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':'.;: — )For the monotone nonlinear complementarity problem,-we consider;l'\l‘ i-

honov regularizations which reduce the solution of the problem to the so- ‘
lution of a sequence of strongly monotone complementarity problems. The 1‘
;-, ’ sequence of solutions obtained are called approximate solutions and it is 1
1.. known that for a solvable monotone complementarity problem, the approxi- ‘

mate solutions converge to the least two norm solution of the given problem.

This paper provides new growth rates for these approximate solutions, sharp-
Co m‘w.tb tana.(
ens some previously known results and gives a’\procedure for obtaining an

LS approximate solution for any apriori prescribed tolerance. /@ e C
';:2 Va2 a ATt 6‘@&\0 4 ﬁ/
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SIGNIFICANCE AND EXPLANATION

Tihonov regularization is a useful computational procedure for mono-
tone complementarity problems which leads to approximate solutions when
the given problem is solvable. Growth rates are given for these approximants
which sharpen some known results. These results provide a unified frame-
work for finding approximate solutions of important classes of constrained

optimization problems.
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A NOTE ON LEAST TWO NORM SOLUTIONS
OF MONOTONE COMPLEMENTARITY PROBLEMS

P. K. Subramanian

1. Introduction
Given an operator F: ®®* — R™ | the celebrated complementarity problem
NLCP(F) consists in finding z > 0 such that F(z) > 0 and 2TF(z) = 0.

We say F is monotone if
(F(z)—F(y))T(z—y) 20, Vz,y € R",
and strongly monotone with modulus A if

(F(z) - F(¥)) T (z - y) > Az — y|?

for some real number A > 0. When F is an affine operator, that is, F(z) =
Mz + g for some n x n matrix M and a vector ¢ € R , NLC P(F) is referred
to as the linear complementarity problem and denoted by LCP(M, q). It is
well known that if M is positive semidefinite and LC P(M, q) is feasible, that
is there exists a z > 0 such that F(z) > O,then it is solvable [Eaves, 1971].

However this is known to be false for NLCP(F) in general as shown by the

Sponsored by the United States Army under Contract No. DAAG29-
80-C-0041. This material is based on work sponsored by National Science

Foundation Grants DCR-8420963 and MCS-8102684.
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counterexample of [Megiddo, 1977] and [Garcia, 1977] . On the other hand,
;z( if F is monotone and satisfies some growth conditions to be defined below
“ or the distributed Slater constraint qualification [Mangasarian & McLinden,
) 1985], then NLC P(F) is solvable.

ti
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- In this note we shall be concerned with NLC P(F) when F is monotone
" and the complementarity problem in this case will be referred to as the

j. monotone complementarity problem. For such an operator F, given € > 0,
. the Tihonov regularization of F is defined to be F, := F + el. It is well

. known that NLC P(F,) has a unique solution z(¢). The prinicpal theorem

” of this note provides new growth rates for ||z(e)||. As a corollary, we obtain ’
\ the well known result z(¢) — z* where z* is the least two-norm solution of
:_\ NLCP(F) , provided NLCP(F) is solvable. These growth rates are also

| : useful in obtaining 6-approzimate solutions when NLC P(F) needs only to
; be solved within a preassigned tolerance § in some special cases.
%

3 We briefly indicate the notation used in this paper. We denote by
':: R" the space of real ordered n-tuples. We use the Euclidean two-norm
’: :: throughout. All vectors are column vectors. Given a vector z, we indi-
h } cate its i1** component by z;. We say z > 0 if one has z; > 0V1 and the set

o
::f: of all such vectors in R" is denoted by R . Given z,y in R" | we shall ‘
":’T indicate their inner product z7y by < z,y > . Given NLCP(F) , we define

-
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its feasible set S(F) and solution set S(F) by
S(F)={z € R} : F(z) €,R%}}

S(F) = {z € S(F) :< z,F(z) >=0).
The end of a proof is indicated by I.

2. Variational inequalities and NLCP(F)

The following notions are essential for this paper and the reader is referred

to [Auslender, 1976] for proofs.

2.1 Definition. Let D Q?R", F:D — R". The variational tnequality prob-

lem consists in finding z, € D, if it ezists, such that
< F(2), £-—2,>> 0 Vz € D.
In this case we say that z, solves the variational inequality
(VI) : <F(z), z—2>2>2 0 Vze D.

Although many problems can be cast as variational inequality problems,

our interest in them stems from the following well known proposition (see

e.g., [Karamardian, 1972]).

..‘l
T2t
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2

2.2 Proposition. Let F: R — R". Then z, solves NLCP(F) if and only

DM i

if 2, solves (VI).

