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ABSTRACT

We use explicit self similar solutions of suitable model problems and

comparison arguments to study the regularity of the free boundary near

t = 0 for the one-dimensional degenerate Cauchy problem

vt = f(v)xx, x e R, t > 0,
(P)

v(xo) = g(x) ,

where (v) max(v,O). The datum g is assumed smooth on R\{01 with at

most exponential growth at infinity and satisfies

xg(x) ) 0, x ' 0, g(O) 0

the inequality being strict near x 0.
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KSIGNIFICANCE AND EXPLANATION

Degenerate parabolic equations arise in the description of melting

processes, gas dynamics and certain biological models. The interfaces

corresponding to degeneracies in the constitutive function usually separate

different media in the physical problem.

Problem (P) stated in the abstract is related to nonlinear diffusion

equations with nonmonotone constitutive functions as has been discussed in

n' tnhis report we obt ain'xplicit self-similar solutions for (P)

corresponding to a class of model initial data and determine the free boundary

V.i explicitly. The qualitative behavior of these solutions, in particular of

* their interfaces, is typical of the situation in more general problems. For
N, tyc-

general initial data, w then use these self-similar solutions as comparison

functions to study the regularity and the behavior of the free boundary for

small time. /4-.~~Z 2

For

INSPECTW ____ L

The responsibility for the wording and views expressed in this descriptive
sumary lies with MRC, and not with the author of this report.
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A CLASS OF ONE-DIMENSIONAL DEGENERATE PARABOLIC EQUATIONS

John A. Nohel

7b Jaroslav Kurzweil on his sixtieth birthday

I. INTRODUCTION. In this paper we use self similar solutions to study

the one-dimensional degenerate Cauchy problem

vt = (V)xx, x R, t > 0 (P)

v(x,O) = g(x)

for the constitutive function *(v) = max(v,O). We assume that the initial

data g are smooth on R\{01 with at most exponential growth at infinity and

satisfy

xg(x) > 0, x 3 0, g(0) - 0 , (g)

and the inequality is strict near x - 0. The principal issue is the

regularity of the free boundary near t - 0.

Problems of this type arise as convexifications of diffusion equations

with nonmonotone constitutive functions as has been discussed in [HN1,H]. The

behavior of solutions for (P) is similar to those of the one phase Stefan

problem in which g(x) - -1 for x < 0, and g has a jump discontinuity

at x - 0. However, (P) and the Stefan problem exhibit different regularity

properties of the free boundary near t - 0.

Existence and uniqueness of weak solutions of (P) can be proved using

nonlinear semigroup theory [BCPa,E]. Indeed, Benilan, Crandall, and Pierre

[BCPi] have obtained optimal existence and uniqueness results for the porous

medium equation (i.e. problem (P) with *(v) - max(vm,0), m > 1) in FP.

However, their results do not apply directly to the case m - 1. Details of

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.



the proofs in the present context are given in V&zquez [VI] and the results

(Theorems 3.1, 3.2) are stated in Section 3. Using standard approximation

arguments and the comparison method discussed in [VI] (see Section 3) one

establishes the existence of a continuous monotone decreasing free boundary

t + s(t), s(O) = 0 and v(s(t) +,t) - 0. Moreover, the pair (v,s) satisfies

the free boundary problem

Vt = Vxx, x > s(t), t > 0,

v(x,O) = g(x), x > 0

v(s(t)+,t) - 0,()

g(s(t))s'(t) - Vx(s(t)+,t), t > 0

s(0) = 0

Conversely, the solution v of (P) extended by v(x,t) - g(x) for x < s(t)

is a weak solution of (P).

