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/ ABSTRACT

It is shown that solutions of linear inequalities, linear programs

and certain linear complementarity problems (e.g. those with P-matrices

or Z-matrices butpot semidefinite matrices) are Lipschitz continuous with

respect to changes in the right hand side data of the problem. Solutions

V. of linear programs are pot Lipschitz continuous with respect to the

coefficients of the objective function. The Lipschitz constant given

here is a generalization of the role played by the norm of the inverse of

a nonsingular matrix in bounding the perturbation of the solution of a

system of equations in terms of a right hand side perturbation.
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SIGNIFICANCE AND EXPLANATION

In the solution of constrained optimization problems one often is

faced with inaccurate or perturbed data. In this work we show how

perturbations in the data of linear inequalities, linear programs and

other optimization-related problems influence the solution of the problem.
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LIPSCHITZ CONTINUITY OF SOLUTIONS OF LINEAR INEQUALITIES,

PROGRAMS AND COMPLEMENTARITY PROBLEMS

0. L. Mangasarlan & T.-H. Shiau

.1I. Introduction

The purpose of this work is to show that solutions of linear Inequal-

ities, linear programs and certain linear complementarity problems are

Lipschltz continuous with respect to changes in the right hand side of the

problem. Speaking in general and in somewhat loose terms, if we denote by

and r2, two distinct right hand sides, then there exist corresponding

solutions xI and x2 such that

(1.1) Ixl- x11 K <Kr' -r211

where the Llpschltz constant K depends only on the matrix defining the

problem, but not on the right hand sides nor the objective function if there

is one. A key role in determining the Lipschitz constant K is played by

the condition number for linear inequalities introduced in [8] which is a

generalization of the very useful concept of a condition number for a non-

singular square matrix [2]. In £15] Robinson obtained local Lipschitz

continuity results for generalized equations which include linear programs,

convex quadratic programs and monotone linear complementarity problems.

Robinson's Lipschitz constant [15, Theorem 2] involves a bound on the solu-

tion set which is assumed to be bounded. By constrast our Lipschitz

constants are global, and our solution sets need not be bounded.

Sponsored by the United States Army under Contract No. DAAG29-80-CO041.
This material is based upon work supported by the National Science
Foundation under Grants MCS-8200632, MCS-8420963 and DMS-8210950, Mod. 1.
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We give now a summary of our principal results. Theorem 2.2 deals with

a system of linear inequalities and equalities (2.1) and shows that if the

system is solvable for right hand sides r and r2 , then for each solution

x for right hand side r1 there exists a solution x2 for right hand side

r2 such that (1.1) holds. The Lipschitz constant here plays the same role as

the norm of the inverse of a nonsingular matrix does for a system of linear

equations. Our Lipschitz constant for the system (2.1) defined by (2.5), is a

minor variation of the constant (6) of [8]. Furthermore, the Lipschitz con-

tinuity Theorem 2.2 leads in a very elementary way to Theorem 2.2' which is

essentially equivalent to Theorem 1 of [8] and which gives an estimate of

*the error in an approximate solution to the systems of linear inequalities

and equalities (2.1) in terms of the residual of the approximate solution

and the Lipschitz constant. Again the role played in Theorem 2.2' by the

Lipschitz constant is an extension of the same role played by the norm of

the inverse of a matrix for a system of linear equations. Computation of

the Lipschitz constant (2.5) for the system of linear inequalities and

equalities (2.1) is quite difficult, but an important fact is that such a

constant exists and is finite. For some special cases such as when we have

strongly stable linear inequalities only (that is linear inequalities solv-

able for all right hand sides) the Lipschitz constant can be computed by a

single linear program as in (2.17) below. By using the Lipschitz constant

for linear inequalities and equalities we show in Theorem 2.4 that solutions

of linear programs are also Lipschitz continuous with respect to right hand

side perturbations only. Proposition 2.6 shows that our Lipschitz constant

(2.20) for the linear program (2.18) is sharper than that of Cook et al

[3, Theorem 5). By means of a simple example (2.26), we show that solutions
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of linear programs are not Lipschitz continuous with respect to perturba-

