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ABSTRACT

It is shown that solutions of linear inequalities, linear programs
and certain linear complementarity problems (e.g. those with P-matrices
or Z-matrices bugyngg semidefinite matrices) are Lipschitz continuous with
respect to changés in the right hand side data of the problem. Solutions
of linear programs arg/ﬂgg Lipschitz continuous with respect to the
coefficients of the objective function. The Lipschitz constant given
here is a generalization of the role played by the norm of the inverse of
a nonsingular matrix in bounding the perturbation of the solution of a

system of equations in terms of a right hand side perturbation.
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“‘ SIGNIFICANCE AND EXPLANATION
* In the solution of constrained optimization problems one often is
;J faced with inaccurate or perturbed data. In this work we show how
{
j perturbations in the data of linear inequalities, linear programs and
3

other optimization-related problems influence the solution of the problem.
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summary lies with MRC, and not with the authors of this report.
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f3 I. Introduction

e
N The purpose of this work is to show that solutions of linear inequal-
T

N ities, linear programs and certain linear complementarity problems are
°3 Lipschitz continuous with respect to changes in the right hand side of the
‘\
P problem. Speaking in general and in somewhat loose terms, if we denote by
- r] and r2, two distinct right hand sides, then there exist corresponding

solutions x] and x2 such that

- (1.1) %' - 2| < x|Ir! - v2|
l

': : where the Lipschitz constant K depends only on the matrix defining the
9
e problem, but not on the right hand sides nor the objective function if there
a; is one. A key role in determining the Lipschitz constant K is played by

A
t@ the condition number for linear inequalities introduced in [8] which is a
'§ generalization of the very useful concept of a condition number for a non-
; singular square matrix [2]. In [15] Robinson obtatined local Lipschitz
fii continuity results for generalized equations which include 1inear programs,
N convex quadratic programs and monotone linear complementarity problems.

»}
i Robinson's Lipschitz constant [15, Theorem 2] involves a bound on the solu-
§; tion set which 1s assumed to be bounded. By constrast our Lipschitz
? constants are global, and our solution sets need not be bounded.
éf Sponsored by the United States Army under Contract No. DAAG29-80-C0041.
- This material is based upon work supported by the National Science
& Foundation under Grants MCS-8200632, MCS-8420963 and DMS-8210950, Mod. 1.
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We give now a summary of our principal results. Theorem 2.2 deals with

a system of linear inequalities and equalities (2.1) and shows that if the

system is solvable for right hand sides r] 2

x] for right hand side r]

r? such that (1.1) holds. The Lipschitz constant here plays the same role as

and r®, then for each solution

there exists a solution x2 for right hand side

the norm of the inverse of a nonsingular matrix does for a system of linear
equations. Our Lipschitz constant for the system (2.1) defined by (2.5), is a
minor variation of the constant (6) of [8]. Furthermore, the Lipschitz con-
tinuity Theorem 2.2 leads in a very elementary way to Theorem 2.2' which is
essentially equivalent to Theorem 1 of [8] and which gives an estimate of
the error in an approximate solution to the systems of linear inequalities
and equalities (2.1) in terms of the residual of the approximate solution
and the Lipschitz constant. Again the role played in Theorem 2.2' by the
Lipschitz constant is an extension of the same role played by the norm of
the inverse of a matrix for a system of 1inear equations. Computation of
the Lipschitz constant (2.5) for the system of linear inequalities and
equalities (2.1) is quite difficult, but an important fact is that such a
constant exists and is finite. For some special cases such as when we have
strongly stable linear inequalities only (that is linear inequalities solv-
able for all right hand sides) the Lipschitz constant can be computed by a
single linear program as in (2.17) below. By using the Lipschitz constant
for Tinear inequalities and equalities we show in Theorem 2.4 that solutions
of linear programs are also Lipschitz continuous with respect to right hand
side perturbations only. Proposition 2.6 shows that our Lipschitz constant
(2.20) for the linear program (2.18) is sharper than that of Cook et al

