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Stochastic Analysis of Drought Phenomena

Preface

1.,

The study of extreme hydrologic events is of great importance because of

their socio-economic impact. In fact, a great deal of time and effort has

been invested in predicting the occurrence and quantifying the effects of,

hydrologic extremes. The effort expended in studying hydrologic extremes has

been disproportionally focused on flood phenomena in comparison to the efforts

made in studying droughts. However, the increasing demands on available water

resources make the quantification and prediction of drought essential to water

resources planning.

Although droughts have not been studied as extensively as floods, there is

a growing body of knowledge on the subject.' The purpose of this presentation

is to discuss the current thinking on analyzing droughts, and to relate this

analysis to the more frequently use and comnonly understood flood frequency

analysis. The presentation is divided into six sections. Section 1, Identifi-

cation of Drought and Low-Flow, discusses the factors which can be used to

identify these extreme events in the hydrologic record. Section 2, Stochastic

Models Based on Introductory Probability Theory presents an introduction to

the use of probability and statistics to model hydrologic phenomena. Section

3, Autoregressive Models for the Streamflow Process, a particular type of

stochastic model is presented and example applications are given. Section 4,

Drought Analysis, the stochastic models developed previously are applied to

the drought analysis problem. Section 5, valuation of the Autoregressive

Model, discusses the validity of the autoregressive model in view of some of
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the research literature which has criticized its use. Section 6, Concluding -:

Remarks, points out some of the advantages and disadvantages inherent in using

stochastic hydrologic models.

This presentation focuses on the stochastic models of the hydrologic

processes and avoids discussing the problems associated with modeling

socio-economic demands on water resource projects which are an integral part

of identifying drought. This approach is taken to simplify the general

presentation of stochastic models and because the stochastic models of the

socio-economic processes are of less interest to the hydrologist.

. Consequently, the general assumption is made that the demands on the water

resource system are known and that the primary concern is with the stochastic

modeling of the inputs (streamflow, rainfall, groundwater storage, etc.) to

*" the water resource system.

Given that the discussion is focused on the stochastic model of the

hydrologic process, the question is how do stochastic models differ from the

models that the hydrologist usually employs in practice? As will be restated

* throughout the discussion, the probability models currently used to perform

flood frequency analysis can be extended with a few additional concepts to

develop models for the analysis of droughts.

vii



Section 1

Drought Identification

1.1 Drought Definition

A major problem in analyzing droughts is separating their occurrence from

. the hydrologic record, i.e., defining their occurrence. The difficulty stems

from the fact that drought occurrence depends on the interaction between the

natural occurrence of water (hydrometeorologic factors) and the intended use

of water (operational use).

As an example of this difficulty, consider the perception of drought from

the viewpoints of the meteorologist, agriculturist and the hydrologist. The

meteorologist views drought as below normal precipitation in a region; the

agriculturist, as a soil moisture deficit during the growing season, the

hydrologist, as below normal streamflow.

Even within each of these disciplines, the perception of drought varies.

Consider the regional variability of meteorologic drought. Dracup et. al.

(1980) report drought periods are considered to occur after six rainless days

in Bali, and after two rainless years in Libya. The soil moisture deficit

which corresponds to agricultural drought is a function of crop type as well

as meteorologic conditions. The intended use of the water is a critical

factor in hydrologic drought. As Beard and Kubik (1972) point out, streamflows

which are considerably below normal for short periods (intense droughts of

short duration) may be very significant in areas where demand is a small

fraction of the normal supply but of little significance where ample storage

.... ..... ...... ,....-...............................- ... ,.



is present. On the other hand, long periods of slightly below average

streamflow (long duration of low intensity) may be significant to uses which

depend on storage but of little significance to small fraction users.

Thus, drought definition depends strongly on the particular focus of the

analysis. A single characterization of this phenomenon is not possible.

1.2 Drought Analysis Tasks

In view of the different perceptions of drought, it is probably contentious

to propose a general set of tasks to be followed in drought analysis. However,

as a general point of discussion, the tasks proposed by Dracup et. al. (1980)

are general enough to be used by all the disciplines mentioned and a good

starting point. The following is a summary of the major points described in

their article.

Drought analysis is divided among four tasks. The first task is to

determine the nature of the water deficit. The water deficit refers to the

choice of analyzing either precipitation, soil moisture or streamflow. Of

course, a combined approach in drought analysis could be taken where all these

phenomena are considered. In this presentation, a distinction is made between

*i the cause of drought (precipitation) and the impacts due to drought (soil

in impacts. For that reason, the analysis is restricted to an individual

deficit such as streamflow. However, either the combined or individual

approach is valid.

The second task is to identify the integral period of time for the

2
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analysis. The integral period of time is the time increment; hour, day, month,

season, year, etc., over which the hydrologic data is averaged in the drought

analysis, and is one of the two factors which determine the number of drought

'. events in the hydrologic record (the truncation level is the other factor).

An obvious effect of increasing the integral period length is the corresponding

loss of information about the hydrologic process. For example, seasonal flows

which are successively lower or higher than normal are not necessarily

recognized when employing an annual integral period in the analysis.

The choice of the integral period distinguishes between the generally

accepted definitions of extreme streamflow values, high-flows and floods on

the higher end of the streamflow spectrum and droughts and low-flows on the

lower end of the spectrum.

Low-flows and floods, are generally considered to be instantaneous

4 measures of streamflow. For example, a flood is described in terms of a peak

discharge, say the 100-year flood. The 100-year flood's peak discharge has a

one percent chance of being equaled or exceeded in any given year. The term

"one percent chance" is a probabilistic term which will be fully discussed in

Section 2. Low flows are usually averaged over a number of days. Even though

this is not technically an instantaneous measure, low-flows were grouped with

floods since they are both analyzed in a statistically similar manner. For

example, a common indicator of a low-flow event is the Q1O (the seven-

day ten-year, low-flow). By definition, there is a ten percent chance that

the mean daily flow volume for seven consecutive days will be less than the

10
Q in any one year. on the other hand, high flows and droughts are

measures of streamflow volume which are recorded on a time interval of months

or years.

" --r. e
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A third task is to establish the truncation level which is employed to

distinguish droughts from other events in the hydrologic record. The

truncation level reflects the socio-economic demands on the available water

supply. For example, the mean annual streamflow (or some fraction of the

mean) might be used to represent the expected demand of a muncipality on the

available streamflow (see Figure 1.1). However, the demand need not be

constant and can be represented by some time varying truncation level (See

Figure 1.1). The assumption is made for the remainder of the discussion

(unless it is stated to the contrary) that the truncation level is known, and

for the sake of simplifying the discussion, is a constant value.

As can be seen from Figure 1.1, periods of flow below the truncation level

are identified as drought or low-flow periods and flows above the truncation

level as periods of high flow or flood periods. In fact, the separation (and

symmetry) between the definitions of low-flow, drought, high-flow and flood

can be seen quite readily in Figure 1.2 by combining the concepts of integral

period and truncation level.

As a final task, a regional analysis approach to the problem is selected.

Limiting the analysis to a single site is generally not feasible since the

hydrologic record at a single site is too short to provide adequate estimates

of drought statistics. The local hydrologic record can be extended in a

regional analysis by considering the interrelationship between records covering

a broad topographical area. The delineation of the study area is based on

,. either zeomorpholoaic or statistical homogeneity factors. Geomorphologic

factors which delineate an area include topography (mountain ranges are an

obvious factor), local storage (lakes) and soil properties. In the statistical

approach, sites are grouped based on similar statistics of the hydrologic

4
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record. At this time, delineating the areal extent of a drought based on

Jthese methods has not been adequately investigated and is an area of needed

research.

The tasks defined by Dracup et. al. seem reasonable. The most difficult

Ito apply is regional analysis. Regional analysis in flood studies has been

applied successfully; however, the same cannot be claimed for drought analysis.

In Section 2.5, the problems involved in performing a regional analysis in

drought studies are explored.

* In conlcusion, a drought can be identified from a hydrologic record based

on the analysis tasks described. The major problem to be addressed is,

therefore, to build a model of the hydrologic process, say a streamflow model,

to predict, or at least estimate, the potential severity of future droughts,

assuming that the truncation level and integral period are specified. Thus,

the building of a stochastic model of the streamflow process is the desired

end product of the subsequent discussion.

1.3 Summary

Drought occurrence is a function of socio-economic and hydrometeorologic

factors. The combination of these factors make the identification and

quantification of drought phenomena a difficult problem. The work done by

Dracup et. al. (1980) has been referenced as a starting point for the

identification of drought. Based on this work, a drought is identified in the

N: hydrologic record based on four analysis tasks. The tasks determine the nature

of the water deficit, the integral period, the truncation level for the

analysis and whether or not regional analysis is to be applied. Consequently,

."
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* recognition of the fact that drought is defined in conjunction with socio-

economic considerations, as embedded in these tasks, is a key concept.

Consideration of socio-economic factors are extremely important in . .

accomplishing the above tasks. However, the inclusion of socio-economic

variables into drought analysis is beyond the scope of this discussion. Thus,

the discussion of stochastic analysis will presume that the first three tasks

have been completed.

.
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Section 2

Stochastic Models Based on Introductory Probability Theory

2.1 Introduction

The purpose of this section is to introduce stochastic models of the

streamflow process by relating them to the probability models used in flood or

low-flow frequency analysis. The advantage to this approach is that hyrolo-

gists often use frequency analysis and it is described in most introductory

hydrology texts.

The discussion begins by delineating the difference between stochastic and

probability models on the one hand and deterministic models on the other hand.

,* Again, the hydrologist (and the engineer in general) is much more familiar and

comfortable with deterministic models than with stochastic models. The

comparison of these two categories of models is thus useful since it develops

a framework in which the discussion can lead the hydrologist from models which

are more commonly used, deterministic models to models which are less commonly

used, probabilistic models used in frequency analysis, and finally; to models

which are not well understood and used sparingly, stochastic models in drought

5, I,analysis. "

The probability models in low-flow and flood frequency analysis are related

to streamflow stochastic models by recognizing that the former are models of I
independent random variables and the latter are models of dependent random

variables. The relationship exists because even though the mathematical theory

for independent random variables is much simpler to understand than that for

dependent random variables, concepts are involved which are common to both

9



theories. For example, the concepts of probability or exceedance frequency,
.4..

estimation and probability distributions are necesary in describing either

independent or dependent random variables. Consequently, a detailed discussion

of probability models for independent random variables is included as a

stepping stone to the description of stochastic models.

However, the major difficulty in modeling dependent random variables and,

in turn, developing streamflow stochastic models, is incorporating dependence

between random variables into the mathematical theory. The extension of the

technique for building mathematical models for dependent random variables by

including dependence between random variables is theoretically simple, but

leads to a very difficult estimation problem.

The discussion ends by describing how "time series" analysis uses

regression techniques to solve the difficult estimation problem associated

with modeling dependent random variables. The final step of including

dependence into the relationship between random variables by regression methods

is the essential concept necessary to build a stochastic streamflow model.

2.2 Stochastic vs. Deterministic Models

Stochastic and deterministic models are used extensively in water resources

engineering. Although our primary interest focuses on stochastic modeling, it

is instructive to examine how the two approaches differ by means of an example.

Consider the problem of designing a system of reservoirs that is needed to

meet the water supply requirements of a growing city. In order to estimate

the required storage capacity of the reservoir system, the estimates of the

future inflows to and demands on the reservoir system have to be estimated for

the system's operating life.

10
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Obviously, estimating the future inflows and demands for the reservoir

system is a rather difficult problem. Our primary interest focuses on being

able to predict the likely inflows. As previously explained in Section 1.3

the socio-economic aspects are beyond the scope of this discussion. :.

A possible means of determining future inflows (only theoretically

*- possible) would be to create a mathematical model, based on the fundamental

laws of classical physics, which simulates future weather conditions. The

results of the model prediction coupled with a model which simulates the

* movement of precipitation through the earth's hydrologic cycle (a watershed

model) is then used to predict future streamflows. Unfortunately, the present

day technology does not exist to produce accurate long-term weather projections

because of the complexity of the earth's atmospheric processes. Currently the

best physical models of the atmosphere can make predictions on the order of a

few days. However, if this type of model existed, then the meteorologic

conditions and thus the inflows, to the reservoir over its economic life would

be predicted a-priori (i.e., predicted before it is observed). This type of

reservoir inflow model is deterministic. A deterministic model attempts to

predict the value of some variable, in this case streamflow, before the

variable can be observed.

Deterministic models of reservoir operations or watershed dynamics are

com monly applied in water resources engineering. For example, given the

future inflows to a reservoir system and the operating characteristics of the

system, the resulting reservoir outflows can be predicted a-priori with a

reservoir simulation model.

Since prediction of future streamflows by deterministic methods is an

i11
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extremely complex task, simplifying assumptions must be made to estimate the

potential inflows to a reservoir system. A common approach is to presume that

the future inflows are identical to the past inflows. A basic difficulty with

this approach is that it is highly unlikely that the sequence of observed flows

will be repeated in the future. An alternative to this approach Is to assume . ,',

that the past record flows are observations of a random or stochastic process.

A random process is one In which the value of future occurrences (lets say

streamflow) cannot be predicted with certainty. If the underlying probability

laws governing the random process can be identified, then the probable inflows

to the reservoir system might be estimated (a more in depth discussion of

random variables and their corresponding probability laws is given in

subsequent sections). This approach has the advantage over the more

traditional approach in that the future sequences of inflow to the reservoir

are not assumed to be identical to the historic flow sequence; and also, has

the advantage of being a great deal simpler than the deterministic model

alternative.