tions in the objective function coefficients. Finally in Section 3 by using

the Lipschitz constant for linear inequalities and equalities we establish

in Theorem 3.2 Lipschitz continuity of solutions of linear complementarity

problems with respect to right hand side perturbations that generate unique

solutions along the line segment joining perturbed and unperturbed right

hand sides. A simple consequence of this result is Theorem 3.3 which shows

that the solution of a linear complementarity problem with a P-matrix (that

is a matrix with positive principal minors) is Lipschitz continuous with

respect to right hand side perturbations. Example 3.4 shows that solutions

of positive semidefinite linear complementarity problems are not Lipschitz

continuous with respect to their right hand sides. Finally by exploiting the

fact that for certain classes of matrices such as Z-matrices (real matrices

with nonpositive off-diagonal elements) the linear complementarity problems

can be solved as a linear program [7], Lipschitz continuity of solutions of

such linear complementarity problems are obtained in Theorem 3.5.

A brief word about notation and some basic concepts employed. For a

vector x in the n-dimensional real space Rn, IxI and x+ will denote the

vectors in Rn with components lxli:= Ixil and (x+)i:= max {x i , 0}, i=l,...,n

n irespectively. For a norm I(xII8 on Rn , IixIJ,* will denote the dual norm

[6,13] on Rn, that is 1x118*:= max xy, where xy denotes the scalar prod-I~lyI--

n
uct i xiYi . The generalized Cauchy-Schwarz inequality Ixyl I lIxll 8-IyIl 8.,

1=1n

for x and y in Rn, follows immediately from this definition of the dual

11n 1/p
norm. For 1 < p, q <-, and 1+-_ 1, the p-norm ( I IxI) and the

p q =I
• :1
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q-norm are dual norms on Rn [13]. If i[*IJ is a norm on Rn, we shall,

with a slight abuse of notation, let 1.111 also denote the corresponding

norm on Rm for m t n. For an mxn real matrix A, A1 denotes the ith

row, A. denotes the Jth column, Ai:= AIEP and A.,:= A. JCJ where

I c {1,...,m} and J c {1,...,nl. hIAII 8  denotes the matrix norm [13,16]

subordinate to the vector norm 11"11p, that is IIAII - max IAxhl. The

consistency condition IlAxlI _ I IAIl 8Ilx1l8 follows immediately from this

definition of a matrix norm. A monotonic norm on Rn is any norm I1" on

Rn such that for a, b in Rn, ,all _ Ilbhl whenever Ia _ IbI or equiva-

lently if Ilall - II lal II [6, p. 47]. The p-norm for p > 1 is monotonic

[13]. A vector of ones in any real space will be denoted by e. The

identity matrix of any order will be denoted by 1. The nonnegative orthant

i n Rn will be denoted by R+. The abbreviation rhs will denote "right hand

side".

_.A

b4

,..,...... :..-.. :.- .~~~........ . . . .. ..... . ....-... . .. . .. . . .. . ........ .... .... ,- - . .. ;.,....,., ,.., . :)
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2. Linear Inequalities and Programs

We shall first be concerned with Lipschitz continuity of solutions of

the following set of linear inequalities with respect to changes in the

right hand side

(2.1) Ax< b, Cx = d

where b and d are given points in R m and R k respectively, Ae R mxn

that is an mxn real matrix and Ce Rkxn. We shall employ a slight

variation of the condition constant introduced in [8, Equation (6)] for

linear inequalities and programs as our Lipschitz constant for the linear

inequalities (2.1) and subsequently for the linear program (2.18) and the

linear complementarity problem (3.1).

We begin with a simple extension of the fundamental theorem on basic

solutions [5, Theorem 2.11] to unrestricted as well as nonnegative

variables.

Rxn RkXn Rn

2.1 Lemma (Basic solutions) Let Ac Rmn, CERn and pER. The system

(2.2) ATu + cTv = p, u > 0

has a solution (uv) E Rm+k If and only If it has a basic solution, that

is a solution (u,v) such that the rows of A corresponding to nonzero

components of (uv) are linearly independent.

Proof The system (2.2) having a solution (u,v) implies that

(2.3) ATu + cTv= p, (u,v)'>O

has a solution where C is obtained from C by multiplying by -1 those rows

".

