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ABSTRACT

. Weconsider generalized linear models in which the linear predictor is of
'.9A

additive semi-parametric form, linear in most of the explanatory variables but

with an arbitrary functional dependence on the remainder. Estimation of the

parameters and the non-parametric curve in the model is approached by

maximizing a penalized likelihood. Two explicit iterative algorithms are

presented. The first, which operates in O(n) time per iteration, applies

where there is just one variable entering the model in a non-parametric

fashion, and an integrated squared second derivative penalty is used. An

example in logistic regression of tumour prevalence is given. The second

algorithm is for the much more general case of a regression model specified as

an arbitrary composite log-likelihood function, permitting nonlinear

dependence and several splined variables. ) i
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SIGNIFICANCE AND EXPLANATION

Generalized linear models are uased to analyse regression relationships in

both continuous and discrete data. They include Normal theory linear

A regression and analysis of variance, the Poisson log-linear model, and

binomial logit and probit analysis. A basic assumption is that the

explanatory variables enter the model through the values of a linear

predictor; the coefficients of these variables are usually estimated by

maximum likelihood. However, this parametric structure is not always

appropriate, and in the absence of any experience, information or theory

concerning the form of a regression relationship, a non-parametric approach

may be preferable.

This paper considers the intermediate position where the statistician has

some faith in the parametric model but for some suspected inhomogeneity with

respect to a few extraneous variables (often representing time or space). The

resulting semi-parametric model is analysed by maximum penalized likelihood,

which controls the roughness of the otherwise arbitrary functional dependence

on the extraneous variables. Two explicit algorithms are presented. One

applies to the restrictive but important special case where one extraneous

variable is handled using cubic splines; its implementation is highly

efficient, and is illustrated here applied to tumour prevalence data. The

second algorithm applies to a much wider class of regression models specified

as composite log-likelihood functions. Various derived statistics are

constructed, including those leading to automatic choice of the appropriate

degree of roughness in the non-parametric part of the model.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report. e
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Semi-parametric Generalized Linear Models

Peter J. Green and Brian S. Yandell

1. Introduction

When the form of a regression relationship with respect to some but not all of the
explanatory variables is unknown, the statistician is caught in a quandary. Should
parametric models be abandoned altogether, thus losing the opportunity of estimating
parameters of real interest and sacrificing efficiency in estimation and prediction, or
should the extraneous variables be forced into a parametric model by imposing a possi-
bly inappropriate functional form without adequate justification?

A compromise is possible using the idea of semi-parametric modelling. This has
been considered by several authors in varying degrees of generality; see for example
Rice (1981), Green, Jennison and Seheult (1983), Wahba (1984), and Green (1985b).
In the present context of generalized linear models we consider replacing the familiar

linear predictors i~ = xJTP by the more general predictors

0i = xTP + 7(t) (1)

with xi a p-vector of explanatory variables for the ith observation, P the
corresponding regression coefficients, t the scalar or vector of extraneous variables,
and y a function or curve whose form is not specified. As a simple example, ima-
gine a binomial logistic regression in which the "intercept" term is believed to vary in
time or with geographical location. In section 5 we consider in detail an example
where a previous investigator has been unsure about the precise dependence of the
binary response (presence of tumour) on one of four explanatory variables (age at
death).

Straightforward maximization of the log-likelihood function L, which we will
write in the composite form L(0(yy)) to emphasize the roles of predictors, parame-
ters, and unknown curve, is no longer appropriate as a method of estimation. This
leads to overfitting in the absence of any constraints on P . Indeed, it typically
renders the parameters PI unidentifiable. But progress is possible by maximizing

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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instead a penalized version of the log-likelihood, if we are willing to place weak con-

straints on the form of y by assuming that it is smooth. Thus we maximize the penal-

ized log-likelihood
L(o(P,y) - YJy)(2")

where the penalty functional J is some numerical measure of the "roughness" of y.

This might be adopted on ad-hoc grounds (for example, an integrated squared deriva-

tive of y), or follow from a Bayesian argument specifying a prior distribution for y.

The scalar X is a tuning constant, used to regulate the smoothness of the fitted curve

y. Typically we try a range of values for X in an exploratory fashion, as well as

considering automatic choice based on the data. One ultimate aim may be to discover

the form of y in the hope of modelling it parametrically in future.