Of course, a price has been paid in viewing the streamflow process as a

random process. First, a means for inferring the underlying probability law,

or equivalently, developing a stochastic model, governing the streamflow I
process must be developed. Second, the stochastic model of the streamflow

-! process is not able to predict future streamflow, but only the relative

likelihood that future streamflows will take on certain values. 7
Consequently, the difference between deterministic and stochastic models

is that the predictions of a deterministic model are in terms of a single value

(e.g., the streamflow volume next year will be a 1000 acre-feet) whereas

prediction of a stochastic model are in terms of the relative likelihood that

12
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streamflow will take on certain valves (e.g.,there is a ninety percent chance

that next years streamflow volume will exceed 1000 acre-feet).

The engineer is much more familiar with the deterministic than the

. stochastic approach. This may lead to the misconception that the deterministic

approach is superior. This certainly is not true in general. For example,

the accepted view of nature in the science of quantum mechanics is decidedly

stochastic. In the water resource sciences, there are advocates of both

approaches.

Stochastic models in water resources engineering are used to simulate

processes which can be categorized as independent random variables or dependent

random variables. In the case of streamflow analysis, annual floods and

low-flows are usually assumed to be independent random variables. Processes

represented by independent random variables are independent of any other

process. For example, if the probability that the peak streaflow equals or

exceed a certain value in any given year is independent of conditions of the
.

previous years, or any other factor related to streamflow behavior, then the

peak annual streamflow can be considered an independent random variable.

Processes that are represented by dependent random variables may be related

to a number of factors. For example, if In a previous month the total

streamflow volume is below normal then there is a good chance that the current

month's streamflow will also be less than normal. The reason for this is that

the available groundwater storage is a major factor in maintaining streamflow.

Consequently, if the groundwater levels are depressed causing below normal

streamflow in a previous month, it is quite likely that these groundwater

levels will not recover in time to produce normal streamflow in the current

13



month. Consequently, monthly streamflows might be characterized by a random

variable whose value is dependent (or conditional) on the previous month's

value. Of course, this type of dependence is extremely important because

successive monthly volumes below normal or below the truncation level can

cause a drought.

2.3 Independent Random Variables

2.3.1 Probability

The concept of probability is thoroughly discussed in numerous books on

probability and statistics (for example, Benjamin and Cornell, 1970). For the

purpose of this discussion, probability is associated with observation

frequency. For example, consider that peak annual streamflows are the

obeservations of an independent random variable. After an extremely long

*- period (longer than would be normally available from historic streamflow

records), an estimate is made of the frequency with which streamflow peaks

have certain values. In particular, lets say, that fifty percent of the _

observed streamflow peaks were greater than 1,000 cfs. Thus, there is the
'4o

temptation to claim that the probability is 0.5 that an observed peak annual

streamflow will be greater than 1,000 cfs. Equivalent statements would be

that a flow of 1,000 cfs has an exceedance frequency of 50 percent, or that on

-the average one out of every two peak annual flows will exceed 1,000 cfs.

By convention the probability that an observation of a random variable

will take on a value between its maximum and minimum values is one. Thus the

probability that a random variable, X, is greater than a certain value, x, is

equal to one minus that value. The mathematical notation for this is:

14
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P iX > x= 1 - P iX g x] (2.1)

where: P i > x] = exceedance probability .P

P [X 4 x] = nonexceedance probability.

..9'

.;

Technically speaking, unless the streamflow record is infinitely long, the

observation frequency is only an estimate of the true probability. The

estimation of probabilities associated with the values of random variables is

a significant problem for the water resources engineer. (Unfortunately, the

classic statistical techniques used to determine the reliability of probability

estimates are of little use to the water resources engineer because hydrologic

records are relatively short, on the order of 50 years.) Consequently.

observations frequencies estimated from these short records may not give very

good probability estimates. The problem of estimation is thus extremely

important and will be continually emphasized throughout this discussion.

2.3.2 Probability Model Inference

-A

A probability model (whether or not it pertains to independent or dependent

random variables) defines the probability that a random variable will be

observed with values between certain limits. Probability laws are usually

described by a mathematical function which in this discussion is referred to

as a probability or stochastic model. A major step in the analysis of random

processes is to select the appropriate probability model.

There are two major tasks involved in selecting a probability model for an

independent random variable. The first task is to estimate probabilities

based on observation. The second task is to determine the probability model's 'A
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functional form based on the probabilities estimated in task one.

The methodology used for probability estimation is best described by an

example. Consider the observations of annual streamflow volumes of the West

Branch of the Oswegatchie River near Harrisville, New York shown in Table 2.1.

The volumes are grouped in increasing intervals of 50 acre-feet, graphically

represented as a histogram (Figure 2.1). The fraction of the total number of

observations within each interval is an estimate of the random variable's

occurrence frequency. The estimation methodology associates the occurrence

frequency with the probability that an observation of the random variable,

streamflow volume, will occur in any interval. In other words, the probability

that a random variable occurs in a given interval is equal to the ratio of the

expected number of observations in the interval to the total number of

observations. Thus, probabilities are estimated from the observed occurrence

frequencies. In the example, there are 7 volumes out of the total 65 between

250 and 300 acre-feet, giving an observation frequency or an estimate of the

probability as 0.107 (number of observations/total number of observations).

Another means of expressing this estimate is that there is a 10.7 percent

estimated probability (or chance) that an observation occurs between 250 and

300 acre-feet.
,J..

Another convenient representation of the observed frequencies is the

cumulative frequency distribution. This distribution is calculated by

successively adding the frequency distribution values from the lowest interval

to the interval of interest. In the example, the occurrence frequencies 0.046,

0.107, 0.276 add to the cumulative frequency of .429 at 350 acre-feet. An

alternative expression for this estimate is that there is an estimated 42.9

percent chance that an observation will be less than 350 acre-feet.

16



TABLE 2.1
ANNUAL STREAMFLOW VOLUMES
of the West Branch of the
Oswegatchie River, Harrisville, N.Y

Volume Volume

Year (acre ft) Year (acre ft)

1918 392.3 1951 392.4

1920 50.71953325.8
191361.3 194442.3
192414.1 195406.2
193255.6 196333.3
194409.4 197300.4
195400.3 1958 363.4

1926 449.6 199353.3
1927 348.3 1960 413.8
1928 534.3 1961 286.7
1929 463.3 1962 354.7
1930 453.2 1963 319.2
1931 249.8 1964 270.7
1932 415.3 1965 246.9
1933 354.7 1966 320.8
1934 261.3 1967 299.8
1935 363.4 1968 307.1
1936 326.7 1969 409.7
1937 421.3 1970 310.6
1938 401.1 1971 406.2
1939 313.5 1972 396.3
1940 288.2 1973 451.0
1941 241.1 1974 427.8
1942 335.9 1975 372.8
1943 432.3 1976 564.1
1944 315.8 1977 442.3
1945 368.5 1978 463.3
1946 380.1 1979 411.3
1947 604.5 1980 336.8

*1948 341.2 1981 520.5
1949 334.5

17
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Estimating probabilities in this manner has some drawbacks. First, the

choice of intervals (in this example 50 acre-feet) tends to be arbitrary.

Second, the method constrains the occurrence probability of the random variable

between the highest and lowest observations. This is an unfortunate constraint

for the hydrologist who can never be sure that future observations will not

exceed historical observations. This can be seen by inspection of the

cumulative frequency distribution. By definition, the probability that the

event occurs in an interval ranges from zero (no observation of the event) to

one (absolute certainty of an observation). Consequently, the method estimates

there is one hundred percent probability that an observation is between 200 and

650 acre-feet.

To avoid the interval problem, plotting positions are assigned to each

observation (see Haan, 1977, pg. 133). The plotting positions are calculated

by first arranging the flows from highest to lowest and assigning a rank to

each observation (see Table 2.2). An estimate of the cumulative probability

at each point is calculated using a plotting position formula, such as the

Weibull formula:

P [X <x i =i
1 N+l (2.2)

where: xi = observed event

X = random variable

m = rank

N = number of events

The factor N+l is employed to allow for a finite probability that a flow occurs

outside the observed flows.

19
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Table 2.2
Plotting Position for

Annual Flows of the
West Branch of the Oswegatchie River,

Harrisville, N.Y.

Rank Year Annual % Exceedence Rank Year Annual % Exceedence

Flow Frequency Flow Frequency

1 1947 604.5 1.5 34 1921 361.3 51.5

2 1976 564.1 3.0 35 1962 354.7 53.0 "r

3 1928 534.3 4.6 36 1933 354.7 54.6

4 1981 520.5 6.1 37 1959 353.3 56.1

5 1978 463.3 7.6 38 1920 350.7 57.6

6 1929 463.3 9.1 39 1927 348.3 59.1

7 1930 453.2 10.6 40 1948 341.2 60.1

8 1973 451.0 12.1 41 1917 338.1 62.1 I"

9 1926 449.6 13.6 42 1980 336.8 63.6

10 1954 442.3 15.2 43 1950 336.7 65.2

11 1977 442.3 16.7 44 1942 335.9 66.7

12 1943 432.3 18.2 45 1949 334.5 68.2

13 1974 427.8 19.7 46 1956 333.3 69.7

14 1937 421.3 21.2 47 1936 326.7 71.2

15 1932 415.3 22.7 48 1953 325.8 72.7

16 1922 414.1 24.2 49 1966 320.8 74.2

17 1960 413.8 25.7 50 1963 319.2 75.7

18 1979 411.3 27.3 51 1944 315.8 77.3

19 1969 409.7 28.8 52 1939 313.5 78.8

20 1924 409.4 30.3 53 1970 310.6 80.3

21 1955 406.2 31.8 54 1968 307.1 81.8

22 1971 406.2 33.3 55 1952 307.1 83.3

23 1919 406.2 34.9 56 1957 300.4 84.9

24 1938 401.1 36.4 57 1967 299.8 86.4

25 1925 400.3 37.9 58 1940 288.2 87.9

26 1972 496.3 39.4 59 1961 286.7 89.4
27 1951 392.4 40.9 60 1964 270.7 90.1

28 1918 392.3 42.4 61 1934 261.3 92.4

29 1946 380.1 43.9 62 1923 255.6 93.9
30 1975 372.8 45.5 63 1931 249.8 95.5

31 1945 368.5 47.0 64 1965 246.9 97.0
32 1935 363.4 48.5 65 1941 241.1 98.5

33 1958 363.4 50.0

I..;
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The plotting position method estimates a cumulative probability for each

data point. The theoretical justification for the plotting position approach

is derived from the theory of order statistics, which is beyond the scope of -

this presentation (see Gumbel, 1958, for further reading).

The second task is to choose a probability model that corresponds to the

probabilities estimated from the observed data. Probability models are

generally represented in either of two functional forms. One form is the

probability density function (PDF) (see Benjamin and Cornell, pg. 70, 1977).

The PDF is the model proposed for comparison with the observed histogram. A

second form is the cumulative distribution function (CDF) for both the case of

discrete and continuous functions. The CDF is the model proposed for compari-

son with the observed cumulative frequency distribution. Although hydrologists

generally deal with discrete data, the continuous PDF and CDF are most often

used as probability models since streamflow or rainfall is thought of as a

continuous process. The CDF is related to the cumulative area under the PDF,

analagous to the relationship between the histogram and cumulative frequency

distribution. Mathematically, this is expressed by the integral relationship:=4-A
F x) = P ( x ] = fx(x)dx (2.3)

where f (X) is the PDF and F (X) the CDF, and minus infinity - is taken

as the lowest bound for the random variable. This relationship is graphically

demonstrated in Figure 2.2, and P [X 9 x I is read as the probability that

the random variable X is less than or equal to x,, the upper bound on the

integral.

The total probability of observing a random variable between its maximum LI
and minimum limits is, by convention, equal to one. Taking plus and minus

Liu-
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infinity as the limits of the random variable, results in the integral

relationship:

p [-c < x < f] = 1 = fx(x)dx

thus the area under the PDF is always unity. Note that in Figure 2.2 the

cumulative probabilities approach zero and one, leaving a small but non-zero

probability for any value of the random variable.

The method used to compare the probability model and the observed data is

best illustrated by an example. Assume that the data for the West Branch of

the Oswegatchie River is to be modeled by the normal distribution which is

given by:

1 (-1/2) ,..X
fx) V2 exp - (2.4)

where: = mean or average value of PDF

= variance of the PDF

which are parameters of the distribution. (The normal distribution is the most

well known distribution in the statistical and physical sciences. Tabulated

values of the normal PDF and CDF may be found in most statistical texts,

- including the references already mentioned.) A comparison of the proposed

"" model and the observed data is commonly made in either of two ways. One way

is to compare the observed histogram and the theoretical or model histogram

. predicted by the PDF. The model histogram frequencies were calculated for

- each interval by computing the integral:

22
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p(x)

CUMULATIVE AREA UNDER
PDF IS EQUAL TO ONE

-i:-

A o B x

PROBABILITY DENSITY FUNCTION (PDF)

P(z)= EXCEEDANCE PROBABILITY

P(x)

1.0 :'

AREA UNDER POF TO POINT B

AREA UNDER PDF TO POINT A

. A 0 x.\

CUMULATIVE DISTRIBUTION FUNCTION

* Figure 2.2 RELATIONSHIP BETWEEN PROBABILITY DENSITY FUNCTION
AND CUMULATIVE DISTRIBUTION FUNCTION
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xi

The observed probabilities or frequencies are then normalized by dividing by

the interval length (50 acre-feet) so that the area under the histogram is

equal to one. From the comparison, a judgment can be made as to the goodness

of fit of the model and observed histograms (Figure 2.1).

Although the above approach is viable, it is cumbersome, and also suffers

from the interval problem mentioned earlier. A second more convenient approach

is to compare the CDF with the observed cumulative frequency distribution

(Figure 2.3).

The comparison is facilitated by use of probability paper, which is

specific to a particular CDF (see Haan, pg. 128, 1977). The example data are

plotted on normal probability paper in Figure 2.4, for demonstration purposes.

If the proposed probability model fits the data, then the data will lie close

to a straight line on the probability paper.