. , ; ' . . ',.. '. " , , ", ' . . - " . . " . ; w " " ". " .. " ,' . '. ' .. ,, " . ''...,' o. '-".Z- .-
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of C corresponding to negative components of v. It follows from the

fundamental theorem on basic solutions [5, Theorem 2.11] that (2.3) has a

* basic solution and consequently so does (2.2). 0

We proceed now to establish Lipschitz continuity of solutions of (2.1)

with respect to right hand side perturbations.

2.2 Theorem (Lipschitz continuity of feasible points of linear inequalities

and equalities) Let the linear inequalities and equalities (2.1) have non-

empty feasible sets S1 and S2 for the right hand sides (bI. dI ) and

(b 2 , d2 ) respectively. For each xlC SI there exists an x2 ES2  closest

to x1 in the -norm such that

(2.4) Iax1 - x2110 < i(A C) I -

where 11.11, is some norm on Rm+k

I 1uA +vCI 1 =lI, u > 0
(2.5) (A;C):= S u Rows of A] corresponding to nonzero

elements of are lin. indep.

and II" is the dual norm to 11-11.

Proof We note that V,(A; C) is finite. For if not, there would exist

fixed subsets I and J of {1,...,m} and {1,...,k} respectively and a

sequence {u9 v} such that {Ilu ,v9 } 11 and the rows of C are

linearly independent. Hence a subsequence {(uI , vj )/JIu1 .v Jll} con-

verges to (Ul' J) satisfying ;IA, + jCj = 0, 1151,j 11 = 1, which



V

,7

contradicts the linear independence of the rows of 
AI

1 e 1  2 1
Now l E S Choose x ES which is closest to x in the =-norm.

Thus x2 must solve

(2.6) min lx-x 11. s.t. Ax < b2, Cx =d

* which is equivalent to the linear program

(2.7) min 6 s.t. Ax < b2 , Cx = d2 , x + e6 > x1, -x + e6 > -x
X,6

2 2 2 2 z 2 m+k+2n
Hence (x , 62 ) and some (u , v2 , r ,s ) E R 2  satisfy the following

Karush-Kuhn-Tucker conditions for (2.7)

Ax2 < b2 , Cx2 = d2, 11xl - x2II® = 62

(2.8) u2 (-Ax 2 +b 2) = 0, r 2 (x 2 +e6 2 -x)= 0, s 2 (-x 2 +e6 2 +x l ) = 0

-u2A + v2C + r2 - s2 = 0, e(r 2 s2) = (u2 , r 2 ,s 2 ) > 0

Note that if 0 = 62 = 1ixI x2 11.' then (2.4) is trivially true. So assume

that 62 > 0. It follows from 62 > 0 and r.(x2 +e62 - xl) = 0 and

s(-x2 +e62 +x l ) . = 0 that rjs2 = 0, for j=l,...,n. Hence

(2.9) -u 2A + v2 C + r2 - s 2 = 0, e(r2 +2) = 1, r s2  = 0, (u2, r2, s 2 ) > 0

By Lemma 2.1 it follows that we may take u= (DI > 0 and = (Vo)

I
such that the rows of C] are linearly independent. Hence (2.9) becomes

*.
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2 2 2 2 e~ 2  1 2I-u A +v Cj1l-i =r eS ) 1, U > 0,

Rows of C) un. indep.

Hence by (2.5) we have that

(2.10) < VO'(A; C)v2 B

We now have

.. 1 x2 l= = 62 =b 2u2 + d2v2 + xl(r 2 s2

= .b2u2+ d2v2 + xI (ATu2 _cTv2)

u2(Ax -b2 +b1  b1) + v2 (-Cxl +d2 +dl -dl)

21 2) V22 1"3 (2.11) <u (b " b ) + b(d d )

bl - b2

I- - 21
B*( C)2

-(A; 0) (By (2.10)) 00?: 1 d d2

Note that the Lipschitz constant v 0 (A; C) of (2.4) plays the same

role as that of the norm of the inverse of a nonsingular matrix of a system

of linear equations. This fact can be seen more clearly from the following

- corollary to Theorem 2.2. Note also that we can get a sharper result by

replacing (bI -b 2), in (2.4) and (2.11) onward, by (b1 -b2)+.

