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ABSTRACT

The effect of a two-stage sampling design on statistical inference is

discussed. A definition of a design effect is given. The structure of design

effects for a class of statistics is investigated. Results have both a

design-based and a model-based interpretation. The relation between design

effects for multivariate statistics and design effects for univariate

statistics is considered.
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SIGNIFICANCE AND EXPLANATION

In sample surveys, the design effect of a statistic is usually defined as

the ratio of its true variance under the given sample design to its variance

had the sample been obtained by simple random sampling.

Empirical work suggests certain patterns for design effects of different

types of statistics under different designs but theoretical 3ork explaining

these patterns is limited. This paper obtains general theoretical esults on

the structure of design effects for a broad class of7 Aunder a two-

stage sampling design. In particular, it discusses the relation between

design effects of multivariate and of univariate statistics.

This relation is of practical interest because it is of relevance to the

imputation of standard errors for multivariate statistics such as correlation

coefficients or regression coefficients using design effects of univariate

statistics. The latter quantities are often routinely derived on completion

of the survey. The former may be difficult to compute by standard procedures,

either because of the absence of the necessary design information or because

of software or degrees of freedom limitations..Accession r
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DESIGN EFFECTS OF TWO-STAGE SAMPLING

C. J. Skinner

1 . INTRODUCTION

The application of statistical methods such as regression analysis and multivariate

analysis to sample survey data is now widespread. Such methods typically assume that the

rows of an n x q data matrix, xn , are realizations of independent and identically

distributed (IID) random vectors. A general question may therefore be raised as to the

validity of inference procedures which make this assumption when the data is derived using

a complex sample design. In particular, this paper is concerned with the effect of two-

stage sampling on the estimation of functions of population moments, such as correlation

coefficients.

The term 'design effect' was originally introduced (Kish, 1965) as a measure of

efficiency for comparing sample designs. More recently (e.g. Rao and Scott, 1981) it has

also been used as a measure of the impact of a sample design on an inference procedure. We

shall be concerned only with this latter concept.

We presume a basic acquaintance with the distinction between the design-based and the

model-based approaches to survey-sampling inference (e.g. Sarndal, 1978). From the design-

based viewpoint the interpretation of 'the effect of two-stage sampling' is clear. The IID

assumption corresponds to the randomization distribution induced in xn by simple random

sampling with replacement from a finite population (or without replacement from an infinite

population). Two-stage sampling induces a different distribution in xn and consequently

perturbs the distribution of estimators from that predicted by lID theory.

From the model-based viewpoint the effect of the sampling design on inference is much

les clear. The model-based approach begins by specifying a model distribution for the

matrix of values, x, of the population units. Inference then proceeds in one of two

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This material is
based upon work supported by the National Science Foundation under Grant No. D4S-8210950,
mod. 1.
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ways:

(A) Inference is based only on the model distribution conditional on the units

actually obtained in the sample and irrespective of any other sample that might

have been selected.

(B) Inference incorporates both the model distribution and the randomization

distribution induced by the sample design.

The role of the sample design in model-based inference is by no mans a subject of

universal agreement (see, for example, the discussion of Royall and Cumberland, 1981).

Sugden and Smith (1984) specify various conditions for choosing between (A) and (B). For

example, an instance when it may be inappropriate to ignore the sample design occurs when

sampling on the dependent variable in regression analysis (c.f. Nathan and Holt, 1980). In

such cases the design has a direct effect on inference.

In Section 2 we adopt procedure (A). In this case the effect of the sample design is

more indirect. For example, two-stage sampling presumes that the population is divided

into clusters. Units within clusters usually tend to be more alike than units in different

clusters. This implies that the ZID assumption for xn corresponds to an inappropriate

model assumption. The 'effect of the design' is therefore really the effect of mis-

specifying the model (c.f. Scott and Holt, 1982, p. 850). For if the true model for xn

is in fact lID then two-stage sampling would have no effect under procedure (A).

Conversely, if the true model is not IID and we happen to choose the same sample of units

by (i) simple random sampling and (ii) two-stage sampling then the effect on inference is

identical for (i) and (ii).

