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KABSTRACT
--In an errors-in-variables regression model, the least squares estimate is

generally inconsistent for the complete regression parameter but can be

consistent for certain linear combinations of this param eter. -UM..xplore the

conjecture that, when least squares is consistent for a linear combination of

the regression parameter, it will be preferred to an errors-in-variables

estimate, at least asymptotically. The conjecture is false, in general, but

it is true for important classes of problems. one such problem is a

randomized two-group analysis of covariance, upon which-we-focuss"*-
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SIGNIFICANCE AND EXPLANATION

In an errors-in-variables regression model, the least squares estimate is

generally inconsistent for the complete regression parameter but can be

consistent for certain linear combinations of this parameter. We explore the

conjecture that, when least squares is consistent for 
a linear combination of I

the regression parameter, it will be preferred to an errors-in-variables

estimate, at least asymptotically. The conjecture is false, in general, but

it is true for important classes of problems. One such problem is a

randomized two-group analysis of covariance, upon which we focus.
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Th eposblity for the wording and views expressed in this descriptive

sumary lies with RC, and not with the authors of this report. 6
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CCHPARISONS Cf LEAST SQUARES AND ERRORS-IN-VARIABLES REGRESSION,
WITH SPECIAL REFERENCE TO RRNDC4IZ3D ANALYSIS OF COVARIANCE

Raymond J.Carroll t , Paul Gallo 2 '' and Leon Jay Glaser3

1. Introduction

The literature on the problem of linear regression when some of the predictors are

measured with error in substantial, see for example, Reilly and Patino-Leal (1981).

Recent work includes the theoretical study of Gleser (1981) and the important practical

shrinkage suggestions of Fuller (1980). See also Anderson (1984) and Healy (1980).

A subarea of this literature concerns two-group analysis of covariance when some of

the predictors are measured with error, see for example Lord (1960), Cochran (1968),

DeGracie and Fuller (1972) and Cronbach (1976).

Lord (1960) discusses the case of one covariate measured with error. He notes that

it may "happen ... that the usual covariance analysis (least squares) will fail to detect

a statistically significant difference between groups ... when such a difference actually

exists and can be detected by proper statistical procedures." Bs also gives a numerical

example of this phenomenon.

Cochran (1968) and DeGracie and Fuller (1972) discuss two group analysis of

covariance, providing in particular so discussion of the case that the true values of

the covariates are themselves random variablesi this is usually called a "structural" model

in the literature. They show that if the covariables are unbalanced as might happen in an

observational study, then the measurement error will cause least squares to inconsistently
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estimate the true treatment difference. In the sense of asymptotics, when the covariables

are unbalanced one should then correct for measurement error if it is substantial; a

global small sample statement of this type cannot be made.

Now consider a completely randomized study, where the covariables will be balanced on

average across the two treatments. In this case, Cochran (1980) and DeGracie and Fuller

(1980) indicate that least squares will consistently estimate the treatment difference.

The question which remains to be answered is "Should we correct for measurement error when

the least squares estimate consistently estimates the treatment effect?" It is the

purpose of this note to partially answer this question. Using large sample distribution

* theory, we show that in a balanced, completely randomized study with measurement error in

the covariables, the least squares estimate of the treatment difference will be generally

preferred when compared to a particular errors-in-variables regression estimator. It

turns out that this result can be generalized, so that in a large class of problems, when

least squares is consistent for a linear combination of the regression parameter, it will

be preferred, at least asymptotically. Further, for a smaller but not insubstantial class

of problems, when least squares is consistent for a linear combination of the regression

parameter, it is the maximum likelihood estimate of this linear combination, taking the

consistency into account.