2.3 Corollary (Lipschitz continuity of feasible points of strongly stable
"'.. mxn RkXn
linear inequalities) Let AeRn and CcRn be such that

....-..-............-,,- ....-....... ... ....... .-..... ,-..............-.,............... ..... .....-. ,-..................... ......-..
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Rows of C are linearly independent and
(2.12) IAx < 0, Cx = 0 has a solution x

Then the linear inequalities (2.1) are solvable for all right hand sides

(b,d) ER m+k For each xI in the solution set of (2.1) with rhs (b, d

there exists an x in the solution set of (2.1) with rhs (b2 ,d2) such that

(2 .13) 1,l - 2 11 . < -B A C l b1 "b 2 11 0

where II. is some norm on Rm+k and

IuA +vCII 1

(2.14) ji(A; C):= max 1  vi }
(u,v)cRm+k * u > 0

Proof That (2.1) is solvable for any right hand side (b, d) follows from

solving Cx = d for xd for any given d and then taking as the desired

solution xd + Xi for sufficiently large positive X, where R solves

Ax < 0, Cx = 0. The rest of the proof of the corollary is similar to the

proof of Theorem 2.2, except that u2 and v2 are not decomposed into

O and (v0]. The finiteness of ji(A;C) of (2.14) follows from the

boundedness of the feasible region of (2.14). For it were unbounded, there

would exist {ui , vi} such that {11ui l , v' and consequently an

accumulation point (i, ) would exist such that

(2.15) ZA + C 0, u > 0, (u, ) # 0

This however would contradict the linear independence of the rows of C if

iii:" ':
"
::'-. : .- - i'.: i' -i'-::-'i '" : : ''.. i . ."...-". . - . i': . - ii: --T:. .: -,. .:' -- -:'-- .:'-" --. .
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u = 0, and if 0 would contradict the solvability of Ax < 0, Cx =,

. because then 0 =Ax + Cx --Ax < 0. 0

Note that if A is vacuous and C is a nonsingular square matrix, then

(2.16) (;C) = max {IIvIIlIjIIvCII1 = 11 - 11I(CT)-II= li c- II
vER

k

WThis was already pointed out in [8, Remark 2]. Note also that (2.14) can

be written in the equivalent form

(2.14) - maxu II -z < uA + vC < z
(2.14-) (A; C) = max lull -v~(z Rm+k+n " u > 0, ez

This is a difficult convex-function maximization problem on a polyhedral set

which is closely related to the NP-complete problem of a norm-maximization

problem on a polyhedral set for positive integer 0* [9]. However for

B* = -, that is 8 = 1, it can be shown, as in [9], that (2.14') is in P.

In addition a good bound for j3a(A; C) for any 0 can be obtained by solv-

ing a single linear program [9]. When C is empty and 8 = =, (2.14')

degenerates to the following linear programs

(2.17) (A;*) = max {euJ-z<uA<z, u>O, ez=l}

(u,z)cRm+n

- We note that the Lipschitz constants pi(A; C) and ji(A; C) which play

. the role of the norm of the inverse of a nonsingular matrix of a system of

linear equations, can also be used, just as the norm of the inverse can, to

obtain a bound on the error in an approximate solution in terms of the

residual. Thus if we assume for the moment that A is vacuous and that C

J.' . * . .

.'a%

SZ
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is nxn and nonsingular, then 4; = Cl by (2.16). Thus (2.5)

and (2.13) are the extensions to a system of linear inequalities and

equalities of the following simple Lipschitz continuity property of Cx = d

"" ~iIxI x2 1. _ II c' 11. lid dI - 1 adz

where x = C-Id I and x2 = C'Id2. Since lic'lll, can also be used to

estimate the error in an approximate solution x to Cx1  d in terms of

its residual IICx-dll. as follows

-1 1

llx- x 11= IIC'(Cx- dl)Ill._ IIC'l.IlCx-dl l.

it follows that the Lipschitz constants i6(A; C) and ji(A; C) can be

similarly used to give an estimate on the error in an approximate solution

to (2.1) in terms of its residual. In fact this estimate was given in

[8, Theorem 1], but it also follows very easily from Theorem 2.2 above as

follows.