Our approach will be to define a distribution for xn which has both a design-based

and model-based interpretation and then to obtain results which may be interpreted as

respectively design effects or misspecification effects. Because of the mathematical

isomorphism between the results under the two approaches it will be convenient to use the

single term design effect. we maintain, however, that this effect has distinct interpreta-

tions under the two approaches.
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There is a further problem from the model-based viewpoint with the effect of design on

statistical methods such as regression analysis. Suppose we take a two-stage sample and

decide that the appropriate model allows for different regression relationships in

different clusters. It may be argued (e.g. Pfefferman and Nathan, 1981) that the target

parameters of interest are then the individual cluster regression coefficients rather than

any overall population regression coefficient. we shall ignore this consideration here and

assume that the target is a well defined population parameter. We view the design as an

arbitrary selection process with no characteristic of substantive interest upon which we

wish to 'condition' (c.f. Kish and Frankel, 1974).

We now introduce our basic definition of 'design effect'. We take xn as a member of

the infinite sequence {x :n-1,2,...}. Let so 0n be the 'baseline' distribution ofn 1

xn under the IID assumption. Let w1 .1,n be the true distribution of xn. From the

design-based viewpoint irI is the randomization distribution induced by the complex

sampling design. From the model-based viewpoint, assuming procedure (A) above, W I is the

true model distribution of x 'marginalized' to xn .

Definition 1.1: Suppose tn - tn(Xn) is a scalar statistic obeying the following central

limit laws as n + *.

?I/2 (tn-8ol 0 .(oc,1 under o

nl/2(tn-8i) %(0,0 2) under

Suppose also that vo,n - vO,n(xn) is consistent for a2 under 10 and converges in

probability to plim 1(v0,n ) under s1. Then the design effect of tn is defined as

deff(t;*,IV 0 n a 2/plim lV (1.1)

Remarks

1. The traditional definition of a design effect (e.g. Kish, 1965, p. 265) as a

measure of design efficiency is a/2 in the above notation. Definition 1.1 is more

natural as a measure of the impact of the design on estimation. It measures the

effect of acting as if w is true when in fact w is true. Note that deffV2

-3-
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provides a multiplicative adjustment for the standard-error estimate, (n1v0,n)/2.

2. The design effect will usually be of secondary importance if tn is inconsistent

under Wi, that is if 81 is not the target parameter. If w0 is assumed to be the

true distribution then tn is usually chosen such that 00 is the target parameter.

Then 01 - 80 is the asymptotic bias.

3. Definition 1.1 does not depend on z10 , except as a heuristic device for

deriving vOen . This makes this definition easier to use from the model-based

approach than the definition a2/0

4. The design effect is unity when w0 - w1.

5. The asymptotic nature of the definition simplifies results but is not essential.

In this article we shall be interested in how design effects depend upon the survey

design and upon the population. We adopt a theoretical approach as opposed to the

empirical approach of, for example, Kish and Frankel (1974). The latter approach may be

more realistic but lacks generalizability because of the enormous range of possible

statistics and population structures. The theoretical approach must make strong

assumptions to obtain useful results but the extent of possible generalization should be

more apparent. Of course the two approaches should complement each other.

We shall be particularly interested in the relation between design effect of

multivariate statistics and design effects of univariate statistics. Such relations are of

practical interest for at least two reasons. Firstly, the survey data collection agency

may publish design effects for univariate statistics but, for confidentiality reasons, may

not make sufficient survey design information available on public use tapes for the data

analyst to estimate standard errors in the usual way. Given suitable theoretical

relations, the analyst could instead impute standard error for multivariate statistics

using the published univariate design effects. Secondly, even if the analyst has available

full design information it may still be desirable to impute standard errors because of

computer software availability or degrees of freedom limitations.

-4-
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In Section 2 we outline the basic formal framework and define w0 and w 1. In

Section 3 we apply Definition 1.1 to a general class of estimators under the given w, and

derive results on the form of design effects for the case of equal cluster sizes. An

example is given in Section 4. The case of unequal cluster sizes 49 considered briefly .Ln

Section 5 and the implications of the results are discussed in Section 6.

