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\ ABSTRACT

~—

_"In an errors-in-variables regression model, the least squares estimate is

generally inconsistent for the complete regression parameter but can be

The awthors
consistent for certain linear combinations of this parameter. We explore the

conjecture that, when least squares is consistent for a linear combination of
the regression parameter, it will be preferred to an errors=in-variables
estimate, at least asymptotically. The conjecture is false, in general, but
it is true for important classes of problems. One such problem is a

Fhis Adocomer?
randomized two-group analysis of covariance, upon which-we- focus€s
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SIGNIFICANCE AND EXPLANATION

.
In an errors—in-variables regression model, the least squares estimate is :-

.

generally inconsistent for the complete regression parameter but can be ;
consistent for certain linear combinations of this parameter. We explore the L
conjecture that, when least squares is consistent for a linear combination of Ef

the regression parameter, it will be preferred to an errors=-in-variables §

estimate, at least asymptotically. The conjecture is false, in general, but .

it is true for important classes of problems. One such problem is a i

randomized two-group analysis of covariance, upon which we focus.
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COMPARISONS OF LEAST SQUARES AND ERRORS=-IN-VARIABLES REGRESSION,
WITH SPECIAL REFERENCE TO RANDOMIZED ANALYSIS OF COVARIANCE

Raymond J.cgrron"., Paul Gllloz'“ and Leon Jay GlelerJ

1. Introduction

The literature on the problem of linear regression when some of the predictors are
measured with error is substantial, see for example, Reilly and Patino-Leal (1981).

Recent work includes the theoretical study of Gleser (1981) and the important practical
shrinkage suggestions of Fuller (1980). See also Anderson (1984) and Healy (1980).

A subarea of this literature concerns two-group analysis of covariance when some of
the predictors are measured with error, see for example Lord (1960), Cochran (1968),
DeGracie and Fuller (1972) and Cronbach (1976).

lord (1960) discusses the case of one covariate measured with error. He notes that
it may "happen ... that the usual covariance analysis (least squares) will fail to detect
a statistically significant difference between groups ... when such a difference actually
exists and can be detected by proper statistical procedures." He also gives a numerical
example of this phenomenon.

Cochran (1968) and DeGracie and PFuller (1972) discuss two group analysis of
covariance, providing in particular some discussion of the case that the true values of
the covariates are themselves random variables; this is usually called a "structural” model
in the literature. They show that if the covariables are unbalanced as might happen in an

observational study, then the measurement error will cause least squares to inconsistently
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estimate the true treatment difference. In the sense of asymptotics, when the covariables

are unbalanced one should then correct for measurement error if it is substantial; a
global small sample statement of this type cannot be made.
Now consider a completely randomized study, where the covariables will be balanced on .
average across the two treatments. In this case, Cochran (1980) and DeGracie and Fuller
(1980) indicate that least squares will consistently estimate the treatment difference.
The question which remains to be answered is "Should we correct for measurement error when
the least squares estimate consistently estimates the treatment effect?" It is the
purpose of this note to partially answer this question. Using large sample distribution
theory, we show that in a balanced, completely randomized study with measurement error in
the covariables, the least squares estimate of the treatment difference will be generally
preferred when compared to a particular errors-in-variables regression estimator. It
turns out that this result can be generalized, so that in a large class of problems, when
least squares is consistent for a linear combination of the regression parameter, it will
be preferred, at least asymptotically. Further, for a smaller but not insubstantial class

of problems, when least squares is consistent for a linear combination of the regression

parameter, it is the maximum likelihood estimate of this linear combination, taking the .

consistency into account.
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2. The Normal Case with no Replication: Technical Background

A special case of considerable interest occurs when all errors are normally
distributed and no replicates of the variables measured with error are available. The
general model considered here, which includes the analysis of covariance as a special
case,is given by

Y = X, B, + X8, + €,

C=X +U (2.1)

8 = [87.83]" .
Here, Y and € are (N x 1) vectors, X; is an (N X p) matrix observed without error
and X, is an (N x g) matrix of true values which we cannot observe exactly. Rather, we
observe C. The rows of the matrix (U,€) will be assumed to be jointly normally
distributed with mean zero and unknown covariance } .