2.2' Theorem (Error bound for approximate solution of linear inequalities

and equalities) Let the linear inequalities and equalities (2.1) have a

nonempty feasible set S1 for the right hand side (b , d). For each x

in Rn there exists an xI E1 such that

1 (Ax - b1 )4I11x- xI (11 v (A; 0) I
Cx-B

where LB(A;C) is defined by (2.5).

Proof Since for each xe Rn

4"5

....... ~ ~. . , . .. . x .. .-: : -, . . :.,, , , .. -. . . . :
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Ax < b1 + (Ax-b 1) , Cx = I + (Cx-d 1 )"

it follows by Theorem 2.2 that there exists an x I S such that the

conclusion of the theorem holds. 0

A similar error bound holds for strongly stable linear inequalities

which is based on (2.13).

It is interesting to note that Theorem 2.2 is stronger than Theorem 2.2'

in the sense that the latter follows directly from the former as was demon-

strated above, whereas the converse holds with the additional assumption that

the norm 11-11, is a monotonic norm [6, 13). Thus to obtain Theorem 2.2

from Theorem 2.2', we have from Theorem 2.2' that for each xI S1  there

exists an x2 E S such that

x2 1(Ax I- b 2)+ b -b
-lx2 -xl=<i (A; C) 12 < ji(A; C).--."Cx I - dI  d

where the last inequality follows from

k (Ax 1 - b2) = (Ax 1  b2 +bl bI)+< (bI-b 2 )+< 1b-b 21

ICx1 - d21 I ICx - d2 + d' - d1 Idl - d2 l

and the monotonicity of the norm 11.11.

Next we establish the Lipschitz continuity with respect to right hand

• side perturbation of solutions of the linear program

(2.18) max px s.t. Ax < b, Cx = d
x

. .. ,. ....
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where peR n and A, b, C, d are as in (2.1). For the Llpschltz contin-

uity results for linear programs we have to restrict the norms employed to

monotonic norms [6, 13] and have to drop u > 0 from (2.5).

2.4 Theorem (Lipschitz continuity of solutions of linear programs with

respect to rhs perturbation) Let the linear program (2.18) have nonempty

solution sets SI and S2 for right hand sides (bl, dI ) and (b2 , d2 )

4-respectively. For each x1ES there exists an x2  S2 such that

(2.19) fxI _ x2I] < V (A; C)b b

d1 -d2

where ' i is some monotonic norm on Rm+k and

IluA+vCII 1 = 1

(2.20) v (A; C):= sup Rows of (A) corresponding to nonzeroIvIIB*I l"

olef (. are lin. indep.
4-.]

.4 Proof Given x IE Sl , let

. Ax = b1 , Ax < b1

where I u = {J,2,. ,ml. Fix any i2 ES and let I I Su1 2  where

Il l:= {i I AiR 2--b 2, 192:= 1i'A 2 < b2

= -2
Since x x satisfies the system of constraints

.U.-

"-.'''. ' ,-.'''..-'''.. '..' .' ,;,'L .''',,:.. ',,' "..:" '' L.' . . . ,"". -"..-"-.-" .... '.",- -",.-. . "-"-". ... ".,.,".'
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(i) A1 x =b2

(2.21) (11) A1 x< A1 x, A, x < b1
2 2 2 2

(iii) Ax~ < 2, Cx d2

it follows that (2.21) is nonvacuous. Let x 2  be a solution of

(2.22) min I~x-x JJ s.t. (2.21).

Since (2.22) is a convex program, x 2remains optimal after we remove any

number of inactive constraints. For each I I 129 at least one of the two

constraints of (2.21) (11) is inactive because A j2 < b 2. So we can

remove one inactive constraint for each I 1 thus obtaining

(2.23) J1k2  X11C mi = 1x-x Ill s.t. (2.24) =min I~x-x 1 IL s.t. (2.21)

where

(1) A, x=b2
1 11

(iia) AKi2 ,Ax
(2.24) (ib 2

Cb ALx < bL

(iic) A x < b2,~ Cx d2

where Kul L 1 29 Kn L . So 1 uKuLuJ = {1,22,...,ml and 11, K, L

and J are all disjoint. On the other hand, since

x1 =b 1-b 2 + 2 >b1 b2 -2AK bK K bK-bK bK +Akx

it follows that x x1  satisfies the following system

....................
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() AI x b

(iia) bI - b2 + A- 2 < A
K K AKx AKx

(2.24') (1b) ALx < bi

(ic) A x< b, Cx = di

It follows by (2.23), (2.24'), Theorem 2.2 and the norm monotonicity that

K AI K K

Iix Ix 1 J ua AL [ 1 b1  .b2

< (A; C)1
dil d2

where H = 1 ULuJ is the complement of K.