[3, Theorem 5§]. By means of a simple example (2.26), we show that solutions
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of linear programs are not Lipschitz continuous with respect to perturba-
tions in the objective function coefficients. Finally in Section 3 by using
the Lipschitz constant for linear inequalities and equalities we establish
in Theorem 3.2 Lipschitz continuity of solutions of linear complementarity
problems with respect to right hand side perturbations that generate unique \
solutions along the Tine segment joining perturbed and unperturbed right ;
hand sides. A simple consequence of this result is Theorem 3.3 which shows i
that the solution of a linear complementarity problem with a P-matrix (that

is a matrix with positive principal minors) is Lipschitz continuous with 1
respect to right hand side perturbations. Example 3.4 shows that solutions l
of positive semidefinite linear complementarity problems are not Lipschitz
continuous with respect to their right hand sides. Finally by exploiting the

fact that for certain classes of matrices such as Z-matrices {real matrices

FIPare

with nonpositive off-diagonal elements) the linear complementarity problems
can be solved as a linear program [7], Lipschitz continuity of solutions of
such linear complementarity problems are obtained in Theorem 3.5.

A brief word about notation and some basic concepts employed. For a

vector x in the n-dimensional real space R", |x| and x, will denote the
vectors in R" with components |x|g:= Ix4] and (x,);:= max {x;, 0}, i=1,...,n
respectively. For a norm ||x||B on R", le”B* will denote the dual norm

[6,13] on R", that is IIxIIB*:= max xy, where xy denotes the scalar prod-

”.)'“85l
n
uct J x;¥;. The generalized Cauchy-Schwarz inequality |xy| < |lx||8-||y||8*,
i=1

for x and y in R", follows immediately from this definition of the dual

norm. For 1 <p, q<, and%+]a

n 1/p
=1, the p-norm ( Z] |x1|p) and the
1=
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g-norm are dual norms on R" [13]. If ll-llB is a norm on R", we shall,
with a slight abuse of notation, let Il-II‘3 also denote the corresponding
norm on R" for m # n. For an mxn real matrix A, A; denotes the ith
row, A‘j denotes the jth column, AI:= A'Iel’ and A.J:-- A'jeJ' where

Ic{l,....,m} and J < {1,...,n}. ||A||B denotes the matrix norm [13,16]

subordinate to the vector norm ”.“8’ that 1s III\IIB = mITx : ||Axl|8. The
x|l .=

Il
consistency condition ||Ax||B < ”A”B"x"B follows immediately from this

definition of a matrix norm. A monotonic norm on R" 1s any norm ||+|| on
R" such that for a, b in R",|la]] < ||b]| whenever |a| < |b| or equiva-
lently if ||a|| = || |a] || [6, p. 47]. The p-norm for p > 1 1is monotonic
[13]. A vector of ones in any real space will be denoted by e. The
identity matrix of any order will be denoted 'by I. The nonnegative orthant
in R" will be denoted by R':. The abbreviation rhs will denote "right hand

side".

e
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2. Linear Inequalities and Programs

We shall first be concerned with Lipschitz continuity of solutions of
the following set of linear inequalities with respect to changes in the

right hand side
(2.1) Ax < b, Cx = d

where b and d are given points in R" and R’k respectively, Aec Rmx",

kxn

that is an mxn real matrix and CeR We shall employ a slight

variation of the condition constant introduced in [8, Equation (6)] for
Tinear inequalities and programs as our Lipschitz constant for the linear
inequalities (2.1) and subsequently for the linear program (2.18) and the
Tinear complementarity problem (3.1).

We begin with a simple extension of the fundamental theorem on basic
solutions [5, Theorem 2.11] to unrestricted as well as nonnegative

variables.

RPN ¢ gKXN

2.1 Lemma (Basic solutions) Let Ac and peR". The system

(2.2) Alu+clv=p, u >0

m+k

has a solution (u,v)eR if and only if it has a basic solution, that

is a solution (u,v) such that the rows of [é] corresponding to nonzero

components of (u,v) are linearly independent.
Proof The system (2.2) having a solution (u,v) implies that
(2.3) ATy + €y = p, (u,v) >0

has a solution where C 1is obtained from C by multiplying by -1 those rows




of C corresponding to negative components of v. It follows from the
fundamental theorem on basic solutions [5, Theorem 2.11] that (2.3) has a

basic solution and consequently so does (2.2). O

We proceed now to establish Lipschitz continuity of solutions of (2.1)
with respect to right hand side perturbations.

