ... ',. .'. ...'. ... .- ' -" ..,. .. .,,. ,-.< -..' ..- .' .-.-: .; .. ,.. ... .'. ... ..... .. -. .,,.

..,\ . ..:. " .., ...,o ." \. .. ''" '' "" -"'""'/... . '-' ". - . , ...... _ . '''-' .'..:"." ''.". .... r.. . .
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CHAPTER 2

IDENTIFICATION OF ACTIVE CONTRASTS

2.1. Introduction

In a typical n-run unreplicated factorial or fractional factorial experiment, n-1

orthogonal contrasts can be computed. If one hypothesizes a model in which all

experimental factors are active, then all or most of the contrasts will measure real

effects. At the preliminary stage of experimentation, however, it is often felt that a

large proportion of the factors will not be active, and therefore a large proportion of

the contrasts will measure only noise. In this chapter the problem of identifying those

contrasts which are too large to attribute to noise is considered, and a Bayesian solu-

tion is proposed.

Suppose that each contrast has some small probability a (O<a<l/2) of being

active. Let a (c) be the event that a particular set of c of the n-1 contrasts are active,

and c (c) be the vector of true effects corresponding to a (c). The prior probability of

a(C) isp(c )_ac(1.a)n-1-. The conditional distribution of y given a(c) is

p (y 1,c ),%9(c)) = (2x)-"/o2Y - x

exP (Y-X(c)1(c))'(Y-X(c)) } (2.1)

where X(c) are the columns of X corresponding to a(c). (It is assumed that the

k _ , w

p'"°" . " ."2%  '' ' ,'' 'J '"" -'""""" -, - -- ." " " ' ""- " -" ' ' ' ' ,",",","," " ," , . " " ,=-" "
- ..'_ .,." ... ..:,- , ,,..,•, ...- . .. -,-•..",' o..,-..,...., -" ,'.".- ,.,,. .',-.,,'. ,.",-,-. , : , . -- "-' . ,
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overall mean -0 is always included in the model.) Suppose further that the prior distri-

bution of the the elements of T (c) are independent and normal with zero mean and

variance y,2a 2. If noninformative priors are specified for to and a. (see Box and

Tiao, 1973, Section 1.3), then it is assumed that the resulting analysis is well approxi-

mated by using

a (2.2)

1

where the c+1 by c+1 matrix

and I c is the c by c identity matrix.

To compute the posterior probability p (a (c y), define

h(yIa(c))- (2.3)

f f(yI T c c, a (c )p (c(c )Ica (c )p (ce)d qedc
0

the marginal predictive distribution of y given a (c). Then it is well known that the

posterior probability of the event a (c) given y is

P (W)h(y a(c))
P(a()Iy) (h a( c )) (2.4)

(C)

The probability p (a(c)1 y) can be reexpressed as

."r

IJF 19 .I k .1 4 * 7.1.#4 A %-A
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p(a(c) y)=C P (C)h(y a(0)) (2.5)

where

.,P ( )h (y I a (0))
where QP (°)h (YIa ())

(C)

is the constant which makes the probabilities sum to unity. The expression (2.5) gives

p (a (c) I y) proportional to the posterior probability ratio that (i) T (c) are the active

effects vs. (ii) there are no active effects. Specifically, this probability is written

p(c)=p(a(c)Y)=c 7-C X (2.6)

J C+X(c)'X (C)i M2 S([(O))

where

'(c) = (rc + X(c)'X(C))-IX(C)'Y (2.7)

and

The probabilities p (a(c )y) can be summed to give, for example,

pi =P(T i actively) P(a~C~IY)" (2.9)

4.' The relative importance of column i may then be judged according to the size of pi.

T. 
L V.

.,s.,. ,'.'-',..., - ....... ."-' '.'., .".. . '.'. . . " . .".: '., : ., .'= .,:-,"." .- --,".-".'."-,'.
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2.2. Computing the Posterior Probabilities

As described in the previous section, computing the probability pi that contrast

column i is active involves summation over the 2n-2 events a(C) in which i is sup-

posed to be active. For n =16 this is 16,384 separate probability calculations. While

this number can be handled rapidly enough on a high-speed computer, for n =32, say,

the computation becomes unfeasible. However, there is an alternative Bayes factori-

* zation which allows the calculation of the probabilities {pi} without summing over

all possible combinations of active contrasts. (The original factorization given in

Chapter I remains useful for deriving approximations to the posterior distributions of

-. and a later in this chapter, as well as other derivations in subsequent chapters).

First of all, apply the one-to-one transformation (X'X)-'X' y=T, and compute

posterior distributions with respect to the new data T. The sampling distribution of T

given ( ra I is

l" pcIf',) a n' ('n exp 2  (2.10)
i=O 6 2a2

Thus each contast T is independent and normally distributed. The prior distribution

of each expected contrast T i is

p@, a) = a(2x)-'(k2-l)-12orIexp +(-a)UTi=01 (2.11)~~~~(2(k2_1) 1/2 2  +(-C[YiO (211

where k n-n.+ land

-7.:
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to if r5 so

The prior distributions of log(o) and To are uniform in the region where the likelihood

is appreciable, and are aproximated by taking p (o, 0)=I/o. Therefore the joint poste-

rior distribution of { ,o } is

p (,oT) a a (Te- 20 )2 IX (2.12)

n-1 2a 11
I l--a)exp + expf -i + L ] 2

2cT2  (2,x(k 2-1)W2y 1 2 - "

Integrating r out of this expression gives the marginal posterior distribution of a,

-n-p(oIT) a o y [1--a)exp{ (2.13)
i=1 k 2k 2 .

The posterior probability pile that ri is active, conditional on a, is, by direct

application of Bayes' theorem,

u p (T I ;ti active)
Pile= up (T I (,ci active) + (1--a)p (T I 0,'tinotactive)

a-Ti
ex(jW-~ (2.14)

a[ Tr T 2
, _ + ep (1--a) exp

kX12k 2 2  2

Thus, conditional on a, the posterior probability that g l is active depends only on the

... ., .. . .... . .. . .
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data through the observed contrast Ti.The unconditional probability pi can be com-

-puted from the simple expressions for p1,0 and p (o I T) by

Pi = fPjLgP(ajT)d7. (2.15)
0

This integral can then be computed to the desired degree of accuracy using numerical

integration methods.

2.3. Prior Parameters k and a

2.3.1. Estimating a Range For k and (z

In practice, a and k would be deternined somewhat by the investigator's experi-

ence with the experimental material; the expected proportion of large effects

represented by a and the expected size of such effects represented by k. The investi-

gator may estimate these parameters from past similar experiments of his own or

results reported in the scientific literature. To define a working range for a and k for

the purposes of this thesis, the results of several unreplicated fractional factorials were

examined. For each example, an estimate of a was obtained as the proportion of

effects declared significant by the author(s) of that particular example, and k2 Was

estimated by the ratio of the mean squared significant effect over the mean squared
inert effect. These values are presented in Table 2.1. The estimated values of a range

between .13 and .27 with an average of about 0.2. The estimated values of k range

from 2.7 to 18 with an average of about 10. This gives an idea of plausible ranges for

the two parameters.
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Table 2.1 Estimated values of at and k from published examples of 16 and 32 run

two-level designs taken from Box, Hunter and Hunter (1978), Davies ed. (1954),

Daniel (1976), Bennett and Franklin (1954), Johnson and Leone (1964), and Taguchi

and Wu (1980). In Daniel's example the analysis is conducted after makcing a log

transformation in the response.j

Example n a k

BHH p. 398 16 .20 7.9

BHH p. 327 16 .27 13.9

BHH p. 378 32 .16 11.0

Davies p. 274 16 .13 2.7

Davies p. 462  16 .27 7.1

Daniel p. 71 16 .20 13.0

BF p. 557 16 .27 18.0

X p. 183 32 .13 3.2

X~ Jp. 196 16 .27 9.5

TW p. 69 16 .13 9.7

Average .20 9.6

N'RA
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The possibility of bias introduced by restricting attention to published examples

and by estimating a and k in this informal manner is recognized. However, it is

shown later that the conclusions to be drawn from the analysis are usually insensitive

to moderate changes in these parameters. In addition, convenient diagnostics exist

which can detect those instances when the posterior probabilities are sensitive to such

changes.

2.3.2. Two Examples

To illustrate an application, the following examples from Box, Hunter, and

Hunter (1978), p. 398, and Davies ed. (1954), p. 274 were studied.

Example 2.1

The effects of 8 variables on the shrinkage y in an injection molding process

were measured using a 2 " resolution IV design. The data are presented in

Table 2.2a. A normal plot of the orthogonal contrasts, Figure 2.1la, revealed that

there were two large main effects, due to holding pressure and booster pressure,

K: and one other significant contrast aliased among four different two-factor interac-

tions. (It was assumed that interactions between thre or more factors were

* negligible).

Example 2.2

As described by the authors of Davies ed. (1954), this is a laboratory investiga-

tion in which interest centered on the effects of four factors on the yield of a pro-

duct which was an isatin derivative. An unreplicated full 2 4 factorial experiment

was run, and the data appear in Table 2.2b. Using analysis of variance with the

.............................
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Table 2.2a Design matrix, observations, and observed contrasts for Example 2.1, a

2" fractional factorial experiment, from Box, Hunter and Hunter (1978).

factors
run 1 2 3 4 5 6 7 8 y

1 - - - +- + + - + 14.0
2 + - - - - + + + 16.8
3 - + - - + - + +, 15.0
4 + + - + - - - + 15.4
5 - - + +9 - + +9 4 27.6
6 + - + - + - - + 24.0
7 - + + - - + - +9 27.4
8 + + + + + + + + 22.6
9 + + +- - - - + - 22.3

10 - + + + + - - - 17.1
11 + - +i + - + - - 21.5
12 - - +i - + + +9 - 17.5
13 + +i - - + + - - 15.9
14 - + - + - + +i - 21.9
15 + + 9 + - + - 16.7
16 - - - - - - - - 20.3

observed observed
colurnn(effect) contrast colun(effect) contrast
0(mean) 19.75 8(8) 0.60
1(1) -0.35 9(12+37+948+56) -0.30
2(2) -0.05 10(13+27+46+58) 0.45
3(3) 2.75 11(14+28+36+57) -0.20
4(4) -0.15 12(15+26+38+47) 2.30
5(5) -1.90 13(16+2S+34+78) -0.15
6(6) -0.05 14(17+23+68+45) -0.10
7(7) 0.30 15(18+24+35+67) -0.30

II, 0.

pe

SX
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Table 2.2b Design matrix, observations, and observed contrasts for Example 2.2, a

full 24 factorial experiment, from Davies ed. (1954).

factors
run A B C D y(yield)

1 . . . . 6.08
2 + - - 6.04
3 - + - - 6.53
4 + + - - 6.43
5 - - + - 6.31
6 + - + - 6.09
7 - + + - 6.12
8 + + + - 6.36
9 - - + 6.79

10 + - - + 6.68
S11 - + - + 6.73
12 + + - + 6.08
13 - - + + 6.77
14 + - + + 6.38
15 - + + + 6.49
16 + + + + 6.23

observed observed
column(effect) contrast column(effect) contrast
0(mean) 6.38 8(D) .137
I(A) -.096 9(AD) -.082
2(B) -.011 10(BD) -.126
3(AB) -.001 1I(ABD) -.051
4(C) .038 12(CD) -.013
5(AC) -.017 13(ACD) -.003
6(BC) .033 14(BCD) .062
7(ABC) .075 15(ABCD) .010

U..H
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Figure 2.1a Full normal plot of observed contrasts, Example 2.1. The points are

labelled by their column numbers.
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Figure 2.1b Full normal plot of observed contrasts, Example 2.2. The points are

labeled by their column numbers.
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three- and four-factor interactions serving as error, two contrasts corresponding

to one main effect and one two-factor interaction were found to be marginally

significant. The significance probabilities were close to .05; correcting for selec-

tion would have made them larger.. A normal plot of the orthogonal contrasts,

Figure 2.1b, is consistent with these results, namely, there is little evidence for

any active contrasts.

The posterior probabilities for the fifteen contrasts of Examples 2.1 and 2.2 were

calculated and are presented in Figure 2.2. The solid vertical lines labelled 1 through

15 (corresponding to contrast columns 1 through 15) represent the probabilities calcu-

lated from (2.15) with the mean values ot=0.2 and k =10. The boxes on each line indi-

cate the range of the probabilities over all combinations of cz=0. 1, 0.2, 0.3 and k =5,

10, 15.

For Example 2. 1, consider first the probabilities obtained with az=0.2 and k 10.

T1here are three probabilities close to one, the rest more or less close to zero. This sug-

gests a division into inert and active contrasts which agrees with the normal plot of

Figure 2. Ia. The changes in posterior probabilities obtained by varying ot and k, indi-

cated by the boxes in Figure 2.2a, are not such as to change conclusions about active

and inert contrasts. Probabilities closest to zero or one tend to change very little,

while the largest change occurs for the intermediate probability associated with

column S.

Example 2.2 was chosen to illustrate what can occur in a situation where the evi-

dence for active effects is much weaker. The probabilities obtained by setting a=O0.2

."M 06-
4..

Pa -67***
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Figure 21a Posterior probabilities {p, } that columns are active, Example 2.1. Solid

vertical lines are the values for ct=0.2 and k=1O; boxes indicate the range of values

over a=O.1, 0.2,0.3 and k=5, 10, 15.

1.0 ....... . T ............ ...........

.0.5............. .................
0
0.

none 1 2 3 4 5 6 7 8 9 01112131415
active

column number

K .

. -4.o-.
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Figure 2.2b Posterior probabilities {pi that columns are active, Example 2.2. Solid

vertical lines are the values for az=4.2 and k=10; boxes indicate the range of values

over t=0. 1, 0.2, 0.3 and k =5, 10, 15.

1 .0 ..................... .... .......

.,j
0

0

nlone 123 45 6891091112 1314 15
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and k 10 indicate that there is little evidence for any of the contrasts being active, or

perhaps a weak suggestion of activity for columns 8 and 10, agreeing with analysis of

variance results and the normal plot of Figure 2. l b. However, there is a much greater

sensitivity to variation of a and k, as indicated by the boxes in Figure 2.2b, than for

Example 2.1. To allow more detailed study the posterior probabilities for Example

2.2 are plotted individually in Figure 2.3 for each combination of a and k. In particu-

lar note that for a40.3 and k=10 the posterior probabilities for columns 1, 7, 8,9, 10,

11I and 14 are all greater than 1/2. The situation can be further understood by reexa-

mining the normal plot for this example in Figure 2.l1b. At first glance it appears that

all of the contrasts fall along a straight line more or less. On the other hand one could

draw a line through the middle eight contrasts or so and declare the remaining seven

to be active. This second interpretation would agree with a prior belief that there was

a larger proportion of active contrasts, corresponding to the Bayesian analysis with a

larger value of a. In light of this, it would be impossible to make reliable inferences

about active and inert contrasts, because the conclusions change quite dramatically

under differing plausible model assumptions.

To more closely follow the intent of the original authors of Example 2.2, the

assumption that certain columns, corresponding to higher-order interactions, are inert

u can be incorporated easily into the Bayesian analysis by assigning a prior probability

of zero to those particular columns. When this is done the posterior probabilities of

the remaining columns are very close to those obtained in the above analysis with

ct-=0.2 for all columns.
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Figure 2.3 Individual posterior probability plots for all combinations of CC.0.1, 0.2,

0.3 and k =5, 10, 15, Example 2.2.
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It should be recognized that the troublesome behavior exhibited in Example 2.2

is not due to a shortcoming of the procedure proposed here but rather to a lack of

information in the data. This illustrates a point made by Barnard (1980), that there

exist robust and non-robust data samples. For some sets of data, analyses undertaken

over a plausible range of assumptions lead to essentially the same conclusions, while

for others the conclusions are quite sensitive to changing assumptions. Thus with the

robust data of Example 2.1 variation of a and k produces little change in the conclu-

sions, while for the non-robust data of Example 2.2 the conclusions are quite sensitive

to changing a and k.

23.3. Derivatives of the Posterior Probabilities

As illustrated by Example 2.2, there will be occasions when the probabilities

{ pi } will be sensitive to the choice of a and k. The partial derivatives of pi with

respect to a and k can be computed to measure the extent to which the probabilities

are sensitive to the particular choice of these parameters.