In comparing least squares and errors-in-variables methods, we must pick a
representative member of the latter class. In the main, we will do this by following
Gleser (1981) for the case that no replicated estimates of X, are available; the
replicated case will be discussed at the end of the article. Gleser studies the
functional model in which X,, X, are considered as fixed constants. A special case of
his model assumes that there is a known matrix ‘0 and an unknown constant 02 for which

.

p=o’ =a | . (2.2)

If tu is the covariance matrix of the rows of U, then in (2.2) we are assuming that we
know the ratio of the elements of tu to 02 , the variance of the elements of € .
Gallo (1982) exhibits the maximum likelihood estimate of B, which is given in

Appendix 1.
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He also proves the following:
Theorem 1 (From Gallo (1982)). Suppose that
8 = 1im N 0x x0T (X, %))
Nbor
exists and is positive definite. Then if BM is the functional maximum likelihood

1 -~
estimate, N 72 (BM-B) is asymptotically normally distributed with zero mean and

covariance

- /
Cov(8,) = d{A" + 4 1kg g) A"l . where

a = [87.,-1]3(87,-1]"

0™ = [1.8,]87"[1.8,]7 .
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Theorem 2 The least squares estimate ey is asymptotically normally distributed with
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3. Analysis of Covariance

Consider a completely randomized two group analysis of covariance, with covariables
subject to error. Formally, this problem can be subsumed into the more general s+vucture

(2.1) bv letting X, be the covariables and

1 1 vee 1

T ] T

X1 = ’ 81 - (a) ’ x2 - (821222...:(2") . (301)
8 .2 see .“

1

We will let the s, represent treatment assignment, standardized to have mean zero and

variance one. Specifically,

s, - -{(1-m)/n} V& with probability n ,

- (/-1 2 wien probability (1-%) ,

where =x is the probability of assignment into treatment #1. The treatment difference is
then a/{(1-%x)x} 1/2- We shall treat the true covariables as if they were random variables
independent of treatmant assignment and with covariance matrix tx‘ In order to
facilitate discussion we do not write down Jdetailed assumptions; rather, we will apply
Theorem 1 formally, while we will assume appropriate conditions to compute the limiting
distribution of least squares. A more general result is given in Section S.

The following result shows that as long as treatment assignment is random,
agymptotically least squares is the better estimate of the treatment effect a, because
both estimates are asymptotically normal with the same mean and least squares has the

smaller variance.

A

mean & and variance cz(L)/N, where
200wl 4 T _ aT -1
o(L) = 0% + 8,88, - 8,8 (§, + 4788, - (3.2)

The functional estimate Oy has the same asymptotic mean but has asymptotic variance

02(M)/N, where

2 2 T
o“(M) = ¢ + pztusz . (3.3)
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It is reasonable to conjecture that complete randomization is not necessary for
Theorem 2. For example, one might randomize in blocks or use alternative balancing
schemes, see Wei (1978). This conjecture is worth further study, and might be facilitated
by use of equation (A.7) in the appendix.

It should be noted that in a balanced randomized study, the usual t-test for
treatment effect has correct nominal level asymptotically. Thus, from both an estimation
and inferential standpoint, for large samples least squares will be preferred over the
functional estimate.

The folklore of the area indicates that, asymptotically, least squares estimates are
biased but generally less variable than errors-in-variables estimates. The situation that
has been considered in this section is one in which the least squares estimate of
treatment effect has no asymptotic bias, so that it was reasonable to conjecture a
preference for least squares. We shall show in Section 5, however, that it is not true

that consistency of least squares for a linear combination of B always means asymptotic

preferability of least squares, although it is true for a large class of problems.
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4. Some Extensions

2 T
Theorem 3 The least squares estimate YTBL is consistent for Y B, i.e., converges in

In some instances an assumption such as (2.2) will not be tenable so that a
functional estimate cannot be computed. There are many ways out of this dilemma. One is
to take independent replicates Cy, C; of X, in (2.1}, One can compute the normal
theory functional estimate in this case and obtain a result similar to Theorem 2, but more
general in the sense that the underlying random variables need not actually be normally
digtributed. The computation of this functional estimate and its asymptotic distribution
theory are available in, for example, Gallo (1982).