2. FRAMEWORK AND ASSUMPTIONS

Consider a finite population, U, partitioned into K clusters. Let the jth unit in

the ith cluster be labelled (i,j) for i - l,...,K, j a I,...,M i where Mi is the size

of the ith cluster. A sample is a subset, S, of U = ((ij) ; i = I,...,K,

j 1,...,Mi}. We suppose that the sample is selected in such a way that each subset S

of U has a known probability, p(S), of selection. Conventionally the sample is chosen

in two stages% first, a sample of clusters is selected and then subsamples are selected

within each of the selected clusters. Without lose of generality we write the actual

sample obtained as a - {(i,j) i - 1,...,k, j - l,...,mi}. The sizes of the sample and

population are respectively:

k K
n = mi N Mi1 1

We suppose that a qxl vector xij is associated with unit (i,j) in U and let

X - (Xl1,...,Xx D)T , _ (Xll....,XkmI)T

be respectively the N x q matrix of finite population values and n x q observed data

matrix discussed in Section 1, where T denotes transpose.

For simplicity we make the following assumption in Sections 2 - 4.

Assumption 1: There is no auxiliary information to distinguish the clusters, in particular

the cluster sizes are equal: Mi - M, i - 1,..oK.

We consider the case of unequal Mj in Section 5. We now define the distributions

"i0 and wl, of xn.

1 ..



Definition 2.1: The true distribution of xn, denoted by w, (xn), obeys the following

conditions:

(i) conditional on (random) distribution functions, Fl,...,Fk, the xij are

mutually independent and

xij I Fl,...,Fk - Fi i ,,l1....k; j , 1,....mi

(ii) F1,...hOk are ID.

Remark: In (ii) the Fi are functions on Rq  and so the distribution of each Fi  is

infinite dimensional as in the theory of stochastic processes. More precistely we might

follow Ferguson (1974) and let * be a set of distribution functions on Rq, 0 be a

sigma-algebra of subsets of # and H be a probability measure on (0,0). Then,

equivalently to (ii), we assume (Fl,...,Fk) is an outcome of the product space

k(#,en)

Design-based Interpretation of w,.

This distribution can be viewed as the randomization distribution of xn  induced by

simple random sampling with replacement at both stages. Let G. be the 'empirical'

distribution function of x in the ath cluster, i.e. G. assigns probability mass M-1

to each point x, ,...,xaN. let - {G,...,GK}I and let U assign probability K-1  to

each outcome G.. Hence each Fi is equal to a randomly chosen G.

Model-based interpretation of w1.

Suppose x is a realization of the Nxp random matrix, X, with prior

distribution w1(x) obtained by extending Definition 2.1 by substituting K for k and

M for mi . Suppose that the sample design, p(S), is non-informative in the sense that

S and x are independent. Then wl(Xn) is the appropriate distribution of xn for

model-based inference conditional on S - s (Sugden and Smith, 1984). This is inference

procedure (A) referred to in Section 1.

The distribution w1(x) seems both a natural and a general non-parametric model for

expressing the symmetry between clusters and between units within clusters. A simple

example is the one-way random effects model (e.g. Scott and Smith, 1969). Here * is a

-6-
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location family, 9 - {Glx-ip] o e R(} where G i% a given distribution function and H

defines a prior distribution for V. For example, # may correspond to the normal family

{N q( OPW) 9 e Rq } and U may correspond to 9 - q(ili Other examples with scale

parameters and higher-order cumulants varying between clusters are given by Leonard (1975)

and Skinner (1981) respectively.

The distribution w1(x) is also a special cast of the two-btage exchangability/random

permutation model of Bellhouse et al (1977). Their model is more general because, in

particular, it allows for negative intra-cluster correlation as does the similar model of

Royall (1976). However, it is less interpretable and, for example, would not permit

Theorem 3.6., one of our main results. Furthermore, if we add the assumption that x is

part of a doubly infinite sequence (xij i = 1,2,...,J - 1,2,... such that (i) and (ii)

hold for any K and M then we would conjecture that this two-stage exchangeability model

could be represented by iw1. (Aldous, 1981, proves a stronger result for a crossed

rather than a nested doubly infinite array.)

Definition 2.2: The baseline distribution of xn , denote,! by o(Xn), obeys the

following condition:

(i) x1l,...,xkn, are IID.

Design-based interpretation of so.

This is the randomization distribution induced in Yn by simple random sampling with

replacement from the whole finite population.[..

Model-based interpretation of w0 .

This is the 'textbook' ZID assumption referred to in Section 1.

We assume the existence of the first two moments of xn under both so and w, and

write

-7-
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E I(Xij)u (2.1)

cov (Xi19xi.1 ,) = ( ± - ±,, I =

., ± - i si , iij

dNote that V and Q are the finite population mean and covariance matrix under the

design-based interpretation.