First define the following quantities:

fp'0 P 1 0PlaT)da (i j) (2.16)

Pij P [T i,'tj active IT] =

Sj 2  k (2.17)

Then the partial derivatives of pi with respect to a andk are given by
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api 1 -) (pij,Pi j)j (2.18)a = a(l-a) =

3- f (p i I-pi)(sQ jp IP l)p (cyT)d (Y

+ ipjoaG-pij>Q ,p(olT~doa (2.19)

(Recall that the quantities pi, Pij, pi I and p (; IT) in the above expressions all also

depend on a and k.)

The use of derivatives to measure sensitivity relies somewhat on a low degree of

curvature in pi with respect to a and k. In Figure 2.4 the posterior probabilities for

Examples 2.1 and 2.2 are plotted first against a for fixed k=10, and then against k for

fixed a=0.2. In all figures the relative curvature is not so extreme that the partial

derivatives would not give a good measure of change.

Consider first the derivative with respect to a, which is proportional to

i' ?" Z(Pij-PiPj).
.. ' jtmI4-.u

Er For columns for which pi is close to one, pij will be approximately equal to pi, all

terms in the summation will be negligible, and the derivative will thus be close to

zero. Similarly, if pi is close to zero, Py and pi p will both be small and roughly

equal, and again the derivative will be close to zero. For moderate pi (in the neigh-

4 r"V) N "h"" """ " " " """"" " "" ' " ".i ,' . ,""'''t-£'' ''' ,.,,. ,!' tJ, . ", "..
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Figure 2.4a Continuous plot of posterior probabilities {pjl versus cc, k fixed at 10,

Example 2. 1. Curves are labeled on the right by their column numbers.
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Figure 2.4b Continuous plot of posterior probabilities {pi} versus k, a fixed at 0.2,

Example 2.1. Curves are labeled on the right by their column numbers.
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Figure 2.4c Continuous plot of posterior probabilities f pi I versus a, k fixed at 10,

Example 2.2. Curves are labeled on the right by their column numbers.
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Figure 2.4d Continuous plot of posterior probabilities {pi versus k, a fixed at 0.2,

4 Example 2.2. Curves are labeled on the right by their column numbers.
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borhood of 1/2), it will be helpful to define

Pil : P [,cactive IT,jactive] (2.20)

Pu
P1

Then the summand in (2.18) can be written

P -P Ps = (P511 -P )Ps"

Now consider pjjj for columns j with very large contrast Tj. The information that'rj

is active will have very little effect on the probability that r i is active (this is gen-

erally true when conditioning on an event of probability close to one), andpilj will be

close to pi. However, as the value of T approaches Ti , the information that -zj is

active gives more strength to the possibility that 'i is active, and Piij will become

larger than pi. Thus, at least for moderate pi, the nonnegligible terms in the sum in

2.9 will be positive. Furthermore, the contribution from the term pi -pi 2 alone will

be fairly large. (For pi between a and (1-a), this term is greater than one; a deriva-

tive greater than one implies that any local change in cx results in an even larger

change in pi). There will also be significant contributions from other terms for which

pj is close to 1/2, so that the value of the derivative will depend to a large extent on

the total number of probabilities pj not close to zero or one.

The expression for the derivative with respect to k is more complicated but it is
-o.

still possible to interpret it. It should be noted first that while the piobabilities pi are

more or less monotonic in a, this is not true for k. For example, in Figure 2.4c, it is