There are instances other than randomized two-group analysis of covariance in which
certain linear combinations of the least squares estim:ite are consistent for the same
linear combinations of the parameter. Consider the model (2.1) with BT = (81.82) in

T

which it is desired to estimate the parameter YTB, where YT = (Yf.YZ)- Partitioning

4 in (2.3) into components A ., informally the least squares estimate satisfies

ij
2 T -1 T
8, = ((x1,c) (x,,C)) (X,,C)°¥
-1
p [a,, & (’o
11 12
+ _ +8 . (4.1}
SYNCYRRS B A

This leads us to a result which is proved formally by Gallo (1982):

probability to Y'B for all B,oz,tu, if and only if

T o yTaTla, (4.2)

Y2 = Y8182

To see the relevance of Theorem 3, congsider once again the two group analysis of

covariance of Section 3. Here we have

Yy = 0, Yf = (0,1), A11 = Identity,
Afz = (plim N-103X2, plim N-1srx2) ’

-7
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5. Further Comparigons of Least Squares and Maximum Likelihood

On the basis of the previous discussion one might reasonably conjecture that when
‘least squares is consistent for YTB then asymptotically it must be better than the
functional estimate of YTB- In model (2.1), our special cases such as analysis of
covariance have relied upon a degree of orthogonality between X, and the non-intercept
components of X;. Specifically, for least squares one must deal with the following,

1 -
N 72 (Falx ) x-vg) . (5.1)

which is a term in the linear expansion, see (A.2). For example, suppose X4 and X5
are very strongly orthogonal in the sense that

N /2 (Y*xTx ) '%%x.} — 0 . (5.2)

171 172

Since X, is unknown (5.2) can never be verified and in fact fails in a randomized
analysis of covariance with 72 = 0, Yy = (0 1). However, (5.2) does imply (4.2) and
consistency of least squares. It is fairly easy to show that if (5.2) holds, then the
least squares estimate of YTB can be no worse than the functional estimate, at least
asymptotically.

Further investigation of the conjecture is rather technical. The conjecture is false
for the functional case, in general. Consider an analysis of covariance in which the
treatment assignments {51} occurs in the fixed sequence {-1,+1,-1,+1,...}. Let the
covariables (xi} be fixed. 1In a variety of circumstances, it can be shown tht the least

squares estimate a of the treatment effect o in model (3.1) satisfies

L

Yo o Yy ¥
2 - 2
N2(a -a) £ AV + AN 1Z1sixi . (5.3)

where A, and A, are constants and V is a weighted sum of independent observations
not depending on {sixi}. BEquation (5.3) shows that asymptotic normality with mean zero

of the least sguares estimate when centered at the treatment effect a requires that

3, N
N2 s X, (5.4)
i=1

-9~
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either converge in probability to zero or that (5.4) be itself asymptotically normally

distributed. For the functional model, the latter case is not possible while the former
case is (5.2). Since (5.4) can diverge as N + ® with (4.2) still holding, for the
functional case this means that least squares will not be always better asymptotically
than maximum likelihood when least squares is consistent.

Now consider the structural case in which the rows of matrix (X4,X,) are independent
and identically distributed. The first column of Xy is a column of ones and Xy is
observed exactly, while X, is observed with error as in model (2.1). Suppose we are
interested in estimating a linear combination YTB for which least squares is known to be

consistent, i.e., (4.2) holds.