2.3 Definition. Let C be a closed convez set in R", and let F: R" — R".

. We say F 1s hemicontinuous on C if for all z, y € C, the map

N anAAoaal [

A— <FAz+(1-))y), z-y>
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18 continuous on the interval (0, 1].

2.4 Proposition. Let C be a closed conver set contained in D and let

F:D — R" be monotone and hemicontinuous on C. Then
<F(z*), (z-2")> > 0 VzeC
if and only if
<F(2), (2-2")> > 0 VzeC. (2.5)
Further, Z, = {z*: z* a;olves (4.5)} is closed and convez.
See Auslender [1976, page 121] for a proof.

2.6 Definition. Let C C D be a nonempty closed convez set and assume
F:D — R". We say F is coercive (strongly coercive) if there exist v, €

C, XA € R positive such that

r9 .

vEC, |v]| 22 = F(v)(v-v,) > 0

4 (respectively,
v € C, "v“ —- 00 —> M}_ﬁ_) +m).
. llv — vl
¢ The proof of the following Theorem may be found in [Auslender, 1976].

2.7 Theorem. Let F : R" — R" be a monotone operator, coercive and
hemiconintuous on R%. Then NLCP(F) is solvable. If in addition F is

strongly coercive, then NLC P(F) has a unique solution.

We now define the Tthonov regularization of an operator.
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2.8 Definition. Let F : R — R" and let € > 0. The Tihonov regular-
ization F, of F is defined by F (z) = F(z) + €z.

If F:R" — R" is monotone and hemicontinuous, then F, is also hemi-
continuous and strongly monotone with modulus of monotonicity at least €.
It is immediate that F, is strongly coercive. Thus we get the following useful

corollary to Theorem 2.7.

2.9 Corollary. Let F : R" — R" be monotone and hemicontinuous. Then

Ve > 0, there ezxists a unique z(€) (called e-approzimant or simply approzi-

mant), which solves NLC P(F).

3. Properties of approximants

In this section we shall prove the principal theorems of this paper on the

growth rate of e-approximants.

3.1 Theorem. Let F : R* — R"™ be a monotone operator which s hemicon-
tinuous on R Let {c,} be a sequence of positive reals such thate, | 0. Let
Fp, = F + €, I be the Tihonov regularization of F and let z,, be the unique

solution of NLCP(F,). Let m > n and assume that F(0) 2 0. Then

Jom = 2l < E2E {zm? - ol

Proof
From Proposition 2.2, it follows that
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v By taking z = z,,, .

Likewise,

< Fn(xn), xm —xn > Z 0,

SRR

which we rewrite as

,;-" < _Fn(zn), zn - zm > 2 0- (3.3)
s

R Adding (3.2) and (3.3) we get

§ ’ < Fm(zm) - Fn(zn), zn - zm > >_ 0.

%

‘“

*P Hence remembering that F,, = F + e, 1, ’
e\

":: < F(zm) + emZm — F(zp) — €pZp, Zn —2m > > 0.

7 From the monotonicity of F this yields

77

'/

.?3

f <€mzm—€nzn, In_zm>2<F(Iu)"‘F(zm), zn—zm>2 0,

Y that is,

Em < Zm —Zny, In —Im > + (Em —€n) < Zn, Tn~Tm > > O.

@-‘
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By assumption m > n so that &,, < £,. We now have

Sty

"y

23

(€n —€m) < Zny Tm —Zn > > Em|zm — 242 (3.4)
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; [2ml? = {|Zm — zall? + llzall® + 2 < Zm — Za, z0 >
A so that from (3.4) we now get

P

X 2¢

3 loml? 2 lzm = 2al? + al? + { 222 L = 2l
n

Hence,

i

A

En +€
lzml? = l2all? 2 § === (lzm — Zall?).
€

€n — Em

1
.
M
poe v

-
.‘.‘_- ~

This completes our proof. |

;: Theorem 3.1 has some interesting consequences. We present them in
3 , the following corollary.
| ) 3.5 Corollary. Assume that the hypotheses of Theorem 5.1 are satisfied.
:: Then
e ) leml > lzal
b)  emlzmll < enlizall

‘: > =, -

Let S = {z:z solves NLCP(F)}. Then

: , c) sup{||za]|} < o0 <= zn — T = P5(0) <= S #0.
‘::\. —_

n" where P3(0) denotes the projection of the origin on S(F), that is the closest
} point to 0 in S(F) in the two-norm.

::ﬁ;: Proof

By

" Observe that m > n implies that z,, # z,. To see this, suppose the

contrary and write z,, = zo = z. Then z solves NLCP(F;) fori = m, n B

’%
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so that
<F(z)+emz,z2>=0
and
<F(z)+e€nz,2>=0
which imply < €,z ~ €pz, £ > = 0. Since €, < €, we must have

z = 0. But F,(z) > 0, so that we must have F(0) > O contradicting
our hypothesis. Hence ||z, — z,|| > O and (a) follows from Theorem 3.1.