It remains to show that x f S2 . Since xl Si, we have by the

Karush-Kuhn-Tucker optimality conditions that

T 1 Tv1  1

(2.25) Aiu I + = p for some u > 0 and some v

Since both and x satisfy (2.21) it follows that

px2  u1A x + v1Cx2 > uA2 + vICx2 = -2

II

and the proof is complete. 0

2.5 Remark We note that Cook-Gerards-Schrijver and Tardos [3, Theorem 5]

have a similar result to Theorem 2.4 for integer entries for A but without

:A.,
;°°. - ~
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the equality constraints Cx = d. However their Lipschitz constant is big-

ger than or equal to our Lipschitz constant. In fact their Lipschitz con-

stant nA(A) is only for 0 = 0, where AA is the maximum of the absolute

values of the determinants of the square submatrices of A. We formalize

the relation between the two Lipschitz constants as follows.

2.6 Proposition For integer A, v.(A; M) nA(A).

Proof For any u, for which IluiAIlll = 1 and the rows of AI are lin-

early independent, we can assume that

A, = [B N]

where B is a nonsingular square submatrix.

Let q:= uIB, then I1q1I1  I(uiA 1II1 = 1 since ujB is a subvector

of u AI. It follows that

IIU,111 = 11(BT)-1qlI < ll(eT)'1 ill 11qll I . I(BT)'IIIl = max I Ihiji
i lj

where hij is the (ij) entry of B"1  (13, p. 22]. Hence

":::' 1 '+jB ,
h = -d-et-- (-1) j

where Bt, is the (i,j) cofactor of B which is the determinant of a

square submatrix of A. Hence

IBi <A(A).

.2 If A is integral Idet BI > 1 is an integer, hence

1,.

...........................................................
=4. .. 4. ... ' * *-
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11jIIB1I: <A(A).Idet BjI§ i

Consequently

IIuJIII < 11t(BT')-III = max I Ihiji < nA(A).
i j

Since u1 is arbitrary, we have

v.(A;*) z sup {IIuiIIlIIIuIA1ItI -1, rows of A1 , n. indep.lc nA(A). 0

-; 2.7 Remark Note that it is not true that solutions of linear programs

are Lipschitzian with respect to perturbations in the objective function

coefficients as evidenced by the following simple example:

(2.26) max (I +6)x, + x 2  s.t. X1 + x 2 1l1 (x,x 2) 0

The solution to this problem is:

/(1,0) for 6>0
x~s) \(0,1) for -1 <6<0

Hence

-Cli Ix() x-6IIand hence x(6) is not Lipschitzian with respect to 6.

.00

4

.. Ap



-18-

3. Linear Complementarity Problems
In this section we shall employ the Lipschitz constant (A; C)

developed in Theorem 2.2 for linear inequalities and equalities to obtain

a Lipschitz constant for linear complementarity problems with matrices

that have positive principal minors [4] or which are hidden Z-matrices

[14]. We will show by means of Example 3.4 that solutions of linear

complementarity problems with a positive semidefinite matrix are not

Lipschitz continuous with respect to right hand side perturbations.

We consider the linear complementarity problem (M~q) of finding an

x in Rn such that

(3.1) Mx + q > 0, x > 0, x(Mx+q) = 0

where MERnxn and qERn. Note that given Jc{1,...,n}, any solution

of the following system of 2n linear inequalities and equalities

M.L i x + qj> O , xj 0 , j eJ

(3.2) K x + qj =0 , x. >0, jd j

is a solution of (M,q). For Jc l,...,n} let Q(J) denote the set of

all q vectors for which (3.2) has a solution. It is easy to verify that

Q(J) is a closed convex cone. In fact it is called a complementary cone

of (M, q) [11, p. 482]. It is also obvious that U Q(J) is the setJc{l,... .,n}

of all q for which (M, q) is solvable. Define

"* (3.3) o(M):= max P3 ;M-0, 1... ,n 13

.... .... ....~ - . .. .. " " . . . " ' ' ' ' ' ' :
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where is defined by (2.5) and J is the complement of J in {l,...,n}.