seen that the some of the probabilities reach a maximum in the area of k = 10, although

~~~~~~~~~~~~~~~~~~~..... ....- .. . ..- ,....-.....,,.,. .... ... .. % .. , ., .. , .
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the plot exhibits very little curvature. Thus the derivative with respect to k could con-

-. ceivably be close to zero even when the probabilities are actually sensitive to the
, -,'

choice of k, if k has been chosen near this maximum. However, the derivative can be

interpreted as a measure of how well the chosen value of k fits the data. Consider the

factor

.jnl- j k Pile

in the first integral in the expression (2.19) for the derviative of pi with respect to k.

• .. It will be small if Q j is small when piIea is close to one. For example, suppose the

observed contrasts were easily partitioned into an inert group and an active group. If

k2 was chosen to be the ratio of the mean squared active contrast over the mean

squared inert contrast, the nonnegligible terms in the sum would cancel. Thus a small

value of this derivative can indicate either insensitivity to the choice of k or, lacking

Nthat, that k has been chosen to fit the data well in the sense described above. In either

case the derivative is a useful diagnostic for this model.

While the first integral in (2.19) gives a rough estimate of how well k fits the

- "data, the second integral is more a function of the individual contrast Ti.The factor

p.i 0 1 p(l-PI.) achieves a maximum at pia=l/2 , showing that the moderate pi are also

most sensitive to changes in k as measured by the partial derivative.

The derivatives of pi with respect to a and k for Examples 2.1 and 2.2 are given

in Table 2.3. The derivative with respect to k in the table is multiplied by 50, so that

the two derivatives are roughly comparable. Certainly absolute values for these
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Table 2.3 Posterior probabilities and derivatives with respect to a and k, Examples

2.1 and 2.2.

Example 2.1
observed posterior

column contrast prob. dp/da 50(dp/dk)
1 -0.35 0.0455 0.4163 -0.1783
2 -0.05 0.0167 0.1517 -0.1203
3 2.75 0.9998 0.0025 -0.0004
4 -0.15 0.0195 0.1784 -0.1311
5 -1.90 0.9987 0.0124 0.0021
6 -0.05 0.0167 0.1517 -0.1203
7 0.30 0.0342 0.3156 -0.1666
8 0.60 0.2548 1.4628 -0.047
9 -0.30 0.0342 0.3156 -0.1666

10 0.45 0.0910 0.7605 -0.1738
11 -0.20 0.0225 0.2062 -0.1408
12 2.30 0.9995 0.0050 -0.0002
13, -0.15 0.0195 0.1784 -0.1311
14 -0.10 0.0177 0.1611 -0.1243
15 -0.30 0.0342 0.3156 -0.1666

Example 2.2
observed posterior

column contrast prob. dp/da 50(dp/dk)
1 -.096 0.1518 1.8788 -1.1367
2 -.011 0.0293 0.1828 -0.1907
3 -.001 0.0407 0.5045 -0.2525
4 .038 0.3683 2.7261 -1.845

9" 5 -.017 0.0275 0.1532 -0.1597
6 .033 0.0285 0.1820 -0.1666
7 .075 0.0339 0.3524 -0.1932
8 .137 0.0887 1.3115 -0.6493
9 -.082 0. 1063 1.4543 -0.7989
10 -. 126 0.3076 2.6355 -1.7825
11 -.051 0.0545 0.8433 -0.3882
12 -.013 0.0288 0.1855 -0.1805
13 -.003 0.0287 0.1731 -0.1861
14 .062 0.0709 1.0898 -0.5362
15 .010 0.0270 0.1690 -0.1615
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derivatives far above one indicate acute sensitivity to the particular choice of parame-

ter, while values far below one indicate insensitivity. The values in Table 2.3 agree

with the above arguments and also with Figure 2.2.

1,1P

4 .*

'I,
-4.

4,
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2.4. Posterior distributions

Information about model parameters is summarized in their posterior distribution

according to the Bayesian paradigm. Parametric inference will consist of interpreting

the posterior distribution, for example, by calculating point parameter estimates or

constructing Bayesian confidence regions, also called highest posterior density

(H.P.D.) regions (Box and Tiao, 1973, p. 110). For analysis of the effect sparsity

model, identifying and estimating the active contrasts is of primary interest. In some

cases there will be interest in estimating the variance a 2 . These are achieved through

calculation of the marginal posterior distributions of z and a respectively.

The derivations are given in terms of the original Bayes factorization of Section

2.1, which has greater intuitive appeal. Actual computations would be done in terms

of the alternative factorization of Section 2.2. Relevant details are given following the

-" derivations.

2.4.1. Joint posterior of { T, }

Straightforward application of Bayes' theorem would ordinarily result in the fol-

lowing expression for the joint posterior distribution of fta }:

P(',0IY) o; p(yI'€,a)p(TI)p(F). (2.21)

However, a simpler factorization is obtained by conditioning on the events a(C) and

marginalizing as follows:

p (To I y) = p (,o a ya (c))P (a (c)l y). (2.22)
(C)

"ft %
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The probabilities p (a (c y) have been derived previously (2.9, 2.15). The condi-

tional posterior distribution p ( ,a I y,a (c)) is given by:

-I p (,oly,a(c)) a p(yI , ,a(c))p (l,a(c))p(Ya(c))

=o-" eP{2. 2 (y-X (C)T (c))' (Y-X (c)'C (c)) x

(r) - exP{2- c(c )rc(c)}X -

=YC y Iexp{2.[S (c (c ))-T (c 'rC(c (2.23)

where

S (r)) = (y-X (c(c )) (Y-X(c )' (c)) (2.24)

and recall r is defined by

r~ 0 [00' (2.25)

2.4.2. Marginal Posterior Distribution of c

The marginal posterior distribution of c is obtained from the joint posterior distri-

bution of { ,a I by

%
S .. %. -
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mm

p(1 y) =p(T,aly) do
0

= J p(r(c),oly,a(c))p(a(c)Iy)da
, O(c)

.Jp((c),olbya(c))do p(a(c)ly)
(c) J

= p((c)Iy,a(c))p(a(c)Iy). (2.26)
(C)

Thus the marginal posterior of r is a weighted sum of conditional posterior distribu-

tions given a(c ). To find the conditional posterior ofc(c),

.:.... (C¢)lya¢c)) = f -Co Zx $ €)+€)F€) do

e'- 0

a y-r[S(lc ))+,(c 'cC (c )] -("+). . (2.27)

It can be shown that

S (C(c))+ T (C), r (C) = ( (C) (c )) (+ x (C), X(C))(@ (C)- (C
+ S(,C )) + C )' 1c¢) (2.28)

where

S(C) =(r+x (C)'X (C)-Ix (C )'y. (2.29)

Thus, after normalizing, the conditional posterior distribution of T (c) is

.. 4 .. .... * -.. . .. . . .. ,C
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p (c)Iy,a(c)) r((n+c-1)/2) J7C+X(C)'X(C)i 1/ (2.30)

"-, r 1-(n+c)2
11+ (C)- (C ))'(r+xC )X(c ))r( )- (C ))

(n-l)s 2 ()

where

A A2 (( )) + (c )' rC (C)) (.1
$21¢1=n -1

This is a (c +l)-dimensional multivariate t distribution with n-1 degrees of freedom,

mean vector c(c), and dispersion matrix

(rC+X (c)'X(C )) s 2(C).

The complete marginal posterior distribution of a single ' i is then

~~P(,i ly) = j'P(Ti jy,a(c )p(a(# )1y)

1: (c )

;,O.') I (1p)['Ci =0]+ P(-zjjy'a(c))P(a(c)jy)' (2.32)
(c):i acti

a mixture of a discrete and continuous distribution. The continuous part is a weighted

sum of t densities with n-I degrees of freedom, common mean Ti, different scale fac-

1. tors sc) and weightsp (alC) y). The discrete part has mass 1-pi at zero.

S-It was shown previously how the relative activity of each contrast column can be

measured by the posterior probability pi. This accounts for the first term of (2.32), the

m az%. " :e" mass i-p8 at zero. In many instances parameter estimates as," confidence bounds for

%. . .2.. -. -, -*- . . *> ... , . , ., , . . .. .,, .. , ., . ., . ,- , ., • , . .. ,. , . .. .. , . , ,
):(€,' " " ,' ,. , ' , ', ' '.;,.'.'.= - .'.". . . .. . "" ". .: ,' -A ... " .- ." , . ', -'.;' .
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the supposed active ci will be desired, that is, those for which pi is close to one.

These can be obtained from the conditional posterior distribution of ri given it is

active,
p (T i YT active) - -  p(T P(JY,a(c))P(a(c)jY), (2.33)

¢., Pi ( C ):i active

the second term of (2.32) normalized to integrate to unity. An accepted point estimate

of 4r is the conditional posterior mean which can be written

2 " -I y= i"  (2.34)

which would be very close to the usual column contrast Ti. Confidence bounds of

probability 1- are obtained by specifying b 8 so that

P [ i - b 8 <,ci < ii + b,5y] 1-S. (2.35)

In general, calculation of the exact posterior distribution and corresponding

confidence bounds for ; would be very cumbersome. In practical application of frac-

tional factorials, some sort of approximation would be needed. In particular, obtain-

.. ing confidence limits by reference to a standard table with the aid of a convenient

summary statistic would be much more appealing. It will be shown that in many

cases the posterior distribution of an expected contrast,; can be well approximated by

a single t distribution with n-I degrees of freedom, mean ri, and scale factor

',V 2 s2(c)p(a(c)y). (2.36)

(c ):i active

-- ' 4.
'-"VA

r." J' - i
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For illustration, I have taken the largest contrast in Example 2.1, and its "exact"

conditional posterior density was computed by evaluating the weighted sum of t den-

sities only over those a (c) with posterior probability larger then 0.0001, with c.=0.2,

=2.5. This accounted for over 99% of the total probability. The approximate density

was computed as a single t density with scale factor f2 defined above. The exact dis-

tribution is plotted as a solid curve in Figure 2.5a, and the approximate distribution is

plotted as a dashed curve. For this example approximation by a single t distribution is

very good.

For Example 2.2, none of the contrasts had large posterior probability for a=0.2

and = 2.5. However, for -0.3 and y7=1.25, contrast 8 has posterior probability .85,

and the exact and approximate conditional posterior densities for this contrast are

shown in Figure 2.5b. The approximation for this example is less accurate than for

Example I.

The accuracy of the approximation depends upon the extent to which the t den-

sity is linear in the parameter s2 over the range ofs 2 (c) in the weighted sum. To see

this, write the weighted sum of densities generically as

P@ItY)= Tp(C)tEtIsi2  (2.37)
(C)

where t ( Is 2(c)) is the t density with scale parameter s (C ) Then the approximate

density is just

2 "(2.38)

If the function t (, Is 2) was linear in s 2, or if the scale factor S2(c) did not vary over

;";J§; x, 1 ;..
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Figure 2.5a Exact and approximate posterior densities for largest expected contrast,

Example 2. 1, a-4.2, y--2.5. The exact (solid curve) is obtained by direct calculation

and the approximate (dashed curve) is a single t density.

VW.
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Figure 2.5b Exact and approximate posterior densities for largest expected contrast,

Example 2.2, a=0.3, y--1.25. The exact (solid curve) is obtained by direct calculation,

the approximate (dashed curve) is a single:t density, and the corrected approximate

(dotted curve) is a:t density plus a quadratic term from the Taylor' s series expansion.
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(c), the approximation would be exact.

The approximate density is the first term in a Taylor series expansion of the true

density about the point 2. Writing down the first three terms of this expansion, we

have

P (r IY) = 00 t~ 2) + I p(c)(S 2(C ) -_12) t,'(T s' )

(C)

+ I P(c)(S (C)- f) 2 t - (,t 112), (2.39)
(C)

where t' and t" are the first and second derivatives of t( Is 2) with respect to S2. The

second term in the above expression is identically zero, by the definition of A2. The

third term can be rewritten to give

p (C ly) t( I e 2) + CVt" (01f 11), (2.40)

where the statistic

2p (A)(S2 C)_Af 2

CV (2.41)
~(12) 2

and t"(xj 1) is t" with scale parameter set equal to one. The quadratic term is now

written as the product of the statistic CV which measures the relative variation of

22

' S (c) in the weighted sum, and :"(xl.f I) which measures the nonlinearity of the t

density with respect to s2. Note that there will be a different value of CV for each of

the expected contrasts r j.
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The closeness of the t approximation may now be checked conveniently accord-

* ing to the size of CV, with larger values indicating a less accurate approximation. For

Example 2.1 with at=0.2, y--2.5, CV is smaller than 0. 1, indicating that this is a rela-

tively safe range as shown by the closeness of the curves in Figure 2.5a. For Example

2.2 with cz=0.3 and *t-- 1.25, CV is approximately 0.5, and as shown in Figure 2.5b, this

indicates a less accurate approximation.

A large value of CV may signal a poor approximation in two ways. First, it

shows a non-negligible contribution from the quadratic term in the Taylor series

expansion. Second, it may also indicate that some higher order terms are also non-

negligible. Thus it is possible that including the quadratic term in the approximateI

density will not provide an adequate correction for a large value of CV.

To investigate which values of CV might be considered large, four samples of 50

scale parameters s I , S 50Were generated from gamma distributions with shape

parameters chosen to give CV values of .125,1.5,.375 and .5 respectively. (The ran-

domly generated samples were then shifted to give the exact CV values given above.)

Exact distributions were calculated for each sample as a weighted sum of t distribu-

tions with 15 degrees of freedom and scale parameter sj2, with equal weight given to

each value in the sample. To examine the accuracy of probability statements about

Bayesian confidence intervals, which depends mainly on the tail probabilities of the

true and approximate distributions, three curves are plotted in Figure 2.6. The solid

curve is the true cumulative distribution function obtained from the weighted sum,

with the plot restricted to the left tail of the distribution. (The true and approximate

4%



Figure 2.6a Weighted sum of 50:t distribution functions with CV=. 125 (solid curve),

approximation by single:t distribution (dotted curve), and approximation by single:t

with quadratic correction (dashed curve).
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Figure 2.6b Weighted sum of 50 t distribution functions with CV=.25 (solid curve),

approximation by single:t distribution (dotted curve), and approximation by single t

with quadratic correction (dashed curve).
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Figure 2.6c Weighted sum of 50 t distribution functions with CV=.375 (solid curve),

approximation by single t distribution (dotted curve), and approximation by single t

with quadratic correction (dashed curve).
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Figure 2.6d Weighted sum of 50 t distribution functions with CV=.5 (solid curve),

approximation by single t distribution (dotted curve), and approximation by single t

with quadratic correction (dashed curve).
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distributions here are symmetric). The dotted curve is the approximate distribution

function obtained as the c.d.f, of a single t distribution with 15 degrees of freedom

and scale factor

50
is,2

50

The dashed curve is the approximation obtained by also including the quadratic term

of the Taylor series expansion.

For smaller values of CV the t approximation is fairly close to the true distribu-

tion and the quadratic correction is almost coincident with the true distribution. As

CV becomes larger the t approximation becomes less and less accurate while the qua-

dratic correction tracks the true function closely up to CV--0.5.

For extremely large values of CV the approximate density (including the qua-

dratic term) exhibits irregular behavior. For CV larger than 1.0667 it has a local max-

imum in each of the tails and for CV larger than 1.6 the approximate density is nega-

tive in some regions. In general, for a weighted sum of t distributions with v degrees

of freedom, the quadratic approximation develops a local maximum in each tail for

CV larger than 4(v+5)/5v and becomes negative in some regions for CV larger than

4(v+3)/3v, (v=degrees of freedom).

For values of CV greater than 0.5 the quadratic approximation may give a poor

estimate of the true coverage probability of a Bayesian confidence interval. However,

as large values of CV are caused by different values of s 2(,) having significant poste-

- . . . . . . . . . . . . . .
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rior probability, they correspond to situations such as Example2.2 where the identity

of active contrasts is not well-determined by the experimental data.

Table 2.4 gives quantiles of the quadratic approximation of the posterior distribu-

tion of active contrasts "c for CV between 0.0 and 0.5, degrees of freedom v between 7

and 31 in steps of 4, and tail probabilities .005, .025 and .05. Then, for example, 95%

confidence limits for an active contrast with CV=0.25 and v=15 are ±2.188(S).

2.4.3. Computing Details

The relevant statistics to be computed in the approximation to the posterior dis-

tribution of T i are , 2 and CV. To utilize the factorization given in Section 2.2, ]
expressions for these statistics must be derived in terms of p (a I T) and pilo"

The first step is to derive the conditional posterior distribution of ' j, given a and

given thatc is active,

. p (oY,, i IT,,z i active) .
P (C I o,T, active) = T (2.42)-: p (c;l T,,c i active)

Both numerator and denominator of this expression are obtained by integrating the

appropriate elements of c out of

p (,aT,riactive) a (2.43)

1. exp _Z,) 2+ xit2C JJ; [2TI': (2n(0-.1)) 1/0k2_1 j

lI 1-a)exp + a exp F -Cj) 2+ ' J I
*o •2• 2• (27c(k 2-1)) irma k J

. ,. -.- . -. , --.- - , - -,. .. . . .,. .-. . ........ .. .... -...
• , , . . .. -. . ,'P' *' . ".*''>* . , " .- .. .' ".;,'- .'..i ",k .. : . . .- ' '. .. . .' '.,, '.' .' .... '.''. ..



Table 2.4 Approximnate quantiles of the posterior distribution of an expected contrast

xc divided by its posterior standard deviation, obtained from the first three terms in a

Taylor series expansion of the exact distribution. The approximate quantile is a func-

tion of the degrees of freedom and the statistic CV. Values obtained are for tail pro-

babilities .05, .025 and .005 and degrees of freedom n-i for n a multiple of four

between 8 and 32.

tail probability = 0.05
degrees of freedom

CV 7 11 15 19 23 27 31
0. 1.895 1.796 1.753 1.729 1.714 1.703 1.696
0.05 1.891 1.793 1.750 1.726 1.711 1.700 1.692
0.10 1.887 1.789 1.747 1.723 1.707 1.697 1.689
0.15 1.884 1.786 1.743 1.719 1.704 1.693 1.686
0.20 1.880 1.782 1.739 1.715 1.700 1.690 1.682
0.25 1.875 1.778 1.735 1.711 1.696 1.685 1.678
0.30 1.871 1.773 1.731 1.707 1.692 1.681 1.673
0.35 1.866 1.769 1.726 1.702 1.687 1.676 1.668
0.40 1.861 1.764 1.721 1.697 1.682 1.671 1.663
0.45 1.856 1.759 1.716 1.692 1.676 1.666 1.658
0.50 1.850 1.753 1.710 1.686 1.670 1.659 1.652 4

.. . . . .

X.;
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tail probability =0.025

degrees of freedom
CV 7 11 15 19 23 27 31
0. 2.365 2.201 2.131 2.093 2.069 2.052 2.040
0.05 2.373 2.211 2.141 2.103 2.079 2.062 2.050
0.10 2.382 2.221 2.152 2.114 2.090 2.073 2.061
0.15 2.391 2.231 2.163 2.126 2.102 2.085 2.073
0.20 2.400 2.242 2.175 2.138 2.115 2.098 2.086
0.25 2.410 2.254 2.188 2.152 2.128 2.112 2.101
0.30 2.421 2.267 2.202 2.166 2.143 2.128 2.1162
0.35 2.432 2.280 2.217 2.182 2.159 2.144 2.133
0.40 2.443 2.295 2.232 2.198 2.177 2.162 2.151
0.45 2.455 2.310 2.249 2.216 2.195 2.181 2.171
0.50 2.467 2.326 2.267 2.235 2.216 2.202 2.192

tail probability =0.005

degrees of freedom
CV 7 11 15 19 23 27 31
0. 3.500 3.106 2.947 2.861 2.807 2.771 2.7442
0.05 3.545 3.157 3.000 2.916 2.863 2.827 2.801
0.10 3.591 3.208 3.054 2.971 2.920 2.884 2.859
0.15 3.637 3.259 3.108 3.027 2.976 2.942 2.917
0.20 3.683 3.310 3.161 3.082 3.032 2.999 2.974
0.25 3.728 3.360 3.214 3.136 3.087. 3.054 3.030
0.30 3.772 3.410 3.265 3.188 3.139 3.107 3.083
0.35 3.817 3.458 3.314 3.238 3.190 3.157 3.134
0.40 3.860 3.504 3.362 3.286 3.238 3.205 3.182
0.45 3.903 3.549 3.408 3.331 3.283 3.25 1 3.227
0.50 3.944 3.593 3.45 1 3.375 3.326 3.293 3.269

I%



62

After performing the integration we have

p (r i Io,Ti active) (2#4) -1/2o-1exp 20c2 (2.44)

a normal distribution with mean ?Ti and variance Oa2. (Recall r1_-1/k 2). In addi-

tion, the conditional posterior of a, given r is active, can be written

p (Y I T, i active) a p (a I T) pi . (2.45)

The quantities of interest, eS and CVi, are functions of the second and fourth

conditional posterior moments of ' i , given it is active. Thus they can be obtained as

the corresponding second and fourth moments of the contitional posterior distribution

(2.44) of r i given it is active and given a, integrated against the conditional posterior

distribution (2.45) of a given 'ri is active. Doing this, the following expressions are

obtained:

f 2= -3 o 2p(IT,j active)da (2.46)
n-0

(n -3)(n -5) 0 20 4p (a I T,, iactive) da

(n-i 2  o- (2.47);.....C v = - I
( 2)2

2.4.4. Marginal Posterior of a

K: The marginal posterior distribution of a is obtained from the joint posterior dis-

tribution of { ',a } in the same way as the posterior distribution of C was obtained.

Thus p (a y) is written
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p (CF p)= (c I Y'a (,))p(a (c) Iy). (2.48)

(C)

The posterior distribution of a conditional on a (c) is obtained by integration,

p(aly,a(c)) = J...I "C 'expt 2 [ ( )[S (+t :)'FrC'(¢ ] Idr(c)

-n [ ) 6 C ) (C (2.49)ax a- exp- 2c; 2

-:

After normalizing, the conditional posterior distribution of a is

(n-1Y2
-"p (o I y,a (c)) 2 2

-. _ <n }S2 C
Y exp} (2.50)

where s2(c) is defined by (2.31). The distribution of a is a scaled inverted chi distri-

bution with n-1 degrees of freedom. Analogous to the posterior distribution of c, the

complete posterior distribution of C is a weighted sum of 2n-I inverted chi distribu-

tions with different parameters s 2( ().

The Taylor series approach used to approximate the posterior distribution of T

was unsatisfactory for a, possibly because of the skewness of the densities

p(oly,a(c)). However, a normal approximation to the posterior distribution of

log(02) gives a better fit and is especially convenient for obtaining Bayesian

confidence limits for a or a2 .

\Iil

" ,,;,g:' '. ; ';S .::'- -',*.''. -S ,..~ i .' -. : . " .-- ',:: -':.i " :";- " " "'-:',.. ,: ,
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Posterior moments for log(o 2) are
1..

E[log(o 2) IT] = logo 2 p(IT)da (2.51)

E [(log(a 2)) 21 T] = f Oogo 2) 2p (c I T)d Y (2.52)
0

with the variance obtained in the usual way from these. The posterior distribution of

logo 2 is approximated by a normal distribution with the above mean and variance.

While the posterior distribution of log(o 2) is not symmetric in general, the individual

components p (og(o 2) y,a (c)) are nearly symmetric with nearly constant variance

(Box and Tiao, 1973), and the log transformation also somewhat symmetrizes the dis-

tribution of the parameters s2(c) over a(,). Thus the posterior distribution of

log(a 2) is much closer to being symmetric than the posteriors of a or a2. Exact and

approximate posterior densities for Examples 2.1 and 2.2 are given in Figure 2.7.

Approximate 95% confidence limits for Y2 are obtained by

exp{[og(o 2)1 T] + 1.96 (Varflogo 2 1 T]) M (2.53)

For Examples 2.1 and 2.2 these are

Example 2.1: (.032,.176)

Example 2.2: (.0010, .0114).

'1 °

L"~~~~~~~..-.-.. .-..........-... "........ ..... ,
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Figure 2.7a Exact posterior density (solid curve) of log(02 ) and normal approxima-

tion (dotted curve), Example 2. 1.
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Figure 2.7b Exact posterior density (solid curve) of log(o 2) and normal approxima-
• : tion (dotted curve), Example 2.2.
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2.5. Degrees of Freedom and the Parameter k

Given the event a (,) that a particular combination of c contrasts is active, the

freedom. And if active and inert contrasts are well determined by the experimental

data, the posterior distributions of the supposed active contrasts averaged over all

events a(c) are quite close to single t distributions with n-l degrees of freedom.

This is in contrast to the usual situation where the degrees of freedom are equal to n

minus the number of parameters estimated. The reason for this is that the prior vari-

ance of the parameters c~ was assumed to be a known constant involving k, times (T

Thus, in the expression (2.3 1) for the posterior variance of c (c ) given a (c ), there are

n-i-c degrees of freedom for the residual sum of squares plus c degrees of freedom

for the active contrasts which are scaled by the matrix r. and included in the expres-

sion for the posterior variance. The extra c degrees of freedom appear because it is

assumed that the squared active contrasts, scaled by a known constant also estimate

It was shown previously that varying k often has little effect on the posterior pro-

babilities {(pi 1. However, when there are several apparently active contrasts, and k is

not well-determined in advance, changing k may have a noticeable impact on the pos-

terior standard deviations of the contrasts. When situations such as this do occur, two

possible remedies come to mind.

If the parameter k is treated as unknown, then the predictive distribution
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.mm

P (Y)= f f p (yl o, ) p(zcl)p(a)d dlC (2.54)
-"0

as a function of k given y can be thought of as being proportional to the posterior den-

sity of k under a locally uniform prior. Denote this function by p (k I y), and the pos-

terior variance of a typical r i given k by f 2(k). Then an expression for the uncondi-

tional posterior variance of r i is given by

.*. fi2(k)p(ky)dk
.p(kly)dk 

(2.55)

This can be approximated by choosing a few values of k, such as 5, 10 and 15, and

estimating the integral by

J2(k) p (k IY)
,,. 2= (2.56)-- ." p ( k I y )

It

A second method for estimating the standard eror of a contrast is motivated by

the usual linear model approach of specifying which coefficients are signiicant, and

estimating variance from the residuals. The proposed variance of an observed contrast

is

:'::': T, 2 (l -p,)

vi2= n -i (2.57)
Ijn VZp

which is analogous to the linear model approach, but accounts for the indeterminacy

of which contrasts are active. When all probabilities are close to either zero or one,

-- %•
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the estimate agrees closely with the standard approach. When there are probabilities

closer t 1/2, the estimate is a weighted average of the standard estimates obtained by

either including or excluding the in-between contrasts. This estimator of variance is

insensitive to changes in k as long as the probabilities are also insensitive.

These two methods are compared with the posterior variance derived in the pre-

vious section 2.4.2, using the data of Example 2.1, in particular the apparently active

contrast from column 3 of the design. The posterior standard deviation of this contrast

was computed with a fixed at 0.2 and k taking the values 5, 10 and 15. For each com-

bination of a and k the estimate V3 was also computed. The unconditional posterior

standard deviation 1f3 was computed over the three values of k as indicated by the for-

mula (2.56). The posterior standard deviations 1f3(k) of column contrast 3 for k =5, 10

and 15 were 0.640, 0.534 and 0.517, respectively. The estimates V 3 were 0.583, 0.571

and 0.573, respectively. The marginal weighted estimate 1f3 was 0.570. The estimates

V mmc essniiet hne nkthnterglrpseirmmns n r

also close to the weighted average £3.

The marginal weighted average estimate fi given by (2.55) is the "correct" esti-

mate from the Bayesian viewpoint when precise knowledge of k is not available.

However, because the posterior density of k reaches a maximum at a value close to
the ratio of the mean squared active contrast over the mean squared inert contrast, and

Id the posterior standard deviation of r i at this value of k is approximately equal to the

mean squared inert contrast, the integral (2.55) will also be close to the mean squared

inert contrast. The estimator vi is basically also equal to the mean squared inert con-

%! A-
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trast and thus estimates the unconditional standard deviation fi without repeating the

calculations for several values of k, making it a convenient and less sensitive estimate

of the standard error of an active contrast

Although the integration with respect to k is not done analytically, it is probably

safe to say the form of the posterior distribution of r i has changed from the discrete

mixture of t distributions with n -I degrees of freedom, given k. Because of the anal-

ogy with the usual linear model, it was thought reduction of the degrees of freedom to

n -1-7,Pj would help correct for the new form of the distribution. However, compar-

ing nominal and actual coverage probabilities of confidence intervals for the

apparently active contrasts of Example 2.1, the closest agreement was attained when

approximating the posterior distribution by a t density with n -1 degrees of freedom
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2.6. Replication and Blocking

. 2.6.1. Replication

The model described here may be applied to any factorial experiment, unrepli-

cated or otherwise. Although it provides a method of analysis for the case when there

are no true replicate runs, as a general method for analyzing fractional factorials the

model can be applied successfully when there are replicate runs. For example, con-

sider the special case of an n xn design X with the properties described in Section 1.2,

with m independent observations at each point of the design. In general it is assumed

that the experiment is run in m blocks of n runs, with each block consisting of one

replication of the design X, each block having a different mean, with no interaction

between blocks and factors. The analysis can be reduced to the case where each block

mean is assumed the same, to be applied when the replicates are not run in blocks.

The situation where blocking is done within the design X is described in Section 2.6.3.

2.6.2. Joint Posterior for the Replicated Design

Let yj be the vector of observations for the j th block. Again make the one-to-

one transformation

Tj ffi(X'X) -'X ' y j , j ffM1.

The sampling distribution of T= (T,..., T,,) is

..
y..
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n" 1 (2.58).

Utilizing the same prior distributions as given in Section 2.1, the joint posterior distri-

bution of { ,o } is

p (-m, I-T ) a _ __-lexp_ _ _ _ 
=  I 1 (2.59)

p@,oITT,) 2 2exp. j-=I - ) . r - '
ix 1exp 2 - 2 ((2x)(k 2 -1)) o {2(k2) 2

CyI=

-- ep4--

The quantities

S(T _,C) 2 , T,
J-1 j=1

can be decomposed to give

m/7,(Ti _-C,)2 =M( _C,) 2 + S, (2.60)
j=!

and j'i

'i) L + S. 2=M 3 (2.61)
j.-

with".i

..................................................................................- ,--.......,.-.-...-.-.-.........,....-...v.v-.--..--.....-..
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Si= (Tj-Ti)2 (2.62)-- I
j=1

Thus the posterior distribution of { ',o I can be written

-' 7, rl L si(2.63)

p(TajT) a a['-lexp. =1 exp = (6

r ex p I exp -

i=1 2a2 ((2x)(k21)) 1 2 y X2(k
2-1)0 2

% ~+ (1-- )exp,
• .2 ( 2 2

This is of the same form as that derived for the unreplicated case, with the variance

reduced to a 2/m by replication, the non-informative prior distribution for a replaced

* by an informative inverted X distribution, and k 2 defined to be mny2+1. For the rest

of this section ci2 will refer to the reduced variance, which is /mn times the original

error variance, or 1/m times the variance of an observed contrast from an unreplicated

n-run experiment. The two cases considered here are:

1. For unequal, unknown block effects, the prior estimate of a 2 is

n-i

i- i (2.64)

with (m-l)(n-1) degrees of freedom.

/ .* ** . P* .
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2. For equal block effects (equivalently no block effects, but one overall mean), the

prior estimate of c 2 is

S-i
s2  j=o (2.65)

• m(m-1)n

- with (m -1)n degrees of freedom.

In each of the above cases the extra divisor of m in the formula for s 2 appears because

of the previously mentioned m -fold variance reduction.

Thus the Bayesian model applied to a replicated experiment is equivalent to the

unreplicated analysis on the observed contrasts averaged over the replicates, with a

prior estimate of variance obtained as the variance of the observed contrasts between

replicates. It is important to note that this result depends upon the orthogonality

among contrasts and replicates obtained by repeating each point the same number of

times. Unequal replication does not lead to this simplification.

2.6.3. Blocking ]
4 In situations where it is not possible to complete all n runs of the design in the

same day, or with the same batch of raw material, or with the same technician, etc., it

is common to run the experiment in blocks, associating effects of supposedly lesser

importance (high order interactions) with block differences (see, e.g., Cochran and

Cox, 1957, p. 183; Box, Hunter and Hunter, 1978, p. 336). I describe below how to

deal with block effects in the proposed analysis.

.P <,
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For a first attempt one might pretend that those contrasts associated with block

effects still come from the normal population implied by the prior distribution (1.3),

and are active with probability o. T7his is equivalent to ignoring the fact that some of

the contrasts are biased by block differences, and continuing with the analysis as

usual. The resulting posterior distribution of ay may, however, be contaminated by

these possibly inflated contrasts. A safer method is to assume there will always be

some effect due to blocking, and assign a noninformative prior to the magnitudes of

these effects. The result is that contrasts associated with block differences do not

enter into the calculation of posterior probabilities and related statistics for the con-

trasts of interest, and they are ignored just as the grand mean was ignored in the previ-

ous, analysis.

Suppose then, that the design X is replicated m timies, with b blocks within each

replicate of X, and the same columns are associated with blocks in each replicate.

Assuming no interaction between blocks and factors, there are n-b contrasts for

which posterior probabilities will be computed. If in> 1, there will be (m -l)(n -b)

additional degrees of freedom for estimating variance. Following the same steps as in

the previous section, the posterior distribution of ay and the contrasts of interest r is

F



76

2(nt - b

_______(2.66)

p(roljT)=r - m(n- b - ] exp{ x 

n-b [ -M(i-~) 2 ___

$iMf 2 i-

+ (1-a)exp{}]

where

mI (T)

Sj=1

Again, this is of the same form (2.12) as for the unreplicated design, with the nonin-

formative prior for a replaced by the informative inverted X distribution.

2.6.4. Dependence of a and k on m,n

The parameters k, y are related by the equation

k 2 =mn2+1 (2.67)

and it is clear that as m or n increases, either k must increase, or y must decrease, or

both. It has been an accepted notion in statistical analysis to compare an estimator

with its own variance to determine if it is "significant" or not. In this case the variance

of an observed contrast is a 2Imn, so that as m and n increase, smaller and smaller

conuasts should be declared active in comparison with this variance. This implies

P67-1
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that the prior variance of an active contrast should decrease as a function of m and n.

4. Specifically, if the prior belief is that active contrasts should be a certain size relative

to Af2 mn, then the prior variance should be a constant times a 2IMn. Thus y2 is pro-

portional to a constant over inn. This implies that the parameter k should be indepen-
dent of in and n, by equation (2.67). Thus the range for k given in Section 2.3.1 will

serve as a reasonable guide for general m, n.

Regarding a, as the number of replicates m increases for fixed n, the increasing

number of expected active contrasts should be reflected in a larger value of a. For

example, if it is believed that the inherent noise in a process will make it impossible to

uncover any active contrasts in an unreplicated experiment, replication will serve to

decrease the noise in the observed contrasts and increase the frequency of detectable

large values.

2.6.5. An Example

To illustrate, the following example is taken from Barnett and Mead (1956).

Example 2.3 The authors wished to study the effect of variations in four operating

factors, pH (P), aluminum reagent (A), carbon slurry (C) and barium chloride (B), on

the efficiency of a decontamination process for removal of radioactivity from liquid

wastes. They chose to run a 2 fl factorial design, twice replicated. Because only

eight of the sixteen factor combinations could be completed in one day, each replicate

was run in two blocks of eight runs, and the four-factor interaction PACE was con-

founded with block differences within each replicate. The design, observations and

calculated contrasts are given in Table 2.5.

V- . ..
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Table 2.5 Design matrix, observations, and observed contrasts for Example 2.3, a

twice-replicated 2~ full factorial experiment run in two blocks of 16 runs, from Bar-

nett and Mead (1956). The CABP contrast is confounded with block differences.

factors response
run C A B P Y I Y2

1 - - - - 881 834
2 + - - - 650 494

3 - + - 191 257
4 + + - - 183 193
5 - - + - 289 178
6 +, + - 188 163
7 - + + - 225 370
8 + + + - 135 156
9 - - - + 1180 1193

10 + - - + 1039 1146
4.11 - + - + 466 890

12 + + - + 781 775
13 - - + + 298 273
14 + - + + 238 254
15 - + + + 420 429
16 + + + + 350 389

Block Block Block Block
column 1 2 column 1 2
(effect) contrast contrast (effect) contrast contrast

0(mean) 469.6 499.6 8(P) 126.9 169.0
1(C) -24.1 -53.4 9(CP) 29.6 25.8IL
2(A) -125.8 -67.3 10(AP) 33.5 19.4
3(CA) 42.5 -0.8 11 (CAP) 13.3 -10.4
4(B) -201.8 -223.1 12(BP) -68.3 -109.3
5(CB) -16.0 17.4 13(CBP) -22.0 -4.5
6(AB) 140.4 126.8 14(ABP) 10.4 -6.1

7.7(CAB) -42.4 -26.8 15(CABP) -15.9 32.6

...................
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Barnett and Mead used analysis of variance to analyze the results of the experi-

ment. Contrasts of magnitude larger than 94 were found to be significant at the nomi-

nal .01 level, and those larger than 68 at the .05 level (with no correction for selec-

tion). Thus main effects P, B and A and the PB and BA interactions were judged

significant at the .01 level, and the main effect C and the BAC interaction were

judged significant at the .05 level.

The Bayesian posterior probabilities of the contrasts were computed with a=0.2

and k-10 and are presented in Table 2.6a, with a prior estimate of the standard devia-

tion of an observed contrast being 30.42 with (m-l)(n-b)=14 degrees of freedom.

For comparison the posterior probabilities and related statistics were computed pre-

tending the values of the observed contrasts were obtained from an unreplicated

experiment. These values are presented in Table 2.6b.

" The five largest contrasts, declared significant at the .01 level by Barnett and

Mead, all have posterior probabilities close to one. The two intermediate contrasts

have posterior probabilities of .261 and .174. One could reasonably conclude for this

example that the five largest contrasts are almost certainly measuring real effects, and

the next two largest are also possibly active and should be considered. Of course, in

practice, the conclusions will depend on the objective of the experiment.

Comparing the results to those obtained by pretending the contrasts were calcu-

•.. lated from an unreplicated experiment, the posterior probabilities are in fairly close

agreement. However, the values for the diagnostic statistics Dp/a, ap/ak and CV

are all much greater for the "unreplicated" analysis. This agrees with intuition. The

.4-
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Table 2.6a Posterior probabilities, standard errors (conditional on being active), CV

A. values, and derivatives for Example 2.3, with .=0.2 and k=10 and a prior estimate of
ci of 30.42 with 14 degrees of freedom obtained from replicates.

effect contrast post.prob. selactive CV - dp/a 50dpldk
none 0.050
C -77.5 0.261 31.7 0.01 1.37 -0.29
A -193.0 0.998 34.3 0.02 0.02 0.00
AC 41.8 0.051 33.3 0.02 0.32 -0.19
B -424.9 1.000 34.4 0.02 0.00 0.00
BC 1.4 0.024 34.4 0.02 0.15 -0.12
BA 267.1 1.000 34.4 0.02 0.00 0.00
BAC -69.1 0.174 31.9 0.02 1.03 -0.30
P 295.9 1.000 34.4 0.02 0.00 -0.00
PC 55.4 0.089 32.5 0.02 0.57 -0.26
PA 52.9 0.079 32.7 0.02 0.51 -0.25
PAC 2.9 0.024 34.4 0.02 0.15 -0.12
PB -177.5 0.995 34.3 0.01 0.04 0.01
PBC -26.5 0.033 33.9 0.02 0.20 -0.15
PBA 4.3 0.025 .34.4 0.02 0.15 -0.12

'I
%5;~
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Table 2.6b Posterior probabilities, standard errors (conditional on being active), CV

values, and derivatives for Example 2.3, with oc=0.2 and k=10, pretending the design

was not replicated.

effect contrast post.prob. selactive CV dp/da 50dp/dk

none 0.050
C -77.5 0.137 45.9 3.99 1.62 -0.18
A -193.0 0.711 44.5 1.47 4.59 -1.19
AC 41.8 0.039 66.7 2.58 0.35 -0.16
B -424.8 0.916 63.7 1.48 2.06 0.05
