AD-A168 962 A CLASS OF ONE-DIMENSIONAL DEGENERATE PARABOLIC
EQUATIONSCU) WISCONSIN UNIV-MADISON MATHEMATICS
RESEARCH CENTER J A NOHEL JUL 85 MRC-TSR-2837

UNCLASSIFIED DRRG29-88-C-8041 F/6 12/4




.
ML

0 l.l -
.

g

Il
O

4.5 2 )
el
w02 j22
s L 20

e e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

T

- »,

35 Ao

J'-f"‘k' \.-’L- "




P e

..

e ow

MRC Technical Summary Report #2837

A CLASS OF ONE-DIMENSIONAL DEGENERATE
PARABOLIC EQUATIONS

John A. Nohel

AD-A160 962

"3‘ Mathematics Research Center

» University of Wisconsin—Madison

| 610 Walnut Street

" Madison, Wisconsin 53705 DTI
A ELECTE

2 July 1985 s, '

y “ NOVT7 o 1985

) w4

o (Received July 2, 1985) B

-,

3

%

1.: e Approved for public release

L R SRRV Distribution unlimited

-’ Y [E St -

.) ..

5

' : Spongored by

ot U. S. Army Research Office

1. P. O. Box 12211

e Research Triangle Park

;5 North Carolina 27709




Fb&&?ﬁﬁ:ﬂi{fﬁﬁ«’-ﬁﬂiﬂt RPN RANN SRR B A2 NS R RN R L LA pa vt

UNIVERSITY OF WISCONSIN~-MADISON
MATHEMATICS RESEARCH CENTER

A CLASS OF ONE-DIMENSIONAL DEGENERATE PARABOLIC EQUATIONS
John A. Nohel
Technical Summary Report #2837

July 1985

ABSTRACT

We use explicit self similar solutions of suitable model problems and
comparison arguments to study the regularity of the free boundary near
t = 0 for the one~dimensional degenerate Cauchy problem
Ve = $(V)yyr XeR t>0,
(P)
vix,0) = g(x) ,
where ¢(v) = max{v,0). The datum g is assumed smooth on R\{0} with at
most exponential growth at infinity and satisfies

xg(x) » 0, x # 0, g(0) =0 ,

the inequality being strict near x = 0.
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. SIGNIFICANCE AND EXPLANATION

;) Degenerate parabolic equations arise in the description of melting
processes, gas dynamics and certain biological models. The interfaces
corresponding to degeneraéies in the constitutive function usually separate

different media in the physical problem.

Problem (P) stated in the abstract is related to nonlinear diffusion

7 MRS

. equations with nonmonotone constitutive functions as has been discussed in
A s PamnN

e e Ao
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~{Eet=31{ In this report we obtainjﬁxplicit self-similar solutions for (P)
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corresponding to a class of model initial data and determine the free boundary
explicitly. The qualitative behavior of these solutions, in particular of
their interfaces, is typical of the situation in more general problems. For

7‘}_6_ avthor
general initial data, we then use:fhese self-gimilar solutions as comparison