In the special case of (P), (g) with the function g satisfying the

additional assumption: gl(0+), g'(0-) 0 0, we have shown by solving a

singular integral equation [HN2,3] that the problem (F) has a unique

solution (v,s). Moreover,

s(t) = -Kvt + O(to+ 1/2) (t + 0) (1.1)

for any 0 < a < 1/2, where K is the uniquely defined monotone function

of p := g'(O+)/g'(O-) determined implicitly by the equation

I" K2 K 3 eK2 /4 Q* e2/4y
". r2 + f e•y (1.2)

2 4

For t ) c > 0 the free boundary is smooth. It should be observed that a

formal expansion of the ODE g(s(t))s'(t) = vx(s(t)+,t) yields

(p_)s(t)s'(t) = (p+) +

so that

-2-
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(t) - /2p t + o. ,

where s.o denote terms of higher degree powers of t. However, if p - 1,

then (1.2) implies K - .9034 ... 91 i2. The reason for this apparent

inconsistency is that all derivatives of v become singular at (x,t) at

(0,0) and in particular, vx  is discontinuous at (0,0). By contrast, for

the one phase Stefan problem [FP1,21 XN; S3 the solution is smooth on the

set ((x,t) : x ) a(t), t f (0,T]}.

The purpose of this note is to discuss the regularity and qualitative

behavior for small t of the free boundary of (P) for more general initial

data g. Of particular interest is the model datum

Sp+x Y ,  x ), 0
g(x) - (D)I-p-IxI,' x.< 0

where pi" y > 0 are given constants, for which the integral equation method

of [HN2,3] breaks down if y 10 1, i.e. if the datum g is not piecewise

linear. It will be shown in Section 2 that (P) with the model initial datum

(D) can be solved explicitly for all y > 0 using self similar solutions, and

the free boundary is determined explicitly for all t ) 0 by proving the

following result.

Proposition I.I. For the model datum (D) problem (P) has the unique self

similar solution

v(x,t) _ ty/2*(L), x > s(t), t > 0

where *(") is the unique solution of the ordinary differential equation

2*"(C) + Y'(&) - y(F;) 0 0, > -Kc (1.3)

subject to the initial conditions

y+1
*(-c) - 0, *'(-c) - (p.) (1.4)

-3-
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and K is related to P. via the condition

lim PY.(+) = +1.5)

The free boundary is s(t) = -Kit, t ; 0. Moreover, given p - p+/p_ > 0,

K > 0 is the unique solution of the equation

F ) ._y-1( !)exp-) , (1.6)Ap

where D y 1 (.) is the parabolic cylinder function of index (-y - 1)

(B, p. 119].

It is readily verified that (1.6) reduces to (1.2) if y - 1. The

regularity of the free boundary for problem (P) with initial data (g) more

general data than (D) can then be discussed using the above explicit solutions

as comparison functions. This will be done briefly in Section 3 using ideas

of Vhzquez [V1,2]. The principal result is

Theorem 1.2. Let v be the solution of (P), where the smooth datum g

satisfies assumptions (g), xg(x) > 0 for x near zero, and there exists

y > 0 such that

-lim g(x)lxly - a > 0

x+0 (1.7)

lim G(x)x " (Y + I ) . b > 0

x+O+

x
where G(x) f g(C)dt, x ) 0. Let p := b(y + 1)/a. Then

0 B(t) - -Kt /2(1 + 0(1)) (t + 0+1 , (1.8)

where K - K(p) > 0 is the uniquely defined inverse of the function p

defined by equation (1.6); for t ; c > 0 the free boundary is smooth for as

long as it exists.

-4-
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As already remarked in the special case y = I the integral equation approach

yields the stronger result (1.1). The proof of Theorem 1.2 is sketched in

Section 3.

Proposition 1 .1 and the comparison method used in the proof of Theorem

1.2 can be used to discuss the regularity of the free boundary near t = 0

for initial data more general than those satisfying (1.7). For example, if,

in place of (D),

lax ,  x > 0

g(x) = I I'<'0 (1.9)

where a, a > 0, B ) 0, and a > B, then there exist constants c11c2 > 0

which depend on a,B such that

1 1

clalt( -s(t) c2aB+lt , (1.10)

where A = a + I2(B + 1), for t > 0 sufficiently small. On the other hand, if

B > a in (1.9),

lim -st) = (2(0 - a))1/2

t+O +t 1 2 11og til
2

1

If B - a in (1.9), A - and the situation is covered by Proposition 1.1.