2. Maximum Penalized Likelihood Estimates

Here we will only consider maximization of (2) over y in the span of a set of

q prescribed basis functions { k k = 1,2,...,q } we write

k=1

and assume in addition that J satisfies

J( 2~kk) - K (3)
k=1

for some qxq non-negative definite symmetric K. We thus re-write the penalized

log-likelihood in the form

L(O(,t)) - 1/ATK (4)

to be maximized over choice of the vectors IP and 4,.

This finite-dimensional approach is not intended to compromise our non-

parametric assumptions about the curve y. The dimension q, perhaps equal to n,

will typically be too large for parametric estimation of t to be appropriate, and the

basis functions will be chosen so as not to materially constrain the curve, except

perhaps in fine detail. With certain penalty functionals, for example those used in

spline smoothing, it turns out that with q = n we are not imposing any constraints at

all (see section 3).

.. The semi-parametric regression problem expressed in the general form (4) is con-

sidered in some detail by Green (1985b), who derives the following iterative scheme "4

.2.4
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for the maximum penalized likelihood estimates (MPLEs) 0 and ,. Suppose we

have trial estimates 03 and 4. Using these, compute the n-vector of scores u and

the nxn information matrix A:

~JL [ 2Ll
u=- A=E

In the case of a generalized linear model, u and A may be expressed as

ui = -A = diag

in the notation of the GLIM3 manual (Baker and Nelder, 1978), where the vectors

2 , and 3 are computed with 0 replacing the linear predictor. We also need

the nxp and nxq matrices of derivatives
D" E ao

Then updated estimates (IV, *) are obtained as the solution to the linear system

D A DTAE [I r*,i = Ig] AY, (5)
ETAD ETAE + ),K] *A,

where

Y = A-lu + DP + E4.

This scheme is based on the Newton-Raphson method with Fisher scoring, and these

updating equations can be seen to combine the iteratively reweighted least squares

equations for f3 used in GLIM (see also Green (1984)), with ridge-regression type

equations for (O'Sullivan, Yandell and Raynor, Jr., 1984; Yandell, 1985).

As they stand, the equations (5) are not ideal for practical computation. It is the

purpose of this paper to derive various algorithms implementing this scheme, and to

illustrate semi-parametric modelling applied to both real and simulated data sets.

3. The One-Dimensional Case, with Cubic Spline Smoothing

For a restrictive but very useful special case, consider a generalized linear model
*.""with predictors {Oil given by (1), in which { t i I are one-dimensional, and suppose

4%'".. that the roughness penalty J(y) takes the form J (y "(O)2 dt . This allows one addi-

tional explanatory variable to enter in a non-parametric fashion; the form of penalty

used ensures that the dependence on this variable is "visually smooth". Some aspects

-3-



of the purely non-parametric version of this problem were discussed by Silverman
(1985).

For simplicity, we suppose that the { tj } are distinct and ordered, t1<t2<...<t n ,

but relaxing this requirement presents no great difficulty. It is well known (Reinsch,
1967) that the y maximizing (2) for any fixed P and X is a natural cubic spline
with knots at { ti }, that the space of such splines has dimension n, and that we
may choose a basis for this space with k(t.) = Bik .

In this case the notation used above simplifies: q = n, D and E are constant
matrices with D having i th row equal to xT and E being the identity, A is

diagonal, and Y = A-1u + 0. Further, it is implicit in Reinsch (1967) that K may

be written ATW-IA where A is the (n-2)xn matrix taking second differences:

AU = i-5 , AU+i=-( hi71 + hg), AU+ 2 = h+,.

and W is the symmetric tridiagonal matrix of order (n-2):

•Wii = Wii_ = hi6, Wu = (h + hi+i)/3.

where hi = ti+1 - ti . The important point about this decomposition is that A and W

are banded.

One possible algorithm implementing (5) involves an inner iteration between the

pair of equivalent equations
P= (DTAD) -lDTA(Y- )

4*= S (Y-Dp*) (6)

where S = (A + XK)- 1A. This will always converge (Green, 1985a). But further

iteration can be avoided by eliminating 4* from (5) to give

= (DTA(I-S)D)-IDTA(I-S)Y. (7)

Solution of this small (pxp) system for P* is followed by use of (6) to obtain *.
From the updated (*, *) we recompute 0, thence u and A, and the cycle is

repeated to convergence.

This approach is highly practicable, and very economical, since apart from solv-I ing the linear equations (7), and some matrix multiplications, we only need to apply
the "smoothing operator" S = (A + XK)-IA to form SY and SD. But a conse-
quence of the special structure of K mentioned above is that S can be applied to a
vector in only O(n) operations. We use a minor modification of the version of

Z,44
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Reinsch's algorithm given by De Boor (1978) to obtain a very fast implementation.