2.2 Theorem (Lipschitz continuity of feasible points of linear inequalities

and equalities) Let the 1inear inequalities and equalities (2.1) have non-

1 2

empty feasible sets S' and S$° for the right hand sides (b]. d") and

(bz, dz) respectively. For each x] 1 2, g2

€S’ there exists an x €S~ closest
to x] in the =-norm such that
1 ,2
| . b -b
(2.4) ”X =X “ooi uB(A’ c) d] -d2

B

where ||-||‘3 is some norm on R™K,

luA +vC||; =1, ux0

(2.5) uB(A; C):= sup “3 Rows of (A) corresponding to nonzero
u,v g*
elements of [3] are 1in. indep.

and ||-]

g+ s the dual norm to l|-||B.

Proof We note that uB(A;C) is finite. For if not, there would exist
fixed subsets I and J of {1,...,m} and {1,...,k} respectively and a

i i Ar
sequence {up, v} such that {||uI,vJ||}->oo and the rows of || are

1j i, 'ij ‘ij
linearly independent. Hence a subsequence {(u; ,vJ‘])/IluI 'Yy |} con-

verges to (U, V,) satisfying UA; + vyC; =0, IIGI,VJH =1, which
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A
contradicts the linear independence of the rows of [CI] .
J

Now let x] eS1. Choose xze 52 which is closest to x] in the «-norm.

Thus x2 must solve
(2.6) min flx-x'[l.  s.t. Ax<b®, cx = d?
X
which is equivalent to the linear program
. 2 _ 42 1 1
(2.7) min § s.t. Ax<b, Cx=d", x +e8§>x, -x +e§ > -x
X,6
Hence (xz, 62) and some (uz, vz, rz, sz) € Rm+k+2n satisfy the following

Karush-Kuhn-Tucker conditions for (2.7)

f
Al < b2, el = &, ||x' - K2 = &%

oo

2 2

(2.8) Juz(-Ax2+b2) =0, r2(x2+e6 -x]) =0, sz(-x2+e6 +x]) =0

L-UZA + v2C + r2 - 52 =0, e(r2+52) =1, (uzs rzs 52) 2 0

2 2” , then (2.4) is trivially true. So assume

Note that if 0 = 6% = ||x' - x%||_
2

that &6 > 0. It follows from 62 >0 and r?(x2+e62-x])j =0 and

s\‘?(-x2+e62+x])j = 0 that r§s§=0, for j=1,...,n. Hence

2 2 2.2

C+r° - s2 =0, e(r2+sz) =1, r°s" = 0, (uz,rz,sz);0

(2.9) -uzA +v

2 2
By Lemma 2.1 it follows that we may take u2 = ["I] 20 and v2 = [vd]
0 0

Ap

such that the rows of [C ] are linearly independent. Hence (2.9) becomes
J
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s

o 2, .2 2 2 2.2y .2
L Ap

e, Rows of 1in. indep.

R C,

Hence by (2.5) we have that

(2.10) u
2

2
l s uglA; €)
B*

We now have

||x.I "‘2”«, 6% = b2 + &%+ X (PP -s

2
= -b2u2+ d?'v2 + x.l (ATu2 - CTvz)

CAx! -b2+b1 b)) + vi(-cx' +d+d - d")

W2 - b2) + (- d)

ul

v2

ia

(2.11)

A

B*

b! - b2
hY UB(A; C) 1 2 (By (2010)) B}

Note that the Lipschitz constant uB(A;C) of (2.4) plays the same
role as that of the norm of the inverse of a nonsingular matrix of a system
of linear equations. This fact can be seen more clearly from the following
corollary to Theorem 2.2, Note also that we can get a sharper result by

1 2)

replacing (b] -bz), in (2.4) and (2.11) onward, by (b -b .