Finally, given the nature of Definition 1.1 we need to define an asymptotic

framework. We follow Fuller (1975, Appendix A) in considering a sequence of finite

populations and designs {UkPk; k - 1,2,...} such that Uk  contains Ka clusters,

k Ik-1, and Pk selects k clusters of sizes ml,...,mk from Uk. We assume

{m,m2 .... I is a fixed infinite sequence with 1 , m , N. The limits k + - and
ki

n = ) mi + - are then equivalent but we use the latter notation to be c"nsistent with

Section 1. We assume that Definitions 2.1 and 2.2 can be extended foL ' - 1,2,... and

that the common distribution of F, in Definition 2.1 and the common distribution of

Xii in Definition 2.2 does not depend on k. From the design-based interpretation this

implies further restrictions if w0  and i are not to depend on k via Kk. One

approach (c.f. Brewer, 1979) is to assume that N is an integer multiple of k, say

Kk = Lk. Then suppose that xij = xi0j, i = L+1,...,K; j - 1,...,M where i 0 =

(i-1)mod L + 1, that is x consists of k 'reproductions' of the LMxp matrix

(x11,...,XLM). Then * = {G1 ,...,GL} and H, which assigns probability L -1 to each

G,, a - no longer depends on Kk  Alternatively one might introduce super-Gng = S ,., nolne•eedso .. Atratvl n ih itouespr

population assumptions as in Fuller (1975, Appendix A).

3. RESULTS

We consider the class of estimators of form

tn  g(xn) (3.1)

5..N
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where n- x and g is a given function g : Rq + R. This class includes, inn en s

particular, functions of second moments such as correlation coefficients and linear

regression coefficients by defining x to include squares and products of the 'raw' survey

variables (see, for example, Section 4 and Krewski and Rao, 1981). For simplicity we

assume g is scalar-valued but results extend straightforwardly to vector-valued g. We

assume the target parameter is

81 = g(p) (3.2)

where V is defined in (2.1). For example, if tn is the sample correlation coefficient

- then 81 is the finite population correlation coefficient under the design-based

interpretation or the 'super-population' correlation coefficient under the model-based

interpretation of w1.

The main aim of this section is to apply Definition 1.1 to tn in (3.1) for the

model i of Definition 2.1. This will be done in Theorem 3.5 but first we need to

establish the conditions of Definition 1.1 for tn and wi. We make use of the following

Condition Cl(w1 : For some e > 0, E I I(xij - 10)1 2+c exists for I = 1, ... q, where

(-) Idenotes the Ith element of a vector.

Condition C2(nI): The function g admits continuous partial derivatives at U at least

one of which does not vanish at V.

Conditions C1(w 0 ) and C2(r 0 ) are defined analogously with i 0 and E (xij)

replacing w 1 and m respectively.

The corollary of the following lemma establishes one conditon of Definition 1.1 and

gives the numerator of (1.1).

Lemma 3.1

If CI(w 1 ) holds then under it1 as n + -

n',2 N (0, (1 + (m*-l)r)l] (3.3)

where rO * - lim n- m1
n+w i.I

Proof: Let zi = kn I (xijU), Then (zltz2...) is a sequence of independent random

-9-
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vectors with

E (z = 0 *Z~ (zz) ZT k2fl23j(Iq + (m -1)rmf

K, 1(z )X12+' (kn5 I2+e3 E i (x _Un) PI2+e
T I1 ii

(2+e z I(2C±-0)tlI2+c by Ninkowaki-s inequality
a, I andsince n )k

= 0(1) from C1(w 1  and since m~ 1 4

Hence by using a central limit theorem such am lama 3.1 of Krewski. and Rao (1981)

q z

where a -lim kT~
z . i-i

lii -1 2
li n11q + (n- Em, - 1)m)f

The result follows since k-j - Ezi.

From standard asymptotic theory we obtain the following:

Corollary 3.2

If C1(wl) and C2(v1 ) hold then wnder wan n +

r,2t-9 N[0, (1 + (m*-1)p )0(32

where CF2 V (U T OV (U) ()9 9 9 9
(3.5)

Rearks

1. under the model-based approach Corollary 3.2 would also hold if 0, g(x,,) where

N N1 xi Provided n/N + 0 as n +- Fuller (1975, Appendix A) gives a result

SU

-10-
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corresponding to Iamma 3.1 for xw - where n/W * f 91 0.

2. a* exists because the mi  are bounded, 1 m K.