-2-
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2. The Normal Case with no Replication: Technical Background

A special case of considerable interest occurs when all errors are normally

distributed and no replicates of the variables measured with error are available. The

general model considered here, which includes the analysis of covariance as a special

case,is given by

Y - x181 + X202 + E

C X2 + U (2.1)

a [8T0OT]T

Here, Y and E are (N x 1) vectors, X is an (N x p) matrix observed without error

and X2  is an (N x q) matrix of true values which we cannot observe exactly. Rather, we

observe C. The rows of the matrix (U,c) will be assumed to be jointly normally

distributed with mean zero and unknown covariance •

In comparing least squares and errors-in-variables methods, we must pick a

representative member of the latter class. In the main. we will do this by following

Gleser (1981) for the case that no replicated estimates of X2  are available the

replicated case will be discussed at the end of the article. Gleser studies the

functional model in which X1, X2  are considered as fixed constants. A special case of

*0 2his model assumes that there is a known matrix $, and an unknown constant a for which

12; o0 ( 2) (2.2)

.0

If t u is the covariance matrix of the rows of U, then in (2.2) we are assuming that we

know the ratio of the elements of t u to a2 , the variance of the elements of c

Gallo (1982) exhibits the maximum likelihood estimate of B, which is given in

Appendix 1.

-3-
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He also proves the following:

.- Theorem 1 (From Gallo (1982)). Suppose that

A - lim N-I (X1 X2 ) T(X 1 X2) (2.3)

exists and is positive definite. Then if B is the functional maximum likelihood

estimate, H '2 (I -B) is asymptotically normally distributed with zero mean andeit N

covariance

Cov(B~~~~ )0 { 1 ~ ~o
NOO dI- + a- Q) ,where

d 2Qi=[B 2 Ill,1IT
Q- 214,%l -'[1'02 T .
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3. Analysis of Covariance

Consider a completely randomized two group analysis of covariance, with covariables

subject to error. Formally, this problem can be subsumed into the more general . -ucture

*. (2.1) bv letting X2  be the covariables and

1T 1 .. II ('1 XT =xx ...x
1 k 1 s2 ) 1 ', X2 (21x22. 2) 3.1

We will let the si  represent treatment assignment, standardized to have mean zero and

variance one. Specifically,

Bi - ( 1-1/w} V2  with probability w

- ({/(I-w)} 1/2  with probability (1-w)

where w is the probability of assignment into treatment # I. The treatment difference is

then o/{( 1-w)w} 12 . We shall treat the true oovariables as if they were random variables

independent of treatment assignment and with covariance matrix tx" In order to

facilitate discussion we do not write down detailed assumptions, rather, we will apply

Theorem I formally, while we will assume appropriate conditions to compute the limiting

distribution of least squares. A more general result is given in Section 5.

The following result shows that as long as treatment assignment is random,
J.

asymptotically least squares is the better estimate of the treatment effect a, because

both estimates are asymptotically normal with the same mean and least squares has the

smaller variance.

Theorem 2 The least squares estimate ;L  is asymptotically normally distributed with

mean a and variance a2(L)/N, where

22 u~ 2 2
a2L) 02 +B2qBu2  " B 2 u x * Sul' ~u0 2 1 3.2)

The functional estimate a has the same asymptotic mean but has asymptotic variance

a 2 M)/N, where

a 
2
(M) a 2 + B20ui2 * (3-3)

-5-
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It is reasonable to conjecture that complete randomization is not necessary for

Theorem 2. For example, one might randomize in blocks or use alternative balancing

schemes, see Wei (1978). This conjecture is worth further study, and might be facilitated

by use of equation (A.7) in the appendix.

It should be noted that in a balanced randomized study, the usual t-test for

treatment effect has correct nominal level asymptotically. Thus, from both an estimation

and inferential standpoint, for large samples least squares will be preferred over the

functional estimate.

The folklore of the area indicates that, asymptotically, least squares estimates are

biased but generally less variable than errors-in-variables estimates. The situation that

has been considered in this section is one in which the least squares estimate of

f treatment effect has no asymptotic bias, so that it was reasonable to conjecture a

preference for least squares. We shall show in Section 5, however, that it is not true

that consistency of least squares for a linear combination of B always means asymptotic

preferability of least squares, although it is true for a large class of problems.