The constitutive function #(v) - max(v,0) in (P) is piecewise linear.

However, self similar solutions of (P,D) exist for more general constitutive

functions #, but they cannot in general be found explicitly. We expect to

investigate the regularity of the free boundary near t - 0 for such problems

in future work. This question is not discussed in (BMPe] where other

qualitative aspects of several such problems are investigated.

-5-
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2. SELF SIMILAR SOLUTIONS. In this section we consider the Cauchy

problem (P) for the model datum (D). Let = (x,t;y,p+,p_) be the solution

of (P), (D), and define the transformation v + Tv by

Tv(x,t) = pv(Xx,A 2t) , (2.1)

where P, A > 0 are constants. T transforms solutions into solutions and in

particular, it is clear that (p_),(x,tiy,p,1), where p = p+/p_, is a

solution of (P), (D). Denoting (x,t,y;p,l) :- r(x,t;y,p), uniqueness

(Theorem 3.2) implies that

;(x't ,p+,p.) = (p_)j(x,t;y,p) . (2.2)

Since T-(x,0;y,p) = i(x,0;y,p) if and only if VAX = 1, uniqueness of

solutions of (P), (D) further implies that

Z(x,t;y,p) = (XJY);(Xx, 2 typ) (2.3)

for any A > 0. Fixing the point (x,t) and choosing A = t-1 / 2  in (2.3)

implies that ; is the self similar solution

(x,t;yp) := t/2 *(xt 1/ 2 ) (2.4)

of the Cauchy problem (P), (D) for any y > 0. By the comparison method

(Section 3) the free boundary s of (P), (D) is monotone decreasing and

sl(t) < 0 for t > 0, s(0) = 0. Moreover, by the equivalence of problems

(P), (D) and (f), (D) the free boundary s = {(x,t) : xt-" 2 = -K, t > 01,

where K > 0 is the constant uniquely determined in Proposition 1.1, and by

Proposition 3.3

r(x,t;y,p) > 0, x > slt), t ; 0

-6-

i . -l, ,



TT.-a- ~ zr r ~ f -

Proof of Proposition 1.1. Substituting defined by (2.4) in (P) 'ne

sees that * must satisfy the linear differential equation (1.3), and

conditions (1.4) and (1.5).

Equation (1.3) can be solved explicitly. Put x - F/v' and

w() - (x). Then (1.3) becomes

w"(x) + xV'(x) - Yw(x) - 0 . (2.5)

Setting w(x) -: y(x)exp(-x 2/4) we obtain

1 2
*y" (x) - + Y + )y(x) = (2.6)

This differential equation has the general solution [B, p. 116-117]

y(x) - b ID.Y-1 (x) +b 2 VYix) < <m, Y> 0)

where D (a) is the parabolic cylinder function of index v. Thus the

general solution of (1.3) is

2
b bD i- + b D (i)exp(- (2.7)

for -m < < - and y > 0. To impose the initial conditions (1.4) we need

the formulae [B, p. 119]

IL [D. .1C)expCr 21 M -1eC

2 i2 i 2
[DA.expi-) - D (.Lexp()

Then the initial conditions (1.4) yield the pair of equations

-7-
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4.K

b 1D_ 1( - /) + b2D - ) = 0

(2.8)__ + ~b2-1C ) +l 2
-b D ( + = p K ex2,-P

Because (2.6) is of self-adjoint form the Wronskian of D ), D_ 1 1- 1 is

constant,

';. W(D_¥_(-),D¥() -iexp[(y )Wi]

Thus

(p~ ~~ 2 ) +D -)exp(!
-2

b I (K) ii2" exp[( + ,- 1)1i

+ K(2.9)
r2 2

-V2 exp[(Y +

and (2.7) with bl,b 2  given by (2.9) is the solution of (1.3) satisfying the

initial conditions (1.4). To compute the limit in (1.5) we use [B, p. 122]:

2
D (z) - zVexp( - I_)[, + O(Izl- 2)] as IzI + , (2.10)

which is valid for arg z < Thus for F eR, y > 0,
.p.4 4

D= [(+ o(IEI-2)], E + +_
F2

(2.11)

8 exp(.x)(A ep(2)[I + O(IEI-2)], E + +-= x( ex) '- ['*O( ] + ,

Substitution of (2.11) and (2.9) into the general solution (2.7) yields

*() b (Kc)exp(.it!)(I-) (1 + 0(1)], E + 4- (2.12)2 2 r2

* -8-



From formula (2.9) we see that

p 2C
bPexp(-j-) - IC +'D 1- 5exp(--) • (2.13)
2 2k/exp/2 -- I

Imposing the asymptotic condition (1.5) and using (2.12), (2.13) we finally

obtain

li~m $ ) x: Y+ D .3 _( 
2

lim - = P= p_( - )exp( - (2.14)

which is equation (1.6).

To complete the proof of the Proposition we have to show that given any

p > 0, (E) is uniquely solvable for K. This is a consequence of uniqueness

• (Theorem 3.2). However, it can also be seen directly as follows. From [BO,

p. 573]

. -  = 2n
_ y+l 12n) !

n- '0 V2

22 r(1 +

(2.15)
a 2+1 2n+1

+ (2n + 1)!
,2 0 n2-.,,' 22r.(.2-. _

i is an analytic function of c, - < ic < m, > -1; a0 = a1 = 1,

an+2 = + 4!)a + - ( Since
a n  n - ) n -2 ,  a n d D --( 0)__: , ( r 1 ) , C 1 . . i c

2~ 2(+ 1 )/2 r(1 +
-, the coefficients aV are positive, Dyl(- -) is a positive, strictly
ft 12

increasing function of K for 0 4 K < -, and by (1.6) so is p(K).

* Moreover p(0) = 0. This completes the proof of Proposition 1.1.

We conclude this section by establishing two useful asymptotic estimates.

From (2.15) and (E)

.

t. -9-
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¢y+l

P(K) = (.) (K + 0+ ) . (2.16)
2€2

22 r(i + .

Moreover, [BO, p. 574]

D- 1  r + exp(-) (K + +a)
-'Y F2 rci + )r8

and therefore, from (E)

r- 2y+1 2

p(c) r(1+ Y) (.) exp(-) (ic+ 1+o) * (2.17)

3. EXISTENCE UNIQUENESS AND COMPARISON OF SOLUTIONS OF (P). In this

section we state general existence and uniqueness results for (P), briefly

discuss the comparison method, and sketch the proof of Theorem 1.2.

Consider the Cauchy problem (P) in gT = R x [0,T) where T > 0, and

assume that the datum g e Lioc(R) and satisfies

g(x) < c exp(hx 2), x c R , (3.1)

for some constants c, h > 0. Define g-(x) := max(-g(x),0). For existence

of solutions of (P) one has the following result proved in V&zquez [VII.

Theorem 3.1. There exists T - T(g) > (4wh) and a function

CUO,]v [T. Lso (QT) ) with the following properties:

(i) v(,t) + g in Liocl) as t 0+ .

(ii) vt - #(v)xx = 0 in V'(QT).

(iii) For every tI < T there exists constants h i ) h and c, > 0 such

that

-g (x) 4 v(x,t) 4 clexp(-hlx 2 1  (3.2)

for every 0 < t 4 t I and a.e. for x e R.

-10-



Uniqueness of solutions of (P) can be established in a larger class of

functions which includes the class of solutions in Theorem 3.1; the proof is

given in V&zquez (VI].

Theorem 3.2. Let u,v e C([O,T]; L oo(i) n Loc(QT)} satisfy the following

properties:

(i) ut - *(u)xx = vt - *(v)xx in D'(QT);

(ii) u(-,t) - v(e,t) + 0 in Lo(2) as t + 0+

(iii) for every t I 4 T there exist constants cI > 0, h, >0 such that

u(x,t),v(x,t) ( cjexp(hjx2 ) a.e. in R x (O,tj) . (3.3)

(iv) u(xt),v-(xt) f Loc(QT).