3. The quantity pg is the intra-cluster correlation of

• - Vg(U)Txij (3.6)

since Pg - corr,,(wjjwij,), J 0 j' * (3.7)

We may write alternatively

Pg -varw (VlT)Tljl/Var w (i) (3.8)

where V i " WI(x ijIF) - f xdFi(x) " (39)

The delta-method or Taylor-series linearization estimator of the variance of t. under the

assumption that w0 is true is n'1vg,On where

V-,n . T Vg ,nV (3.10)

v0 . (n-1) 1  (x -;n)(Xij-z)
T

O'ij ij n

The corollary of the following lemma establishes another condition of Definition 1.1

and gives the denominator of (1.1).

I etmma 3.3

If Cl(v 1 ) holds then as n + ,

~VO,n
SWW

where + denotes convergence in probability under w1 •

Proof: We may write

vOn - (n-1) k u1 ] + (n-1) n - n(n-l)- (i-U)(i- )
T

i-i

where ui  i [(Xi-l)px 11l0 _ •

J.1

Now (UlU2,*.. is a sequence of zero-mean independent random matrices. If the

-11-
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mi are equal the ui are IID and by Xhinchine'S version of the Weak Law of Large Numbers
IF

k 1 Zui + 0 even without C1(wl). If the mi are unequal then the application of

Kinkowski's inequality am in Lemma 3.1 and the use of Cl(wl) together with the fact that
1 )th

mi < M implies that the (1+ C) moment of the absolute value of each element of ui

is bounded uniformly in i and so (e.g. xrewski and Rao, 1981, Lema 3.2) k- 1 Eui :1 0.

The result then follows by noting that (n-1)-lk is bounded and that (xn-1) - 0 from

Lemma 3.1.

W 1From the assumed continuity of V and the fact that in * W we obtain:

Corollary 3.4

If Cl(x1 ) and C2(vl) hold then as n + -

11 2
Vgon +1a . (3.11)

We are now in a position to derive our main result.

Theorem 3.5

If CI(i 0 ), Cl(s1 ), C2(w 0 ) C2(w1 ) hold then

deff[tnt WVl Vgon) - 1 + (m*-l)Ps • (3.12)

Proof: The condition of Definition 1.1 hold from Corollaries 3.2 and 3.4 and by noting

that wo is a special case of a model of form w1 with F1 -.... Fk. The expression in

(3.12) is obtained from (3.4) and (3.11).

Remarks

1. If m1 = mk = m then m* - m and the expression in Theorem 3.5 has the familiar

form of the design effect of a mean (Xish, 1965). The ID-based estimator vg#0,n under-

* , estimates the variance of tn by an amount which depends on the subsample size m and the

intra-cluster correlation p.

2. If the mi are unequal note that

m* - lim[; + E(mi-m) 2n] ) lim ; where m - n/k
n- n+w

Hence expression (3.12) tends to be greater than the commonly used expression 1 + (-1)p

(Kish, 1965). Our expression for m is the limit of expressions appearing in Campbell

(1977) and Rao and Scott (1991).

-12-
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3. Referring to Remark 2 under Definition 1.1 the asymptotic relative bias is zero under

the design-based interpretation since e0 - 01- g(XN) and should be negligible under the

model-based interpretation because tn - g(x N ) * 0 under either j = w0 or v - w1

For the remainder of this section we examine the quantity p in (3.12). We may

view 0g either as an intra-cluster correlation of wij as in (3.7) or as a measure of

homogeneity of the Vg(0)TPi as in (3.8). For example, if q - I and g is the identity

function then tn is the sample mean xn and pg is the usual intra-cluster correlation

of the xii which is a measure of homogeneity of the means pi in the different clusters.

In general, however, neither (3.7) or (3.8) are very easy to interpret because of their

dependence on the rather artificial quantities wil and Vg(p) T i. In order to obtain a

more interpretable expression for pg we impose a further condition on the distribution

ri• This condition is strictly only applicable under the model-based approach.

Referring to Definition 2.1 let P - 3W(Fi) be the marginal distribution of xij.

We suppose each Fi is a mixture.

Condition C3: Fi - (1-6)F + 4D i  i - 1,...,k

where 0 4 6 4 1 and D1 ,...,D k are lID distribution functions with E(Di) = F.