The comparisons made in Figures 2.1, 2.3 and 2.4 indicate that the proposed

model fits the data reasonably well in the central portion of the distribution

but deviates in the "tails" of the distribution (e.g., the regions in the

extreme portions of the distribution, 200 to 300 and 550 to 650 acre-feet).

These deviations from the observed data probably indicate that the underlying

.? distribution is skewed. A skewed distribution having a preponderant tail, is

.. .not symetrical like the normal distribution.

Since most streamflows have a lower bound of zero, their frequency

24
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*', distribution are necessarily asymmetrical. In some cases, streams are best

l treated as having a non-zero lower limit due to the existence of channel losses

or external sources (e.g., spring flow). The considerations involved in

selecting a frequency distribution appropriate for analyzing streamflows in

drought analysis are discussed in Section 3.2., "Selection of the Marginal

Distribution."

In the above discussion, terms such as "acceptable difference" or "close"

were subjectively offered as criteria for accepting or rejecting the proposed

model. The method can be made more objective by employing statistical

"goodness of fit tests" (see Haan, pg. 174, 1977). However, there are problems

with these tests when hydrologic data is involved. Criteria that might be

more appropriately used for analysis of droughts are discussed in Section 3.

2.3.3 Probability Model Moments

The probability models shape indicates important properties of the random

process. For example, the interest might focus on the central tendency or

spread of values that can be expected. A means of characterizing these

properties are the moments of the PDF. The moments which are of greatest

interest are the mean, variance and skew coefficients.

The mean value, also referred to as expected value, the average value or

the first moment, measures the central tendency value of the random variable

X. The variance (the second central moment of the PDF) measures the width or

the spread of squared values about the mean. The square root of the variance

is the standard deviation. The skew coefficient (proportional to the third

central moment) is a measure of the asymnetry of the PDF about the mean value.

27
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The normal distribution has a skew coefficient of zero, being sywmetrical

* about the mean. A distribution which has a pronounced tail to the right of

the mean has a positive skew and to the left a negative skew (see Figure 2.5).

Each of these moments may be calculated from the PDF as follows:

X= Axf,(x)dx (2.6)

=Y = (x - U) 2 f(x)dx (2.7)

-® Sa (2.8) ,

YX = (x f (x)dx /(a X) (2"8

where; pX = mean

"= standard deviation

a variance
X

-X= skew

In the most general case, the moments of the PDF can vary with time.

However, this type of model leads to some rather difficult estimation problems.

To simplify this problem and for practical considerations, the moments are

assumed constant for frequency analysis. For a further discussion of this

point, see Section 2.4.1 on time series analysis. Given that the moments are

constant, the problem is to estimate these parameters from observations of the

• °random variable (i.e., the data, as discussed in the next section).

2.3.4 Moment Estimators

A large body of statistical theory is devoted to the estimation of model

*i parameters from observations. In this theory, a great deal of effort is spent 2
defining the "best" estimators. Our discussion is very limited in this regard

28
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MEAN AND VARIANCE

p(X) p(X x)X

NEGATIVE SKEW ZERO SKEW POSITIVE SKEW

Figure 2.6 SKEWED PROBABILITY FUNCTIONS
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and presents only formulas for the sample estimates of distribution moments.

Note that there are a number of methods available for estimation, but this

approach is the most prevalent because it is easy to apply.

The moment estimating formulas for the estimation of the mean, variance

and skew coefficient (in contrast to the true population values which were

discussed previously) are:

N

iX N .1 
(2.9)

N 11/2

s= N (xi - mX)2I(N 1) (2.10)

N

N ( in) 
3/(N - )(N - 2)SX3 (2.11)

where: MX = sample mean

s1 = sample standard deviation

9X = sample skew coefficient

I = random variable

x. = ith observation
I

N = number of observation

The formulas given are unbiased, i.e., the expected value of the estimating

equation is equal to the "true" value of the moments.

The numbers of observations play an important role in evaluating the

reliability of the sample estimates. Consider for example the effect of the

number of observations, N on the sample mean. The sample mean is a sum of --

random variables, x. and thus is a random variable, with its own mean,
I

standard deviation, skew and other moments. The standard deviation of the

30
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sample mean is related to the standard deviation of the observations as

(remembering that X is an independently distributed random variable):

an (X/V'i (2.12)

where: om = standard deviation of the mean
X

Since the larger the standard deviation the greater the spread in the PDF and

the greater the uncertainty in evaluating the random variable, the uncertainty

in evaluating the sample mean decreases as the inverse of the square root of

the number of observations. In water resources, the record lengths at a

single station range on the order of 20 to 100 years. A rough calculation

demonstrating the percent improvement in the estimate of the sample mean over

this range is approximately:

a"X=loo _ .45 (2.13)

a 100
mX N=20

Consequently, if the estimates based on only twenty years are viewed with

skepticism, then 100 years of data improves our view of the estimate by 45

percent.

2.4 Dependent Random Variables

2.4.1 Time Series Analysis

As mentioned previously, sequences of streamflow volumes (monthly, annual,

etc.) may be modeled as a stochastic process. The inference of the probability

model for stochastic processes is accomplished by techniques available in time

series analysis. The term time series is an apt description for streamflow

which is a sequence of observations in time. However, the term time series is

31
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somewhat of a misnomer as a general description for stochastic processes. For

example, the variation of some type of soil property, such as porosity, width

distance may be modeled as a stochastic process. Techniques available in time

series analysis can be used to characterize these observations even though

they are a sequence in space rather than time.

At first glance, an attempt to analyze a time series might seem hopeless

due to its chaotic nature. To simplify this analysis, we can take an

operational view of the time series. The operational view assumes that the

time series can be separated into deterministic and random components. The

deterministic components are trends, periodicities and spurious events (see

Figure 2.6). These components may result from identifiable physical phenomena.

* The random component is subtracted from the original time series. This random

component may reflect an inherent property of the process or in the limitations

of our physical model.

A trend is manifested in a long-term change in a property of the time

series. A physical basis for a hydrologic trend is an identifiable long-term L-

* climatic change. An example of a hydrologic trend is a consistent increase

..,":" with time of a stream's mean annual flow. Another example would be the onset .,

of an ice age, possibly caused by a long-term decrease in average global

temperature or increase in precipitation or a combination of both.

Trends in streamflow are difficult to identify since their occurrence may

be due to the scale of observation being employed. For example, consider the

trend free trace of a normal independent process generated by a numerical

procedure (Figure 2.7). On the local scale shown, an argument might be made

for the identification of a trend in the data. However, this conclusion based
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~-SPURIOUS EVENT

STREAMPLOW TRACE TIME

STREAMFLOW TRACE MINUS SPURIOUS EVENT

PERIOD IC ITY

TRACE MINUS TREND AND SPURIOUS EVENTS

RANDOM COMPONENT

TRACE MINUS TREND, PERIODICITY, AND SPURIOUS EVENT

* ~Figure 2.6 TIME SERIES, TRENDS, PERIODICITIES, SPURIOUS EVENTS, *-

AND RANDOM PHENOMENA
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on the local scale of observation is incorrect since by construction a trend

is not present.

Generally, trends are characterized by a linear or polynomial function

(e.g., quadratic, cubic, etc.). There are statistical tests available for

testing which of these models are adequate in describing the trend (ref. Draper

, and Smith, 1966). However, the water resources engineer's observation scale

(50 years) is necessarily local due to the short-term nature of hydrologic

records. Statistical tests only signify the reasonableness of the trend model

on this scale. The extrapolation of an identified trend much beyond the

observed record is difficult at best.

Periodicities are the identifiable cyclical aspects of a time series.

Unlike trends, some periodicities are easily recognizable. For example, the

annual cycle as it effects precipitation or streamflow (or weather patterns in

general) are obvious periodic components in a natural time series.

The recognizable periodicities in a natural time series are readily added

to stochastic models. For example, monthly or seasonal periodic fluctuations

in mean streamflow volumes can be modeled (see Salas et.al. chapters 3 and 4),

although inclusion of the periodicities makes inference of the model parameters

more difficult. However, attempts to identify periodicities that exceed the .

annual cycle (e.g. identifying the twenty year drought) fall into the same

difficulties as identifying long term trends. In general, the mathematical '

techniques in spectral analysis used to identify periodicities (Haan, 1977, or

Jenkins and Watt, 1968) are beyond the scope of this presentation. The

assumption is made that any periodicities identifiable in the hydrologic

record are easily identifiable (annual cycle at most). The periodicities can
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then be subtracted from the time series to simplify the analysis.

A spurious event or an outlier is a phenomena that is completely uncharac-

teristic of the time series record. A spurious event in the hydrologic record

* icould be caused by a catastrophic event, such as a volcanic eruption. There

' has been speculation that the additional volcanic dust emitted by a volcano

has a direct effect on atmospheric processes and thus on the hydrologic record.

In classic statistics, outliers are identified with measurement errors.

Certainly, if a stream gage is not operating properly, then the engineer has

good reason to discard data. Otherwise, the categorization of a datum as an

outlier is risky (as well as controversial) business.

When all the deterministic components of a time series are removed; the

trends, periodicities and spurious events, what remains is the random

phenomena. In general, and in the case of streamflow volumes, the random

phenomena usually demonstrates stochastic dependence. That is, the random

phenomenda needs to be treated as a dependent random variable.

In general, time series analysis attempts to characterize a sequence of

observations in two steps. First, the trends, periodicities and spurious

events are identified and subtracted from the time series. Second, the

probability model is postulated for the remaining random phenomena.

2.4.2 Stationarity and Ergodicity

Although the operational view of a time series is useful for analysis

purposes, a more general view is to use a probability density function (PDF)
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to model the time series. In the previous section, the moments of the PDF for

an independent random variable were assumed to be constant. However, these

moments could be allowed to vary with time. For example, a trend might be

manifested in the increase with time of the mean annual flow (the first moment -.

, of the streamflow PDF).

Irrespective of the analysis point of view, long-term trends or periodici-

* ties are not included in stochastic models of streamflow. The reason for this

is that extrapolation of trends or periodicities over the design life of a

project (50 years) based on a record of 50 years involves too much uncertainty.

Thus, for the purpose of predicting drought, or any long-term prediction

involving streamflow, the assumption is made that streamflow sequences are

free of trends or long-term periodicities (periodicities greater than the

annual cycle).

The statistical equivalent to this view is to assume stationarity and

ergodicity. Stationarity requires that all moments of the PDF are constant,

such as the mean, standard deviation, skew etc. This assumption is actually

.. too general for statistical analysis in water resources. The condition is

* usually relaxed to include only certain moments of the PDF (in our case only

the first three moments). This is termed weak stationarity.

Ergodicity states that a property of a stochastic process derived from a

single realization is the same as that derived from a number of realizations.

As an example, consider three separate traces of hypothetical streamflows

shown in Figure 2.8. Ergodicity requires that the mean for a single

realization be the same as that determined from the observations across a

group of realizations (A, B, C, etc). Of course, this property could be
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Figure 2.8 ERGODIC PROCESSES
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:1 required for all moments of the probability distribution, but as in the case

of stationarity, the requirement is only for the first three moments.

N Given the stationary and ergodic assumptions, the problem of inferring the

probability model for a time series has been reduced to inferring a PDF with

constant moments. The stationary and ergodic assumptions may appear severe.

However, given the current state of knowledge, they are necessary simplifying

assumptions.

-. 2.4.3 Probability Models for Dependent Random Variables

In Section 2.3, methods were given for modeling independent random

variables. However, to more completely describe a random process, the concept

of dependence must be incorporated into models of random variables.

Two variables X and Y are dependent if the likelihood of I taking on values

.* within a certain range are dependent on Y taking on values within a certain

range, and vice-versa. X and Y may be observations of two completely different

variables (streamflow and air temperature) or may relate current and previous

observations of the same variables (the current and previous months streamflow

volume). The dependence between observations of the same variable is termed

serial dependence. In this regard, dependent and independent random variables

differ in that if X and Y are independent then the likely values of one

variable do not depend on likely values of tile other variables. However, the

independent and dependent cases are similar in that values of a random

, variable cannot be predicted prior to their observation and models of random

." variable are based on observation frequency.
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Although the stationary and ergodic assumptions result in a major simpli-

fication in modeling random processes, as will be seen in later sections, the

modeling of a dependent random variable is still too complicated a problem.

The purpose of this section is to briefly review traditional concepts .-

pertaining to dependent random variables (this material may be found in any

texts on probability and statistics).

The joint behavior or the relationship between random variables is defined

by a joint probability law, functionally expressed by a joint CDF or PDF. In

the present discussion, the examination of the joint behavior or dependence of

random variables is relevant to both single stream gage analysis and regional

analysis. Streamflow observations at a single gage usually demonstrate serial

dependence, e.g., there is a relationship between current and previously

observed flows. In this case, the joint behavior of interest is between

different observations of the same random variable.

The purpose of regional analysis is to establish a relationship between

observations at different stream gages as well as the serial dependence at each

gage. These relationships are then used to improve estimates of model para-

meters. The relationships needed are the joint behavior of streamflows at a

number of gages, modeled as the joint behavior of a number of random variables.

The probability of joint occurrence of two random variables is given as ':

(Benjamin and Cornell, pg. 91):

x y"

P [X 9 x and Y 9 yi ]  f f1  (x,y)dx dy (2.14)

where: X,Y = random variable

fy(x,y)= joint probability density function
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The probability computation is equivalent to determining the area under a

two-dimensional distribution between the limits specified. As in the case of

a single random variable the total probability must be equal to one and the

area under the PDF must be equal to one.

In some instances, the behavior of X is of interest over certain ranges

of the variable Y (or vice-versa). As an example, consider the joint

behavior of annual streaaflow volume and well pumping rates. Annual

streamflow volumes and pumping rates are related by the effect pumping rates

have on aquifer levels. Aquifer levels in turn are the primary source of

long-term baseflow. The pumping rates may vary randomly during the year in

response to varying domestic and industrial demand. However, the pumping

rates vary only between certain limits, constrained by the pump capacities.