2.3 Corollary (Lipschitz continuity of feasible points of strongly stable
kxn

linear inequalities) Let Ae R™" and CeR be such that
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( Rows of C are linearly independent and
2.12)
Ax < 0, Cx = 0 has a solution x

Then the linear inequalities (2.1) are solvable for all right hand sides

1

(b, d) e R"™K. For each x' in the solution set of (2.1) with rhs (b',d'),

there exists an x2 in the solution set of (2.1) with rhs (b2, d2) such that

1 2
(2.13) 1%} - 2| < Tio(Asc) ||B) P
= "B 1 2
d -d
B8
where -I'3 is some norm on R™K and
|uA +vely =1
(2.14) ﬁB(A;C):= ma x ”3 !
T L L

Proof That (2.1) is solvable for any right hand side (b,d) follows from
solving Cx =d for xd for any given d and then taking as the desired
solution xd + Ax for sufficiently large positive X, where X solves

Ax < 0, Cx = 0. The rest of the proof of the corollary is similar to the

2

proof of Theorem 2.2, except that u~ and v2 are not decomposed into

2 2
[UI] and [VJ]. The finiteness of &B(A;C) of (2.14) follows from the
0 0

P

Ty WY

e (% Pl g
St St et T e
Lt o B T T B
v ] — P

boundedness of the feasible region of (2.14). For it were unbounded, there

would exist {u',v'} such that {|u’, vill + o and consequently an
accumulation point (u,v) would exist such that

o (2.15) UA+vC=0,u>0, (uv) #0

o d

This however would contradict the linear independence of the rows of C if




u=0, and if u# 0 would contradict the solvability of Ax < 0, Cx = 0,
N because then 0 = uAx + vCx = uAx < 0. 0
Note that if A 1is vacuous and C 1is a nonsingular square matrix, then
o - -1 -1
3 (2.16) G (e:c) = max {livily[livelly =13 = 1cch™ 1 = e,
:": VeRk
"'-‘.
» This was already pointed out in [8, Remark 2]. Note also that (2.14) can
.o be written in the equivalent form
. -z<uA+vC <z
(2.14') ig(AsC) = max "3
" * =
:‘. (u,v,z)eRm+k+" B*l u>0, ez =1
This is a difficult convex-function maximization probiem on a polyhedral set
which is closely related to the NP-complete problem of a norm-maximization
\, problem on a polyhedral set for positive integer B* [9]. However for
o B* = =, that is B = 1, it can be shown, as in [9], that (2.14') is in P,
" In addition a good bound for EB(A; C) for any 8 can be obtained by solv-
3'; ing a single linear program [9]. When C is empty and B ==, (2.14')
i; degenerates to the following linear programs
o
2N (2.17) W (A ¢) = max  {eu|-zguA<z, u>0, ez=1}
i (u,2)eR™"
"-"-
Ches
Vo We note that the Lipschitz constants uB(A; C) and ﬁB(A; C) which play
=y
57 the role of the norm of the inverse of a nonsingular matrix of a system of
“‘_ linear equations, can also be used, just as the norm of the inverse can, to
h.}\
\;f;: obtain a bound on the error in an approximate solution in terms of the
;;'.-: residual. Thus if we assume for the moment that A s vacuous and that C
i
..:'p.
A
7
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is nxn and nonsingular, then ﬁ8(¢;c) = ||C']||°° by (2.16). Thus (2.5)
and (2.13) are the extensions to a system of 1inear inequalities and

equalities of the following simple Lipschitz continuity property of Cx = d

1 2 -1 1
x5l < et Jd - 6@

1 2

where x = C'l

= ¢ 'd%. since ||C"]||°° can also be used to

estimate the error in an approximate solution x to Cx1 = d]

d] and x

in terms of

its residual ||Cx--d]||°° as follows

1 -1 1 -1 1
-l = HE™(Cx - D)l < 1€ Il Hex-d

it follows that the Lipschitz constants uB(A; C) and ﬁB(A; C) can be
similarly used to give an estimate on the error in an approximate solution
to (2.1) in terms of its residual. In fact this estimate was given in
[8, Theorem 1], but it also follows very easily from Theorem 2.2 above as

follows.