functions to study the regularity and the behavior of the free boundary for
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The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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'H 1. INTRODUCTION. In this paper we use self similar solutions to study
]
,.
the one-dimensional degenerate Cauchy problem
0
‘ vt=¢(v)xXl XER,t>0,
Fed (P)
0 v(x,0) = g(x)
L
for the constitutive function ¢(v) = max(v,0). We assume that the initial
Ai data g are smooth on R\{0} with at most exponential growth at infinity and
L
.- satisfy
~ xg(x) >0, x#0, g(0)=0, (9)
% )
ié and the inequality is strict near x = 0. The principal issue is the
’#é regularity of the free boundary near t = 0.
:’.}
, Problems of this type arise as convexifications of diffusion equations
!3 with nonmonotone constitutive functions as has been discussed in [HN1,H]. The
ol
01 behavior of solutions for (P) is similar to those of the one phase Stefan
J problem in which g(x) = -t for x < 0, and g has a jump discontinuity
f& at x = 0. However, (P) and the Stefan problem exhibit different regularity
N
?ﬁi properties of the free boundary near t = 0.
Existence and uniqueness of weak solutions of (P) can be proved using
't: nonlinear semigroup theory ([BCPa,E]. Indeed, Benilan, Crandall, and Pierre
o [(BCPi] have obtained optimal existence and uniqueness results for the porous
¥,
(| medium equation (i.e. problem (P) with ¢(v) = max(v™",0), m > 1) in R'.
2% However, their results do not apply directly to the case m = 1. Details of
-
'3 Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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the proofs in the present context are given in Vfzquez {V1] and the results
(Theorems 3.1, 3.2) are stated in Sectign 3. Using standard approximation
arguments and the comparison method discussed in (V1] (see Section 3) one
establishes the existence of a continuous monotone decreasing free boundary
t + s(t), s(0) =0 and v(s(t)’,t) = 0. Moreover, the pair (v,s) satisfies
the free boundary problem

Vi = Vygr x >s8(t), t>0,

v(x,0) = g(x), x>0,

vis(t)*,t) =0, (B)

g(s(t))s'(t) = v (s(t)*,¢), t >0,

8(0) =0 .
Convergely, the solution v of (F) extended by wv(x,t) = g{x) for x < s(t)
is a weak solution of (P).

In the special case of (P), (g) with the function g satisfying the
additional assumption: g'(0+). g'(0”) ¥ 0, we have shown by solving a
singular integral equation [HN2,3] that the problem (F) has a unique
solution (v,s). Moreover,

a+1/2, (v s oM, (1.1)

s(t) = =x/t + o(t
for any 0 < a < 1/2, where « is the uniquely defined monotone function

of p := g'(07)/g'(07) determined implicitly by the equation

K K> K2/4 ® 2
p=S-+e [ e /4y | (1.2)
-«
For t » € > 0 the free boundary is smooth. It should be observed that a
formal expansion of the ODE g(s(t))s'(t) = vx(s(t)+,t) yields

(p-)s(t)s'(t) = (py) + eee ,

so that
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8(t) = = V2p t + eeo ,
where ¢++ denote terms of higher degree powers of t. However, if p = 1,
then (1.2) implies k = .9034 ... ¥ Y2. The reason for this apparent
incongistency is that all der;vatives of v Dbecome singular at (x,t) at
(0,0) and in particular, v, is discontinuous at (0,0). By contrast, for
the one phase Stefan problem [FP1,2; KN; S] the solution is smooth on the
set {(x,t) : x > s(t), t € (0,T]}.

The purpose of this note is to discuss the regularity and qualitative
behavior for small t of the free boundary of (P) for more general initial
data g. Of particular interest is the modei datum

pJJ, x>0,

gi(x) = (D)

'P-lle' x<o,
where p*, Y > 0 are given constants, for which the integral equation method
of [HN2,3] breaks down if vy # 1, i.e. if the datum g is not piecewise
linear. It will be shown in Section 2 that (P) with the model initial datum
(D) can be solved explicitly for all ¥y > 0 using self similar solutions, and
the free boundary is determined explicitly for all t > 0 by proving the
following result.

Proposition 1.1. For the model datum (D) problem (P) has the unique self

similar solution

vix,t) = tY/zw(Q:), x> s8(t), £t>0
7t

where ¥(¢) is the unigque solution of the ordinary differential equation

29" (E) + EY'(E) - y9(§) =0, £ > =« (1.3)

subject to the initial conditions

Y+1
¥(=k) = 0, ¥'(~) = (p_)

’ (1.4)

1
i
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and x is related to pt via the condition

lim £7YY(E) = p, . (1.5)
E+4oo

The free boundary is s(t) = -Kj:, t > 0. Moreover, given p =p,/p_ > 0,

¢k > 0 is the unique solution of the equation

+1

. Y . 2
P= (E) D_,_4(- E)exp(;—) ' (1.6)

where D'Y'1(.) is the parabolic cylinder function of index (=y - 1)

(B, p. 119].