-6---
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4. Some Extensions

In some instances an assumption such as (2.2) will not be tenable so that a

functional estimate cannot be computed. There are many ways out of this dilemma. One is

to take independent replicates C1 , C2 of X2  in (2.1). One can compute the normal

theory functional estimate in this case and obtain a result similar to Theorem 2, but more

general in the sense that the underlying random variables need not actually be normally

distributed. The computation of this functional estimate and its asymptotic distribution

theory are available in, for example, Gallo (1982).

There are instances other than randomized two-group analysis of covariance in which

certain linear combinations of the least squares estimte are consistent for the same

linear combinations of the parameter. Consider the model (2.1) with 8 T T, ( TB ) in

which it is desired to estimate the parameter YT0, where YT _ (Y TYT). Partitioning

A in (2.3) into components Aij, informally the least squares estimate satisfies

= ((X 1 #C)TX 1 #C)V-(x 1IC)TY

P Al +1 + I (4.1i

This leads us to a result which is proved formally by Gallo (1982):

Theorem 3 The least squares estimate YTBL is consistent for Y T, i.e., converges in
probability to Y TB for all 0,02,s if and only if

T Y A-A (4.2)

2 1 11 12

To see the relevance of Theorem 3, consider once again the two group analysis of

covariance of Section 3. Here we have

0 T . (0,1), A1 1  Identity,2 O 1 d n i y

I -T -1IT
A 2T  - (plim N e*X2 , plim N sX 2 )

h'.
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where

S. s1 82 .. aN ),e*

* Theorem 3 says that the least squares estimate of the parameter ai will be consistent for

ai only when

N- I STX2 0(43

* Note that (4.3) is simply the requiremenIt that the covariables be mean balanced across the

* two treatments. Theorem 3 indicates that only when we have such balance will the least

squares treatment effect estimate be consistent.

%8
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5. Further Comparisons of Least Squares and Maximum Likelihood

on the basis of the previous discussion one might reasonably conjecture that when

least squares is consistent for Y TB then asymptotically it must be better than the

Tfunctional estimate of Y 0. In model (2.1), our special cases such as analysis of

covariance have relied upon a degree of orthogonality between X2  and the non-intercept

components of X1 . Specifically, for least squares one must deal with the following,

N2(YT(XTX)_XX 2 -Y) , (5.1)

which is a term in the linear expansion, see (A.2). For example, suppose X, and X2

are very strongly orthogonal in the sense that

N 11 IYTXTX _ I T X1 0(5.2)
L' 1  1 12

Since X2  is unknown (5.2) can never be verified and in fact fails in a randomized

analysis of covariance with y2 - 0, Y1 ( (0 1). However, (5.2) does imply (4.2) and

consistency of least squares. It in fairly easy to show that if (5.2) holds, then the

T
least squares estimate of Y T can be no worse than the functional estimate, at least

asymptotically.

Further investigation of the conjecture is rather technical. The con3ecture is false

for the functional case, in general. Consider an analysis of covariance in which the

treatment assignments foil occurs in the fixed sequence j-I,+1,-1,+I,...}. Let the

covariables fxil be fixed. In a variety of circumstances, it can be shown tht the least

squares estimate aL of the treatment effect a in model (3.1) satisfies

1/2 --a) A A1V + A2  SiX , (5.3)

where A1  and A2  are constants and V is a weighted sum of independent observations

not depending on {sxil. Equation (5.3) shows that asymptotic normality with mean zero

of the least squares estimate when centered at the treatment effect a requires that

N 2 E s x (5.4)Si-1

-9-
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either converge in probability to zero or that (5.4) be itself asymptotically normally

distributed. For the functional model, the latter case is not possible while the former

case is (5.2). Since (5.4) can diverge as N + - with (4.2) still holding, for the

functional case this means that least squares will not be always better asymptotically

than maximum likelihood when least squares is consistent.