2.2' Theorem (Error bound for approximate solution of linear inequalities

and equalities) Let the linear inequalities and equalities (2.1) have a

1 for the right hand side (bl,d]). For each «x

1

nonempty feasible set S

1

in R" there exists an x €S' such that

(Ax-b1)+

1
bl w0

where uB(A;C) is defined by (2.5).

Proof Since for each xe R"

..-<-‘
-
el
. %
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Ax < b+ (Ax-b"),, Cx = d' + (cx-d")

it follows by Theorem 2.2 that there exists an x]e S] such that the

conclusion of the theorem holds. 0

A similar error bound holds for strongly stable linear inequalities
which is based on (2.13).

It is interesting to note that Theorem 2.2 is stronger than Theorem 2.2'
in the sense that the latter follows directly from the former as was demon-
strated above, whereas the converse holds with the additional assumption that

the norm ||-||B is a monotonic norm [6, 13]. Thus to obtain Theorem 2.2
1

from Theorem 2.2', we have from Theorem 2.2' that for each x]e S there
exists an xze S2 such that
2 s wms o < wo|’
X" =X || S ua(As C S u (A3 C
B L B d' - d?

B B

where the last inequality follows from
1,2y _ 1 .2,.1 .1 1 .2 1,2
(Ax' - b?), = (Ax"-b24pT - b1, < (b7 -b2), < |b! - b2
lex' - 2| = Jex! - a2+ d'-d'] = |d' - ¢

and the monotonicity of the norm ”-llB.

Next we establish the Lipschitz continuity with respect to right hand

side perturbation of solutions of the linear program

(2.18) max px s.t. Ax<b,Cx=4d
X




«13-

where pe R" and A, b, C, d are as in (2.1). For the Lipschitz contin-
uity results for linear programs we have to restrict the norms employed to

monotonic norms [6, 13] and have to drop u > 0 from (2.5).

2.4 Theorem (Lipschitz continuity of solutions of linear programs with

respect to rhs perturbation) Let the linear program (2.18) have nonempty

1 2

solution sets S' and S° for right hand sides (b], d]) and (bz, dz)

respectively. For each x]e S] there exists an xze S2 such that
b - b2
(2.19) Ix' - x@|l < v, (A; C)
o= "f 1 2
d -d 8
where ||-||B is some monotonic norm on R™K and
llua+velly =1

(2.20) B(A C):= sup

Rows of[é]corresponding to nonzero

elements of[g}are lin. indep.

Proof Given x]e S], let

1_ .1 1 1
b AJx < bJ

A X I

2

where Iud = {1,2,...,m}. Fix any ize S" and let I = I1u 12 where

2
= (e 1|A%0 =08}, Iyi= (i e 1|ARE < b2

Since x = ;2 satisfies the system of constraints




~14-
2
() Ay x = b3 ,
L Iy
. 2
(2.21) (11) Ay X2 < Ay xo Ay x < b

2 = 42
(111) Ax < by, Cx =d

it follows that (2.21) is nonvacuous. Let x2 be a solution of
(2.22) min ||x-x'[l, s.t. (2.21).

Since (2.22) is a convex program, NG remains optimal after we remove any

number of inactive constraints. For each { 512, at least one of the two

2 2

constraints of (2.21) (ii) is inactive because Aii < bi' So we can

remove one inactive constraint for each 1ie¢ I, thus obtaining
2 1, . 1 - 1
(2.23) [[x“-x'||, = min [Ix-x'||, s.t. (2.24) = min |jx-x']|, s.t. (2.21)

where

2

(1) AI x = b;

vh

(1ia) A < Agx
(2.24) )
(11b) A x < b

(1ic) Apx < b2, Cx = o

where Kul = I,, KnL=¢. So IjuKuluyg= {1,2,...,m} and I, K L
and J are all disjoint. On the other hand, since

141 2 .2 1 2 =2
Agx" = by - by + b > by - by + A X

K b

it follows that x = x] satisfies the following system
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(1) Apx= bl]

(11a) b} - b2 + A < Ax

(2.24') :
(1ib) Ax<b!