An almost identical approach may be adopted more generally, with any penalty

functional for which S = (A + XK)-A may pre-multiply a vector in 0(n) time.

This could inclue splines of different orders, penalties based on discrete differences,

and "moving average" smoothers.

4. Goodness-of-fit, Standard Errors, and Choice of X

Goodness-of-fit can be assessed globally, as in generalized linear models, by the

deviance A = 2{sup L(O) - L(O($,t))} where (0,t) are the MPLEs. Locally, it is

measured by residuals: either the deviance residuals, the signed square roots of the

individual contributions to A , or in GLIM fashion as

z i  = u i  / A U = . ( 8 )

This is all standard, but we do need a new concept of degrees-of-freedom to assign to

A. It turns out (Green, 1985b) that the appropriate value, not in general an integer, is

given by

v = n - tr(S) - tr[(DTA(I-S)D)-DTA(I=S) 2D]. (9)

This is an approximation to the asymptotic expectation of A, and reduces to the usual

n - rank(D) when the non-parametric part of the model is omitted. In the non-
parametric case, this v has been used informally for linear models (Eubank, 1984;

Eubank, 1985) and generalized linear models (O'Sullivan, Yandell and Raynor, Jr.,

1984; O'Sullivan, 1985; Yandell, 1985).

Similar somewhat approximate asymptotics lead to an estimated variance matrix

for f of the form

(DTA(I-S)D)-DTA(I-S)D(DTA(I-S)D)- (10)

from which standard errors may be calculated. In the absence of the appropriate distri-

bution theory, neither the deviance nor the standard errors should be used in formal

significance tests, at present, but they do seem to provide adequate guidelines for

model selection.

Computation of these quantities follows naturally from the algorithm outlined in

section 3, and consists of solving pxp linear systems following the repeated applica-

tion of S to D. The only part of this that is not simple to implement in 0(n) time

-5-



is the first trace term, tr(S), which in our present program takes about 7n2 multipli-

cations or divisions. However an 0(n) algorithm for this computation in linear spline

smoothing has recently been announced by O'Sullivan (1985), and we will adapt this

to the present context.

As for automatic choice of X, Wahba's generalized cross-validation (GCV)

method (Wahba, 1977), which uses an invariant modification of a predictive mean-

squared error criterion, may be adapted to this situation. A quadratic approximation to

the quantity to be minimized (over X ) is simply A/v 2 , so no further computation is

involved. We use a simple one-dimensional search over X to find the minimum.

Other approaches to the automatic choice of X would be possible, for example the

empirical Bayesian methods proposed by Leonard (1982).

5. Examples

Logistic Regression, and Tumour Prevalence Data

Dinse and Lagakos (1983) consider logistic regression models for data from a
- U.S. National Toxicology Program bioassay of a flame retardant. Data on 127 male

and 192 female rats exposed to various doses of the agent consist of a binary response
variable ( y ) indicating presence or absence of bile duct hyperplasia at death, and four

explanatory variables: log dose (x, ), initial weight (x 2 ), cage position (x 3 ), and age

at death ( t ). Dinse and Lagakos express some doubts as to whether the fourth of

these variables enters the model linearly, so they consider fitting higher-order polyno-

mials, or step functions based on age intervals. A reasonable alternative seemed to be
* the semi-parametric approach described here, which allows age at death ( t ) to enter

the binomial logistic model in a non-parametric fashion, whilst still allowing estima-
tion of the log dose regression coefficient.

The results of our analyses are presented graphically (see Figure 1) for various

values of the tuning constant X. In each plot, the upper two traces display on the

same scale the fitted parametric and non-parametric components of the predictor,

XDiAJ and y t) = Ykok(t), plotted against t . The lower panel displays the

corresponding residuals from (8). (The slightly bizarre appearance of the residual plot

is due to the binary nature of the response variable.) In both data sets there were a

considerable number of ties in values of { t }, which we have broken arbitrarily with

small deterministic displacements. This seems not to lead to any numerical instability

in our program, it avoided some modifications to the coding to handle coincident

.6.9L-6-
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"t }, and had the incidental advantage of clarifying the plots so that each case can
be distinguished.