BC 1.4 0.024 78.4 1.86 0.15 -0.12

BA 267.1 0.796 50.2 1.41 4.01 -1.32

BAC -69.1 0.098 49.8 3.86 1.16 -0.18
P 295.9 0.822 52.7 1.42 3.69 -1.28
PC 55.4 0.058 58.2 3.23 0.62 -0.17
PA 52.9 0.053 59.8 3.10 0.56 0.02
PAC 2.9 0.024 78.3 1.86 0.15 -0.12
PB -177.5 0.683 43.4 1.53 4.64 0.12

PBC -26.5 0.029 73.8 2.12 0.21 -0.14
PBA 4.3 0.024 78.3 1.87 0.15 -0.12

.:

.
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derivatives with respect to ot and k measure dependence on the choice of these prior

parameters, and dependence on the prior would be expected to decrease as additional

* data were collected. The statistic CV can be interpreted as measuring the sharpness of

the posterior distribution of cr, which is also enhanced by adding replicate observa-

tions.

2.7. Conclusions

The incorporation of assumptions into the normal theory model used for analyz-

ing factorial and fractional factorial experiments has led to a more formal analog to

the normal plot of Daniel (1959). Assessing the column contrasts according to their

corresponding posterior probabilities, which can be presented graphically, is intui-

tively appealing. The method does not suffer the computational limitations usually

associated with such elaborated models, due to the alternative Bayes factorization

presented in Section. 2.2. Standard errors for supposed active contrasts are easily

obtained. The versatility of the analysis is also appealing: it can be used when designs

are replicated and blocked, or when certain columns are assumed to be inert a prior!

Overall, it provides an interesting and exciting new analysis for factorial experiments.

lii
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CHAPTER 3

IDENTIFICATION OF ACTIVE FACTORS

3.1. Introduction

As discussed in Chapter 1, the historical approach to the analysis of unreplicated
factorial experiments has been to identify column contrasts which are too large to

attribute to noise (see, e.g., Daniel, 1959; Box, Hunter and Hunter, 1978, p. 329). The

Bayesian analysis proposed in the previous chapter addresses this problem. Once

active contrasts have tentatively been identified, it remains to determine which

-1: combination(s) of the experimental variables are most likely responsible for the large

observed contrasts. In this chapter I propose a formal Bayesian analysis, analogous to

the one described in Chapter 2, for the problem of identifying the active factors as

opposed to active contrasts.

Two basic guidelines for interpretation of fractional factorials given by Box and

Hunter (1961), and restated in Section 1.3, are a) significant interactions are more

likely to occur between variables which have large main effects, and b) main effects

are usually larger than two-factor interactions, which are larger than three-factor

interactions, etc. These guidelines are formalized in the model proposed in this

chapter. The first of these guidelines is modeled by considering only column combi-

nations corresponding to experimental factors and interactions among those factors.

To follow the second guideline, separate values of the parameter k for main effects

IiK
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and two-factor interactions can be specified, with k I for main effects larger than k 2

for two-factor interactions. Three-factor interactions can either be assumed to have

the same (or smaller) variance as two-factor interactions, or they can be assumed to be

inert.

3.2. The Model

The following modifications to the Bayesian model introduced previously are

needed. It is assumed that factors will be active in producing main effects and interac-

tions with prior probability cc. In general this value of a will be different from the

value used in the previous chapter to describe the frequency of active columns. Let

Va (f)be the event that a particular combination of f factors is active. Let X (f)be

the matrix of columns of X corresponding to the active effects of a (f (including

interactions). For example, if a (f)is the event that factors 1 and 2 are active, X (

would contain columns for the main effects of, as well as a column for the two-factor

interaction between, factors 1 and 2. Likewise let 'r (f)be the vector of true effects

under a (f) The sampling distribution of the vector of observations y, given a (f) is

p (_vI a(f ),a,,(f )) a a cxp '( (3.1)

The elements of T f are assumed to have independent, but not necessarily identical,

prior normal distributions as before. in particular, it will be assumed that elements of

Cf)which are main effects will have prior distributions with mean 0 and variance

7i 2 a2 , and those elements which are two-factor interactions will have mean 0 and

variance y2 2 a 2 And, though this assumption is not necessary, for ease of illustration

-~ ~ ~ ~ ~'A . Aj,*
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it will be assumed that interactions between three or more factors are inert. A nonin-

formative prior distribution is assumed again for the overall mean o 0 and log(a), so

that p (r 0,a) a I/; where the likelihood is appreciable. The posterior probability of

the event a (f) can then be written

p(f )=p (a(f)y),= C Is-fY-f (I-1/ X (3.2)

,~~X x xo s(T(n)+TU1),rf'cu)

where

;(f)= If+xon x(fj- x(n y:.

rf is the diagonal matrix with the appropriate diagonal elements (the (i ,i) element is

1/y12 if the i th element of T ) is a main effect, 1/y22 if an interaction), and S( (f

is the residual sum of squares obtained when estimating 'c (f) by 'T (f). (Allowance

for possible higher-order interactions can be made by appropriate redefinition of X V

and T (f) and the exponent of y2, or introduction of a third parameter y3). Making the

transformation

kJ2=nyj2 + 1,

the probability p (f can be rewritten

*, :: ,':' :. : : : .' , -,. ' . . ,. ." ." . " ' , ...S.. • - -. . - - ".. .-.- - . -- , - . - -... . . . .
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P(f) [ ] kl-f k2 -f (f-1Y2 X (3.3)

ST.(f),T () -2 T(f)'T(f 1
T'T T'T J

where Tm (f is the vector of observed contrasts which are main effects under a(f

T(f ) is the vector of contrasts which are interactions under a(f ), and Oj = l-I/kj 2.

The probabilities p (f) can be accumulated to compute the marginal posterior

probability pj * that factor j is active,

Pj = - (3.4)"-( 1 j1 active

It was shown in Chapter 2 that to compute the posterior probabilities fPiI that partic-

ular columns are active it was not necessary to sum probabilities over all possible

combinations of active columns, but rather these could be computed via numerical

integration at a considerable savings in computing time. The same is not true of the

probabilities JPi * }, which must be computed by direct enumeration over all events

a (f). However, for moderate experiments with fewer than 15 factors, the computa-

tions are quite manageable.

For application to fractional factorials the above definitions are consistent so

long as f is restricted to be smaller than the design resolution. In the next section I

give a a natural extension of the model which can be used when this assumption is too

restrictive.

Zsmtoit
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3.2.1. Relaxing the Bound on f

The assumption that the number of active factors is less than the design resolu-

tion will be unreasonable for fractional factorial designs of low resolution. In Exam-

ple 2. 1, eight factors Wf re screened using a 28-4 design of resolution four. In this

situation it was unknown which of eight factors was important, and thus unlikely that

the experimenter could be sure that at most three were active. A natural extension of

the above ideas to allow relaxation of the bound on f is given for the 2 k-P designs

and easily extended to more general designs.

Consider a combination of f factors denoted by a (f where f is greater than or

equal to the design resolution R. Suppose there is confounding among the possible

main effects and interactions of a (f i, e., there are column contrasts which estimate

more than one of the possible effects under a (f) (It is possible to have combinations

of f factors with f Z: R for which there is no confou nding, and no modification is

necessary for these). For those columns which estimate more than one effect define

the corresponding element of -T( to be the linear combination of effects estimated

by that column. The prior distribution of such elements of r f will still be indepen-

dent and normal, but with variance equal to the sum of the variances for the individual

components. For example, if a particular column contrast T1 estimated the sum of two

two-factor interactions, the prior variance of r i would be 2 y2
20 2. All further compu-

tations proceed as usual given this modification of the prior distribution of T (f) For

example, consider a combination of four factors which are confounded from the 28-

design of Example 2. 1. (The Hadamard product of the columns of any three of the

vt 1.
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factors gives the column of the remaining factor). There will be three column con-

trasts each of which estimates the sum of two two-factor interactions among the four

factors. The posterior probability of this combination is given by (assuming interac-

tions between three or more factors to be inert)

Pu() a k 1-4(2 "2k 2)-3 X (3.5)
':i -*'~~~~Tci ''1- - 12 T < T I

T 2k 2 2 T'T

where T )(f is the vector of contrasts each estimating a sum of two interactions.

3.3. Prior Parameters

To estimate plausible values for cc, k I and k2, the published examples given in

Table 2.1 are reexamined. For each example, a is estimated by the proportion of fac-

tors declared active by the authors, k 12 is estimated by the mean squared main effect

among active factors over the mean squared inert contrast, and k 2
2 is estimated by the

mean squared two-factor interaction among active factors over the mean squared inert

contrast. In this context not all active contrasts will be large, although all inert con-

trasts should be small. The estimated values of a, k I and k 2 are presented in Table

3.1.

For those examples which are full factorials and the one which is a half-fraction,

at least half of the variables were declared active. For the more highly fractionated

designs, of course, a much smaller proportion of the variables were found to be active.

... .... ..v .. .*4S _ +**+ +# d'..-. *' , - -.'-.>-, r , . +
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Table 3.1 Estimated values of cc, k1 for main effects and k2 for interactions for the

modified Bayesian model, from published examples of two-level experiments taken

from Box, Hunter and Hunter (1978), Davies ed. (1954), Daniel (1976), Bennett and

Franklin (1954), Johnson and Leone (1964), and Taguchi and Wu (1980). In Daniel's

example the analysis is conducted after making a log transformation in the response.

Example n fraction a kI kc2
BHH p. 398 16 1/16 .38 9.3 6.5
BHH p. 327 16 1 .75 15.2 2.7
BHH p. 378 32 1 .60 11.8 8.9
Davies p. 274 16 1 .50 1.9 2.5
Davies p. 462 16 1/2 .80 7.6 2.2
Daniel p. 71 16 1 .75 13.0 1.0
BF p. 557 16 1 .75 26.8 6.3
X p. 183 32 1 .60 3.0 1.1
X p. 196 16 1 .75 11.9 1.5
TW p. 69 16 1/32 .22 9.5 «1.0
Average low .69 11.0 3.3

high .30

'IV.



* 90

Thus the value of a to be specified in any particular situation depends on the degree of

fractionation of the design, or more correctly, the degree of fractionation will depend

on the experimenter's expectation of the number of important factors, which would

also be reflected in the value of a. For full factorials or half-fractions, a reasonable

range for a would be from 0.4 to 0.8, while for more highly fractionated designs, the

range would be reduced to 0.2 to 0.4.

In all but one exrample the value of k I for main effects is larger than k2 for two-

factor interactions, and the ratio of the average k I to the average k2 is 3.33.

In practice it will often be informative to carry out the analysis under differing

sets of assumptions, e.g., assuming higher order interactions inert or not, or tying dif-

ferent values of a and k. When results are insensitive to varying plausible assump-

tions, one can feel safe in drawing inferences from those results. On the other hand,

when the results are not robust to changes in assumptions, this indicates an inability of

the data to dominate the information provided initially, and any conclusions should

reflect this dependence on prior assumptions. This is illustrated by example in the

next section.

V1
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3.4. Example '

The method is illustrated by continuing the analysis of Example 2. 1. The factors

and their allocation to the 16x16 design array are given in Table 3.2. Recall that in

Chapter 2 it was discovered that column contrasts 4, 12 and 13 were very likely

active, each receiving posterior probability close to one. There was also weak evi-

dence to suggest contrast 8 might also be active (see Figure 2.2a). Assuming interac-

tions, between three or more factors to be inert, contrasts 8, 12 and 13 are associated

with the main effects of factors 1 (screw speed), 5 (holding pressure) and 6 (booster

pressure). The large contrast of column 4 is associated with the sum of four two-

factor interactions denoted by the alias string10+26+37+48. The original authors

suggested that it was most likely either the 15 or 26 interaction which was responsible

for the large contrast, because these involved variables with large Train effects. In a

F four-run followup experiment they were able to obtain separate estimates of the four

interactions and deduced that the 15 interaction was indeed the major component of

the aliased contrast

The posterior probabilities that each factor is active were computed with c*=0.3,

k 1I11 and k 2=3.3 and are presented in Table 3.3, again assuming that interactions

between three or more factors are inert. Factors 1 (screw speed), 5 (holding pressure)

* and 6 (booster pressure) have posterior probabilities close to one and could plausibly

be considered active. Factor 2 (temperature) has posterior probability of 0.4, with all

other factors receiving very small values. Examination of the alias strings of Table

3.3 suggests where the evidence for factor 2 is coming from. Although it does not

)L
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Table 3.2 Factors and column allocation to the standard 16-run two-level factorial

design for Example 2. 1.

Factors
1 (S) Screw speed
2 (M' Temperature

4 (V) Thickness
5 (H) Holding pressure
6 (B) Booster pressure
7 (C) Cycle time
8 (G) Gate size

Column allocation
S TM VH BCG0

*10 1 2 3 45 6 7 8 910 1112 13 1415
++ + + + +4- + --

2 +-44 -+4+-

3 + - + + + + + -+

5 5+ -- +4 + + + 4+- -+ -

7. + -+ - 4+ - + + - ++ -44

11 + - + + + - +4- - - + + +

10 + + - - - ++ + + - - -+

13I+ -+ - + + - + - 4 ++

14 ++ - - + + -- +4+- - +4 +

154+-4+ - + -4+- + - + - + -4-

16 . ...... 1
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Table 3.3 Posterior probabilities pi* of factors being active, Example 2.1, m--0.3,

k I-11, k 273.3, interactions between three or more factors assumed inert. Below are

the column contrasts and their alias strings.

Factors Posterior probability
I (S) Screw speed .875
2 (T) Temperature .400
3 "M Moisture .002

14 (V) Thickness .004
5 (H) Holding pressure 1.000
6 (B) Booster pressure .998
7 (C) Cycle time .003
8 (G) Gate sie.009

.9column contrast alias string
-~1 -0.6 12+34+56+78

2 -0.4 10+24457+68
3 -0.6 14+23+5"+7
4 4.6 15+26+37+48
5 0.9 16+25+38+47
6 -0.2 17+28+35+46
7 -0.3 18+27+36+45
8 -1.2 1
9 0.7 2

10 0.1 3
11 0.3 4
12 -5.5 5
13 3.8 6
14 0.1 7
15 -0.6 8

Jh*

9la

rN
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have a large main effect, the two Largest interactions could be explained by the effect

* of variable 2 (as well as variable 1) interacting with the active variables 5 and 6. Vari-

able 1 received higher posterior probability because of its larger main effect.

Alternatively, if variables 1, 5 and 6 were truly the active factors, there is one

other variable which would be difficult to separate from those three, and that is vari-

able 2. The design collapses into a full factorial in any combination of four factors

which includes variables 1, 5 and 6 excep the combination 1, 2, 5 and 6, for which the

design collapses into a replicated half fraction. Thus the three two-factor interactions

among the variables 1, 5 and 6 are confounded with the three two-factor interactions

between 1, 5 and 6 and variable 2. The structure of the design dictates that, given that

1, 5 and 6 are the active factors, it will be more difficult to accumulate evidence

against variable 2 than the remaining four factors. This phenomenon is reflected in

the results of the Bayesian analysis.

In Figure 3.1 the posterior probabilities ame plotted as a bar plot. with boxes indi-

cating the range for each probability over different combinations of ct-0.2, 0.3 and

0.4, k 1=5, 11, and 15, and k 2-2, 3.3 and 6, only taking those combinations with

k 1 >k 2- The posterior probability for factor 2 is the only one which changes enough

to affect conclusions about the experiment Conclusions about this factor depend

upon assumptions about the frequency of active factors and the relative size of main

effects, interactions and inert contrasts, and these assumptions are reflected in the

values of a, k I and k 2- In particular, if knowledge of these parameters is vague, vari-

able 2 can not be safely eliminated.
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Figure 3.1 Posterior probabilities {pi*} that factors are active, Example 2.1. Solid

lines indicate values for a=0.3, k i=11, k2=3.3, boxes indicate range of values for dif- I
ferent combinations of a.=0.2, 0.3, 0.4, k 1=5, 11, 15, and k 2=2, 3.3, 6.

1.0 . .

1. 0.5 .................. ..............
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I' n n I n O

none 1 2 3 4 5 B 7 8
active

factor number
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- .. I*S...%S**. ~ .:§~~~-

,1. ,p j, . ..,. .. . . .. ,+. ... ,.. t,. . . . . . .. .. • ,., ,, ... ,7. ,,, +. .,. . , . . , ., * ,, . 4.. ,,+..
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Suppose now that the assumption that three-factor interactions are inert is

dropped. Although this is a very reasonable assumption in practice, it will be interest-

ing to observe what occurs when it is dropped. The posterior probabilities of the fac-

tors were recomputed based on the new set of assumptions and are presented in Table

3.4. The evidence for variables 5 and 6 is still strong, but the posterior probabilities

for variables 1 and 2 are now almost equal. The reason can be found in the revised

aia strings for each contrast in Table 3.4. The contrast associated with the main

effect of variable 1 is confounded with the 2S6 interaction. Now that this contrast,

which is a bit too large to attribute entirely to noise, can be associated with an effect

of variables 2, 5 and 6, the evidence for variable 2 is stronger, and the evidence for

variable 1 is somewhat weaker. This alternative analysis was presented to demon-

strate that an experimenter who might have eliminated variable 2 based on the previ-

ous analysis would have depended heavily on the assumption that three-factor interac-

tions were inert.

There are two separate issues to consider when making assumptions: the reasona-

bility of the assumptions, and the dependence of the conclusions on the assunptions.

"S It was shown for Example 2.1 that conclusions could be sensitive to choice of prior

parameters and the assumption that three-factor interactions are inert. While the

reasonability of such assumptions is not questioned, it is important to know when con-

clusions, depend on assumptions even when the assumptions are well-based.

V To demonstrate further the point made about confounding when there are R -1

active factors for a design of resolution R, consider the following exercise. Suppose

-a.%
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Table 3.4 Posterior probabilities of factors being active, Example 2.1, m-=0.3, k 1=11,

k2=3.3, interactions between four or more factors assumed inert. Below are the

column contrasts and their alias strings (only three-factor interactions among the plau-

sibly active factors 1, 2, 5 and 6 are shown).

Factors Posterior probability
1 (S) Screw speed .608

* 2 (T) Temperature .537
3 (M) Moisture .000
4 (V) Thickness .000
5 (H) Holding pressure .991
6 (B) Booster pressure .942
7 (C) Cycle time .000
8 (G) Gate size .000

column contrast alias string

1 -0.6 12+34+56+78
2 -0.4 13+24+57+68
3 -0.6 14+23+58+67

*.x. 4 4.6 15+26+37448
5 0.9 16+25+38+47
6 -0.2 17+28+35446
7 -0.3 18+27+36445