(11c) Agx <bl, Cx = d!

It follows by (2.23), (2.24'), Theorem 2.2 and the norm monotonicity that

-y A, ) -b:(-rbi
16" =l < gl AL | || | BT 82
c 1 .2
A d -d
J ) 8
o p2
d'-d 8

where H = I1 vlLudJd 1is the complement of K.

2 2

It remains to show that x e S“. Since x1

€ S], we have by the
Karush-Kuhn-Tucker optimality conditions that

(2.25) A}"]I +cly! = p for some u} 20 and some v
Since both X2 and x° satisfy (2.21) it follows that
2 1, 2. 0.2 1,2 . 1.2 -2

Px” = upAx” + v Cx zuIAIi + v Cx“ = px

and the proof is complete. 0

2.5 Remark We note that Cook-Gerards-Schrijver and Tardos [3, Theorem 5]

have a similar result to Theorem 2.4 for integer entries for A but without
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the equality constraints Cx = d. However their Lipschitz constant is big-

ger than or equal to our Lipschitz constant. In fact their Lipschitz con-

stant nA(A) 1s only for B = », where AA {s the maximum of the absolute
values of the determinants of the square submatrices of A. We formalize

the relation between the two Lipschitz constants as follows.

2.6 Proposition For integer A, v_(A;¢) < na(A).

Proof For any u; for which ”"IAI“] =1 and the rows of A; are lin-

early independent, we can assume that
A; = [B N]

where B 1is a nonsingular square submatrix.

Let q:= u;B, then ||q||] §=||u1A1||] =1 since uB 1is a subvector
of uIAI. It follows that

-1 -1 -
luglly = 1T ally < HED 1y Hally < 16Dy = max 3 Imgl

1

where hij is the (i,j) entry of B™ [13, p. 22]. Hence

_ 1 i+j
hi; = Get B (-1) “Byis

where Bﬁ is the (i,j) cofactor of B which is the determinant of a

square submatrix of A. Hence

B3] < a(A).

If A is integral |det B| > 1 1is an integer, hence
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1
Ih3] < Taet By [By4] < ACA).

Consequently

luglly < N8BT, = mgxg |hyz] < na(A).

Since Uy is arbitrary, we have
Vo(A; ¢) = sup {”"I"1|||"IAI"1 =1, rows of A, lin. indep.}< na(A). 0

2.7 Remark Note that it is not true that solutions of 1inear programs

are Lipschitzian with respect to perturbations in the objective function |

coefficients as evidenced by the following simple example:
(2.26) max (V48)x; + xy  sct. xp + %<1, (x,%)20
The solution to this problem is:

(1,0) for 6§ >0
x(8) =
(0,1) for =1 <6<0

Hence

1im [|x{8) - x(-8)]| = o
§~+0+ 28

and hence x(8) 1is not Lipschitzian with respect to §.
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.1‘\-‘-" 3. Linear Complementarity Problems
:'? In this section we shall employ the Lipschitz constant uB(A; C)
:f:::::? developed in Theorem 2.2 for 1inear inequalities and equalities to obtain
o
" a Lipschitz constant for linear complementarity problems with matrices
-{Z.} that have positive principal minors [4] or which are hidden Z-matrices
{\ [14]. We will show by means of Example 3.4 that solutions of linear
St complementarity problems with a positive semidefinite matrix are not
NOR Lipschitz continuous with respect to right hand side perturbations.
: We consider the Tinear complementarity problem (M,q) of finding an
e
x in R" such that
‘_ (3.1) Mx +92>0, x>0, x(Mx+q) = 0
y where MeRV" and qeR". Note that given Jc{l,...,n}, any solution
" of the following system of 2n 1linear inequalities and equalities
N ij+qj;0, xj=0,jeJ
) (3.2)
i Myx + a5 = 00 %520, 349
SN
!:{u is a solution of (M,q). For Jc{1,...,n} let Q(J) denote the set of
A all q vectors for which (3.2) has a solution. It fs easy to verify that
RN
-:::::. Q(J) 1is a closed convex cone. In fact it is called a complementary cone
'f-» of (M,q) [11, p. 482]. It is also obvious that Y Q(J)  is the set
s Je{1,...,n}
..t:-”.-; of all q for which (M, q) ts solvable. Define
X
WA
! ) Mal [T
s = (3.3) 0 (M):= ma X u :
- 8 Je{l,....nr BllI5)° |M5
o
B
"0
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where Mg is defined by (2.5) and J 1is the complement of J in {1,...,n}.
We shall prove (Theorem 3.3) that oB(M) will serve as a Lipschitz constant
for solutions of (M,q) when M 1is a P-matrix, that is a matrix with posi-
tive principal minors [4, 1], or more generally (Theorem 3.2) for perturba-
tions of q such that the linear complementarity problem is uniquely solvable
along the line joining the original q and the perturbed q. We will also
establish Lipschitz continuity for solutions of (M,q) when M is a hidden
Z-matrix (Theorem 3.5). We begin with a lemma. A related result to this