Now consider the structural case in which the rows of matrix (X1 ,X2 ) are independent

and identically distributed. The first column of X1  is a column of ones and X1  is

observed exactly, while X2  is observed with error as in model (2.1). Suppose we are

interested in estimating a linear combination Y T for which least squares is known to be

consistent, i.e., (4.2) holds.

Theorem 4 Make the following assumption:
Given X1 , the rows cf R = X2 - K C 1A are independent

and identically distributed with mean zero and covariance (5.5)
-1

22.1 22 21 11 12

Further, suppose that R is distributed independently of c and U. If we define

A - (A2 .1 +

we have that the least squares and functional maximum likelihood estimates are

asymptotically normally distributed with mean zero and variances a 2(L)/N, a 2(M)/N

respectively, where 02 (L) C 02(M). In fact

a
2
(L) = 02(M4) - (Y T1 1 T A$ u

02(M) s (y T-11Y )(02 + T ) B1 11 1 2 u 2

The proof of Theorem 4 is given in the Appendix 2. Note that it includes Theorem 2 as a

special case because when x1  is distributed independently of X2 , then (5.5) holds.

That Theorem 4 may not hold when assumption (5.5) is violated is sketched in Appendix 3.

It may be considered a bit unfair to compare least squares to a "maximum likelihood

estimator" which does not take into account the consistency of least squares. It turns

-10-
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out that, under normality assumptions, the maximum likelihood estimate of Y T when it is

known that least squares is consistent for Y0is simply the leasnt squares estimate of

Y . Specifically, we have the following.

Theorem 5 Suppose that, given X,, (5.5) holds and the rows of R - X2 - XA1 A2 are

normally distributed independently of c and u. Then the maximum likelihood estimate of

T T

Y given 1, and subject to (4.2) is simply the least squares estimate of Y B.

-11%
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6. Conclusion

In a particular errors-in-variables regression model, we have shown that least

squares will often be asymptotically more efficient than a particular functional

• "regression estimate, when the former is known to be consistent. This happens in

particular when those variables X2 subject to error are distributed independently of

those variables X, measured without error, or more generally when X2 follows a linear

regression in X1 . An important special case of this least squares preference phenomenon

is a randomized analysis of covariance where one wants to estimate the treatment effect.

Finally, if the linear regression of X2 on X, follows a multinormal distribution, and

if it is known that least squares is consistent for the linear combination Y T, then

Tleast squares is the maximum likelihood estimate for YT8.
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Appendix 1: The maximum likelihood estimator for model (2.1)

Define

Lu.! X(X T X-1 XT

W (C T LEC Y)

Let 6 be the smallest eigenvalue of $w.where $0is given in (2.2).

Define

*- Ex I C1 - [xIX 12 + U],

D -TC - e 0;

The matrix D is non-singular with probability one, and the functional estimate is

B D CT

The calculation of Bis derived by Gallo (1982) and relies on similar work of Gleser
M

(1981) and Healy (1980).

-13-
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Appendix 2: The asymptotic distribution of least squares

The following general result can be justified formally and is at the heart of the

analysis of covariance calculations. We sketch herein a proof without stating all the
T

necessary regularity conditions. Recall e. (I I ... 1).