It is readily verified that (1.6) reduces to (1.2) if vy = 1. The
regularity of the free boundary for problem (P) with initial data (g) more
general data than (D) can then be discussed using the above explicit solutions
as camparison functions. This will be done briefly in Section 3 using ideas
of Vazquez [V1,2]. The principal result is

Theorem 1.2. lLet v be the solution of (P), where the smooth datum g

satisfies assumptions (g), xg(x) > 0 for x near zero, and there exists

Y > 0 such that

-lim g(x)|x|™Y = a > 0

x*0 (1.7)
lim 6(x)x"Y*" 2 p 5 0,
x*0+
X
where G(x) = [ g(£)dE, x > 0. ILet p := b(y + 1)/a. Then
0
s(t) = «t2(1 4+ o(1)) (¢ + 0% , (1.8)

where x = k(p) > 0 is the uniquely defined inverse of the function p

defined by equation (1.6); for t » € > 0 the free boundary is smooth for as

long as it exists.
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As already remarked in the special case Y = 1 the integral equation approach

ek

yields the stronger result (1.1). The proof of Theorem 1.2 is sketched in

ot Yl L i

ol

Section 3.

Proposition 1.1 and the comparison method used in the proof of Theorem

e

" .
- ‘."

1.2 can be used to discuss the regularity of the free boundary near t =0

-

for initial data more general than those satisfying (1.7). For example, if,

in place of (D),

a

~ ax , x>0
” g(x) = 8 (1.9)
-le ’ x <0 ’

.
o where a, a > 0, B >0, and a > B8, then there exist constants cq,cy > 0
Mg
3{ which depend on a,B such that

: 1 2

:3 c1a8+1tA < =g(t) < c2a8+1tx ' (1.10)
."
K.

-, + . s i
N . where A = E%E_TlTT’ for t » 0 sufficiently small. On the other hand, if
s

N B >a in (1.9),

]
b lim — S = (28 - an) V2.
o t+0 t /“|log t]
aWa
)
b 1
tz If B=a in (1.9), A = 3 and the situation is covered by Proposition 1.1.
4y
B The constitutive function ¢(v) = max(v,0) in (P) is piecewise linear.
:-.\:

f} However, self similar solutions of (P,D) exist for more general constitutive
‘.q_‘

:5 functions ¢, but they cannot in general be found explicitly. We expect to
- investigate the reqularity of the free boundary near t = 0 for such problems
L
‘ in future work. This question is not discussed in [BMPe] where other

: qualitative aspects of several such problems are investigated.
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2. SELF SIMILAR SOLUTIONS. In this section we consider the Cauchy

problem (P) for the model datum (D). Let ¥ = ¥(x,t;Y,p,,p.) be the solution
of (P), (D), and define the transformation v + Tv by
Tv(x,t) = uv(kx,kzt) ’ (2.1)

where u, A > 0 are constants. T transforms solutions into solutions and in
particular, it is clear that (p_)v{(x,t;Y,p,1), where p =p./p_, is a
solution of (P), (D). Denoting V(X,t,Y;pQ1) := ¥(x,t;Y,p), uniqueness
(Theorem 3.2) implies that

v(x,t1Y,P,,p.) = (p.)Vix,tiv,p) (2.2)
Since TV(x,0;Y,p) = V¥(x,0;Y,p) if and only if uXY = 1, uniqueness of
solutions of (P), (D) further implies that

Fx,tiv,p) = ATV, A%E57,p) (2.3)
for any X > 0. Fixing the point (x,t) and choosing A = t'1/2 in (2.3)
implies that Vv is the self similar solution

V(ix,t iY.p) := Y/z"’("t-’/z

) (2.4)
of the éauchy problem (P), (D) for any Y > 0. By the comparison method
(Section 3) the free boundary s of (P), (D) is monotone decreasing and
s'(t) <0 for t > 0, s(0) = 0, Moreover, by the equivalence of problems
(P), (D) and (), (D) the free boundary s = {(x,t) : xt=V2 = -«<, t > 0},

where « > 0 is the constant uniquely determined in Proposition 1.1, and by

Proposition 3.3

vix,t;y,p) >0, x>s(t), t>0.