One extreme 6 = 0 then corresponds to w0 whilst the other extreme 6 - I imposes

no further structure on w1* We shall suppose that 6 is small which we suggest is a

natural non-parametric way of asserting that there is low intra-cluster correlation. This

assumption may not be unreasonable in, for example, large-scale sample surveys where the

clusters are geographical areas. In such surveys the intra-cluster correlation of

variables is usually low (say < 0.1) by design, even though the design effect may be non-

negligible because of the value of i*.

We need further regularity conditions.

Condition C4: The matrix H of second partial derivatives of g exists in a neighbor-

hood of U and

var ((Ij(D i )-UTH T e(I (Di )-)]C (D}i -)]

is bounded as e + 0 where we use the functional notation M(Di) - fxdDi(x) so that

Pi u(Fy)' P ().

-13-
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The following theorem gives an alternative approximate expression for pg when the

intra-cluster correlation is low.

Theorem 3.6.

If C3 and C4 hold then as 6 0

Og M var X[g( i)]/var (wij) + 0(6 3 0(82

where i and vii are defined in (3.9) and (3.6).

Proof: Consider the Taylor Series expansion

g( )  glU) + VIul)(VU) * I WHiO I lUi - ) (3.13)

where M* - (1-#)I + #i and # is a scalar, 0 ( < 1. Now

i-U - Ul) - Ulc) -l )

- [8(D i -] from C3

-
8 [m(Di)- ]  . (3.14)

The result follows by substituting (3.14) into (3.13) and using (3.8) and C4 with e - *6.

The quantity g(uj) is the cluster 'version' of tn - g(x,) and 0I - glu). For

example, if tn  is the sample correlation coefficient and 01 is the population

correlation coefficient then g(pi) is the correlation coefficient in the ith cluster. A

specific example is given in Section 4 where tn is the sample variance and g(ui) is the

variance in the ith cluster. The quantity var(wii) does not depend on the clustering in

the population (in terms of C3 it depends on F but not on 6 or Di) and may be viewed

as a standardizing quantity. Hence Theorem 3.6 permits pg to be interpreted as a masure

of homoeneity of the quantities g(uj), providing the overall level of intra-cluster

correlation is 'low'. Combining with Theorem 3.5 suggests, for example, that the design

effect of a sample correlation coefficient is mainly determined by the difference between

the correlation coefficients within clusters.

-14-
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4. AN RUMNPLE: DESIGN4 EFFECT OF A SANPLE VARIANCE

The low-6 approximation in Theorem 3.6 is examined here explicitly for the case where
-Yj-)2 - n 1 I~

tn- _n n l i

wemywrt nin the form of (3.1) by letting q -2, xij (yij#y 2 )T, ;x 1 2 )
T]

wemywrt n - g-11xn - y 2  gx 12 -2X2. Hec - ft ( ,i nn ), 'g x - yn tn~. Following (2.1) and

(3.9) define the within-cluster and overall moments by

The Oghzl) 2 Iy + a 2 )iiy +y)T W VU 2 UeI + a 2) T .

Then~~ ~ ~ gyi (P 2 2 U2 i is the within-c luster variance corresponding to the

sample variance tn and the population variance g(ia) cr.Also V (9jW - (-2p y I) obeys

C2(i) and from (3.6), up to an additive constant

vii , (yij - thy)
2

The lID-based variance estimate of t. given by (3.10) is

vg,On - (n-i)_1 (w ij * ,;) where vij* - (yjj - yn 2- n

4The low-6 approximation to pg9 given by Theorem 3.6 is

P9+-var (g(iU )]/var (w ) - var (a2)vr y 12
WI IIii T I Yi)/varIijh)

which may be compared with the expression from (3.8)

Og- vsxr to 2 + (U yiV ) 2 1/varw (Y -m~y) 2

Hence we may write

(p ( 4 P 49+ + 2(p 9 )12 +

where n - var WE Ctyji**Iy ) 2 /var Yjjiy )2 ).

Define the between-cluster and total coefficients of kurtosis by

Z I( y-M ) 4/ (var T I(Uyi )] 2 _ 3, y~ - E (Yiy )'/Evar TI(y ij) 2 _3

Let var(uyi)/var(yij) be the conventional intra-cluster correlation of yij. Then

(2+y B) 2
11 2- 7) P y *(41N

Hence if pg9 is small then n will be very small unless y is very small (for example

y - -1.2 for the very platykurtic uniform distribution) or y.is very large (for example

YB 6 for the very leptokurtic exponential distribution). Thus if pg9 is small and

there in reasonable dispersion smongst the a2 then p L* should be a fair

%
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approximation. In terms of 6, both 1IA y and a 2 - Z( 2 ) are of 0,1(6) P9

and p y are of 0(62) whilst n is of 0(84).