Then u(x,t) - v(x,t) a.e. in QT"

As a consequence of Theorems 3. 1 and 3.2 the Cauchy problem (P) has a

unique solution in QT for some T > 0 if the datum g satisfies (3.1). If

the datum g has exponential growth as lxi + m, the solution v of (P)

will become infinite in finite time. This is evident because nonnegative

solutions of the heat equation vt - vxx have this property for exponentially

growing data. On the other hand, if the datum g has at most polynomial

growth at infinity, then by Theorem 3.1 the solution v of (P) exists on

0 (t< .

Next, we turn to the comparison method in the form it is needed in the

proof of Theorem 1.2, see Vfzquez [VII. To state it we define

x
G(x) - f g(g)dg, x C IR

* x

V(xt) - f v(C,t)dC, x e R, t ; 0

~-11-
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Proposition 3.3. Let vIv 2 be two solutions of (P) corresponding to data

g1 g2 respectively, each satisfying assumptions (g), and g1"g2 e LI(R). If

G1 (x) ) G2 (x) for every x e R, then V1(xt) > V2(xt) for every x c R,

t>0.

Remark. Proposition 3.3 holds for solutions v of (P) whenever # is a

continuous nondecreasing function: R + R, and *(O) = 0. Cbserve that V

satisfies the P.D.E. Vt = *(Vx ) and Proposition 3.3 is the maximum

principle for this equation.

Sketch of Proof of Theorem 1.2. We assume that assumptions (g) are

satisfied. Since the interest is in the regularity of the free boundary

near t = 0, we assume without loss of generality that g has at most

polynomial growth at infinity. Then the Cauchy problem (P), (g) exhibits a
unique free boundary x = s(t) defined on 0 < t < -, s(0) = 0, s e C 1(0,-),

and s'(t) < 0 for t > 0. In what follows we denote by G(x) the primitive
-. x

f g( )dE. An essential ingredient in the proof is the following refinement
0

of Proposition 3.3. An analogous result for the porous medium equation has

been proved by V&zquez [V21 the proof is similar.

lemma 3.4. Let v11v2 be two solutions of (P) corresponding to initial

data g1g 2  respectively, satisfying assumptions (g). Let s1182 be the

corresponding free boundaries, s1 (0) - s2(0) = 0. Assume that

0 > gl(x) ; g 2 (x) (3.4)

for small x < 0, and that

G1 (x) ) G2(x) (3.5)

for every x on some interval (O,a), a > 0, G1 (a) > 0 and G, G2 on

(0,a). Then

s(t) < s2(t) (3.6)

for t > 0 sufficiently small.

-12-



To complete the proof of Theorem 1.2 we apply Lemma 3.4. Let v, - v,
the solution of (P), (g) where the initial datum g satisfies assumptions (g)

and (1.7). Let v2  be the self similar solution of Proposition 1.1

corresponding to the model datum (D) with p+ = b(y + 1) + c, p- = a - c,

where 0 < e < a. Then G2(x) ) G1(x) for small x ) 0, G, I G2, and

0 > g2 (x) )' gt(x) for x < 0. By Lemma 3.4 s2 (t) 4 s1 (t) for small t 0.

Thus identifying st with s and using the result of Proposition 1.1,

liminf (-s(t)t 1/) (b(Y + 1) + .)

for every 0 < c < a. Since K is a continuous function of p+/p_, we let

C + 0+ to obtain

liminf (-s(t)t1/2 ) ) (b(Y + 1)) (3.7)
at+ +
a

By a similar argument, letting v, be the self similar solution of (P), (D)

with p+ and p- defined as above, and letting v2 be the solution of (P),

(D) we obtain

limsup (-s(t)t1/2 ) < K'b(Y + 1)) (3.8)
+ a

The result (1.8) is a consequence of (3.7), (3.8). This completes the sketch

of the proof.

!"

-13-
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