U EN N I I Y P T Ty
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Proof of Proposition 1.1. Substituting ¥ defined by (2.4) in (P) one

sees that ¢ must satisfy the linear differential equation (1.3), and

conditions (1.4) and (1.5).

i
192
bl Equation (1.3) can be solved explicitly. Put x = £//2 and
o
‘.:}’ w(E) = y(x). Then (1.3) becomes

o w'({x) + xw'(x) - yw(x) =0 . (2.5)
o
,_3 Setting w(x) =: y(x)exp(-x2/4) we obtain
i
Ay

1 N

- Yy (x) = (1-+ Y + l(—')y(!t) =0 . (2.6)
N 2 r
x;: This differential equation has the general solution [B, p. 116-117]
*.‘,::
™ y(x) = b1D_7_1(§) + bZQY(ix) (=@ < x <=, y>0),
> where Dv(o) is the parabolic cylinder function of index v. Thus the
> a7

")
z§j general solution of (1.3) is

‘L‘
e

" . 2

. ps -

I | WE) = [b,u_Yq(i-ﬁ) + b,'DY(-'/-_z:)]exp(—g-) (2.7)

for =» ¢ E <» and Yy > 0. To impose the initial conditions (1.4) we need

the formulae [B, p. 119]

3% & Py el =) - 2o Eew(-
!ég [D ( ] P(-E )] /_ Y' (ie)exp(“E ) .

Then the initial conditions (1.4) yield the pair of equations

7=
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bo__ . (-5) +bp (-i) =0
1 =-y-1 2y /3

(2.8)
Y+l
iy <
—b D (- F) + 1‘Yb2 v~ 1( —2-) = p_ exp(a ) .
Because (2.6) is of self-adjoint form the Wronskian of Dy(')' 0_1_1(') is
constant,
[ ° S -3 Y 1 1
W(D_, _,(*),D () = iexp|( Jwi]
Thus
(P )KY+1D (- i) xp(..'c_
- Y 3 8
b,(k) =
! i/7 exp| (L5—1)ni]
(2.9)
Y+1 K |<2
(p_)x D“Y"1(- -—)exp(e—)
bz(x) = -

iv2 exp[( )‘u]

and (2.7) with bq,b, given by (2.9} is the solution of (1.3) satisfying the

initial conditions (1.4). To compute the limit in (1.5) we use (B, p. 122]:

2
D (2) = z'exp(- 3-) (1 + o(|z]"2)) as |z| » =, (2.10)
. . . 3n 3n
which is valid for -7 < arg z < 2 ° Thus for £ ¢ R, vy > 0,

2 -y=-1 -
&)= exp(- H)E)  n+odel™n, g,
V2 /2

(2.11)

exp(D)[ 11 + og] ™D, £+ 4=

o, )

2
xp(3-) (%)

Substitution of (2.11) and (2.9) into the general solution (2.7) yields

: Y
V(E) = bz(x)exp(i‘zﬂ'-)(-%) (1 +0(1)], £+ +o. (2.12)

T TATE et e A e N R T e et R TRTS KO I _-\.'p;v_
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From formula (2.9) we see that
iyw - y+1 K |<2
bz(k)exp(—;—- = D (- —)exp(a—) . (2.13)
V2