Lemma A Define
"'" -1A , A-121 + u

1

A2 2 .1 =A 22  A 2 1 11 12  A 2 2 1  u

and suppose that y satisfies (4.2) as well as

N /2X T(R + U) - 0 (1) , (A.1)1 p

where R s X - X Ia 1 2. Then the least squares estimate satisfies

N 1/2 YT(
'i 2 11 2 T- T

N-12 Y TA xT -1 - U a (A.2)

-=+ 1;/2 T-1 T
N Y &TXT (R + U)E + Q (1)

where

E= ^Sue2

Proof (Sketch): Define C* - [XI X2 + U]. Then

(CC,J 02) T) + (t\
N L- - 0 6 uB C:(C- +8 2 )/,N UO I (A.3)

/ T T
Multiply both sides of (A.3) by NYT(CC./N) to get

8 L -_) - N Y/2T(cTc ( - U 2 I + (4:02) (.4)

N 2 Y T (cIc, ) (t22)

-14-
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by Slutsky's Theorem the first term on the right hand side of (A.4) equals

N'.-o -1 c(+ o U 2 )/ () (A.5)

-1/2YTIA XT E -T U) + o (1)
1 11 1 2 p

which is the same as the first term on the right hand side of (A.2). The second term in

(A.4) is

N 1/2",,T(XTX )-'IxT(R + U)W A6
I1 1 1u2

where

W- (A " ', (Xx/N) -+* At .
22.1 u (1I1 W 11

By (A.1), this completes the proof.

One should note that (A.1) is satisfied in the randomized two group analysis of

covariance of Section 3.

Using Lemma A and writing for the analysis of covariance

T (u u ... uX2 2122 .. 2Nt

I-U T  (u I u 2 ... V1

" 
- N

i 2  x" 21
i-1

we see that for the discussion in Section 3,

1/2 Clei + (In - 2 )Tui + rTl x - m21 , (A.7)

S"(A + 4."u ; + t ';e
u u C+) B 2  x u u 2

The expression (A.7) shows why Theorem 2 may apply to alternative randomization schemes.

2
Proof of Theorem 4 The form of a (M) follows directly from Theorem I. The form of

a2(L) follows from (A.2) and the assumptions of the Theorem.

-15-
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Proof of Theorem 5

First assume that A 1 2 is known. Define
11 12

W - (I, A 2)5

11 12

-2 02 + 2 .T B2 I TtuAtuB2

Given (XIC), we have

(YIX 1 ,C) - XVi + SAA 22 .102 + F , (A.8)
where S =C -

1A

where C - X1 12 and the rows of F are independent normal random variables with

mean zero and variances £2.

If we define

tx - °"2A22.1

- AA 2 2 . 1 02

L -

then he mppin of 2 2 21  2

then the mapping of $I# a2#2, a 422.1 to I, , 0, L is one-to-one from the space

1-2 > 0, A > 01 to the space 102 > 0, L 0 > 01 . One next shows that the map

,, L, 0 2 to I, &, L, 1 2 is also one-to-one onto the space 1 2 > 0, L > 0}.

However, the maximum likelihood estimates of w and E are seen from (A.8) to be

{(XS) T (XlS) 1- (X1 ,S)Ty

Since the column space of (X1 ,C) is the same as the column space of (X1 ,S), it follows

that, given (XI, S, a-1 1 2 ), the maximum likelihood and least squares estimates of v

coincide, i.e.,

;(ale) -(1,A-IAl 2 8

T TThis means that Y L  is the maximum likelihood estimate of Y T, given XlS and

A11 a12 Since, under (4.2), Y T = y S , the proof is complete.

-16-
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Appendix 3. A Counterexample

If the rows of (X1,12) are independent and identically distributed but (5.5) does

not hold, it is possible to construct a counterexample to Theorem 4. The way to do this

is to consider model (3.1) but vith the pairs f(Mi~x i)I satisfying

E a3 0n2 rX2.I

Zx8 1 0, ZsXO2 * 0

Y 1 -82' Y2

In this came, the expansion (A.2) still holds and the last term in this expansion is

The key to Theorem 4 is that, under (5.5), (x - 81 -
0 28i + Ui) has mean zero and

variance A 1 
*without assumption (5.5), one can see that while (A.9) has mean zero, its

*variance can depend on the fourth moment of fail. By manipulating this fourth moment

appropriately, Theorem 4 can be made to fail.

-17-
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