We shall prove (Theorem 3.3) that o(M) will serve as a Lipschitz constant

for solutions of (M, q) when M is a P-matrix, that is a matrix with posi-

tive principal minors [4, 1], or more generally (Theorem 3.2) for perturba-

tions of q such that the linear complementarity problem is uniquely solvable

4 along the line joining the original q and the perturbed q. We will also

establish Lipschitz continuity for solutions of (M,q) when M is a hidden

Z-matrix (Theorem 3.5). We begin with a lemma. A related result to this

lemma appears in [12].

3.1 Lemma Let q1  and q2  be fixed distinct vectors in Rn and let

q(t):= (1- t)q + tq2 for t e [0,1]. Assume that (M, q(t)) is solvable for

tE [0,1). Then there exists a partition 0 = t0 < tI < ...... < tN = 1 such

that for 1 < 1 < N

(3.4) q(ti. 1 ) E Q(Ji), q(t I ) E Q(Ji) for some J c {1,...,n}

Proof Let

T(J):= {tJtE [0,1, q(t) E Q(J)1

for Jc{l,...,n}. It is easy to see that T(J) is closed and convex and

hence it is a closed interval which may degenerate to a single point or to

the empty set. Since (M,q(t)) is solvable for te[0,1] it follows that

[0,1) c U T(J)
Jc{l,...,n}

Let

I L:= {[ U 1 ).........[ JK' UK)}

"--"' ;,,'F: ." " '
.*

" " ." " " ""'" " " "" " "" " " " """ ":" " " . . ' '. . . . . .. . .

,; ,""," ,-, ",', .' ,t.," ,. ,,, , ,. ., , • • .. -. ', , ', ." ." ., .- . . . . . .. . . .- " • .. ' - ., .. .. .. .- . " -- . - - . .. .. .' • , . .- .. '
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be the set of maximal intervals in {T(J)lJc{l,...,n}}, that is there is no

other interval T(J), Jc{l,...,n} that properly contains [ i , u i ]. By re-

moving duplicates from L if needed, we can assume that [Z.ui),...,[L K.uK)

are distinct and that Xi < £2 < ..... < £ K. Since each tE [0,1] belongs

T(J) (for some Jc{l,...,n}) which is either in L or contained in some

interval of L, we have that

K
[0,1] c U [i, usi

1=1

Thus < ui., otherwise (ui. , ki) would be an uncovered gap of

[0,1]. Also ui. I < ui , otherwise [ i s u1i  would not be maximal because

it would be contained in [Zi 1l ui .
Hence t1 -0, k1_ <Li<u_ 1 <u and uK l. Let

O=to< t i < ..... <tN= I be the sorted numbers of {Z1,ul, 6 2,u 2 ,...,K, uK)

with duplicates removed. Then each interval [ti I I ti]  is contained in

some interval T(Ji) in L and so

q(ti-l) EQ(Ji) and q(t i )eQ(Ji) 0

We establish now the Lipschitz continuity of linear complementarity

problems with unique solutions along the line segment

q(t):= (1- t)qI + tq2 , tE [0,1).

3.2 Theorem (Lipschitz continuity of uniquely solvable linear complementarity

- problems) Let q1  and q2  be points in Rn such that the linear comple-

mentarity problem (M,q(t)) with q(t):= (1 -t)qI + tq2  has a unique solu-

tion for each tE [0,I]. Then the unique solutions xI of M, qI) and

of (M, q2 ) satisfy

%r %.- . . " "" .. -' . .. . . "." . . . .-
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wh Ie _ x 211. < oB(M)11q l -q2 11

where a(M) is defined by (3.3)

Proof There exist 0 = to < t1 < ..... < tN = 1 with properties stated in

Lemma 3.1. Let x(ti) be the unique solution of (M,q(t1 )). Since for

1 < i < N, q(ti. I) and q(tI) belong to Q(Ji) for some Jic{l, ,n},

there exists a solution Y(t. 11 ) of (Mq(t.11 )) such that by (2.4)

and (3.3) it follows that-p.