Imposing the asymptotic condition (1.5) and using (2.12), (2.13) we finally

obtain

V(E) K k k2
lim === = p =p (=) p_ _ (- "exn(g) (2.14)
Ert0 £ /2 V2
which is equation (1.6).
To complete the proof of the Proposition we have to show that given any

p > 0, (E) is uniquely solvable for k. This is a consequence of uniqueness

(Theorem 3.2). However, it can also be seen directly as follows. From [BO,

p. 573)

G NS S u
-y=1 /3 721 n=0 (2n)1
2° r(h+3)
(2.15)
. /7 "i 22n+1 (5_)2“”
1 - (2n + D1 s !
1 "‘Y 0 2
2 r( )
is an analytic function of K, =® < K < »w, vy > =1; ag = aq = 1,
an4p = (v + %Jan +-% (n - 1)a,_,, and D_Y_,(O) A - Since

e, 272+ )
the coefficients av are positive, D_Y_‘(- -::) is a positive, strxctly

V2
increasing function of x for 0 € x < », and by (1.6) so is pl(k).

Moreover p(0) = 0. This completes the proof of Proposition 1.1.

We conclude this section by establishing two useful asymptotic estimates.

From (2.15) and (E)

?\‘w .:‘:_-._ . ..
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3% p(k) = (5 (x » 0%) . (2.16) :
LY + —

iy 3 2

R 2 r(1 +3)

1R

& Moreover, [BO, p. 574}

gyt ’
! n |
10" |

N K V2n Y 2 n
X 2 D_Y_1(' =) = 'I?(1_+“-YT (=) exp(g—) (k + 4=}, l
1928 z z |
AN

2By |
4'4 and therefore, from (E)

2

o

oy 2y+1 2

e V2n K K

PO) = oy ) exe(g) kv (2.17)

:fij

20 !

{_J_': 3. EXISTENCE UNIQUENESS AND COMPARISON OF SOLUTIONS OF (P). In this

b n

Jf section we state general existence and uniqueness results for (P), briefly

ot

:-ﬂf discuss the comparison method, and sketch the proof of Theorem 1.2.

. b

{: Consider the Cauchy problem (P) in Qn = Rx [0,T) where T > 0, and

Lt

! assume that the datum g ¢ L;OC(R) and satisfies

."-

oo g(x) < c exp(hx?), x € R, (3.1)
S

g}q for some constants c, h > 0. Define g (x) := max(-g(x),0). For existence ’

; of solutions of (P) one has the following result proved in Vizquez ([V1].

¥ -
15 Theorem 3.1. There exists T = T(g) > (4vh)”' and a function

ihed

(= . o1 o . . S

VE? v e c({0,T] : Ly oc(R) ] Lloc(QT)) with the following properties:
e (1) v(e,t) + g in Ll (R as t+ o
‘;;? . .
3;&; (ii) vg = $(v)yee =0 in D'(Qnp).
:Eﬁt (iii) For every t4 < T there exists constants hy > h and ¢4 > 0 such
M

i that

¢ - hx2

SAS ~g (x) <€ v(x,t) < cqexp(-hyx*) (3.2)

',‘h")‘

;ti for every 0 < t < t; and a.e. for x ¢ R.

13
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Uniqueness of solutions of (P) can be established in a larger class of
functions which includes the class of solutions in Theorem 3.1; the proof is
given in Vlzquez (V1].

Theorem 3.2. let u,v € C([0,T]; L{oc(l) N L;oc(QT)) satisfy the following

properties:
(1) vy = o)y = Ve = 0 (V) din D' (Qm):
(i) u(s,t) = v(e,t) + 0 in L] (R) as t + 0%

(iii) for every t4 < T there exist constants c¢q > 0, hy > 0 such that

u(x,t),v(x,t) < cqexp(hyx?) a.e. in R x (0,tq) . (3.3)
(iv) uT(x, ), v (x,t) € L), (Q).
Then u(x,t) = v(x,t) a.e. in Op-