lemma appears in [12].

3.1 Lemma Let q] and q2 be fixed distinct vectors in R" and let

q(t):= (1 -t)q] + tq2 for te[0,1]. Assume that (M,q(t)) 1is solvable for

te [0,1]. Then there exists a partition 0 = tg <ty < ... <ty =1 such
that for 1 <1 <N

(3.4) q(ti-l) € Q(Ji). q(ti) € Q(Ji) for some J,<{1 seessn}
Proof Let
T(9):= {t|te[0,1], q(t) e Q(J)}

for Jc{1,...,n}. It is easy to see that T(J) 1s closed and convex and
hence it is a closed interval which may degenerate to a single point or to

the empty set. Since (M, q(t)) 1{s solvable for te[0,1] it follows that

[0,1] U T(J)
Je{l,...,n}

Let

L:= {[2:] ’ u]], ----- ’[*Q'K’ UK]}
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be the set of maximal intervals in {T(J)IJc{l,....n}}, that is there is no
other interval T(J), Jc{1,...,n} that properly contains [21., "i]' By re-

moving duplicates from L if needed, we can assume that [21, "1]""’[9“K’ "K]

are distinct and that JLi < By <l < ZK. Since each te [0,1] beldngs
T(J) (for some Jc{l,...,n}) which is either in L or contained in some

interval of L, we have that
K
[09]] cV [R'i’ u‘i]
i=1

Thus 24 < u;_q» otherwise ("i-l’ Li) would be an uncovered gap of
[0,1]. Also Uy < Uss otherwise [21""1'] would not be maximal because
it would be contained in [9,1._], "1'-1]'

Hence %, =0, %4 1 <2, < u; 4
0= tg<ti<..... < tN=1 be the sorted numbers of {2,1 s Uy o, Ugs.. “slys uK}

< uy and uK=1. Let

with duplicates removed. Then each interval [ti-l’ti] is contained in

some interval T(Ji) in L and so
Q(ti_])€Q(Ji) and q(ti)eQ(Ji) 0

We establish now the Lipschitz continuity of linear complementarity

problems with unique solutions along the line segment

2

a(t):= (1-t)q + tq?, te[0,1].

3.2 Theorem (Lipschitz continuity of uniquely solvable linear complementarity

1

problems) Let q and q2 be points in R" such that the linear comple-

mentarity problem (M, q(t)) with q(t):= (1 -t)q] + tq2 has a unique solu-

1 2

tion for each te[0,1]. Then the unique solutions x of (M.q]) and x

of (M,qz) satisfy
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1 2 1 2
I - 2, < g lla - a2l

where cB(M) is defined by (3.3)

Proof There exist 0 = to < t1 < tenes < tN = 1 with properties stated in
Lemma 3.1. Let x(ti) be the unique solution of (M,q(ti)). Since for
1<i<N, q(ti_]) and q(ti) belong to Q(Ji) for some Jic{l,...,n}.
there exists a solution y(t; ;) of (M,q(t;_;)) such that by (2.4)
and (3.3) 1t follows that