An average probable annual streamflow volume may be of interest over the full

range of pumping rates.

-. This average behavior is determined by integrating the joint PDF over the

required range of Y (pumping rates) to determine the probability distribution

of i (annual streamflow volumes). The distribution of X calculated in this

way is the marginal distribution which determines the behavior of X over the

total range of Y (Benjamin and Cornell, pg. 92, 1977):

fxW) f (x,y)dy (2.15)
X L~XY

where: fxlx) = marginal PDF of X

xx

F(x i) = P (i xi ] = f1 (x)dx (2.16)

where: Fx) = cumulative marginal distribution X
X
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The conditional distribution determines the probability of I having

values between x and x + dx for values of Y < y. The conditional PDF is

determined by dividing the joint PDF by the probability that Y < y over

the total range of X (Benjamin and Cornell, pg. 92, 1977):

V y

p / fy(x,y')dy' dx =f fy(y')dy' (2.17)

f ( = fxxp) p>O (2.18)
•Y p

where: f (xy) = conditional PDF of x

Sy(y) = marginal PDF of Y

Division by the probability p is done to renormalize the total conditional

probability to one. The conditional probability of X given a value of Y<y is

thus:

(x

F (xy) P (Z . I Y 4 y] f (2.19)
XIY =  J fX'y(X'y)dX

where: Fxiy(x,y) = conditional CDF

The cumulative, conditional and marginal CDF are the n related using a

formula analagous to equation 2.18 as:

(conditional) P[X 9 x I Y ' Y] P[X sxandY 'I (cumulative) (2.20)
S P[Y yI (marginal)

Knowledge of the conditional or joint PDF for the flow in a particular

rTi stream is of great value in drought analysis. For example, assume that the

annual volume of streamflow is dependent on only the past year's streamflow.

The probability that two consecutive year flows are less then the truncation

level (the demand) is (using equation 2.20):
,Y°
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P [X2 < xo and X, < x0 = P iX2 < 10 I X1 < xo ] P [XI < x o ]

where: X2, X3 = annual flows in consecutive years

xo = the truncation level

(Note the probability that the first years flow is less than the truncation

level is calculated without knowledge of any previous condition in the stream).

The means by which this calculation can be carried out in drought analysis are

fully detailed in Section 4. The important point is to realize that once the

PDF of streamflow process is known, the probability associated with a given

drought can be calculated.

2.4.4 Dependence and Linear Regression Analysis

The inference of the joint PDF for two or more variables or the serial ..,

dependence for a single variable is an extremely difficult problem. The

problem can be appreciated by considering the methodology described in Section

* 4 2.4.2 for identifying the PDF of an independent random variable and trying to

extend this method to identifying multivariate distributions (i.e., joint

distributions of two or more variables). Let's consider an example where

paired observations of the random variables X and Y are available. This

example is applicable to the univariate problem where X and Y may be observa-

tions of the same random variable if serial dependence is being investigated

* (e.g., X and Y are the current and previous months streamflow) or observations

of two differenct random variables as in the case of regional analysis (e.g.,

X and Y are streamflows at two different gages).

In direct analogy to the method for independent random variables, a two-

dimensional histogram is developed for X and Y and compared to a theoretical

PDF. The agreement between the observed and theoretical distributions
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determines wiether or not the theoretical PDF is an appropriate model.

This is obviously a cumbersome procedure to make inferences on the PDF of

a random process. Furthermore, if more than two variables are involved, the

procedure is too cumbersome to be of practical use.

In practice, this methodology is not employed. Instead linear regression

analysis is used to investigate the dependence between random variables. The

purpose of this section is to introduce linear regression analysis and to

describe its relationship to a particular type of joint PDF, the multivariate

normal distribution.

The most common approach (particularly in considering stochastic processes

in water resources engineering) is to presume that the relationship between

random variables or transformations of the random variable is linear. A

transformation is performed because the relationship between variables presents

some special problems. To keep this discussion simple, a discussion of trans-

formations is delayed until Section 3. For the remainder of this discussion,

the relationship between variables is assumed linear.

A linear relationship between any two deterministic or random variables X

and Y is expressed as (see Figure 2.9): .-

yi axi + b (2.21)

where: yi, xi = observations of the variables Y and X

a = the slope of the straight line relationship

b = intercept of the straight line relationship

One method of determining the coefficients of the straight line is to require --

* that the squared difference between the left and right hand sides of equation
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(2.21) be a minimum:

n 2 n

min R2 = (y. - (ax. + b)) (2.22)i=l 1 i=1 1 ''

where: n = the total number of paired observations of X and Y

R. = the squared residual
1

It can be shown (Draper and Smith, 1966) that equation (2.23) results in the

following values for the coefficient of the linear regression:

Sy

a= r (2.23)Ix
b = my - amX (2.24)

where: my, mX = sample mean of Y and X

sy, sx sample standard deviation of Y and X

The sample correlation coefficient can be calculated by:

n
s i!~ (x. m) Y

5LY -1 1 ' ( i (2.25)
s x S n s Sy-

where: r = sample correlation coefficient

SX,Y = sample covariance

It can be shown that the sample correlation coefficient has the interesting

property: Iif
-1< r < 1 (2.26)

Note that although the above relationships refer to "sample" estimates, I and Y

need not be random variables to apply the equations of Section 2.3.4
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The sample correlation coefficient indicates the degree of linear associa-

tion between variables X and Y. This can be seen by noting that in equation

(2.23) the slope of the straight line in Figure 2.9 is directly proportional

to the value of r. Consequently, if r = 0 then knowledge of the value of X is

of no help in estimating Y. As the value of r increases, estimates of value

of Y can be made with greater confidence based on values of X. The correlation

coefficient between streamflows should always be greater than or equal to

zero. However, sample estimates may in fact be less than zero due to sampling

error. Negative values should never be used in an analysis because it is not

physically reasonable. Instead, a possible alternative is to substitute a

value for r based on analysis of streams in the same region.

Regression analysis takes on added significance if the joint probability

density function is multivariate normal. The bivariate normal form for two

random variables X and Y:

f =- 1 expt (1x
Xl p2 a"

"' 2w o- 2 (1 p- p )"

".' ~(x - Mx( y )

2p )y + (2.27)

*4 where: UY' X = the mean of the marginal distribution of X or Y

ay, aX = the variance of the marginal distribution of X or Y

p = the correlation coefficient

The correlation coefficient is defined by:

f(x - - i)A f (x,y) dx dy
-x Y On

pL= ( 2.28)
ox OY OXOY  "
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where: a = the covariance of the variable X and Y

The correlation coefficient is an indicator of the dependence between random

variables X and Y. Notice that if p = o then the'joint normal PDF, equation

(2.27) reduces to:

= 1 ex 4

XY 2*o ex - 1/2 I

exp /2 112 f (x) fy(y) (2.29)

where: f (X), f (y) = PDF for independently distributed random variables X,Y
I Y

Thus p o corresponds to the condition that X and Y are independently

distributed.

As might be expected from the discussion of regression analysis, there is

a relationship between the sample estimates of the regression and the

parameters of the bivariate normal distribution. This can be seen by noting

two relationships which can be derived from the joint normal PDF: I'

OY

Yi = lY + p  (xi - X) +  Y ¥ Il- p 2 e, (2.30) ,.

J X +x P  (Y i - Y) + ax y-P× e I (2.31) ':

where: ei , ej = independently distributed normal random variables, mean
zero, variance one

yi, xj = joint normally distributed random variables

Taking the conditional expectations of both sides of these equations (noting

that E[eil = 0, Etejl 0):
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I [XIx = Ixi = + ( - (zi - (2.32)

Ox

" (XIY = =x + P  (Yi - tY) (2.33)

which are linear relations between two variables similar to those shown in

equation (2.21). The relationship between these equations can be specifically

seen by noting the direct correspondence between sample estimates of the

parameters in the regression (pOyO1Jy,1X ) and the parameters of the

bivariate normal distribution (r,s1 ,sy m,My). There are many sophisticated

tests available in time series analysis to determine if a set of random

variables has a joint normal dependency. However, these methods measure

dependence in terms of r, the correlation coefficient of a linear regresson.

This coefficient is a poor indicator of the general stochastic dependence

between two random variables. This can be readily seen by constructing a

relationship between Y and X as quadratic and then trying to fit a linear

relationship between two variables. In this case, the correlation coefficient

certainly would not be equal to one, yet, by construction, there is perfect

quadratic dependence between the two variables. Consequently, caution must be

used in interpreting the correlation coefficient as a measure of dependence.

In summary, the only possible means of correctly specifying the joint

dependence of random variables is by determining the joint PDF. However,

inference of the joint PDF in general is cumbersome if not impossible and thus

regression analysis is used as the primary technique to investigate

dependence, even though it has limitations.
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2.4.5 System Memory, Serial Dependence and the Correlogram

As briefly mentioned in Section 2.3, the physical justification for

modeling streamflow as a dependent random variables is aquifer storage. To

explain this more fully, consider the means by which precipitation results in

streamflow. Water from precipitation appears in streams via two major paths,

either over the land surface as overland flow or beneath the land surface as

base flow. (Note that sometimes the distinction is made between various modes

of water travel beneath the surface. For the purpose of this discussion only

the distinction between overland and base flow is made). The water particles

traveling along these separate paths require different travel times to reach

the stream. This difference results in a significant lag between the time

that overland and base flow is observed in the stream.

Base flow is the direct result of storage in aquifers. It is this storage

and slow release of water by aquifers which allows some streams to continue to

flow in extended periods of no precipitation. Thus, current observations of

streamflow at a given location are effected not only by the current

meteorologic events but also by meteorologic conditions in the past.

The extent of time needed for streamflow to be unaffected by previous

meteorologic events is usually referred to as the "system memory" of the

stream basin. Both watershed physical characteristics and atmospheric

processes are possible factors effecting the magnitude of system memory.

Certainly, aquifer storage has a direct effect on system memory. It has also

been suggested that long-term memory exists in atmospheric processes. This

would then be manifested in streamflow records. The actual atmospheric

• -processes which are responsible for this effect have not been detailed.
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Consequently, system memory is an indicator of how great the dependence of

a currently observed flow is on the past. When a random variable's value is a

function of its own past, the variable is said to exhibit serial dependence.

Ideally, this dependence is described by a joint PDF. However, as explained

in the previous section, regression analysis is generally used, since it is

very difficult to ascertain the joint PDF.

To explore streamflow serial dependence, consider a plot of current

streamflow versus a preceeding time period streamflow (the time or integral

period may be weeks, months, years, etc.), Figure 2.10. Assuming a linear

relationship between concurrent flows the following regression relation can be

developee (Jackson and Fiering, pg. 50, 1971).

(x1 - = Pl(xi-1 - (2.34)

where: xi, xi_ = streamflows in the current and preceding years

1A = the mean annual flow

p1  = lag one serial correlation coefficient

The term lag one refers to the fact that the observations have been lagged one

integral period in the comparison (for example lagged one year).

The memory of streamflow systems is determined by calculating correlation

coefficients for increasing lags. A plot of the correlation coefficient

*versus lag is termed a correlogram (Figure 2.11). Ideally, the correlogram

approaches zero as a smoothly decaying function. Correlograms which approach

zero at relatively long lags indicate relatively greater system memory.
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Estimating the number of lags needed to adequately describe the serial

dependence in a stochastic model is a difficult and controversial problem.

The reader interested in a discussion of the statistical techniques used to

identify the appropriate number of lags from correlogram analysis should see

Jackson and Fiering, 1971, pg.67 or Salas et. al. 1980, chapter 4. However,

caution must be used when these statistical techniques indicate a need for an

excessive number of lags (more than two). Caution is needed because there is

some question as to whether or not the "persistence" (or long term memory)

that is indicated by multiple lag models is justifiable or necessary. A

discussion of this controversial point is delayed until Section 5, since the

discussion of lag-one models are only necessary for introductory purposes of

Section 3.

The serial correlation, can be estimated from observed data using the

following formula (Jackson and Fiering, pg. 30, 1971)

N-k -

i= =1 \)i=Nl x+1

K. - I-

rk=[~k. _ (J- xi2os N- xi - -_kx)1 os (.5 .

i =1 2 - il 1i2 =k+l (i=k+l

where: rk the sample lag k correlation coefficient

As in the estimation of moments, the sample serial correlation coefficient

is a random variable which is subject to sampling variability. The problem of

sampling variability increases with increasing lag (see Figure 2.10). Because

of this, the observed correlograms are not smooth and may go negative. As the

lag increases there are fewer data to cross compare, thus decreasing the

accuracy of the estimate. For a further discussion of this point see Jackson

and Fiering, pg. 67.
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Thus, a method is now available for specifying in general the joint

depenlence between sucessive observations. Presuming that the process is

stationary and multivariate normal, then knowledge of the sample mean, standard

deviation and correlogram allows the estimation of the joint PDF. However, as

mentioned in previous sections, this type of probability model may not be

wholly appropriate for modeling streamflows. The reason for this difficulty

is discussed in Sections 3 and 5.

2.5 Regional Analysis

Commonly, streamflow records are either non-existent or of insufficient

length at a location of interest. Regional analysis involves the use of

streamflow records from nearby gaging stations to either extend existing

records or estimate flows where records are non-existent. A major difficulty

is to determine which stations to include in the analysis.

This discussion focuses on the use of regional analysis to extend existing

stresiflow records. For a more general discussion of the regional analysis

problem see Haan, pg. 229, 1977.

As discussed in Section 1, the number of stations (or the areal extent) to

include in the analysis may be determined by geomorphologic or statistical

similarity criteria. Traditionally, geomorphologic similarities considered

included watershed physical characteristics such as stream length, stream

slope and drainage area. Riggs (1968) points out that low flows are more

generally affected by subsurface characteristics rather than the surface

characteristics used in traditional regional analysis. Because subsurface

characteristics are difficult to characterize over a wide area, regional
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analysis based on geomorphologic criteria has not yet proved to be effective.