As a consequence of Theorems 3.1 and 3.2 the Cauchy problem (P) has a
unique solution in Qp for some T > 0 if the datum g satisfies (3.1). If
the datum g has exponential growth as |x| + o, the solution v of (P)
will become infinite in finite time. This is evident because nonnegative
solutions of the heat equation v, = v,, have this property for exponentially
growing data. On the other hand, if the datum g has at most polynomial
growth at infinity, then by Theorem 3.1 the solution v of (P) exists on
0 €t < =

Next, we turn to the comparison method in the form it is needed in the
proof of Theorem 1.2, see Vlzquez [V1]). To state it we define

X
G(x) = [ g(§)AE, x e R,

X
Vix,t) = [ v(E,t)A, x e R, t > 0 .




“.I;';-‘; )

Proposition 3.3. Let v4,v5 be two solutions of (P) corresponding to data

d49,95 respectively, each satisfying assumptions (g), and 94,97 € LY(m). If

Gq(x) > Gy(x) for every x ¢ R, then Vilx,t) > V2(x,t) for every x € R,

t > 0.

Remark. Proposition 3.3 holds for solutions v of (P) whenever ¢ is a

continuous nondecreasing function: R + R, and ¢(0) = 0. Observe that V
satisfies the P.D.E. V. = ¢(V,) and Proposition 3.3 is the maximum

x
principle for this equation.

Sketch of Proof of Theorem 1.2. We assume that assumptions (g) are

satisfied. Since the interest is in the regularity of the free boundary

near t = 0, we assume without loss of generality that g has at most

polynomial growth at infinity. Then the Cauchy problem (P), (g) exhibits a

unique free boundary x = s(t) definedon 0 < t < =, 8(0) =0, s ¢ cl(o,=),

and s8'(t) <0 for ¢t > 0. In what follows we denote by G(x) the primitive !
fx g(E)d§. An essential ingredient in the proof is the following refinement
0

of Proposition 3.3. An analoygcus result for the porous medium equation has

been proved by Vizquez [V2]; the proof is similar. N

Iemma 3.4. let V4,v9 be two solutions of (P) corresponding to initial

data 94,93 respectively, satisfying assumptions (g). Let S4.83 be the

corresponding free boundaries, s1(0) = 32(0) = 0. Assume that

0> 91()() ? gz(x) (3.4)

for small x < 0, and that

G1(X) ? G2(X) (305)

for every x on some interval (0,a), a > O, G1(a) >0 and Gq ¥ G, on

(0,a). Then

81(t) < sy(t) (3.6)

for t > 0 sufficiently small.

=12~
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(¢ To complete the proof of Theorem 1.2 we apply Lemma 3.4. Let vg = v,
“% the solution of (P), (g) where the initial datum g satisfies assumptions (g)
- and (1.7). Let v, be the self similar solution of Proposition 1.1
;{ corresponding to the model datum (D) with p, = b(y + 1) +¢, p_=a - ¢,
:;:2 ) where 0 < € < a. Then Gp(x) > Gy(x) for small x > 0, Gy # Gy, and
12 0 > ga(x) > gq(x) for x < 0. By Lemma 3.4 s,(t) < s4(t) for small t > 0.
?: Thus identifying s4 with s and using the result of Proposition 1.1,
i
o Liming (-s(t)e'/?) > (LI 1T 5y
. +
2 t+0
;E for every 0 < € < a. Since «x is a continuous function of p,/p., we let
i; e + 0% to obtain
liminf (-s(t)t"/?) » z(ﬁl'_;l—‘l) . (3.7)
: ts0”
vié By a similar argument, letting v4 be the self similar solution of (P), (D)
e
o with p, and p_. defined as above, and letting v, be the solution of (P),
' . (D) we obtain
/ | limsup (-s(t)t'/?) < r(l’—(-Y—;i—'—)-) . (3.8)
ﬁ t»o”
‘é The result (1.8) is a consequence of (3.7), (3.8). This completes the sketch
153

of the proof.
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