Theorem 4 Make the following assumption:

Given X,, the rows cf R = Xj = X1A;:A12 are independent

and identically distributed with mean zero and covariance (5.5)

-1
2201 ™ 822 7 Ba4B40hyz
Further, suppose that R is distributed independently of ¢ and U. If we define

-1
A= (A22-‘| + tu) [)

we have that the least squares and functional maximum likelihood estimates are

asymptotically normally distributed with mean zero and variances az(L)/N, oz(H)/N

respectively, where 02(L) < OZ(M)- In fact
200y = a2imy — (v Ta=1 T
a%(L) = %) - (¥ "8y )8, t.A8.8,

2 T,-1 2 T
o% (M) = (¥, "ML Y 0% + thuez) .

a

The proof of Theorem 4 is given in the Appendix 2. Note that it includes Theorem 2 as a

special case because when X; is distributed independently of X5, then (5.5) holds.

That Theorem 4 may not hold when assumption (5.5) is viclated is sketched in Appendix 3.
It may be considered a bit unfair to compare least squares to a "maximum likelihood

estimator” which does not take into account the consistency of least squares. It turns

-10=
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out that, under normality assumptions, the maximum likelihood estimate of YTB when it is
known that least squares is consistent for YTB is simply the least squares estimate of

vT8. Specifically, we have the following. ‘

Theorem 5 Suppose that, given X,, (5.5) holds and the rows of R = X, =~ x1A;:A12 are
normally distributed independently of € and U. Then the maximum likelihood estimate of

YTB given X, and subject to (4.2) is simply the least squares estimate of YTB-

i Sina

ell~

T,
MO
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6. Conclusion

In a particular errors-in-variables regression model, we have shown that least
squares will often be asymptotically more efficient than a particular functional
regression estimate, when the former is known to be consistent, This happens in ‘
particular when those variables X, subject to error are distributed independently of
those variables X; measured without error, or more generally when X, follows a linear
regression in X4. An important special case of this least squares preference phenomenon
is a randomized analysis of covariance where One wants to estimate the treatment effect.
Finally, if the linear regression of X, on Xy follows a multincrmal distribution, and
if it is known that least squares is consistent for the linear combination YTB, then

least squares is the maximum likelihood estimate for Y'8.

Acknowledgement
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cussions.
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Appendix 1: The maximum likelihood estimator for model (2.1)
Define

T, =1,T
L=1 x1(x1x1) x1

we(cyLecy .

Let 6 be the smallest eigenvalue of *;1H. where ‘0 is given in (2.2).

Define
C.- [X1 C] = [X1 X2+U]'

0 0

D=3c, -8

fuo

The matrix D is non-singular with probability one, and the functional estimate is

a -1.T
By=D CY .

(1981) and Healy (1980).

The calculation of SH is derived by Gallo (1982) and relies on similar work of Gleser
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Appendix 2: The asymptotic distribution of least squares

The following general result can be justified formally and is at the heart of the
analysis of covariance calculations. We sketch herein a proof without stating all the
necessary reqularity conditions. Recall 83 = (11 ... 1).

Lemma A Define
-1

= - - -1
Bygy =B85 = 88048y ¢+ A=y, T

and suppose that Y satisfies (4.2) as well as

)
N2 x,T(R + v) = o, (A.1)

where R = X, - X1A;:A12. Then the least squares estimate satisfies

y T
2 -
N ¢y (BL B)
/
- -‘2 Tay=1, T, _
N Y, A"x1 (e 082) (A.2)

T

Voo T, -1
2
+ N2y A X,

R+ U + (@)
( 13 Qp |

where

t = AtuBZ ¢

Proof (Sketch): Define Ce = [Xq X, + U}. Then

T
(Cc) (8, - 8) * Ve e - o ’ (A.3)
- + = € =~ + .
L *uez * 2 'uez
1 -1
Multiply both sides of (A.3) by N 2YT(CiC,/N)”' to get
1 - 1 - 0
v 2478 - 8) = N 2yTcTe, 7 (clie - uB I + (A.4)
L v 2 ‘uez
{0
1 -
- n2yTcTe, M) ! 1.8 .
22