This is an area of ongoing research (Task Committee on Low-Flow Evaluation,

1980).

Extrapolation of Riggs' low-flow analysis conclusions to drought analysis

may be somewhat misleading. As pointed out earlier, low-flow analysis implies

* a shorter integral period than drought analysis. Thus, differences between

aquifer characteristics, although important in both low-flow and drought

analysis, probably play a more important role in affecting the "instantaneous"

measure of low-flow, such as the Q1 (the seven-day ten-year low flow,

see section 1.2), than in the longer term averages of interest in drought 2
analysis. However, Riggs' comments are well worth noting. A general

understanding of watershed characteristics, including those altered by man's

activities, is of paramount importance in selection of stations to be included

in a regional analysis.

An alternative approach is to utilize statistical similarity criteria in a

regional analysis. However, statistical similarity criteria have not been -14

proposed in the literature. One might suspect that stations might be selected

based on length of record, and on the individual statistics of each record,

such as the mean, standard deviation, skew and correlations between stations.

Further research in this area is needed.

Given that criteria were available for selecting stations to include in a

regional analysis, records at these stations could be used to reconstitute

(fill in missing records) at a particular station by employing some type of -

mathematical interpolation procedure. The method of interpolation most

commonly used is linear regression (Draper and Smith, 1966). The technique is
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analagous to the method used to determine the serial correlation of an

individual streamflow record. Assuming that only a single additional station

is used, the relationship between two stations can be expressed.

Sy

Yi = r 1 y 9- x i  (2.37)

where: y. = streamflow value to be reconstituted

x= streamflow record chosen in the analysis

i = streamflow period under consideration

SI, Y = sample standard deviations of X and Y

rX,y = sample cross correlation

The above relationship can be generalized to include more stations in the

regression relation, as follows:

y= b xl' i + b2 x2,1 +.... + bn xn,I + t.1 (2.37)

where: xj,i = streamflows at station j (j=l, 2,...,n) during period i

bj = functions of the cross correlation between stations,

determined by regression

n = the number of stations

ti random error component

For a discussion of the number of stations to include in the regression see

Haan, pg. 230, (1977).

Equation 2.38 can be used to improve estimates of the mean and standard

deviation of the record y1 (Matalas and Jacobs (1964), or Fiering (1963)).

-J* More importantly, the linear regression for multiple stations is a model that I
can be used to formulate the conditional probabilities of interest in drought
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-'. analysis (a logical extension of Section 2.3.5). The relationships developed

to express serial dependence and the regional relationships in streamflow

records are used in Section 4 to determine these probabilities.

2.6 Sunmary

The purpose of this section was to relate probability models currently

used in flood and low-flow frequency analysis (models for independent random

variables) to probability models used in modeling streamflow for drought

analysis (models for stochastic processes). This approach was taken because

the hydrologist is familiar with frequency analysis but not familiar with the

techniques or language used in modeling stochastic processes.

Independent random variables and stochastic processes were related by

considering the common problem of inferring a probability model, the

probability density function (PDF), from observation of a random process. As .

it turned out, the inference of the independent random variables PDF is

conceptually straight forward if the moments of the PDF are assumed constant

with time. The inference procedure involved comparing the closeness of fit

between the observed histogram and the histogram of the proposed PDF.

The only practical drawback to this procedure is that streamflow records

are short. Consequently, the accuracy of the probability estimates for rare

hydrologic events of interest to the hydrologist are not very reliable (or at

-. least there is a lack of confidence in these estimates). However, the

advantage of dealing with independent random variables, is that the

mathematics are simple and the identification of the PDF is possible if the

number of observations are plentiful.
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The same cannot be said for the stochastic models used for drought

analysis. Not only is there the lack of data problem inherent in frequency

analysis but the mathematics become much more difficult. This of course leads

to a double problem in identifying the PDF for a stochastic process.

The inference of the PDF for a stochastic process is done using techniques

in time series analysis. In time series analysis, the general description of

"" the stochastic process requires the use of a PDF whose parameters could vary

with time. For example, the mean annual streamflow might be modeled as

increasing with time. However, this type of model was found to be very

difficult to infer from the data and not appropriate for use in predicting

likely streamflows for the hydrologists planning horizon based on available .

data.

The problem was simplified by making the assumption that the stochastic

process is stationary and ergodic (at least weakly stationary and ergodic).

This assumption presumes that certain moments of the PDF are constant with

time. Thus, the stationary and ergodic assumptions are made to simplify the

models used in frequency and drought analysis.

The assumptions of stationarity and ergodicity reduce the problem of

modeling streamflow as a stochastic process to that of modeling a dependent

random variable. However, inference of the PDF for the jointly distributed

random variables is still a very difficult problem. The methods used to infer

the PDF of an independent random variable might be applied to dependent random

variables. However, this methodology for even two variables is cumbersome if

-. not impossible to apply in practice.
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The inference problem for dependent random variable is solved by using

linear regression to determine the dependence between random variables. In

this methodology dependence is indicated by a correlation coefficient.

However, the caveat was made that the correlation coefficient indicates the

linear dependence between variables. The correlation coefficient is a perfect

indicator of dependence only when the random variables are joint normally

distributed. In general, the inference of the PDF for dependent random

variables is not a problem that is easily solved in practice.

Correlation can be used to model serial dependence and joint dependence

between random variables. Serial dependence is used to model the relationship

between current and past observation of streamflow. The number of time

periods into the past that should be included into the serial dependence

between streamflows depends on the stream system memory. The system memory

can be deduced from constructing a correlogram which is a plot of the serial

correlation coefficient versus lag.

Correlation is also used to model streamflow dependence at different

locations or gaging stations in a regional analysis. Unfortunately, regional

analysis is probably not as applicable to drought analysis as it has been to

flood frequency analysis. The reason for this is that droughts are likely to

be more affected by watershed subsurface characteristics which are difficult

to ascertain on a regional scale.

In conclusion, the problem of modeling a streauflow process has been

equated to the modeling of a dependent random variable. In this section, the

normal distribution has been used as the probability model of dependent random

variables for example purposes. In subsequent sections, probability models

which are more appropriate for modeling streamflow are presented.
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Section 3

Autoregressive Model for the Streamflow Process

3.1 Introduction

The purpose of this section is to describe a particular type of stochastic

streamflow model, the autoregressive mode. This model was chosen not only

because of its simplicity, but also because it demonstrates some of the general

difficulties in modeling streamflow as dependent random variable. There are

many models that are more sophisticated than the autoregressive model. A

discussion of the reason why these models might be more desirable than the

autoregressive model is given in Section 5. However, a general description of

all the possible stochastic models described in the literature is beyond the

scope of this discussion. For those interested in persuing the topic further,

see either Salas et. al. (1980) or Kottegoda (1980).

In the previous section, the examples used the normal distribution as the

probability model. However, the normal distribution is not generallyi .-
recognized as being appropriate because histograms of observed streamflow are

usually skewed.
N.!

Therefore, the goal is to choose a probability model that is more

appropriate than the normal distribution for the streamflow process. However,

a dilemma is reached at this point because the mathematical tool for inferring

dependence between random variables, and thus a probability model, is linear

regression analysis. Yet, the inference of the stochastic dependence between

random variables for a non-normal joint PDF is, generally, not represented by

the linear regression coefficient.
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A solution to the problem is to determine the marginal distribution of the

random variables (see Section 2.5.4). In other words, given that X and Y are

dependent random variables (say streamflow at two different gages) determine

the PDF of X over all possible values of Y (i.e. the marginal distribution of

). Once the marginal distributions of all the random variables being modeled

- are known then transformations of these variables to a group of variables with

normal marginal distributions can be performed. After the transformation is

accomplished, regression analysis is performed to determine the dependence

between the transformed random variables. Thus, the problem of finding a

probability model for the streamflow process that has the desired characteris-

tics has been reduced to finding the appropriate marginal distribution for

dependent random variables and the correct transformation of these variables

to obtain a set of normally distributed variables.

Consequently, there are four steps to be performed in identifying the

appropriate PDF for the streamflow process. First, the marginal distribution

of the random variables must be found. This is analogous to finding the PDF

of an independent random variable. Second, a transformation of the original

data to a normally distributed set of data is performed so that the dependence

identified by the regression analysis can be related to a joint normally,7

distributed set of data. The third step is to perform a regression analysis

of the transformed data. The probability model resulting from the regression

analysis of the transformed data is referred to as an autoregressive model.

The "auto" descriptor indicates that serial dependence is involved, i.e.,

regression between lagged observations of a given random variable such as

monthly streamflows. The fourth and last step is to perform an inverse

transformation to determine the probability model for the streamflow process.
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In the following sections, the issues involved in selecting a marginal

distribution and the procedure used to construct and employ an autoregressive

model are discussed. In addition, a currently available computer model, HKC-4

"Monthly Streauflow Generator" (Corps, 1971) is described and an example

application is given.

3.2 Selection of the Marginal Distribution

The inference of the marginal distribution for a stochastic model of annual #6

or monthly streamflows (a dependent random variable) is essentially the same

in low-flow or flood frequency analysis (an independent random variable). The

inference procedure relies on the acceptance of the fit between the proposed

PDF and observed histogram. The criteria for the acceptance of fit is a

controversial subject. Because the short length of hydrologic records does

not allow confident estimate of rare event probabilities (i.e., estimates of :z-

the distribution's tails). Yet, these are often the probabilities of most

interest.

For a better understanding of the problem, return to the example of Section

2.3.1, where the observed frequency distribution of the West Branch of the

Oswegatchie River was developed. Consider the comparison made between the

normal distribution histogram and the observed frequency distribution in

Figure 2.3. Note that in the last two intervals between 550 and 650 acre-feet,

there are only two observations available. The comparison of the model and

observations over this interval is of most interest to the hydrologist. Yet

this interval is where the estimates of probabilities/occurrence frequencies

are the poorest.
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Statistical "goodness of fit" tests can be used to try and make an

objective decision regarding the fit of the data. However, there are problems

with using such tests. The problems are exemplified by considering the widely

employed chi-square goodness of fit test. Basically, this test models the

number of observations occurring in any interval of the observed frequency I
histogram as a random variable. The method requires that the difference

between the expected and observed frequency of occurrence be summed for all

intervals of the histogram. If the total deviation does not exceed an

"expected" deviation given by the chi-square test then the fit of the

.* probability distribution is accepted (for a more thorough explanation see most

elementary statistics, texts, for example Benjamin and Cornell, pg. 459, 1970,

and Haan, pg. 174, 1977).

The problem with this test is that in the tails of the distribution, the

occurrence frequency of a random variable (the number of observations per

interval) is being estimated by very little data. Consequently, the

computation of the deviation between the expected and observed frequency is

not nearly as reliable for the tails as towards the center part of the

distribution. Again, the problem is with a lack of data, a problem statistical I ' -

tests cannot resolve. These conclusions are supported by the comments of Haan

(pg. 178, 1977), Fiering and Jackson (pg. 69, 1971), Lane (1979), and Riggs

(1968). In particular, consider the comments of Riggs on low-flow frequency

analysis (pg. 3),

"Because particular basin characteristics fix the shape of a frequency

curve, no one theoretical distribution is generally applicable and no

theoretical frequency distribution will adequately describe the low-flow

frequency curve of certain streams,...'.

Further, he feels that the effects of sampling error and basin characteristics

64

.. ..... ...... - -.. ..... ..i i i • IIiiliii i iili... . .... ... - . , .. . .



on the shape of the frequency curve are much greater than an error made by

"hand fitting a curve." Annual and monthly volume frequency curves tend to be I
smoother than shorter duration frequency curves. However, the implication of

these comments would seem to be that statistical criteria used to select among

theoretical probability models do not have much advantage over the graphical

method described in Section 2.3.2.

Obviously, classical statistics is not going to be of much help in

selecting a probability distribution. As an example of possible selection

criteria that might be more suited to the water resources engineer's need,

consider the study performed by Natalas (1963). Katalas proposed two criteria

to fit probability models to low flow data. First, the probability model must

predict a low flow at least as severe as the most severe observed low flow

while still remaining non-negative (i.e., a lower bound of zero flow is j
required). The second criteria involved choosing probability models which had

.- an explicit relationship between the skew and kurtosis (the kurtosis is

proportional to the fourth central moment of the probability distribution).

The criteria then involved calculating the kurtosis by two methods, one by the

method of moments, the second by using the theoretical relationship between

skew and kurtosis (having calculated the skew by the method of moments). Best

fit was based on the consistency of the two calculated values of kurtosis.

Based on these criteria, Natalas found that of the four distributions tested,

the Gumbel Extreme Value and Pearson Type III were superior to the three

parameter Log Normal and Pearson Type V. t.:

The important point to note is that Matalas constrained the fit to

estimate a low-flow at least as severe as that estimated from the observed

data. The water resources engineer constrained by social or political
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requirements may wish to use this type of criteria in the drought analysis.

In Hatalas' study, an important point is made concerning the effect of

large flows (floods) on the calculation of the probability distribution skew

and the occurrence frequency of low-flows. In Figure 3.1, a typical cumulative

probability plot of the data in his study and the fitted Pearson Type III and 11.7

Gumbel distributions are shown. The important aspect of this plot to note is

the location of the outlying high-flow point in the data. Katalas points out

that this type of point has an extreme effect on the distribution skew and

resulting calculation of flow probabilities. In this particular example, if

the largest flow is neglected the skew is approximately zero, whereas,

inclusion of this point results in a skew of 1.85. If this point is included,

the lowest observed flow of 1,070 cfs is underestimated by the Gumbel and

Pearson Type III distributions which indicate 1,370 cfs at the same exceedance

level. Neglecting this point yields a much better fit of the lower tail of

the frequency curve. This is an example of an extreme point which is

responsible for rejection of a probability distribution based on selection

criteria (see Section 2.4.1 on spurious events). Since the study is concerned

with fitting the lowest flow, possibly the extreme point should be disregarded

as an outlier.