5. UNEQUAL CLUSTER SIZES

The results in Sections 3 and 4 were based on the assumption of equal cluster sims.

If the Mi are unequal and Definition 2.1 (which does not involve the N1 ) still applies

then these results will still hold (provided (ml,m 2 ,...) is a fixed bounded sequence).

From the design-based viewpoint, Definition 2.1 still holds under simple random

sampling with replacement at both stages where the mr are fixed and do not depend on

the Mi.

From the model-based viewpoint, Definition 2.1 remains appropriate if the within-

cluster distributions Fi do not depend on the Mi . It does not matter here if the

design p(S) is dependent on the Ni as for example in probability proportional to size

sampling.

In general F1 may depend on N and the results of Section 3 will not hold. For

example, x% may no longer even be a consistent estimator of is. A general discussion of

inference under models for populations with unequal size clusters is given by Sundberg

(1983). We suggest, however, that within strata, and in particular within size strata, our

results should hold at least approximately. In fact, plots of 1 = J xij and

. (xix, 2 against Ni for various variables x and data sets in Skinner (1992)

suggested little relation between Fi and Ni .

6. DISCUSSION

Under given conditions, in particular when the number of sampled clusters is large,

the design effect of two-stage sampling was shown in Theorem 3.5 to take the familiar form,

1 + (a-1)p, for a broad class of statistics. This result has an interpretation both from

the design-based viewpoint in terms of with replacement sampling and also from a model-

-16-



based viewpoint in terms of a fairly general non-parametric model for a clustered

population.

For linear statistics, such as the sample mean, p may be interpreted as a measure of

homogeneity of corresponding within cluster quantities, such as cluster means. For non-

linear statistics, such as the sample correlation coefficient, provided the overall level

of intracluster correlation is not high, it was shown in Theorem 3.6 that p may also be

interpreted as a measure of homogeneity of corresponding within cluster quantities, such as

cluster correlation coefficients.

These results have rather negative implications for the existence of relations between

design effects of multivariate and of univariate statistics as discussed at the end of

Section 1. In general we conclude no necessary theoretical relation need hold. For

example, the design effect of a correlation coefficient, being determined mainly by the

heterogeneity of cluster correlations, has in general no necessary relation with the design

effects of the means of the two variables, which are determined by the heterogeneity of the

cluster means. Our conclusion agrees with that of Rao and Scott (1981) on the design

effect involved in testing independence in a bivariate contingency table. They state that

'ideally we would like an approximation ... based on the marginal design effects' (that is

the univariate design effects) but 'such an approximation does not seem possible in

theory'.

Theoretical relations can be derived under restricted assumptions but such results can

be misleading. For example, a regression model of y on z with errors correlated within

clusters but regression slopes B constant across clusters is considered by Campbell

(1977) and Scott and Holt (1982). They obtain the 1 + (m-I)p result for the least-

squares estimator of the slope and show that P = PzPe where p. and Pe are the intra-

cluster correlations of z and of the residual e - y-Bz respectively. Now if both p.

and pe are small then p is very small which the authors take to correpond to Kish and

Frankel's (1974) empirical observation that 'design effects for complex statistics tend to

be less than those for means of the same variable'. However, this approach effectively

assumes away the dominating O(82) term in Theorem 3.6 determined by the dispersion-

-17-
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between cluster regression coefficients and just obtains the 0(64) term analogous to w

in (4.1). BaHnce we suggest the above formula could drastically underestimate the true

design effect. other examples of the application of Theorems 3.5 and 3.6 for specific

statistics and under restricted assumptions are given in Skinner (1982).

Rao and Scott (1981), following on from their statement above, suggest that 'it my be

possible to find empirically-based approximations that work well in practice'. In another

context, for example, Debbington and Smith (1977) suggest an empirical relation between the

design effect of a correlation coefficient and the minimum of the design effects of the

corresponding means. The derivation of such empirical 'laws', whilst potentially useful,

is no easy project without guidance from theory, given the infinite range of possible

statistics, designs and population structures.
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