8 -1.2 1+256
9 0.7 2+156
10 0.1 3
11 0.3 4
12 -5.5 5+126
13 3.8 6+125
14 0.1 7
15 -0.6 8

•,"-.-
-. . . . . . . '. " '... . .- , -. .,'.. .".,% % " . ..
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the three factors 1, 5 and 6 were the only active factors. Their activity could be mani-

fested in several different combinations of main effects and interactions. Assuming

the 156 interaction is inert, that leaves three main effects and three two-factor interac-

tions among the active factors. For purposes of illustration, artiflcfrzl data will be

created to explore the relationships among the factors 1, 2, 5 and 6 under these cir-

cumstances. Suppose main effects are always either 2 or 0, and two-factor interac-

tions are either 1 or 0. Since each effect can take on either of two values, there are

26=64 possible combinations of main effects and interactions. For each combination,

a vector of observations y is generated, with no error component, and the posterior

probabilities f{p *i are computed, with a, k11ank =3.3.

Of the 64 possible combinations of the six effects, 23 correspond to situations

when not all tee factors are active, for example when all six effects are zero. These

are eliminated from further consideration. The remaining 64-23=41 can be

represented by 12 distinct combinations. For example, there are three ways to have

three non-zero main effects and one non-zero interaction, but each of these gives the

same pattern of values for the posterior probabilities. The 12 distinct combinations

and the probabilities I p for factors 1, 2, 5 and 6 are presented in Table 3.5. (The

remaining factors received posterior probability of zero, to two decimal places, for all

12 combinations).

As seen in the table, there are many situations in which factor 2 receives

significant posterior probability, despite the fact it is actually inert and there is no

error component in the data. The combinations for which it was easiest to detect the
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Table 3.5 Posterior probabilities of factors being active over the 12 distinct combina-

tions of active effects for the active factors 1, 5 and 6, or=0.3, k 1=11, k2=3.3. The first

six columns give the values assigned to the main effects and interactions among fac-

tors 1, 5 and 6, and the last four columns give the posterior probabilties for factors 1,

2, 5 and 6.

Posterior
Effects Probabilities

b I b5 b6 b15 b16 b56 1 2 5 6
2 2 2 0 0 0 1.00 .01 1.00 1.00
2 2 2 1 0 0 1.00 .09 1.00 1.00
2 2 2 1 1 0 1.00 .21 1.00 1.00
2 2 2 1 1 1 1.00 .30 1.00 1.00
2 2 0 0 1 0 1.00 .54 1.00 .54
2 2 0 1 1 0 1.00 .59 1.00 .59
2 2 0 0 1 1 1.00 .59 1.00 .59
2 2 0 1 1 1 1.00 .62 1.00 .62
2 0 0 1 1 0 1.00 .74 .74 .74
2 0 0 1 0 1 1.00 .74 .74 .74
2 0 0 1 1 1 1.00 .76 .76 .76
2 0 0 .0 0 1 1.00 .99 .01 .01

SIR

f.
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truly active factors were those in which all main effects were large. As main effects

were dropped it became more difficult to separate factor 2 from the other three factors.

This is because the assumption that main effects are lager and occur more frequently

than interactions has been incorporated into the model, and situations for which this

does not hold can lead to these unexpected patterns of probabilities. However, on the

premise that the assumption about main effects is basically sound, these troublesome

situations should not be frequent. Note also there was only one com bination where

active factors did not receive large probabilities, and thivr was the combination where

there was a nonzero interaction between factors 5 and 6, but their respective main

effects were zero.

Two conclusions are apparent from this exercise. First, when there are R -l

active factors in a design of resolution R, it is sometimes not possible to identify the

correct factors exactly, even though the design projects into a full factorial in the R -1

factors. Fortunately, it will usually be possible to restrict attention to some subset of

'.4 variables, and it would be rare that active factors would be excluded from this subset

due to inherent properties of the design and analysis (active factors may be concealed

by noise). In the example above it was possible to narrow down to four of the original

eight variables. A follow-up experiment such as the one described in Box, Hunter and

Hunter (1978), p. 413, can be implemented to eliminate any remaining inert factors.

K Second, the Bayesian analysis provides a good method for identifying the likely sub-

set of variables by combining prior assumptions, properties of the experimental design

and information in the data. Factors such as factor 2 in the above example

0I7
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'I. which cannot be safely eliminated because of the structure of the design, are identified

by their non-negligible posterior probability, as well as those factors which are more

obviously active.I

The above exercise was repeated with pseudo-random normal errors added to the
artificially generated observations, 100 trials for each combination. The average pos-

terior probabilities achieved over the 100 trials agreed closely with those in Table 3.5.
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3.5. Robustness and the Assumption of Normal Errors

Sensitivity of the Bayesian analysis to the assumption of normal errors is

explored in this section. As described by Box and Tiao (1973), the idea of robustness

has two facets, criterion robustness and inference robustness. Criterion robustness is

concerned with the performance of a statistical procedure derived from one set of

assumptions when a different set of assumptions is true. A procedure, or criterion,

would be robust if it performed similarly under both sets of conditions. For example,

when estimating the mean of a population, normal theory confidence limits around the

sample mean may still apply approximately when the data are non-normal, because of

the central limit theorem. Inference robustness is concerned with the comparison of

procedures derived from different sets of assumptions. If the procedure derived from

assumptions A1I leads to nearly the same inference as the procedure derived from

assumptions A 2 , then that inference would be robust. For example, measuring the

sensitivity of the posterior probabilities to choice of a and k, Section 2.3.2, dealt with

the question of inference robustness. As a general principle one would only be con-

cerned about robustness over reasonably plausible assumptions.

To assess the robustness of inferences from the posterior probabilities (pi or

{p *i with respect to choice of error distribution, it would be necessary to derive new

formulas for these probabilities based on some non-normal distribution. However,

working with reasonable alternative distributions such as the t, double exponential,

rectangular, etc., the numerous integrations in the expression for the posterior proba-
%Ar

bilities could not be handled analytically. Multi-dimensional numerical integration
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also proved to be intractable, and this issue is left for future consideration.

The issue of criterion robustness to the assumption of normality is more straight-

forward. In the following sections the results of simulations designed to explore this

issue are described.

3.5.1. No Active Effects

For the first set of simulations data were generated with no active effects present

Behavior of the posterior probabilities I pi I and I pi *I} was observed over four error

distributions: normal, rectangular (a platykurtic or light-tailed distribution), t with 3

degrees of freedom, abbreviated by t 3 (a leptokurtic or heavy-tailed distribution), and

skew normal (errors were generated from a normal distribution with zero mean, and

positive values were multiplied by a constant greater than one to create a skewed dis-

tribution; the constant was chosen to give a coefficient of skewness of 1, equal to the

skewness of a chi-square random variable with 8 degrees of freedom, for example).

For each of these distributions, 100 pseudo-random samples of size n =16 and stan-

dard deviation 1.0 were generated, and for each sample the n -I othogonal contrasts

were obtained from the design array in the usual way. From these, the posterior pro-

babilities { p5 I and {p5 *i were computed for each sample, assuming a 2 84 two-level

design was carried out, with mz-=0.2 and k =10 for computing {pi I and ct=0.3, k .ImlI

and k 2=3.3 for computing I{pi)

For each error distribution the 100 sets of posterior probabilities were summar-

ized and plotted in the following way. Because there were no real effects, the varia-

tion in the probabilities for each column (or factor) are roughly the same. Thus it is
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more informative to order the probabilities for each sample and then examine the

behavior of these, and the probability of no active columns (or factors), over the 100

generated samples. For example, the location and variation of the maximum probabil-

ity from each sample in relation to the probability of no active columns is of primary

interest. In Figures 3.3 and 3.4 the median probability for each category (none active,

largest probability, second largest probability, etc.) is plotted as an asterisk. A box

around the asterisk represents the inter-quartile range over the simulations. Vertical

lines from the ends of this box extend to the upper and lower fifth percentiles (5%,

95%). This is illustrated in Figure 3.2.

* On the left in each of Figures 3.3a-d the posterior probability of no active

columns is plotted. Since the data were generated with no real effects, this value is

expected to be larger than the other probabilities. Although it is apparent from Figure

3.3 that this does not always occur, i.e., the largest column posterior probability is

often larger than the probability of no active columns, this is partly due to the low

prior probability of no active columns, which is (1-.2) Is =. 035. Likewise the prior

probability that the largest contrast is active is something in the neighborhood of one

minus this probability, or .965. Thus it is difficult with only 16 observations to

reverse these probabilities. It is encouraging just the same that 75% of the time the

largest column posterior probability is still less than 1/2 over all four distributions.

Comparing the patterns of variation in the posterior probabilities across the four

error distributions, they are in excellent agreement. The only notable deviation is the

smaller column posterior probabilities when the t 3 and skew normal distributions
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Figure 3.2 Plotting convention for Figures 3.3-3.6. The asterisk indicates the median

value over the simulations, the box extends from the lower to the upper quartile, and

vertical lines extend to the upper and lower fifth percentiles.

upper 5%

upper 25%

* median

L J lower 25%

lower 5%

e...
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Figure 3.3a Plot of posterior probabilities { pi I over 100 simulations, normal errors,

no real effects, ct=0.2, k=10. The column probabilities p ,...,P 15 were ordered for

each simulated sample so that, for example, the label 1 on the x-axis refers to the pro-

bability associated with the largest contrast. See Figure 3.2 for explanation of plotting

symbols.
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Figure 3.3b Plot of posterior probabilities {p5} over 100 simulations, rectangular

* errors, no real effects, a=0.2, k=10. See Figures 3.2, 3.3a for plotting conventions.
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Figure 3.3c Plot of posterior probabilities [pi} over 100 simulations, t 3 errors, no

real effects, w,=0.2, k =10. See Figures 3.2, 3.3a for plotting conventions.
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Figure 3.3d Plot of posterior probabilities {pil over 100 simulations, skew normal

errors, no real effects, a=~0.2, k-10. See Figures 3.2, 3.3a for plotting conventions.
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were used. This difference from the observed pattern for normal errors is small and in

the direction of being more correct, i.e., a smaller posterior probability of being active

-. when the contrast is indeed not active. For comparison, the numerical values of the

percentiles of the posterior probability of no active columns and the maximum column

probability are given in Table 3.6.

The behavior of the factor posterior probabilities Jp 0i 1, Figures 3.44d was

very sinilar to that observed for the column posterior probabilities ( pi ). The proba-

->bility p (0) * of no active factors was larger than 1/2 almost 50% of the time for all four

distributions. The overall patterns of variation of p (0* over the different distributions

agree very closely. The largest factor posterior probability is often Larger then p (0)",

but by the same argument as for the column probabilities, this is neither surprising nor

alarming.

The patterns of variation in the factor posterior probabilities for the rectangular

and t 3 distributions differed somewhat from that observed for the normal case.I

Again, the probabilities for the t 3 distribution were lower, but deviations in that direc-

tion are not troublesome. For the rectangular distribution, there was a tendency to get

slightly higher probabilities, although, for example, the median maximum probability

is the same as for the normal, Ih fear is that the Bayesian analysis will find active

contrasts when there are none, because the errors are not normal. The difference

observed for the rectangular error distribution is not large enough to validate that fear.

The numerical values of the percentiles of the posterior probability of no active fac-]

tors and the maximum factor probability are given in Table 3.7.

.4-% X



Table 3.6 Percentiles of the distribution of a) the probability of no active columns and

b) the maximum column probability, over 100 pseudo-random error samples of size n

=16 from the normal, rectangular, t3 and skew normal distributions, added to a data

vector y of zeroes (no real effects present). Probabilities were computed with ax 0.2,

and k 10.

Probability of None Active
Percent Normal Rectangular t3  Skew Normal

-~95% .496 .494 .496 .493
75% .451 .448 .462 .454
50% .393 .389 .422 .398
25% .314 .280 .336 .315

5% .135 .050 .171 .190

Maximum Column Probability
Percent Normal Rectangular t3  Skew Normal

95% .929 .939 .755 .756
75% .472 .494 .388 .434
50% .281 .310 .233 .288
25% .165 A15 .153 .170
5% .100 .114 .104 .102

0%

6L 11I
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Figure 3.a Plot of posterior probabilities {pji over 100 simulations, normal errors,

no real effects, az=0.3, k =I1, k 2=3.3. The probabilities ps., p S* were ordered so

that, for example, the label 1 on the x-axis refers to the largest probability from each

-l sample, etc. See Figure 3.2 for explanation of plotting symbols.
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Figure 3.4b Plot of posterior probabilities {p*} over 100 simulations, rectangular

errors, no real effects, a=0.3, k 1=11, k2=3.3. See Figures 3.2, 3.4a for plotting con-

ventions.
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Figure 3.4c Plot of posterior probabilities {pi*I over 100 simulations, t3 errors, no

real effects, a=0.3, k i=I1, k2=3.3. See Figures 3.2, 3.4a for plotting conventions.
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Figure 3.4d Plot of posterior probabilities f pi over 100 simulations, skew normal

*errors, no real effects, a=O-.3, k 1= 11, k 2=3.3. See Figures 3.2, 3.4a for plotting con-

ventions.
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Table 3.7 Percentiles of the distribution of a) the probability of no active factors and

b) the maximum factor probability, over 100 pseudo-random error samples of size n

16 from the normal, rectangular, t3 and skew normal distributions, added to a data

vector y of zeroes (no real effects present). Probabilities were computed pretending a

2" design was carried out, with a =0.3,k I = 11, andk 2 =3.3.

Probability of None Active

Percent Normal Rectangular t3  Skew Normal
95% .636 .625 .639 .619
75% .556 .555 .560 .536
50% .491 .468 .522 .479
25% .373 .302 .443 .335
5% .135 .052 .213 .113

Maximum Factor Probability

Percent Normal Rectangular t3  Skew Normal
95% .817 .926 .707 .832
75% .444 .561 .333 .500
50% .283 .281 .227 .279
25% .168 .186 .148 .175
5% .103 .115 .095 .100
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When there are no real effects present, non-normality of the errors does not

appear to significantly bias the posterior probabilities. As the frequency of having no

real effects may tend to be low in practice, another set of simulations was carried out

for the case where there are real effects present.

3.5.2. Five Active Contrasts

The second set of simulations is concerned with the behavior of the posterior

probabilities under different error distributions when there are real effects present. A

standard observation vector y was generated by taking the five largest contrasts from

Example 2.1 corresponding to columns 3, 5, 8, 10 and 12, and setting the remaining

contrasts equal to zero. Thus y is the vector of 16 observations which would give the

five non-zero contrasts mentioned above and ten contrasts exactly equal to zero. For

each of the four error distributions, normal, rectangular, t 3 and skew normal, 100
• t.

samples of pseudo-random errors were generated with mean zero (median zero for the

skew normal) and second moment of 1.0. The value of 1.0 was chosen because it was

close to the estimated variance for the real data of Example 2.1. Each individual error

vector was added to the vector y, and the posterior probabilities { p1 } and { pi } were

computed, again assuming a 2 - design was carried out, with a=0.2 and k =10 for

computing {pi I and or.=0.3, k 1=11 and k 2=3.3 for computing the {pi }.

For each error distribution the 100 sets of posterior probabilities were plotted

with the same plotting conventions described in Figure 3.2. Because there were real

effects present, the probabilities weren't ordered as in the previous set of simulations.

The probabilities (pi) are plotted in Figure 3.Sa-d, and the probabilities {pi are

''' ' N ',.,, "".£ .. -:-. : .-. - ... .'"'X '' ''' -t''-' -,-.-
l Ke ' : , 3 , .: @I ' . .. . ' '. ..... ,"'..-"..-"-', ',.,"""-..--, , % ' ' - .,-,.""
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plotted in figure 3.6a-d.

The posterior probability p (0) of no active contrasts as well as the probability

p (0) of no active factors remained essentially zero over all 100 simulations for each

of the four error distributions. Non-normal errors do not tend to inflate the probability

of none active when real effects are present.

Now consider the probabilities { pi I of Figure 3.5. The probabilities P 3, P 5 and

P 12 corresponding to the three very large contrasts remain uniformly close to one

over the 100 simulations and over all four distributions. Similarly the probabilities

corresponding to the ten inert contrasts tended to be fairly close to zero, and exhibited

the same sort of variation for each distribution. One could safely conclude that non-

normal errors would not lead to a gross error of judging an unquestionably active

effect as inert or an obviously inert one as active.

The probabilities p g and p 10 corresponding to the marginally active contrasts of *1
columns 8 and 10 exhibit the most variation over the 100 simulations, and the patterns

of variation among the four distributions are different. The skew normal case agreed

quite closely with the normal case, while the rectangular and t 3 distributions tended

to give larger values to probabilities p S n p 10 The implications of this are not par-

ticularly worrisome. First of all, the preferred error in most instances would be to

4., mistake an inert contrast for an active one, rather than missing a real effect. Larger

posterior probabilities for marginal contrasts would have that effect. Secondly, con-

trasts with probabilities in the interval (0.2,0.8) would generally be judged to need

'

.5.7
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Figure 3.5a Plot of posterior probabilities (pi} over 100 simulations, normal errors,

c=I, c0=0.2, k=10, columns 3, 5, 8, 10 and 12 have real effects equal to those from

Example 2.1. The remaining columns were assigned zero effects. See Figure 3.2 for

explanation of plotting symbols.

1.0 ........ ...........

'. 0.5 ..............................
Co
0.

none 1 2 3 4 5 6 7 8 9 01112131415