The above examples in Matalas's study point out the decision problems

facing the engineer in selecting a probability distribution. What are the

criteria? Should an extreme point be excluded as an outlier? These questions

cannot be answered by statistical methods alone. The decision must be made

with consideration of the socio-economic realities of the project for which

the analysis is being done. For example, the consequences of failure of the

project such as a reservoir (failure to meet demand) may cause such a severe
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economic hardship, that the engineer is constrained to meet the most severe

drought on record. Consequently, the probability model is constrained to

predict as severe a drought as observed in the record, analagous to the

criteria which Matalas used in low-flow analysis.

In summary, there are significant difficulties involved in choosing the

"best" marginal PDF out of the infinite number possible. The rejection or

acceptance of any distribution, including the normal distribution, always -

will involve some uncertainty.

3.3 Autoregressive Model Formulation for Annual Flows

The mathematical technique for performing a regression analysis has been

described in Section 2.4.5. However, it has only been described as a

mathematical technique for incorporating dependence in a probability model.

In this section, the regression model is developed based on an operational

view of a stochastic process. TIls should lead to better understanding of

the autoregressive model.

In Section 2, a stochastic process was defined as a purely random process.

However, an operational definition is that a stochastic process is composed

of a deterministic component and a probabilistic component. Fiering and 7.

Jackson (1969) expressed these components mathematically as:

(qi - q) f d. + t. (3.1)

where: q= value of the stochastic process at the ith time step
(or integral period) from an Initial known state

si.

q = mean value of qi
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d = deterministic component

t i = probabilistic component

A proposed form of the deterministic portion of the model is based on the

concept of system memory or equivalently serial correlation. Assume that the

process is stationary and ergodic and that there is a linear dependence between

the current annual flow, qand the previously observed flow, q.

From equation (3.1), di is expressed as:

d = (q -q) (3.2)

where: p = lag one correlation coefficient

A more general form considers multiple lags:

qi = b + b q ... + b (3.3)
0 0 1i-1 n i-n

where: q -n the annual flow lagged n years

b = coefficients of linear regression (functions of the

lagged serial correlation coefficient)

Practically speaking, the number of lags is difficult to determine because

of sampling errors in estimating p. For the introductory purposes of this

discussion, only lag one models are considered. Those interested in a further

discussion of multi-lag models should see Fiering and Jackson, page 67, 1971

or Salas et. al. 1980, Chapter 4.

The probabilistic component ti, represents the randomness present in the

annual streamflows, e.g., the portion of the process that cannot be explained

with the adopted deterministic component. t is chosen to preserve the

underlying probability model of qi" For example, assume qi has a normal

distribution. t1 is chosen such that the mean and standard deviation of q



is preserved. There are two mathematical constraints used to determine ti.

Requiring the mean to be preserved gives the following results.

E(qi - q) = E[p (qi_ - q) + ti ( (3.4)

where: E[] = expected or mean value of the term within the brackets

Since the expected value of qi and q is equal to q then it follows:

E[t.] = 0I

Consequently if we assume that the t are normally distributed with mean zero
-j i

then the first condition is satisfied. The requirement that the standard

deviation of q. is preserved results in the final form of t (see Fiering
i i

and Jackson, pg. 50, 1971).

ti = e. 0 'Tp (3.6)

where: a = the standard deviation of qi

ei = the normally distributed random variable of unit

variance and zero mean

In summary, if the annual stresaflow records are lag one linear autoregres-

sive and are normally distributed, then sample estimates of the mean, m,

standard deviation s, and the lag one serial correlation coefficient pL,

are calculated from the streamflow record using formula given in Section 2.

The lag one linear autoregressive model becomes:

(qi - q) = r (q - q) + es Vrl- r (3.7)

which is equivalent to the relations given in Section 2.4.5 for joint normally

distributed random variables. This can be seen by examining, for example,

equation 2.31. In the case of serial dependence, xI - qt-L' Yi and
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r = r . Thus if sample estimates r and s are used for p and d,
*"Y 1 1

then upon substitution, equation (2.31) is equivalent to equation (3.7). Note

the equivalence between the marginal bivariate normal distributions of equations

(2.30) and 2.31) and the autoregressive model containing a normally distributed

error term, equation (3.7).

The critical point to this development is embodied in the steps taken to

derive the form for the error component t. through equations (3.5) and (3.6).

Due to the form of ti, the sample statistics of qi, the mean, standard

deviation and lag one serial correlation coefficient are preserved by the auto-

regressive model. This property gives the model validity from a statistical

* point of view.

The difficulty in applying the autoregressive model is that the appropriate

form for the error term, ti, is not easy to derive in the case that the

marginal distribution of q. is skewed. This is why a transformation is applied

to observed streanflows to obtain a set of data that has a marginal normal sample p
distribution. The autoregressive model is then utilized for the transformed

data. In the next section, the means by which the autoregressive models can be

used in conjunction with the appropriate distribution are discussed. "3.

3.4 Monte Carlo Simulation

3.4.1 Methodology

The autoregressive model has been proposed for the streamflow process. The

calculation of drought probabilities with this model require that the

I= conditional probabilities given by equation (2.21) be determined. Although it
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is possible to do this explicitly using equation (2.20) under special

circumstances (an example is given in Section 4.3), in general it is not

possible for an autoregressive model that involves multiple lags at a number

of sites. However, the conditional probabilities of interest can be derived

from the multi-lag autoregressive model using Monte Carlo simulation.

S." A Monte Carlo simulation is a method of sampling the values of a function

at random. In this particular case, the interest is in sampling at random the

values of a PDF. Thus, the Monte Carlo simulation can be viewed as creating

observations of the random variable by artifically sampling the random

variable's PDF.

The advantage of this method is that the integration shown in equation

(2.20) does not have to be performed to calculate the drought probabilities.

Instead, the artificial observations of the random variable can be used to

create a sample frequency distribution as described in Section 2. The

. frequency distribution generated is then used to estimate occurrence

probabilities. The probability estimates can be made as accurate as needed

since as many observations as needed can be generated by the simulation.

The key to the simulation is to be able to generate random samples of the

*- probability distribution. Random sampling is done by generating random

numbers. There are many examples of random number generators that are

encountered in games of chance. The rolling of a die generates random numbers

from one to six. The roulette wheel spins out random numbers. A naturally

occurring random number generator is the number of emissions of particles by

radioactive substances in a given period.
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Since the number of computations involved is large, practical considera-

tions require the use of the computer which has standard routines available

for generating "pseudo" random numbers. These routines cannot be used to

generate true random numbers because the computer's finite memory dictates
p.°

that the sequence of random numbers will eventually have to repeat (a good

random number generator has a long period before repetition). However, the

pseudo random numbers generated are generally considered to be adequate for

practical purposes.

As an example, consider the simulation of the lag-one auto regressive

process (reproduced from Fiering and Jackson (1971)), Table 3.1. In this

process, random standard normal deviates are used to produce artificial or

synthetic samples of annual flows. The procedure is simple, first the sample

statistics are calculated from the observed data (in this case the flows are

assumed to have a normal marginal distribution). The simulation is begun by

assuming an initial flow value. A random normal deviate is generated and

combined with the initial estimate to produce a streamflow value for the next

year. This procedure is repeated to successively obtain flows. The simulation

* is terminated based on the accuracy needed for the simulated histogram. Note 77

that the initial estimates for the simulation has little effect if the

simulation is of sufficient length. Most often, several of the initial values

are discarded to remove the effect of the assumed initial flow.

The synthetically generated flows can then be used to calculate frequency

histograms to evaluate the conditional probabilities of equation (2 21).

However, the synthetic sequences of flows can also be useful in simulation " -

studies as is discussed in Section 3.6 or in deriving the distributions of

certain drought statistics, as is discussed in Section 4.3.2.
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Table 3.1

,- am e -
ample Monte Carlo Simulation

* i q. qi-m rl (q-m) m+r1 (q-m) ei e. s'11--r lqi
i 3. I 1 ~

0 588.80 0.00 0.00 588.80 -0.523 -83.60 505.20 -

1 505.20 -83.60 -31.62 557.18 0.611 97.66 654.85
2 654.85 66.05 24.98 613.78 -0.359 -57.38 556.40

3 556.40 -32.40 -12.26 570.54 -0.393 -62.82 513.73 "
4 513.73 -75.07 -28.39 560.41 0.084 13.43 573.83
5 573.83 -14.97 -5.66 583.14 -0.931 -148.81 434.33
6 434.33 -154.47 -58.42 530.38 -0.027 -4.32 526.06
7 526.06 -62.74 -23.73 565.07 0.798 127.55 692.65
8 692.63 103.83 39.27 628.07 1.672 267.26 895.32
9 895.32 306.52 115.92 704.72 -1.077 -172.15 532.57

* = m+r (qi-m)+ei .s/FT ;:""qi+I 1 " ..

" m = sample mean = 588.8 (cfs) j
s = sample standard deviation = 172.667 (cfs)

r,= lag-one serial correlation coefficient = .37819

.qiqi+l= generated flows in ith and i+lth years

Reproduced from Jackson and Fiering, 1971, pg. 64.
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3.4.2 Transformations

As pointed out previously, skewed distributions are likely to be used in

streamflow analysis. Unfortunately, these distributions cannot be easily

employed to meet the constraints needed to derive a relationship similar to

equation (3.7). For example, assume that the observed flows are distributed

log-gamma. If qi-. and ei have this same distribution, then the resulting

q. is not log-gamma distributed (the sum of log-gamma distributed flows is

not necessarily distributed log-gamma). Thus, the constraints involved in

deriving equation could not be met and the desired conditional probabilities

could not be calculated.

These constraints can be fulfilled by creating a data set with a normal

distribution from the original data set. This is accomplished by using a

mathematical transformation. Equation (3.7) is then employed to generate

transformed flows and an inverse transformation is then applied to these

results to obtain an untransformed synthetic data set. This data set is then

used to derive the conditional probabilities. "-'-

The log transform is often used on streamflow data. This transformation

takes the form:

Y = loge (x. + b) (3.8)

where: yi = the transformed flow

b = a small percentage of the mean of X.

The constant is added to the original flows to avoid the logarithm of zero,

which is undefined. For example purposes, the log transformation was performed k--
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* on data shown in Table 2.1 and plotted on normal probability paper as shown in

Figure 3.2. The data falls close to a straight line, indicating that the log

of the transformed data is approximately normally distributed. This indicates

that the original data is approximately log-normally distributed.

, The calculation of the conditional probabilities by this method may only

be approximate. For example, the log transformation produces an equation set:

y iy) (Yj- 1  y +oy V' 7 ei (3.9)

where Vy, ay, and p are the model parameters for the logrithms of the data.

Obviously, the conditional probabilities preserved by this equation will be

for the logarithms of the data, not of the original data.

The accuracy of this approximate method for deriving the conditional

probabilities depends on the severity of the transformation (for a further

discussion of this point see Salas et. al., 1980, pg. 70). In some cases, the

transformation will allow the preservation of the transformed and untransformed

data. For example, the subtraction of a constant from the normally distributed

data in Section 4.2 introduces no approximation. A general method for

determining the severity of the transformation is to compare the model

parameters calculated from the observed and generated data. If the mean,

standard deviation, skew and serial correlation coefficients are not

"significantly" different, then the transformations used and the calculated

,% conditional probabilities are acceptable. Statistical tests are useful in

determining if the differences between the observed and generated data are

significant (see Haan, pg. 161, 1977). In Section 3.5.3, statistical tests

are discussed which are employed by HEC-4 (Corps of Engineers, 1971) for this

very purpose.
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3.5 HEC-4 Autoregressive Monthly Streamflow Generator

3.5.1 Basic Methodology

The HEC-4 computer model generates monthly flows at multiple stations in a

manner analagous to the simple annual model. HEC-4 assumes that observed

monthly flows have a log Pearson III distribution. The Wilson-Hilferty

transforma- tion is performed on the observed data to obtain normally

distributed variates.

As in the case of the simple annual model, the model is composed of a %

deterministic and random component (equation 3.1). The deterministic

component accounts for the cross correlations between stations and the serial

correlations between successive monthly flows (lag one serial correlations).

The correlations are determined by a linear regression:

i,j = B, Ki, 1 + B2 Ki 2 +. .... + B Ki,j_ + BJ Ki_3.,j +.

+ Bj+ i-,j+l +...+ Bn Ki_1,n (3.10) -

where: B i = parameters of the regression

Kij = transformed flows of the ith month and the Jth station

Note that this regression includes lagged serial correlations, regression with

K il, j , cross-correlations, regression with K,j-i , and lagged cross-

correlations, regression with Ki x, which is essentially a combination of

the factors given in equations (2.36) and 2.37).

The random portion of the stochastic model is given by:

U2
i ij \ (R MID
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where: (Rij)2 = multiple coefficient of determination (see
Draper and Smith, 1966)

ei = normally distributed random numbers with mean
zero and variance one

The random component represents the uncertainty in predicting the values of

Ki,j with the linear regression.

As a simple example of the use of HEC-4, consider a two station model:

2
K.,o =B Ki + B2 K +e l R (3.12) AA

K = ,B K. + B K + e 1 -R. (3.13)
,1 1 2 1-1,2 1,2

where K is the generated flow at station one and K. is the generated
1 1,2

flow at station two. Note that since HEC-4 is designed to utilize monthly flow

data, there are twelve sets of the B. and R. . coefficients for each station j.1 1,3 ].-

In this case, the program computes 48 B. coefficients and 24 R coefficients.

The equation is general and could be used to simulate flows for any integral

period, such as seasonal or annual. At this time HEC-4 is designed to simulate

' only monthly flows.