=14~




by Slutsky's Theorem the first term on the right hand side of (A.4) equals

5 6 o - (, o
N 72T [a 4 ( ) T clte - us m t6. ]l oM (A.5)
u 2

0 1, |
)

5. -
2 TA=1,T . _
= N Y1Anx1(e uﬁz) + op(‘l) R

which is the same as the first term on the right hand side of (A.2). The second term in

(A.4) is
V.
2., T,yT -1,T
N Y JXIX )T KR + O ‘u82 . (h.6)
where
P -1 T,
W (8, * t“) ' (X)X /N) — &, .

By (A.l), this completes the proof.
One should note that (A.1) is gatisfied in the randomized two group analysis of
covariance of Section 3.

Using Lemma A and writing for the analysis of covariance

T-
x2 (x21 Ryy =oo sz) ’
T
U (u1 Uy e “N) .
N

-1

m,~N ) x
2 gop A

we see that for the discussion in Bection 3,

%2 I ¥ T T
N"2(a - a) =N i5-,1-1{e1 +(n-8)u 0, - mz)} ' (A.7)

-1 -1
n= A+t t“sz 4, + 3788, .
The expression (A.7) shows why Theorem 2 may apply to alternative randomirzation schemes.

Proof of Theorem 4 The form of Oz(M) follows directly frowm Theorem 1. The form of

dz(L) follows from (A.2) and the assumptions of the Theorem.
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f. Proof of Theorem 5

. First assume that A::A12 is known. Define ‘
x »= (1, ATl )8

f 112 .

) 2 2 T T

F3 o + 8, tuﬂz 8, tuAtuez .

T Given (X,,C), we have

(¥|X,,€) = x,;m + shA,, B, +F, (A.8)

e where S = C = X1A;:A12 and the rows of F are independent normal random variables with

;: mean zero and variances £2.

o If we define

Q.. -2

4= 9
- £ = AysaB)
-'. L=A"" .
-~ 2 2
then the mapping of 81. 82. a-, A22.1 to %, £, 6°, L is one-to-one from the space

s {02 > 0, A22 y 2 0} to the space {02 >0, L - oztuo > 0} . One next shows that the map

:{ LI P P o2 to f, &, L, £2 is also one-to-one onto the space {tz >0, L>o0}.
[ However, the maximum likelihood estimates of ¥ and £ are seen from (A.8) to be
- {x, 0T x,0)" x o .
}? Since the column space of (X,,C) is the same as the column space of (X,,S§), it follows

- that, given (x1. S, A;:A12). the maximum likelihood and least squares estimates of ¥

o coincide, i.e.,

- -1 -

X #(mle) = (I,A11A12)BL .
o This means that YTBL is the maximum likelihood estimate of YTI, given Xq,8 and

. -1 T T

) A11A12- Since, under (4.2), Y ® =Y B , the proof is complete.
Ny -16-
A
o .
R
Jh

vy

0
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Appendix 3. A Counterexample
If the rows of (x,,xz) are independent and identically distributed but (5.5) does

not hold, it is possible to construct a counterexample to Theorem 4. The way to do this
is to consider model (3.1) but with the pairs {('i'xi)} satisfying

3 2 2

Es =Es =0 , Es" =Ix = 1,
Ex = 01 0, Esx = 02 + 0,
T

Y, -(-92,61) p 12-0.

In this case, the expansion (A.2) still holds and the last term in this expansion is

v N
N 2 ) (8,s

-8,)[x -8 ~-0.516¢§. {(A.9)
1=1 i 1

i 2 21

+
ui

The key to Theorem 4 is that, under (5.5), (x1 - 01 - 92.1 + Ui) has mean zero and
variance A-1. Without assumption (5.5), one can see that while (A.9) has mean zero, its
variance can depend on the fourth moment of {‘1}’ By manipulating this fourth moment

appropriately, Theorem 4 can be made to fail.
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