Next we prove (b). By Cauchy-Schwarz inequality i:¢:n (3.4),

el — 2l 2 llem ~ 22l
Hence
20 > Yo zall 2 ol 2]
and

EnllZall 2 emllzmll-

This proves (b).

Finally we prove (c).
We start by showing that {||z.||} bounded = =z, converges to an

element of S. From (a), since {||zn||} is strictly increasing, sup|z.| =

lim||z,||. Taking m > n and letting m, n — oo, it follows from Theorem
3.1that {z,} is Cauchy. Hence z, converges. Let z, — £. Since z, solves ?
NLCP(F,), |
z, 2 0, Fn(zn) >0, <z, Fn(zn) >=0 g
A ‘;}'f,“, R t& “«:g::e:' e “3
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which implies

1
o

§ 20, F(§) >0, ,<¢ F(¢) >

so that £ € S.
On the other hand, if S # 0, let = be any arbitrary element of §.

Assume that n is arbitrary but fixed. By Proposition (2.2),
< Fp(zp), z2—2,>> 0 Vz € R%.
Take £ = Z to get
< F(zy) + €pZTpn, 2—2,> > 0. (3.6a)
Since 2z solves NLC P(F), by Proposition (2.4),
<F(z),z-2>> 0 Vz € R7.

Taking z = z,,,

< F(zn), zn-2> > 0. (3.6b)

From (3.6a) and (3.6b) we get
En <zn, 2—1n>2 0 (3.7)

so that < z,, 2 > > ||z,||2. Hence ||z,|| < | 2|, that is, sup, ||z,| is

bounded proving the converse. j
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It remains only to show that if z, — £ then { = Pgz(0). But from
(3.7) we have < £, z— £ > > 0 and since z was an arbitrary element of S

it follows that ¢ = Pg5(0). This completes the proof. |

Remark

Parts (a) and (c) of Corollary 3.5 are known when F is a multifunction on
a Hilbert space H. For a proof using the theory of Yosida approximations,

see [Brézis, 1974], who also proves a weaker form of Theorem 3.1.

4. Application to LCP(M, q)

We now consider an application of Corollary 3.5 to LCP(M, g)in the case
when M is positive semidefinite. From (c) of Corollary 3.5, the solution
of LCP(M, g)is reduced to the solution of the sequence LCP(M + €,1,q).
We shall not be concerned here with an algorithm for the solution of the
positive definite LCP(M + €,1,q). However, we would like to show that
if the solution set S(M,q) is bounded then for any preassigned tolerance 6,
it suffices to solve LCP(M + €l,q) for a single value of the parameter ¢
to obtain a §-approzimate solution. We make this precise in the following

Theorem.

4.1 Theorem. Let 6 > O be a preassigned tolerance. Assume that M is

positive semidefinite and that S(M, q) is nonempty and bounded. Then

there exists € > O such that Ve, 0 < € < g, the unigque solution z(c) of
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LCP(M +¢l, q) satisfies
z(e) > 0, lw(e) ~w(e)+| < 6 end | < z(e), w(e)>| < §

where w(e) = Mz(e) + g.

Proof

Assume that z(¢) solves LCP(M + el,q). Let v(¢) = w(e) + ez(e). By
assumption, 3K > 1 such that ||S(M, ¢)|| < K. Now choose € = §/K2.

Since z(¢) solves LCP(M + €l,q), we have
z(e)v(e) = 0, v(e) — w(e) = ez(e).

If z* is the least two-norm solution of LC P(M, q), then
|z(e)w(e)] = ellz(e)l* < Kellz(e)l (by 3.5(a) and (c))
< Kzlz*|l  (by 3.5(a) and (c))
< K?.6/K*?
= 4.
Also since w(e)+ is the closest point to w(e) in R}, we have
w(e) - w(e)+ < lw(e) - v(e)] = - lla(e)i
<z @) < 25K

< &.

This completes our proof. |
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Remark

We remark that a sufficient condition for the boundedness of the solution set
is that the interior of the feasible set S(M,¢) be nonempty (see for instance
[Mangasarian, 1982] where this is proved for the more general case when M is
copositive plus, that is, (i) z > 0= zMz > 0and (ii) zMz =0=> Mz =0.)
To find the constant K one can use the bounds obtained by Mangasarian

[1985] by solving a single linear program if necessary.

Acknowledgement. This represents a portion of the author’s doctoral disser-
tation at the University of Wisconsin-Madison written under the supervision
of Professor Olvi Mangasarian. The author is grateful to Professor Man-

gasarian for his continued support and encouragement.
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