The generation of flow values proceeds similarly to that of the single I
station annual model described in Section 3.4.1. For example, K the flow

in the first month at the first station (say January), is related to flows one

month earlier (December), K and K and an artificially generated
12,1 12,2,

random number, e Note that Ki  is related to a lagged flow at

station two, K rather than a concurrent flow, K. . This is
1-21,2 1,2

necessary since the concurrent flow K has yet to be generated. K

is then used with the lagged flow at station two, K to generate the
12,2

January flow at station two, K This is done recursively for all months

in as many years as deemed necessary.
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3.5.2 Transformation of Historical Data

The HEC-4 model assumes that streamfiow statistics can be modeled by a

log-gamma (Log-Pearson Type III) distribution. The advantage of this type of

distribution is that it allows for a non-zero skew in the observed streamflow.

However. log-gamma distributed variables cannot be used in equation (3.10)

since the sum of log-gamma distributed variables is not necessarily distributed

log-gamna. This fact prevents the preservation of the original data statistics

when equation (3.10) is used with log-gamma variates.

HEC-4 overcomes this problem by transforming the original data from an

assumed gamma to an approximately normal distribution using the Wilson-Hilferty

transformation equation. The transformation steps used by HEC-4 are as

follows:

1) Base 10 logarithm transformation

X. = (q + b) (3.14)

where: qi = observed flow

b = one percent of q

b is used to assure a non-zero flow, as the logarithm of zero is undefined.

2) Adjust to zero mean and unit standard deviation

xi -x.
Z i  i (3.15)I sx

where: Xi = logarithm of flows

= mean of the X

S = sample standird deviation of the X

3) Wilcon-Hilferty transformation from Pearson III to a normally

distributed variate:

0.0

5¢, so,. - . . . . .. . . . , .. , .. ,. .,,. . . . . , . . .- . ,



Ki =61(.5gz  Z + 1) - l1/g z + gZ/6 (3.16)

where: gZ = the sample skew of Z

The K result in an approximately normally distributed variable appropriate

for use in evaluating the parameters of equation (3.10). Obtaining synthetic

flow values from the generated K is a simple matter of applying the inverse
i

of the transformations just described.

3.5.3 Statistical Analysis Performed by HEC-4

HEC-4 provides a number of statistics for evaluating the generated stream-

flows. As might be expected, information comparing observed, reconstituted

and generated flow mean, standard deviation, skew and percentage volumes of

yearly flow values are provided. In the latest version, statistical tests are

performed to determine if the mean and standard deviations of the generated

flows are "significantly" different than the historical (or reconstituted

flows). As mentioned previously, the autoregressive generating scheme

guarantees that the mean, standard deviation, cross and lag-one correlation

coefficients are preserved for the transformed data and not the untransformed

(i.e., actual streamflow observations) data. Thus, statistical tests have

been provided to check if the transformation used by HEC-4 has resulted in a

generated set of untransformed flows which are significantly different than

the historic data. If there is a significant difference, then the generated

sequence is not representative of the historical trace and the transformation

has been too severe.

The statistical tests provided are only strictly applicable to normally
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distributed variables. Consequently, these tests only give a rough guideline

as to the acceptability of the generated sequence.

To test if q representing the untransformed generated flow-man, and

q,' representing the untransformed historical and reconstituted flow mean,

come from the same normal population the test statistic formed is as follows:

z ( -) o /n)+(12 /n2 ) (3.171)1 21 1 2 2-.,

where: n , n sample sizes of observed and generated data
1 2

0 , 0 2 standard deviations of observed and generated

untransformed data

q,' q = mean values of observed and generated untransformed data

z can be shown to be a normally distributed random variate with mean zero and

standard deviation one. As an example of the use of the statistic, determine

the value of z such that the generated results are rejected at a significance

level of 10% (i.e., an error is made in rejecting the generated results in 101

of the model applications). The confidence level is met if (see Figure 3.3):

P[z < z < z J = 1 - a (3.18)

where: z= normal deviate at /2 significance

z = normal deviate at 1-a/2 significance level

where a is the percent significance level. As a specific example, in a

particular HHC-4 run for the Red River watershed, the maximum value of the

z-statistic = 1.62 and a/2 = 5.2%, for all months considered. Hence the

generation results can be accepted at a 10% significance level when considering

mans.
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The generated standard deviations are tested by forming the f statistic as -

follows:

2 = 2 (3.19)

f can be shown to follow an F distribution. And as in the case of the z test,

a significance level a can be attached to the probability:

P[ff <f < f = - a/2 (3.20)1 2 
.%

where: f f-distributed deviate at a/2 significance level
1A-

f = f-distributed deviate at l-a/2 significance level
a

s = the larger of the untransformed observed or generated

N1
flow's standard deviation based on n degrees of freedom

s the smaller of the untransformed observed or generated
2

flow's standard deviation based on n degrees of freedom

Based on this information, a judgement as to whether or not to accept the

generated results can be made as in using the z test.

3.6 Example Application

For example purposes, HEC-4 was used to determine the probability associa-

ted with various reservoir capacities needed to satisfy the water supply needs

for a community located on the Arroyo Seco River near Soledad, California.

The procedure used to perform this analysis involved the following steps: "'"

1. The historic record of 54 years was used to perform a mass curve

* analysis (see below for a description of mass curve analysis) based on annual

inflows. The mass curve analysis assumes that the communities demand is 59420

acre-feet, one half of the mean annual streamflow.

4. 84
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2. HEC-4 was then used to "generate" one hundred, 50-year sequences of

synthetic monthly streamflow. To supply the analysis, the assumption was made

that no periodicities or trends were identifiable from the historic record.

3. 50-year sequences, each of the one hundred of monthly streamflows were

totaled to produce one hundred, 50-year sequences of annual streamflow.

4. A mass curve analysis of each of the 50 sample sequences was performed

to obtain a reservoir capcity for each sequence.

5. A histogram of the reservoir capacities to estimate the probable

reservoir capacities.

Mass curve analysis is a well known technique for estimating reservoir

capacity, given a period of inflow and demand. A brief description of this

technique follows; however, for a more complete description consult Maass et.

al. 1962, pg. 120.

Consider the mass curve (sometimes referred to as a Rippl diagram) shown

in Figure 3.4. The figure shows the cumulative inflows to the reservoir, the

cumulative draft and the cumulative departures from the demand. In this case,

the draft was assumed to be one-half the mean flow. The cumulative draft is

the draft multiplied by the number of years and the cumulative departure from

• the demand is the cumulative inflows minus the cumulative demand as shown at"•

point B. The reservoir capacity is determined by first assuming that at the

peak of the cumulative departures curve the reservoir Is full. As the

cumulative departures decrease from this point, there is a draft on the

reservoir because the demand exceeds the inflow. Therefore, the total draft
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on the reservoir is measured as the distance from the peak to the trough on

the cumulative departures curve and the maximum draft over the period is the

required size of the reservoir (see points A and C). This is a fairly simple

procedure but is complicated by the assumption of the starting storage in the

reservoir (see Maass et. al. 1962, pg 120 for a complete explanation of this

point). However, the starting condition of the reservoir is of no importance

in this example since a comparison is being made between the storage required

based on the historic record and the probability of required storages based on

the HEC-4 lag-one autoregressive model.

In Figure 3.5, an example of the HEC-4 computer runs made to generate the

synthetic inflows to the reservoir is shown. In Figure 3.6, the distribution

of the storages as a function of sample size, i.e., the number of 50-year

synthetic streaflow sequences, is displayed and compared to reservoir storage

of 81,500 acre-feet.

The most striking feature of this result is the significant sampling

variability of reservoir storage that results based on a lag-one autoregressive

model. Note from Figure 3.6, that approximately 25 percent of the generated

50-year sequences, estimated probability of 0.25, require a reservoir storage

that exceeds the storage required by the historic record.

The important conclusion to be drawn from this analysis, and probably one

that is not too suprising, is that there is a great deal of uncertainty in

trying to predict the future reservoir capacity requirements. Of course, the

above results are a function of the probability model (the lag-one autoregres-

sive model) used and the historic sample (in this case 54 years of stremflows

for the Arroyo Seco River). However, irrespective ..f the probability model
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chosen, the qualitative results of the stochastic analysis would be the same;

the prediction of future reservoir requirements is highly uncertain.

Consequently, the reliability of the reservoir design should be insured based

on some factor of safety.

3.7 Annual vs. Seasonal Autoregressive Models

The integral period, or equivalently, the computation interval for the

drought analysis determines the computation interval for the autoregressive

model (remember selection of the integral period is one of the four drought

analysis tasks described in Section one). The selection of the integral

period depends on two factors. One factor is the type of analysis to be

performed. For example, if a reservoir is designed only to satisfy a seasonal

demand (the annual summer drought) then a seasonal (say monthly) autoregressive

model may be only necessary for the drought analysis. However, if reservoir

storage must consider more than a single year drought, an over-year storage

problem, then an annual model may be all that Is necessary. .

A second factor is the need to preserve the statistics of the annual flow

series in the generated seasonal flow series. This need arises if the modeller

identifies a degree of persistence (a long-term tendency for above or below

normal flows to be followed by the same) in the observed annual flow series.

Persistence is a very important issue which is discussed in detail in Section

five.

This second factor poses a difficulty for the autoregressive model

described in this section. Although the seasonal autoregressive model will

preserve the statistics of the observed seasonal flows, it will not in general
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guarantee that the corresponding observed annual flow statistics are preserved.
ZS.

Consequently, if there is persistance in the annual flow records, then another

modeling scheme might be chosen. For example, a technique known as disaggre-

gation can be used to preserve both annual and seasonal flow statistics in a

stochastic streamflow model (see Salas et al. 1980, chapter 9). A computer

program which currently utilizes disaggregation for autoregressive schemes and

is currently available to the public is LAST (1979).

An alternative to using a more sophisticated model, if persistence is not

an issue, is to compare the annual statistics (i.e., mean, variance, and lag-

one autocorrelation) of the flows generated by a seasonal autoregressive model

with the observed historical statistics. If the two are equal, then the

seasonal model is probably adequate for the drought analysis. However,

disaggregation is the preferred technique because it guarantees, at least

approximately, that the observed annual and seasonal statistics are preserved

. by the generating procedure.

3.8 Simulation and Synthetic Streamflows

To this point, the discussion has focused on calculating the conditional

probabilities of drought severity based soley on hydrologic factors. However,

the probability of drought occurrence is also a function of the socio-economic

factors mentioned in Section 1. Therefore, the probability model should

account for these factors to arrive at a proper evaluation of drought

probability.

As an example, consider again the problem of determining reservoir storage

capacity. The probablity that the reservoir storage will not be sufficent is a
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function of the inflow, the demand, the storage capacity (which is to be

determined), the reservoir operational policy and a host of other factors. To

include all these factors in a single probability statement would seem to be

hopeless.

In synthetic hydrology, the problem is solved by utilizing hydrologic

simulation models to calculate the probabilities. To perform the simulation a

hydrologic model is created which is able to calculate reservoir storage

levels based on reservoir design, inflows, demand, operating policy, etc.

Inflows to the model are generated from the Monte Carlo simulation of the

autoregressive model. The hydrologic model is then used to determine storage

levels based on these "synthetic" inflows. An example of how this is done was

given in a previous example.

The calculated storage levels are observations of a random variable (a

variable which is a function of other random variables, inflow, demand and

-' operating policy). Frequency distributions from the model simulation results

could be constructed to determine the conditional probabilities of storage.

In practice, the storage level frequency distribution is not constructed.

A more couon approach is to generate the synthetic inflows and determine, by

simulation, if the proposed reservoir design and operational policy are

adequate (e.g., determine if the storage levels meet the required demand).

The important point to remember is that the Monte Carlo simulation

produces no new information. The generation of "synthetic" streuiflows is a

mans of calculating a conditional probability. In general, the explicit

- calculation of these probabilities is impossible when serial and cross
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correlations are to be modeled in the streamflow record. The Monte Carlo

simulation is the only practical means to evaluate these probabilities when a

great many factors are involved.

3.9 Sunmary

In this section, the means by which a lag-one autoregressive model of the

streamflow process is implemented was described in detail. The implementa-

tion of this type of probability model can be summarized in four steps:

1. The marginal distribution for the streamflows is selected using

techniques described in Section 2.

2. The autoregressive model is only practically applicable to random

variables which have a joint normal distribution. Consequently, a

transformation is made of the observed streamflow data with underlying

marginal distribution selected in step 1 to produce a data set with a

marginal normal distribution.

3. The probable values of streamf low that are implied by the autoregres-

sive model cannot be evaluated exactly in most cases of practical

interest. Thus, a numerical procedure, Monte Carlo simulation, is i,'.

performed to evaluate these probabilities. The results of the

simulation are in terms of transformed synthetic streamflows.

4" 4. An inverse transformation is performed to obtain synthetic streamflows.

The synthetic streamflows resulting from the autoregressive model may be used
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to create streamflow histograms. These histograms can be used to estimate the

probable streamflows implied by the autoregressive model. However, the major

use of the synthetic streamflows is in simulation studies of water resource

* systems.

As an example of these studies, the HEC-4 computer model, which uses a 7"

monthly autoregressive model, was used to "generate" synthetic streamflows to

estimate probable reservoir storage requirements. Since reservoir storage was

the random variable of interest, the snythetic sequence of streamflow were

used along with mass curve analyses to create histograms of reservoir storage.

The histograms of reservoir storage were then used to estimate probable

reservoir storage requirements.

Thus, synthetic streamflows are generated based on a probability model,

The synthetic flows represent no new information. In fact, if the probabili-

ties of interest could be determined by the direct methods outlined in Section

2, then simulation with synthetic flows would not be necessary. However, since

water resource systems are complex, the probability models which necessarily

describe these systems are also complex. Thus the direct methods of Section 2

cannot be employed, and the simulation approach which employs synthetic flows

must be used.
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Section 4

Drought Analysis

4.1 Introduction

In the previous sections the discussion has focused on the random ",ariable

streamflow. However, the main interest of this presentation is on the likely

occurrence of drought. Recalling the discussion in Section 1, drought is

defined by the nature of the water deficit (e.g., streamflow), the truncation

level (e.g., the mean annual flow) and the integral period (e.g. one year).