active

column number

. .. ... .. .. .. ... ,.... ',*..... ..- : . .-. ' *-* .. ' .'. .. . .' . o .. ... . . . . . . .. '.' ,. * ._ .'.. .. ... ".. .... ' .' .' ,'
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Figure 3.5b Plot of posterior probabilities {pi I over 100 simulations, rectangular

errors, a=l, a=O--.2, k=10, columns 3, 5, 8, 10 and 12 have real effects equal to those

from Example 2.1. The remaining columns were assigned zero effects. See Figure

* 3.2 for explanation of plotting symbols.

1.0 .. .. .

0- -- -- -

0.5 ................... ...............
0

iioil
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Figure 3.5c Plot of posterior probabilities {p over 100 simulations, t 3 errors, O=l1,

ot-0.2, k -10, columns 3, 5, 8, 10 and 12 have real effects equal to those from Exam-

ple 2. 1. The remaining columns were assigned zero effects. See Figure 3.2 for expla-

nation of plotting symbols.

1.0 ....... t 1........ ........

CL 0.5 .................. ...............

none 1 23 45 6 78 9 1011 1213 14 1
active

column number

NI.-. S ~ *
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Figure 3.Sd Plot of posterior probabilities {pj I over 100 simulations, skew normal

errors, a=1, a.=0.2, k=10, columns 3, 5, 8, 10 and 12 have real effects equal to those

from Example 2.1. The remaining columns were assigned zero effects. See Figure

3.2 for explanation of plotting symbols.

1.0 ........ 4.. dr ............ " ..............

C4 0.5 ...............................
tg
0

none 12 3 4 5 6 7 8 9 101112131415 
actve '

column number

1 4,=° !
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0.6 were observed rather than 0.4, the investigator's suspicions about that contrast

would be essentially the same.

Considering now the probabilities pi* ) of Figure 3.6, the patterns of variation

in these are in close agreement for all four distributions. The probabilities

- corresponding to factors 3, 4, 7 and 8 are uniformly close to zero for each distribution,

and the probabilities for factors 5 and 6 are uniformly close to one. The most varia-

tion was observed in the probabilities associated with the factors 1 and 2, but the pat-

terns of variation were very similar across the four distributions. Thus there is no evi-

dence that non-normal errors would have an adverse effect on the (pi .

Overall, the variational pattern of the posterior probabilities { pi I and I * i are

quite similar for the four error distributions with and without active columns, validat-

ing a claim of criterion robustness to the normality assumption for the Bayesian

analysis. At the same time, the results of the simulations also verified that the poste-

rior probabilities lead to sensible inferences, as inert columns and factors consistently

received low posterior probability and active columns and factors consistently

received high posterior probability.

,. --p 3.6. Conclusions

The method derived in this chapter provides an interesting new way of analyzing

F' factorial experiments. Its major attraction is how it combines prior assumptions, pro-

perties of the design and information in the data to identify active factors. A unified

analysis of this sort has never really been available before. Varying assumptions

about the size and relative frequency of main effects and interactions can also indicate

.....-SS ~.S~..,A . '""""" ""
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Figure 3.6a Plot of posterior probabilities f pi over 100 simulations, normal errors,

a=1, ---0.3, k 1= 11, k 2=3.3, five active columns from Example 2.1, factors 1, 2, 5 and

6 possibly active. See Figure 3.2 for explanation of plotting symbols.

.*'
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0
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active

factor number
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Figure 3.6b Plot of posterior probabilities ( p over 100 simulations, rectangular

errors, aY=1, ot.=0.3, kj=l1, k2=3.3, five active columns from Example 2.1, factors 1,

.~ .2, 5 and 6 possibly active. See Figure 3.2 for explanation of plotting symbols.

S 0.5-.....................................

none 1 2 3 4 5 6 7 8
actve

factor number
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Figure 3.6c Plot of posterior probabilities f{p over 100 simulations, t 3 errors, a= 1,

a-0O.3, kj=11, k2=3.3, five active columns from Example 2.1, factors 1, 2, 5 and 6

possibly active. See Figure 3.2 for explanation of plotting symbols.

0
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Figure 3.6d Plot of posterior probabilities {pi* I over 100 simulations, skew normal

errors, a=l1, ct=-0.3, k I=11, k 2=3.3, five active columns from Example 2. 1, factors 1,

2, 5 and 6 possibly active. See Figure 3.2 for explanation of plotting symbols.

1................ ~ j...... ............

. 0.5...................................

none 1 2 3 4 5 6 7 8I activefactor number
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how conclusions depend upon these assumptions.

- The robustness study gave very satisfying results. The performance of the pro-

* cedure is not heavily affected by a non-normal error distribution.

5%%

., A
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CHAPTER 4

BAD OBSERVATIONS IN FACTORIAL EXPERIMENTS

4.1. Introduction

Daniel (1959) has estimated that the frequency of mistaken or bad observations

in factorial experiments can reach 10% or higher. Identification of these bad observa-

tions is especially difficult for unreplicated experiments, when they may be hidden by

biased contrasts wrongly identified as active. The Bayesian methods described in ear-

lier chapters are extended here to accomodate the possibility of bad observations, and

compared with the test (John, 1978) for bad values based on the reduction in the resi-

dual sum of squares when suspected observations are deleted.

1.2. Fixed Model

:.J John (1978) employs the following model for testing for suspected outliers in

fractional factorials. He supposes the general model

y =Z + e (4.1)

has been fit by least squares, where Z is the matrix of columns of the design X

corresponding to plausibly active effects. If all columns of X could plausibly be

active then active columns must be identified in some way before continuing, and Z

defined to be the active columns. Define ry to be the vector of residuals obtained

from the least squares fit of y. If there are m outliers suspected the model is rewritten

Y-
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m

y= Zt + X0d +e , (4.2)
i=l

where di is a vector with 1 in the row corresponding to the i th bad value, and Oi is the

(unknown) bias in this value. Suppose each of the models

di =Zc+ e i l..m (4.3)

is fitted by least squares, and let R be the m xm matrix whose (ij)th element is the

residual from the least squares fit of di corresponding to the j th suspected outlier of y.

Then the portion of the original sum of squares ry'ry due to the m suspected bad

values is

SSm= rm' R-'r. (4.4)

where r, is the vector of elements of ry corresponding to the m supposed bad values.

The sum of squares SS. can be compared to the new resdidual sum of squares

ry'r.-SSm in an F-type test of significance, and for m=1 or 2, John (1978) gives

details of the correction to the significance probability for selecting the largest residu-

als for testing.
4 -'

-J For a two-level orthogonal design with

,.-. Z'Z -n ,.

p the number of columns of Z, and one suspected bad value, the sum of squares for

outliers is

2*4.5. riS
SS 1  1-pn (4.5)

S.. -. -. -. -'.'.'.'.-" .' ". -... ... .. :--L ... . . . .. - .'. . '. ' " '"-" ". .. " ." ".".

*" -"- ...',"" ."" "-". 4 .'"-" - ""'''."'-" "-' ...- .- ''-.-.--." .- ,-." . '. '.-.. . .".. .'."...-' -.. .'..'"". . . "- ," ,



131

where ri is the residual corresponding to the suspected bad value.

John's method is conceptually simple and quite easy to use for one possible bad

value. The test statistic is computed easily and the significance probability can also be

estimated easily. However, for two suspected bad values, obtaining the maximum

SS 2 and its estimated significance probability is more difficult, and a subsequent test

is necessary to determine if both or only one of the suspected bad values is actually an

outlier. John presents no theory for the possibility of more than two bad values.

There are some drawbacks to the approach. The possibility of more than one bad

value is handled only with difficulty or not at all. The method also depends upon a

fixed model identified in advance which may be in error due to the presence of bad

observations. This is often a minor error as the model can be corrected if and when

bad observations are identified.

[3. A Bayesian Approach

Box and Tiao (1968) detailed a Bayesian approach to the outlier problem in con-

junction with the use of the scale-contaminated normal error distribution, which can

be written

(1 -c)N(O, 2)+a 2N(O,k 2
20 2).

With high probability 1-% an observation is generated by the usual normal model

with variance a 2, and with small probability 2 the observation has much larger vari-

ance k 20 2. (The subscripts on a 2 and k 2 are to distinguish them from the parameters

ac and k used previously and henceforth denoted by a, and k 1). This outlier model

"14oj

..

,,,. . .

.I ..X
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can be incorporated into the models employed in previous chapters for analyzing fac-

torial experiments. Below are described the details for extending the model for deter-

mining active column contrasts, Chapter 2. Extending the model for active factors,

Chapter 3, is exactly analogous.

Let a, be the prior probability that a particular column is active, and a2 is the

probability that a particular element of y has inflated variance k2
2a 2. The following

notation is used in describing the model:

a(C event that a particular set of c columns is active.

a(,) = event that a particular set of r observations are "outliers", i.e., have

inflated variance.

: . a(r~c ) = a(r )n' a(¢ ).

X(C) = columns of X corresponding to a(,).

S(c= vector of true contrasts corresponding to a(C).

X(X(,c) = rows and columns of X corresponding to active columns and bad

values of a (.

*/: Y(r) =rows of y corresponding to bad values of a(T c.

'-2 = I - I/k 2
2.

Then, the sampling distribution of y, given a (, ), is

5- .o

.5- o. . * ~ .A -s~ . ~ r
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p(y I rcy,a(,c)) = (2r-m~-n2rx (4.6)

The prior distribution of T (c) and a are again given by (2.2). The posterior distribu-

p(gcj(cp)a iYnc -k2 X (4.7)

= ~k 2 ' ~-(n~ic)/2

where

S (tc)(T (c) (y x (c r(c )),(Y - x(c )'9(c) (4.8)

Now let

G p) .+ c)X() - A2X(r.c)'X (,$) (4.9)

and

-- a~. .a %~ %~k..~ * ~'k
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'C(,,c ) G ('r,€ (X (c 'Y A 2 (r,¢)Y (P)) (4.10)

Then it follows that

S (r )( (c)) + (c)Tc (c(4.11)

.., ~ ~ ((c€) -Ci€,))" G €, )(C )- T(, )) + s €, )(r, )) + A€, ( " rc €,.c)

, Thus the posterior density of z (c ) given a (r.c ) must be

p r((n+c-1)/2) IG(,c) (4.12)r((n-1)/2) (2(n-1)s(,,c)2) l12

. ~~( r € -i,))'G €, )(c€ (c - €, )
+ (n_1)$(,€) 2

, which is a (c+l)-dimensional multivariate t density with n-I degrees of freedom,

mean vectorc (r ), and dispersion matrix s(. , where

,2. 2.. S ( ,CW z(r) " , (rc (rc) (4.13)
n-i

.~.. Then, following equations (2.3)-(2.5), the posterior probability of the event a(,. can

be written

% *"pi* i .41 4
V A, *.A , -.



*1." 135

p (a (,,)Iy) ci [-- i 2-" x (4.14)

IG(o,o)I 2 (,,2
G________ S()2

which depends mainly on the prior probability of the event and the sum of squared

residuals when the supposed bad observations are downweighted by the factor k 2.

Then the posterior probability that column i is active is

Pi =  I p(a(rc)IY) (4.15)
(rc): i active

and the probability that observation yj is bad is

".4 qi " P(a(r,,)lY) •(4.16)
(r ):j b

4.3.1. Some Computational Aspects

To obtain the probabilities'(p 1 i=1,-, and {qj}, j=1,...,n, the probabili-

ties p (a(,)l y) must be computed for all 2 2i-1 combinations of possible active

columns and bad observations. For n=16 there are over two billion such combina-

tions. However, the grand majority of these will have negligible posterior probability.

Then, for example, attention may be restricted to events a with r and c less than

some reasonable upper bounds. The number of possible bad observations especially

could be reasonably assumed to be less than two or three in most cases for a 16-run

design. Once this assumption is made, most events of interest will have r < c, so that

,6

;";.:%. % % V'-':.'-":'--:- --.-- '- :-.-" - - - -:;-.--*. - ;':-''''- , : .- ." .. , , .-- ::-
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the following derivations will also reduce the computing time somewhat

The following identity follows from the formula for the inverse of a sum of

matrices:

! J:: .. G -1pc) = G --l) +

4,G -o )X (rc -2X (rc)G- o.)X (,.c X(,] (Ole)

It then follows that

x (€ox)- (4.17)

02 . G (o)X (, [ - 4 X (p, )G (o)X (, (y(,)-X (,. )T (,r)

If A is defined by

then

'Ic (0,c )-2G -'". )X (€"A.(4.19)

Note that A is the solution of a r x r linear system involving the residuals correspond-

ing to suspected bad observations, obtained from the calculations assuming no bad

values, whereas '(r ) previously was defined as the solution of a (c+1) x (c+1) sys-

tem. The matrix inverse G -1 ) in (4.18) can be obtained easily because the matrix

G (0,) is diagonal. The (c +I) x (c +1) determinant IG(,, )I in the expression (4.13)

for p (a (rc) Y) must still be computed. This determinant can be related to the deter-

' --
/.? M. . . . . - .-.m:-j&'*......
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mmnant

which is the determinant of the r x r system from which A is computed.

Note that

so that

IG(,,c)I = IG(oc)J II-IkG --1X (p'X (r.c)l

Rao (1973) shows for A, D nonsingular, not necessarily of the same dimension,

[A B] AlI -ABI = IDI A B-C

Therefore let

This implies that

-1

il M O.C)'v02' (?,c) X(r.C)l

which implies

Ir0XWrA IO r) I II, + I= - 02~Gjg) (r. p

Sim
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so that

IG(,.c)I= IG(oc)l II, -t2X(r,)G j'j.C)X(rc)' I (4.20)

The implication of these identities is that for each combination of c active con-

' trasts assessed, the probabilities p (,c) can be obtained from p (oc) over all values of

r by solving a r xr linear system rather than a c+1 xc+1 system.

. 1A

A.

,2<

3;i

II
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4.4. Example

The following example is taken from Box and Draper (1986).

-, Example 4.1 Four factors were studied in a full 24 factorial experiment. The design

array and observations are presented in Table 4.1. Applying the Bayesian analysis of

Chapter 2 to identify the active contrasts of the experiment, with m-4O.2, k=10, the

posterior probabilities are plotted in Figure 4. 1. Main effects of factors 2 and 3 stand

out from the other effects, but evidence for their activity is dubious because of the

relatively low probabilities obtained. A plot of the residuals, Figure 4.2, taken after

including terms for main effects 2 and 3 as well as the mean, reveals that the residual

corresponding to observation y 13=59. 15 is much larger in absolute value than the oth-

ers. A normal plot of the contrasts, Figure 4.3, reveals a gap in the cluster of contrasts

near zero, another sign (Daniel (1959); see Chapter 1) that there is a possibly bad

observation.

Applying the Bayesian analysis now allowing for the possibility of bad values,

with qz2 ..O5 and k 2=5, the posterior probabilities I qj ) of observations being bad and

{ p1  of contrasts being active were computed and are plotted in Figure 4.4. The

values of a2 and k2 chosen for illustration were suggested as moderate values by Chen

and Box (1979). (The computations were carried out assuming there were six or

fewer active contrasts and two or fewer bad values, an event of prior probability .94).

* The value of q 13 is very close to one, suggesting strongly that observation Y 13 is bad.

The affect on the probabilities { pi I of the automatic downweighting Of Y 13 achieved

by the Bayesian analysis is to make the posterior probabilities for main effects 2 and 3

*I4
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Table 4.1 Design array and observations for Example 4.1, a full 24 factorial experi-

ment from Box and Draper (1986).

factors
run 1 2 3 4 y

1 - - - - 47.46
S2 + - - - 49.62

3 - + - - 43.13
4 + + - - 46.31
5 + - 51.47

- + + - 48.49
. 7 - + + - 49.34

8 + + + - 46.10
9 - - - + 46.76

10 + - - + 48.56
11 - + - + 44.83
12 + + - + 44.45
13 - - + + 59.15
14 + - + + 51.33
15 - + + + 47.02
16 + + + + 47.90

observed observed
column(effect) contrast column(effect) contrast
O(mean) 48.25 8(4) 1.01
1(1) -0.80 9(14) -0.58
2(2) -4.22 10(24) -1.18
3(12) 0.91 11(124) 0.72
4(3) 3.71 12(34) -1.49

* - 5(13) -2.49 13(134) 0.40
' 6(23) -0.80 14(234) -1.58

7(123) 1.20 15(1234) 1.52

... .-.. .. Y.. . .., . ,.... . .. . . . . .... .. .... .... ........ ...-.. -. . ... . ... .._. .. _ .. . . *. .'p,
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Figure 4.1 Plot of posterior probabilities {pi} for Example 4.1, a=0.2, k =10, assum-

ing no bad values.
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Figure 4.2 Plot of residuals versus run order after fitting model with 2,3 main effects,

Example 4.1.
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Figure 4.3 Full normal plot of observed contrasts, Example 4.1.
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Figure 4.4a Plot of posterior probabilities f qj } that observations are bad, Example

4.1, a =0.2, k 1=lO, 0.-0.05, k2=5.
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Figure 4.4b Plot of posterior probabilities pi } that contrasts are active, Example 4.1,

allowing for possible bad observations, al=0.2, k 1= 10, oc2=0.05, k 2=5.
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much closer to one. The 13 and 134 interactions, previously hidden, also receive

much higher posterior probabilities.

Applying John's method for testing for the significance of the possible outlier

Y13, an F-statistic of 33.04 on 1 and 12 degrees of freedom is obtained. The

estimated significance probability, correcting for selection of the largest residual, is

.0015. Thus Y 13 is judged to be an outlier, and assuming subsequent investigation did

not reveal the correct value for this observation, it is replaced by its least squares

missing value estimate of 13=51.56. The posterior probabilities {pi} were recom-

puted based on the revised data pretending y 13 was actually observed, and are plotted

in Figure 4.5. The values are very close to those obtained from the complete Bayesian

analysis in Figure 4.4.

It has been demonstrated that for this example testing for bad values by examina-

tion of residuals after a model has been identified leads to the same conclusions as the

simultaneous identification of active contrasts and bad observations via the Bayesian

analysis described earlier. However, the observation identified as bad in this example

was so far removed from the pattern of the rest of the data that any procedure which

failed to flag it would be a poor one indeed. Thus the procedures compared here meet

this minimum standard. Suppose now the observation Y 13 is replaced by a value

somewhere between the original value of 59.15 and 51.56, namely let y 13=55.15. The

data shall be reanalyzed by both methods and the results compared.

The Bayesian analysis applied to the new data, not allowing for bad observa-

tions, leads to the posterior probabilities { pi } plotted in Figure 4.6. Main effects of

N..

. -....................................
" % " " • •* k
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Figure 4.S Plot of posterior probabilities p1 ) that contrasts are active, assuming no

* . bad observations, Example 4.1 with Y 13 replaced by its least squares missing value

estimate.
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Figure 4.6 Plot of posterior probabilities {(pi I that contrasts are active, assuming no

bad observations, Example 4.1 with y 13=55.15 (midway between the original value

and the missing value estimate).
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variables 2 and 3 are apparently active, and there is some evidence for the activity of

the 13 interaction. A normal plot of the contrasts, Figure 4.7, agrees with this assess-

ment, but the gap which appeared among the apparently inert contrasts for the original

* . data has now largely disappeared. A plot of the residuals after fitting a model with the