IIX~t) -Y , I,, S U Ii Iq(ti)- q~ti-l)11llx~~~~tl)I " ti l l -= i; Mji

(3.5)

< a(M) (ti -tt. 1)1q] -q2118

where is the complement of J . in {l,...,n}. Summing up for i=l,...,N

*: gives
J" 11 lx(ti)'Y Ati'l-l a=(M) Ilql-_q2 Ila

Since (M,q(til)) has a unique solution, y(t1_) = x(t11 ). Hence

N 12

Ilxi-x 2ll <ii__ IIx(ti)-x(ti_l)Il= : . (M) I 1 -q 0

Since for P-matrix M, the linear complementarity problem (M, q) has

a unique solution for each qE Rn [10], the following theorem is an
immediate corollary to Theorem 3.2.

3.3 Theorem (Lipschltz continuity of solutions of linear complementarity

problems with P-matrices) Let M be a P-matrix. For each q and q2

in Rn the corresponding unique solutions x1 and x2 of (M, ql) and

(N, q2 ) respectively, satisfy

.. . . ........... ...-.. .- . ..... .
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l1 I _ x 2 11. a (M) Iq1 -q211

where aa(M) is defined by (3.3).

The following example shows that solutions of positive semidefinite

linear complementarity problems may not be Lipschitzian.

3 .4 E x a m p l e q 2 e > q
M: , --1, --(, e>O

q(t) = , t 0 = 0, tI = , t 2 = 1

Jl= €' 2 = {1,2}

q(tO) and q(tl) are in Q(JI) --{qER2 ql<0, q2>O}

q(tI) and q(t2 ) are in Q(J2) = 2

yt O ) = X(to) =1
C - 2Et0

X(J
x(t2) =

Hoee (35 as eqie
In order to satisfy (3.5), y(tl) must be .However (3.5) also requires

that x(tI) = . Hence x(tI) # y(tl) and the proof of Theorem 3.2 fails.
* jN."



-23-

ill l~X( t2 -X(t°oI lm -
In fact since lim =im too0, the solutions of the

Infat ine im 2 q1  TE
e-,-O j q jj0  -0

problem cannot be Lipschitzian.

We conclude by showing that other linear complementarity problems which

can be formulated as linear programs [7] have solutions which are Lipschitzian

with respect to their right hand sides as a consequence of Theorem 2.4.

In particular if M satisfies the condition of Theorem 2 of [7] with c 0,

that is

(3.6) MZ1 = 29 rZI + sZ2 > 0, (r,s) 0

for some n x n Z-matrices Z and Z and some n-vectors r and s, then

a solution to such a linear complementarity problem is obtained by solving the

single linear program

min px s.t. Mx + q 0 0, x > 0

where p = r + M Ts, and hence p is independent of q. In the terminology of

[14], such a matrix M is called a hidden Z-matrix and is a generalization of

Z-matrix which includes such matrices as those with a strictly dominant diag-

onal, and all matrices of Table 1 of [7] except cases 12 to 14.

3.5 Theorem (Lipschitz continuity of solutions of linear complementarity

problems with hidden Z-matrices) Let M be a hidden Z-matrix, that is M
1 2  Rn fo1hc n (q 2

satisfies (3.6). For each q and q in R for which (M,q l ) and (M,)

are solvable, there exist solutions x1 of (M, q ) and x2 of (M, q2) such as

.iL

11xl x2 jj <_ B[ ;€ jl-q J

e',;: -w~~~~~~~~~~~~~~~~~.-i... ,; . ......... . . T . .... '.. " ..... ;........'.........' '. -- " ' " '''"
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where 11-11, is some norm on Rn  and v i is defined by (2.20).

Proof By [7], there exist solutions of (M, ql ) and (M, q2) which are

obtained by solving the linear programs

min {pxIMx+qI >0, x>0}

min {pxlMx+q 2 0, x>0}

where p is a fixed vector independent of q and q The conclusion of

the theorem follows immediately from Theorem 2.4. 0

We note that for the case of a strictly diagonally dominant and hence

positive definite matrix M, (M, q) is uniquely solvable for each q in

Rn. and the Lipschitz continuity of the solution follows also from either

Theorem 3.5 or Theorem 3.3.

%%

.-.
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