(b)
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For the data on the male rats, Figures l(a) and l(b) demonstrate the effect of

using very small and large values of X respectively, suggesting under- and over-

smoothing. These values are respectively 0.01 and 100 times the automatic GCV

choice of X = 1380, for which the relevant plot is Figure 1(c). This indicates a non-

linear dependence on t, but note that the left-hand part of the curve, up to the first

turning value, is based on rather little data. The parameter estimates, with approximate

standard errors, are -0.139±0.148, -0.012±0.022, and 0.068±0.151, and we thus agree

with Dinse and Lagakos about the lack of significance of the regression coefficients.

In the case of the female rats, the GCV method for choice of X is not so well

behaved. Whilst there is a turning value of A/v2 at X = 6.24, this is only a local

minimum, and the GCV criterion seems to decrease to 0 for very small X . Figure

l(d) displays the fitted values and residuals for = 6.24, suggestive of a complicated

nonlinear dependence on t. Our parameter estimates are 0.492±0.137, 0.040±0.015

and 0.270-0.158. Dinse and Lagakos obtain = 0.554±0.20 using a model linear in

t, implying that if we have correctly identified the form of ft) then their estimate is

both slightly biased and inefficient.

It may be of interest to report some details of the performance of our algorithm

*applied to these data. For the male rats, with the GCV choice of X , four iterations

were needed to converge from initial estimates corresponding to empirical logits to a

-. point where neither ji nor the deviance changed by more than 10-4 .Excluding the

calculation of tr(S) (see section 4), the computation time was 1.26 seconds on a

VAX 11/780. For the female rats, 10 iterations were required, and the time was 3.77

seconds.

Poisson Log-linear Regression, with Simulated Data

As a demonstration that our approach can properly identify a smooth y(t), we

. analyzed a simulated data set, with { yi ; i 1,2,...,200 } distributed independently

with Poisson distributions with means { exp(0i) }, where

5
0i = XDijj3j + 1 + sin(ti).

The { t1 } were chosen independently and uniformly on the interval (0,3n), so that

the true curve y(t) = I + sin t has three turning values in the range of the data. The

design matrix D was taken as that for 40 replicates of a randomized complete blocks

design on 5 treatments, each successive 5 ordered { ti } forming a block. The true

--. -8-
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was (1, 0.5, 0, -0.5, -1), so that the Poisson means varied between about 0.4 and

20.

Figure 2(a) corresponds to the GCV choice of X = 3.13: the fitted y(t) has the

correct form, ana the parameter estimates are ( 1.031, 0.517, 0.020, -0.583, -0.984)

with standard errors ( 0.058, 0.066, 0.078, 0.098, 0.116). (Clearly for identifiability a

constraint must be placed on 0 : we used Epj = 1 ). Figure 2(b) demonstrates that

when the tuning constant X is set much too high, in this case 100 times the GCV

value, the fitted curve y(t) cannot match the structure in the data, which is therefore

forced into the residuals.

6. Using B-splines

For an application of spline smoothing to the penalized log-likelihood (4) more

general than that of section 3, suppose that the {ti} remain one-dimensional, and that

the roughness penalty takes the form

J(Y) ftlm)(t)]2 dt.

In this case, an alternative set of basis splines is useful, namely the natural B-splines

of order 2m (De Boor, 1978; Schumaker, 1981). These are defined on any sequence

OL(a) (b

[F.

11 IL I 1 11, 1 ll l d

Figure 2. Fitted Log Rates and Residuals for Simulated Poisson Data
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S

of knots s1< ... <Sq as piecewise polynomials of degree (2m-l) between the knots,
of degree (m-i) outside (s1 , sq), and with (2m-2) continuous derivatives. This

basis leads to stable, economical computing as B-splines are non-negative and have
limited support. In the cubic spline case (m = 2 ), {%k; =3,... ,q-2} are each

non-negative only on ( Sk_2, sk+2 ), whilst *j, '2 , '€-1 and *q are linear outside

(s 1 , Sq ). The matrix K , which has the form

, K1 -- £

Kj fM)t*(m)(t)dt

is banded, and so an algorithm based on the equations (7) and (6) can be implemented
in O(n) time; see also Silverman (1985).

This approach is particularly useful in the case where n is very large and it is k

desirable that the number q of basis functions be much smaller. We are then only
attempting the restricted minimization of (4), but with say q = 50 or 100 knots

equally spaced to cover the range of {ti} , this restriction is not of practical impor-

tance.