three possibly active effects indicated above, Figure 4.8, again reveals the residual

corresponding to observation Y 13 is the largest in absolute magnitude. Application of

the F -test for rejection of observation Y 13 as bad yields an F -ratio of 8.35 on 1 and 12

degrees of freedom and an estimated significance probability of .24. (Applying the

test to the residuals after fitting a model with main effects 2 and 3 only, gave an

estimated significance probability of .16). Thus the observation Y 13 would not be

rejected as bad and the conclusions about active effects stated above would hold bar-

ring any further developments from diagnostic checking.

Applying the Bayesian analysis to the new data allowing for possible bad obser-

vations, with a,--0.2, ax2=.05, k 1O1 and k Z-5, the posterior probabilities ( piI and

V ( qj) are plotted in Figure 4.9. The plot of the column posterior probabilities reveals

that when the possibility of bad observations is taken into account, there is evidence

for the activity of the previously hidden 134 interaction, as well as stronger evidence

for the other three effects identified previously, Figure 4.6. The plot of the posterior

probabilities of observations being bad shows there is substantial evidence that the

' observation Y 13 is faulty. The F -test for bad values failed to identify it as bad because

the fixed model was misspecified due to the presence of the bad observation. If the

model had been specified to include the 134 interaction and the F -test for bad values

---.. . . . . . . ....... . . . . . . . . . . . . . . . .
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Figure 4.7 Full normal plot of observed contrasts, Example 4.1 withy Y 3=55.15 (mid-

way between the original value and the missing value estimate).
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Figure 4.8 Plot of residuals 'versus run order after fitting model with 2, 3 and 13

effects, Example 4.1 with Y 13=55.15 (midway between the original value and the

missing value estimate).
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Figure 4.9a Plot of posterior probabilities { pi I that contrasts are active, allowing for

possible bad observations, ac=0.2, k1=10, 2--0.05, k2=5, Example 4.1 with

Y 13=55.15 (midway between the original value and the missing value estimate).
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Figure 4.9b Plot of posterior probabilities { qj } that observations are bad, a1 =0.2,

k1=10, &=20.05, k2=5, Example 4.1 with y 13=55.15 (midway between the original

value and the missing value estimate). J
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had been carried out on those residuals, an F-ratio of 29.83 on 1 and 10 degrees of

freedom would have been obtained with an estimated significance probability of .004.

It is not claimed that the 134 interaction would not have been discovered eventu-

ally without the Bayesian analysis, for example by plotting residuals against the vari-

ous factor levels. It has been shown, however, that straightforward application of

existing methodology could have led to incomplete conclusions. Also, it is not sug-

gested that the Bayesian analysis led to the "correct" answer, but it did uncover a plau-

sible explanation of the data, i.e., observation y 13 might be wrong and the 134 interac-

tion might be active.

The two methods compared here are not that different mathematically in that

both assess the possibility of bad observations according to the reduction in the resi-

dual sum of squares when observations are deleted, or downweighted as in the Baye-

sian analysis. The difference comes from the fact that the Bayesian model, in com-

plete generality, assesses all possible combinations of active effects or contrasts and

bad observations, whereas the F -test generally does not. The test for bad values could

theoretically be applied to all possible models and combinations of bad observations,

but this leads to an exceedingly complex repeated-testing problem, whereas the proper

weighting of all combinations comes automatically in the Bayesian analysis.

The premium paid for the generality of the Bayesian analysis is a sharp increase

in computing requirements. Reasonable assumptions about the number of active con-

trasts and bad observations helps to reduce these requirements. For example, for the

analyses carried out in the previous example, it was assumed there were six or fewer

. . .. ~ .*.. -*', ... *. . .2. . °
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active contrasts and two or fewer bad observations, eliminating 99.94% of the number

of combinations to be considered while losing events of prior probability less than .07.

Yet, four hours of computing time were required to compute the posterior probabl-

ties {pi and (qj}
StI
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4.5. Approximating the Posterior Probabilities

An approximation to the full Bayesian analysis is motivated by the (model

identification)-(fitting)- (diagnostic checkdng) iteration discussed, for example, by Box

and Jenkins (1976), p. 18. At the first iteration the model identification step would

entail identifying active contrasts or factors according to the methods described in ear-

ier chapters, assuming that errors were independent and normally distributed with

constant variance. Then, residuals are obtained after fitting the model in the usual

way. These are examined for possible departures from model assumptions, and the

model respecified if any appear.

At the first iteration then, it is assumed all errors are independent from the

N(0,o 2) distribution. The posterior probabilities (Pip. that contrasts are active are

computed, not allowing for bad values. All contrasts receiving posterior probability

greater than some value P are identified as active, P to be chosen possibly after exa-

mining [ pi }. The probabilities I qj I that observations are bad can be computed, con-

"-V ditional on the model fixed at the previous step. Those observations with posterior

probabilities greater than Q, Q to be chosen, are assumed to be bad, i.e., they have

variance k22C 2. If there are no bad observations, the iteration stops. If there are

observations identified as bad, the model is respecified by computing the probabilities

{p I conditional on bad observations having larger variance. If the contrasts

identified as active at this step are the same as a previous iteration, the iteration stops.

*: If a new set of contrasts is identified as active, the iteration continues with the compu-

tation of qj}, etc.

1%................ ,..-....................................
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There is no guarantee that this procedure will converge to a state close to the true

probabilities {pi and {qj,1 It may oscillate; for example, the assumption of no bad

values may lead to one set of active contrasts, which leads to the identification of a

bad observation, which implies a different set of active contrasts, which in turn

implies no bad observations, completing the circle. (Tis type of oscillation has not

been observed in any examples up to this time). Also, the procedure can and often

does converge to different states depending on the choice of P and Q. However, it

does perform well in discovering various possible explanations of the data, especially

when the approximation is repeated for different values of P and Q. In the end, too,

competing hypotheses can be compared according to their posterior probability ratio,

which can be computed exactly. The procedure is illustrated for the original and

revised data of Example 4. 1.

Starting with the original data, the first step is to compute the probabilities fp i

assuming no bad values, which was done previously. These are plotted in Figure 4. 1.

Choosing P -0.4, main effects 2 and 3 are tentatively identified as active. The proba-

bilities, tq I were computed conditional on the identified model, and are plotted in

Figure 4. 10. Observation Y 13 has posterior probability close to one and any reason-

able choice of Q would lead to this observation being identified as bad. The probabil-

* ities { pj were recomputed based on that identification, and are plotted in Figure

4.11. Main effects 2 and 3 now have much higher probability, and the 13 and 134

interactions could now also be identified as active. The { qj based on these four

effects being active are almost indistinguishable from the previous iteration and thus
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Figure 4.10 Plot of posterior probabilities {qj I that observations are bad, after one

step of iterative approximation, Example 4.1, a=--0.2, k 1=10, cc=0.05, k2=5. -
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Figure 4.11 Plot of posterior probabilities (pl that contrasts are active, after two

* steps of iterative approximation, Example 4.1, a 1=0.2, k 1= 10, a 2=0.05, k 2=5.
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convergence has been achieved. As a check the posterior probability ratio of the

event that the 2, 3, 13 and 134 effects are active and observation Y 13 is bad, versus the

event that effects 2 and 3 are active with no bad observations, was computed. The

value of 17,186 indicates that there is much stronger evidence for the former event.

For the revised data with Y 13=55.15, the probabilities { pi} assuming no bad

values, are plotted in Figure 4.6. Tentatively identifyinig the effects 2, 3 and 13 as

* active the probabilities ( q1 I were computed and are plotted in Figure 4.12. The pro-

bability that y 13 is bad is .37. Choosing Q greater than .37 ends the iteration. Choos-

ing Q so that Y 13 is identified as a bad observation, the probabilities ( pi I were

recomputed conditional on that assumption and are plotted in Figure 4.13. Effects 2,

3, 13 and 134 all received fairly high posterior probabilities and can be identified as

active. Recomputing the ( qj I based on this new model gives the values plotted in

Figure 4.14. The probability that observation Y 13 is bad is now close to one and any

reasonable choice of Q results in convergence. Checking the posterior probability

ratio of the event that 2, 3, 13 and 134 are active and y 13 is bad, versus the event that

2, 3 and 13 are active and no observations are bad gives the value 47.9, thus giving

more weight to the former combination.

.7 Comparing the "exact" probabilities in Figures 4.4a-b for the original data and

Figures 4.9a-b for the revised data, with the approximate probabilities in Figures

4.10-4.11 for the original data and Figures 4.13-4.14 for the revised data, the values

are in reasonable agreement. While the actual numerical values are not as close as

one might prefer, the inferences following from the computed probabilities agree quite

yz
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Figure 4.12 Plot of posterior probabilities fj I1 that observations are bad, after one

step of iterative approximation, Example 4.1 with Y 13=55.15, ct1=O.2, k 1=10,

(x2=0.05, k 2=5.
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Figure 4.13 Plot of posterior probabilities {p1 ) that contrasts are active, after two

steps of iterative approximation, Example 4.1 with y 13=55.15, a,--0.2, k 1=10,

* c~a2=0.05, k 2 =5.
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Figure 4.14 Plot of posterior probabilities { qj} that observations are bad, after two

steps of iterative approximation, Example 4.1 with y13-55.15, al=0.2, k1=10,

I' cxq2 ,0.05, k 2-5.
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well.

Reduction in computing time is a major benefit of this method of approximation.

For the examples above, while the exact calculations required four hours computing

time for each complete set of probabilities, the approximations required only 2-1/2

minutes. Both sets of calculations were done assuming six or fewer active contrasts

and two or fewer bad observations. The lower computing requirements would allow

this assumption to be relaxed when using the approximate method.

4.6. Posterior Distribution of C

The posterior distribution of an effect,; for the Bayesian model not allowing for

the possibility of bad observations, Chapter 2, was shown to be a mixture of 2n- 2 t

distributions with the same mean and different variances, together with mass 1-pi at

zero. Allowing for the possibility of bad observations, the posterior distribution of ci

will have the same form, i.e.,

P('; IY) = (-p)I[;= 01 + P (';Ia(r, ),Y)p(a(, Y)Iy). (4.21)

(r,c)a active

However, the t densities in the mixture have different means as well as variances (see

equations 4.12, 4.13). Following the approximation method of truncated Taylor series

expansion, Chapter 2, three quadratic terms would be required rather than one because

the expansion would be in terms of two variables, the mean and variance. The added

complexity of such an approach does not seem practical given the computational limi-

tations.

AN

.......................................
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The posterior mean and variance of ;i, given it is active, are

-E [;E[ I;j activey] = I E[; Ia(,.c),ylp(a(rc)Iy) 9 (4.22)
(r ):i active

and

Var(ci I;i activey) = V1 + V2  (4.23)

where

V1 = Var(; Ia(rc),Y)P(a(rc) ly) , (4.24)
(r,):. active

V2= I [(E lIa (,.c),Y] -, ]2P(alr,€)iY) (4.25)
(r,c):i active

If the term V2 in the posterior variance is negligible, then the methods of Chapter 2

will apply. That is, ff the means of the t distributions in the mixture (4.21) do not

vary significantly, the statistic CV defined by equation (2.41) can be used to construct

a confidence interval for c;. Thus there would be two statistics to examine when

deciding if using a single t interval is appropriate, the CV statistic and the proportion

of the posterior variance due to variation in ihe mean,

V 2
-V., V1+V 2

At present the adequacy of this approach can not be explored due to the heavy

computing requirements involved. It is hoped that future computing advances will

' . allow this issue to be clarified.
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4.7. Conclusions

Te extended Bayesian model to allow for the possibility of bad observations has

been demonstrated to lead to reasonable conclusions. Given the frequency of bad

observations in industrial and other applications of factorial experiments, the analysis

can be quite valuable. This is especially true for screening situations when a fixed

model cannot be identified in advance, and the presence of bad observations may lead

to erroneous identification of inert effects as active, or vice versa.

The computational limitations of the method are, of course, troublesome. The

iterative approximation method described in this chapter is rationally motivated and

leads to sensible results for the examples illustrated, but much more could be done

from a numerical and algorithmic viewpoint

Nor.
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CHAPTER S

SUMMARY

* Unreplicated factorial designs have been and still are a valuable tool in industrial

experimentation, despite the fact they do not allow for the estimation of error variance

usually obtained from repeat runs. Methods of analysis used in the past have

depended more or less on an implicit assumption about the sparsity of real effects. If

such assumptions are explicitly incorporated into the usual linear model employed for

such experiments, inference about active and inert contrasts is more straightforward,

and dependence of the inference on the prior assumptions is more easily assessed.

It is assumed that there is a prior probability cc that each of the orthogonal con-

trasts is active, i.e., measures a real effect, and contrasts are active independently of

one another. Assuming a normal prior distribution for the expected value of an active

contrast, the posterior probability that a contrast is active can be computed. While

computations of this sort generally require extensive computing time, an alternative

Bayes factorization allows the posterior probabilities to be obtained by numerical

integration at a considerable reduction in computing requirements. Dependence of the

posterior probabilities on the choice of cc and k, the inflation factor for an active con-

trast, can be measured by carrying out the calculations for different values of theI, parameters. Computation of the partial derivatives of the probabilities with respect to

a and k will also give a measure of sensitivity. It was demonstrated in Chapter 2 that

probabilities associated with in-between contrasts are the most sensitive to choice of
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prior assumptions.

The posterior density of a true effect,; was shown to be a mixture of 2 2 tr den-

sities along with discrete mass at zero of I-p1 , where p1 is the posterior probability

that the effect;r is active. The continuous part of this distribution is often well

approximated by a single t distribution, and by a Taylor series argument there is a

coefficient of variation-like statistic CV which conveniently measures the closeness of

the approximation.

Further assumptions about the size and relative frequency of main effects and

interactions were incorporated into the model in Chapter 3. It was shown that the pos-

terior probabilities that experimental factors are active combines prior assumptions,

properties of the design and information in the data. Factors which can not be safely

eliminated as inert due to the confounding pattern of the design will receive

significant posterior probability in addition to those factors which are more obviously

active.

A simulation study of sensitivity of the analysis to the assumption of normally

distributed error was carried out for two situations: with and without active effects

present. Pseudo-random errors were generated by computer from three alternative

distributions (one light-tailed, one heavy-tailed and one skew) as well as the normal.

There was no evidence from the simulations that non-normal errors would affect the

a,. Bayesian analysis to any substantial extent. The posterior probabilities performed

well in identifying active contrasts and factors for all four distributions tested.

% %
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The model was extended in Chapter 4 to allow for the possibility of bad observa-

tions. Observations were assumed to have inflated variance with prior probability a2.

Given this model, the posterior probability that a contrast (or factor) is active could be

computed taking into account the possibility of bad observations, as well as the proba-

bility that a particular observation is b4d i.e., has inflated variance. It was shown that

the approach of testing residuals for outliers after active contrasts are identified is

4' sometimes inferior to the Bayesian model-based approach.

The extension to the possibility of bad observations greatly increases the com-

puting requirements of the analysis, so that they are often unfeasibly high. An itera.-

tive analysis was proposed as an exploratory method rather than a numerical approxi-

mation. A method of approximating the posterior probabilities which possessed good

numerical properties would be one area of future research.
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statistician. They have received renewed attention recently due to the
movement toward quality improvement sparked by the success of the Japanese in
penetrating markets formerly dominated by western countries.

Fractional factorial designs are usually not replicated, so that it is
not possible to estimate error variance in the usual way from repeat observa-
tions. Past methods of analysis have rested on an implicit hypothesis of
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20. ABSTRACT (Continued)

effect sparsity, that most of the estimated effects measure only noise.
Formalization of this hypothesis leads to a Bayesian analysis in which
the posterior probability that an effect is active can be computed. A
similar approach can be employed to obtain the posterior probability
that a particular experimental factor is active. These probabilities
are readily interpreted by graphical means, and provide a straightfor-
ward method for identifying active contrasts anid active factors. In
addition, the model is extended to the situation where there are pos-
sible outliers in the original observations. The posterior probability
that an effect is active can be computed taking into account the p05-
sibility of bad values, and the posterior probability that an observa-
tion is bad can be computed taking into account that the identity of
active effects is unknown.
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