M, 1

dJ
x(t) - y(tg Il < ug M_‘ latty) - alty_pll

(3.5)
< og(M) (t;-t,_)la' - a2
=B i Ci-l B
where 31 is the complement of J1 in {1,...,n}. Summing up for i=1,...,N

gives

N 12
21 "X(ti) '.V(ti_])“w h OB(M) “q -q "3

Since (M,q(t, ;)) has a unique solution, y(t, ;) = x(t, ;). Hence

a

N
I = xallo < 1 lxtey) = xleyp)ll, < ogM) lla’ -l

Since for P-matrix M, the linear complementarity problem (M, q) has
a unique solution for each qe R" [10], the following theorem is an

immediate corollary to Theorem 3.2.

3.3 Theorem (Lipschitz continufty of solutions of 1inear complementarity

problems with P-matrices) Let M be a P-matrix. For each q] 2

in R" the corresponding unique solutions x1 and x2 of (M,q]) and

and q

(M.qz) respectively, satisfy
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1 2 1 2
lx" - %%l < og(M) lla” - a%[l,
Y where oB(M) is defined by (3.3).

The following example shows that solutfons of positive semidefinite

-3 linear complementarity problems may not be Lipschitzian.

A5 3.4 Example 0 1 1 -€ 2
M= » 9 = s 9
e -1 0 1

n
—t———
b [y)
[ S

-

™
v

o

[
N o
-
t
N
)
—

. -g +2¢t
. q(t) = , . t0=0, t) =

. By 02

bl q(to) and q(t.l) are in Q(J]) {qe R2 9,20, q2_>=0}

2

q(t]) and q(tz) are in Q(Jz) R

bl [ 1
i y(tg) = x(ty) = .

. 0
r::‘ X( t2 ) = }

0
N In order to satisfy (3.5), y(t]) must be [0] However (3.5) also requires

1
o that x(t]) = [O] Hence x(t]) # y(t]) and the proof of Theorem 3.2 fails.
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lx(ty) - x(t)l,

In fact since 1lim = 1im ?]? = o, the solutions of the
0

Z_ 1
e*0 |97 -q'll,

problem cannot be Lipschitzian.

We conclude by showing that other linear complementarity problems which

can be formulated as linear programs [7] have solutions which are Lipschitzian
with respect to their right hand sides as a consequence of Theorem 2.4.

In particular if M satisfies the condition of Theorem 2 of [7] with ¢ = 0,
that is

(3.6) MZ, = Z,, rZ; + sZ2 >0, (r,s) >0

for some nxn Z-matrices Z.l and Zz, and some n-vectors r and s, then
a solution to such a linear complementarity problem is obtained by solving the

single Tinear program

min px s.t. Mx +92>0, x>0

where p =1r + MTs, and hence p is independent of q. In the terminology of

[14], such a matrix M 1is called a hidden Z-matrix and is a generalization of
Z-matrix which includes such matrices as those with a strictly dominant diag-

onal, and all matrices of Table 1 of [7] except cases 12 to 14.

3.5 Theorem (Lipschitz continuity of solutions of linear complementarity

problems with hidden Z-matrices) Let M be a hidden Z-matrix, that is M

! 2 in R" for which (M,q]) and (M, q2)

2

satisfies (3.6). For each ¢ and q

1

are solvable, there exist solutions x of (M, q]) and x~ of (M,qz) such as

1 2 1 2
15 =11, < v [ 01" - Pl
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W

where H-HB is some normon R" and v, 1is defined by (2.20).

B

A

Proof By [7], there exist solutions of (M, q]) and (M, qz) which are

4

o obtained by solving the linear programs

min {px|Mx+q1,>_0, x> 0}
min {plex+q230. x> 0}

. where p is a fixed vecter independent of q] and qz. The conclusion of

the theorem follows immediately from Theorem 2.4. ]

We note that for the case of a strictly diagonally dominant and hence
positive definite matrix M, (M,q) 1s uniquely solvable for each q in
R", and the Lipschitz continuity of the solution follows also from either

Theorem 3.5 or Theorem 3.3.
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