7. An Algorithm for the General Case

The linear system (5) can be expressed as finding P and to minimize

IIBT(y-DpEt)I[2 + XtTKt (11)

in which A=BBT. Suppose that K is of rank r < q. Two matrices, J and T,
with q rows and full column ranks r and q - r, respectively, can be formed such

that jTKj = I, TTKT = 0, and JTT = 0 (see below). Rewriting as

= T8 + Je, (12)

with e and 8 of lengths r and q - r , respectively, (11) becomes

IIBT(Y - [D:ET] _ Eje)112 + %ETe.

A Householder decomposition (Dongarra et al., 1979) allows one to separate the

solution of 0 and 8 from that of e. In other words, we decompose

Q1BT[D:ET] = R, QTBT[D:ET] =0,

in which Q = [Q1:Q2] is orthogonal and R is nonsingular, upper triangular, and of

full rank p+q-r. The linear problem becomes: minimize the sum of

I ,-10-
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IIQTBTy- R~g - QTBTEJell' (13)

* and
"BTy- Q2BTE -.II2 + XTe.

IIQT (14)

The first term (13) can be set to zero by appropriate choice of and 8 given e.
If we define Y* = Q2BTY and Z= QTBTEJ, (14) becomes a problem of minimiz-

ing

iIY - ZE112 + XeTE

which is an ordinary ridge regression problem. See Bates and Wahba (1983); Golub,

Heath and Wahba (1979). The solution is
*(ZrZ+M)-IZry*.

The other parameters are solved as

] -R-QTBT(Y Eje.).

One then computes * using (12) and proceeds with the nonlinear iteration discussed

in section 2.

Decomposition of K
One need only compute J and T once as K depends on the model only

through { t i }. Using a pivoted Cholesky decomposition (Dongarra et al., 1979),

pTKp = LTL,

with L of dimension rxq and P a permutation matrix such that the first r

columns of KP are linearly independent. A Householder decomposition of LT

yields

FILT = G, FTLT = 0,

in which F = [F1 :F2] is orthogonal and G is nonsingular, upper triangular, and of
full rank r. It is known (Dongarra et al., 1979) that G-1 FT is the Moore-Penrose

inverse of L . Therefore, one can construct the matrices J and T as

T = PF2 and J = PFIG
- T.

A further refinement is possible if the partial derivative matrices E and D can
be written as E =E*M and D =D*M, in which M depends only on {t 5 }. For

., 11



instance, with a B-spline basis with model (1), Mit = *gti). One can left multiply by

M exactly once, forming T* = MT and J* = MJ each with n rows, and replace
E and D by E* and D* in subsequent computations.

Auxiliary Statistics

Auxiliary statistics can be constructed in the general case in a similar fashion to
Section 4, with S in equations (9) and (10) replaced by

S = E(ETAE + XK)-IETA.

Alternatively, using the notation of this section, one can show that (9) becomes

V = n-p-q+r - tr[ZTZ(ZTZ+xI-1 .

The variance (10) can be reexpressed as

var[j] = R-IQT[I + BTEJ(ZTZ+X)-IZTZ(ZTZ+XI)-IJTETB]QIR-T.

O'Sullivan (1985) observed that the trace and the diagonal "leverage" elements of the
hat matrix for the B-spline basis can be computed in 0(r) multiplications/divisions by

using a Cholesky decomposition of ( ZTZ+?II ) as in Silverman (1985).

8. Related Work in Progress

We have nearly completed an implementation of the algorithm for the general
case, which will allow specification of models through subroutine evaluation of the
forms of A, D, E, K and u. This software will be in the public domain and
uses LINPACK (Dongarra et al., 1979) This work is related to a larger programming
effort involving Douglas Bates, Grace Wahba, and Mary Lindstrom.

Yandell and Bates (unpublished) have also observed that one can use the singular
value decomposition for ridge regression problems (Bates and Wahba, 1983; Golub,
Heath and Wahba, 1979) to iterate on the "optimal" choice of tuning constant X (in
the sense of minimizing the generalized cross validation function) within each linear

step. Thus X changes with each nonlinear iteration, as do 0 and . Empirically,
convergence takes about the same number of steps as it would for a fixed X near the
optimal value. Unfortunately, the singular value decomposition is expensive, taking
0(r3) multiplications/divisions. However, it may be possible to com'Ane this

approach with the Cholesky decomposition approach used by O'Sullivan, Yandell and
Raynor, Jr. (1984) and Silverman (1985) to strike a healthy compromise between

-12-
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heavy computation and finding the optimal amount of smoothing.
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