The purpose of this section is to combine the concepts used in defining drought

with the streamflow probability models discussed in the previous section to

derive distributions for statistical parameters of drought occurrence. In

Section 4.2 on the theory of runs, statistical parameters for drought are

. defined, and in Section 4.3 stochastic streamflow models are used to derive

.the distribution of drought statistics.

4.2 Theory of Runs

In previous sections, streamflow was the process being modeled as a random

variable. However, the probabilities associated with various levels of

- streamflow do not relate directly to drought probabilities. The level of

streamflow must be related to a demand for water to assess drought potential.

A convenient method to develop this relationship is to formulate a parameter

or parameters which are a function of the difference between the level of

streamflow and demand. Since streamflow and demand may be modeled as random

variables, their difference or parameters of their difference are also random

variables. Consequently, probability models of these parameters would give a
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more direct measure of drought potential.

The theory of runs is an approach to analyzing a time series, such as

streamflow, which develops parameters more suited to directly analyzing drought

potential (Yevjevich, 1972). The theory of runs separates a time series into

areas above or below a truncation level, x (see Figure 4.1). As described
0

in Section 1.1, (see Figure 1.1), the truncation level (from the water

resources engineer's point of view) is used to identify drought phenomena in

the hydrologic record.

The parameters of interest are the run sum S (the cumulative deviation from

xo), the run intensity N (average deviation from xo ) and the run length D
0 0

(time between successive crossings of x ). The parameters may either
0

indicate a positive run (an upcrossing at x ) or a negative run (a down-
0

crossing at xo ). In drought terminology, SL is the severity, DL is the

duration and NL is the intensity (Dracup el. al., 1980). The relationship

between the parameters is:

S N * D (4.1)
L L L

The truncation level x can be a constant, a function of time or a stochastic
0

variable. A typical choice in drought analysis is some percentage of the mean

flow, which could be considered as an average demand.

Consequently, the objective of drought analysis is to derive the likely

values of these statistics. As will be shown, this objective can be met once

a stochastic model for streamflows has been developed.
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4.3 Drought Duration Analysis

4.3.1 Exact Calculation of Probable Drought Duration

In this section, an exact expression for probable drought duration is

derived for a simple problem by performing the integration of a joint PDF.

The expression is "exact" in only the mathematical sense. The integration is

performed without using any numerical approximations. This is generally not

possible for most practical engineering problems because the PDF is usually

not of a directly integrable form. However, the reader should remember that

there are sampling errors involved in inferring the PDF from observed flow

records. Consequently, any espression for probable drought duration is

approximate because of the uncertainty in deriving the PDF.

The calculation of drought duration exceedance probability is equivalent

to calculating the probability that successive flows are less than the

truncation level. Assume for the moment that annual flows are being

considered and no serial dependence exists (e.g., the flows e , independently

distributed random variables). The probability that N annual flows are less

than the truncation level is the product of the probabilities that a flow in

any one year is less than the truncation level:

PID < NJ= Px < x I P[x < x I...PIx < xI Px Z  < x I...PIZ < x I
L 1 0 2 0 0 +.1 0 n o

where: x = the transformed flow in the ith year

-(q - q)/Oq

q = mean annual flow (assuming sample equal lo population value)

d - standard deviation of flows
q
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Note that the observed flows, q, have been transformed by subtracting the mean

and dividing by the standard deviation. This results in a variate, x, with

mean zero and variance one, which is convenient for calculation purposes.

The probable drought duration can be calculated by using a method described

by Sen (1976). He notes that Feller (1957) developed an equation for the run

lengths, positive or negative, in a series of infinite length as:

PED 2 NI P(N) + 7 P(IN,N) (4.3)
L M-1

where: P[DL k N] = the probability that the drought duration exceeds
N years

P(N) = probability that N successive streamflow volumes will
be less than or equal to the truncation level

P(,N) = the joint probability that N successive streamflow
volumes less than or equal to the truncation level
will be followed by K values greater than the
trucation level.

Since the flows are independent, the probability that a given flow is less

than or greater than a particular value can be obtained by integrating the PDF,

as shown in equation (2.3), to obtain the probabilities:

PCx S x ] = p (4.4)0

P[x > x = n = 1-p (4.5)
0

where x, the mean annual flow. has been assumed to be the truncation level.0

The probability of an independent random variable having N successive values

less than x is just the individual probability raised to the Nth power.0

Thus, the two terms in equation (4.3) can be calculated as:

P(N) =p (4.6)
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V R,

P(M, = £ p n (4.7)
H1=1

, Equation (4.7) is the sum of a geometric series (see Kaplan, 1952, pg. 167)

* ?which simplifies to:

p N n = 1(1/1-n) - 1]pM = (1/p - 1)pM  (4.8)
=1

Substituting equation (4.8) and (4.6) into equation (4.3) the probable drought

duration exceedance probability is obtained as: -

PiLN N l-i (4.9) :;

FED A NJ P p49
L

7"

- The probability that drought duration equals a given value is calculated as

(Feller, 1957):

PID = NJ = PD A i] - PID a 5+1 (4.10)

L L L

Assuming that the probability of exceeding or being below x are equal,
0

p=n=(1-p), then applying equation (4.9) to equation (4.10):

P[DL = i - -Pu N (4.11)

p can be calculated once the PDF of the flows is determined.

The above solution is not generally applicable because flow volumes usually

demonstrate serial dependence. In this case, the flow's serial dependence is

expressed by a joint PDF. The drought duration probability is then found by

calculating the terms in equation (4.3) for a dependent random variable:

x x x

P(N) . ... ,x ... x,)dx dx ... dx, (4.12)
1 2

where: f(x x ... x ) joint PD?
x n
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P(N) = the probability that N successive flows are less than

truncation level for a dependent random variable

As discussed in Section 2.4.5, deriving the joint PDF is a difficult task.

This task is simplified by assuming that the flows can be modeled by an annual

lax-one autoregressive process. In this case, the probability of a flow being

less than the truncation level is dependent only on the previous year's flow,

x.
1-1

0 "

PIx. x x x]= [ lCxx I xi )dx (4.13)
1 0 i- I 0

where: f(xi I xi- 1) = conditional probability for annual flows

The joint PDF of equation 4.4 becomes (see equation 2.18):

(4.14)
f(x I,x... X = f(x) f"x I x) f(x I x)... f(xi+ I xi)... f(xN Ix_)

where: f(x.)= marginal distribution of the x

Substituting for the joint PDF in equation (4.4) P(N) becomes:

x 
x

P(N) f flx )dx flx (Cx )dx

x 0x 0: =:
Of(x+ x Axi+ f o x_,)dx (4.15)

-i 1 .. 1 - N . "-"

and correspondingly:

x xjP(M,) f(x )dx . .1 (x I x )dx.-
I I f.xN x N-.
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_If(x.|,l x.)dx... I f (x)dx 1 1  (4.16) ]
where: P(KN) = the probality that N successive flows less than or equal

to the truncation level are followed by H successive flows

greater than the truncation level for a dependent random

variable

The conditional probability is calculated using equation (2.20):

P(x 4 xo, x 4 x)
PIx 4 x Ix •x]= 1 (4.17)

i i-1. 0 p

where: P(x. x , A x ) = joint probability distribution between
"- 0 two successive annual flows

p = marginal probability that x. is less than x
1 0

Sen (1976) calculated drought distribution probability by assuming that

the joint probability between two successive streamflows in equation 4.4 is

bivariate normal:

x x
0 oo 

1/2

Plx •6 xo , xi_ 4 xo 0 f (U - ) /

exp(-lx - 2p x x + x )12(1 - p2)))dx dx (4.18)

To solve equation 4.18 explicitly, Sen assumed that the mean adjusted flow is

equal to the truncation level (note the mean of the adjusted flows is equal to

'" zero; see equation 4.2). The drought probabilities were derived by Sen by

integrating equation (4.18) exactly; and then using this result with equations

-" (4.15), (4.16) and (4.17) to calculate the terms in equation (4.3) to obtain

(equation 28, pg. 1509, ASCE, HY10, October, 1976):

~104

,,',,-.. ",.; ',.: .. -. .. -...- .. '-. -. ,..........,',....... ....... ... ,.•...... .... .....-..



P[DL  =r ".N].t, l1- - -.l-- _ -

PDL NJ Q ( )mN1 (4.19)

where: N = number of drought periods

p = lag one serial correlation coefficient

m = (0.5 + (11) arcsin (P

P[D L = NJ = Probability that N consecutive flows are less than

the demand

This gives an explicit value for drought duration probability assuming a

lag-one autoregressive process (a joint bivariate normal distribution between

successive flows).

As an example of the use of this methodology, consider the annual flow

volumes of the West Branch of the Oswegatchie River (Table 2.1), assuming that

these flows demonstrate a joint normal serial dependence. The lag one serial

correlation coefficient is then calculated using equation 2.36. The resulting

drought duration probabilities calculated are shown in Table 4.1.

4.3.2 Probable Drought Occurrence Calculated by Monte Carlo Simulation

The purpose of this section is to demonstrate the equivalence between the

exact solution given in the previous section and an approximate technique,

Monte Carlo simulation, for probable drought duration based on a lag-one

autoregressive model. Furthermore, the versatility of the simulation approach

is demonstrated by calculating probable drought severity which is not easily

obtained exactly.

The probable drought duration, DL , and, severity, 
M
L , for an annual
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Table 4.1

Comparison of Probable Drought Duration
Obtained by Exact and Monte Carlo Methods

P -

N (Years) t Exact *Monte Carlo **Monte Carlo
1 .4456 .4532 .4583
2 .2470 .2426 .2500
5 .0421 .0414 0.0

* 10 .0022 .0019 0.0

t P[DL N ] = probability of having drought length of N years

(I-M)MM-= (1~mlm_ 1

where: m = 1/2 + (11w) aresin (r,)
r. = Sample Lag-one Serial Correlation Coefficient

I N = .17 (W. Br. Oswegatchie River)

* Estimate after 100000 simulations

* Estimate after 100 simulations

integral period were obtained by generating synthetic streamflowe with the

lag-one autoregressive model. The assumptions were made that, as in the

*previous section, the flows are joint normally distributed and that the demand

is equal to mean annual streamflow. The sequence of steps taken to calculate

1. A these parameters are as follows:

(1) "Generate" synthetic streamflows using Monte Carlo simulation.

(2) Note the durations DL, and volumes of the synthetic sequence, SL,

that are less than the truncation level (see Figure 4.1).

(3) Construct sample histogram of SL and DL for the synthetic
L, _L

sequence. This is done as in the previous examples, where histograms

..4
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were constructed (see Section 3.6) by grouping the number of

observations of DL and S into selected intervals.L L

(4) Repeat steps (1) through (3) for synthetic streamflow sequences of

increasing length. The histograms for successive sequences are

compared to determine if the estimated probabilities for SL and DL

'4. are approaching a final value. P%

The above steps were incorporated into a computer program and used to

" analyze the annual streamflow sequence given for the West Branch of the

Oswegatchie River (the same data used as in the previous section). The

computer program listing and sample output from the program is displayed in

Appendix A. To demonstrate the validity of the synthetic flows obtained by

-. Monte Carlo simulation, the sample mean, standard deviation and skew for the

generated sequence of synthetic flows was calculated and is displayed in Table

4.2. Note that as the number of simulations increase, the sample statistics

of the generated sequence approach that of the original data set which

" validates the simulation procedure.

The results of the analysis are summarized by the histograms of D and
L

SL given in Figures 4.2 and 4.3. To compare the exact mathematical solution

for DL given in the previous section and the Monte Carlo simulation, the

estimated cumulative probabilities must be calculated from the histogram.
4.-.

This is done by the same procedure performed in Section 2 for flood frequency

analysis to calculate sample cumulative probabilities. For example, consider

the histogram based on 100 years of simulation for drought duration shown in

Appendix A. The estimated probability that a drought is only one year in

duration is equal to the total number of simulated droughts of one year in
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NORMAL DISTRIBUTION
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duration (equal to 11) divided by the total number of simulated droughts (24)

resulting in an estimated probability PID - 11 - 11/24 - .4583. This is
L

* shown as the drought duration fraction in Table 4.2. Comparison of the Monte

* " Carlo estimates with the exact solution are shown in Table 4.1 for both 100

"" and 100000 years of simulation. Note that for the more common drought

durations that both simulation lengths compare favorably to the exact solution.

"1 However, for the rare durations (5 or 10 years) a large number of simulations

are needed to approximate the exact solutions. -

Table 4.2

Sample Statistics for Monte Carlo Simulation

Sample Estimate of Statistics at the End of N Simulations

Standard

Mean Deviation Lag-one

N (ac-ft) (ac-ft) Correlation
100 378.8• 75.3 .039

1000 372.6 75.3 .173
10000 372.9 74.6 .166
50000 372.7 74.6 .163
100000 372.7 74.6 .170

Specified Model Parameters
372.6 74.8 .170

Inspection of the histograms indicates that the central portions have nota
changed significantly in proceeding from (10,000) simulations to (100,000)

simulations. The corresponding probable drought severity histograms for the

maximum number of simulations are shown in Figure 4.3.
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As a concluding note, the number of simulations needed to estimate the

probabilities near the central portion of a distribution are necessarily less

than those needed to estimate the probability at the tails of the distribution.

This can be seen by inspecting Figures 4.2 and 4.3 and noting that the tails

of the histograms do not converge to a constant value as quickly as the

central portion. Again, this demonstrates the problem of trying to estimate

rare events, i.e., the tails of the probability distribution. Relatively few

observations (or Monte Carlo simulations) are needed to estimate the mean of

* the distribution (the central portion) but significanly more are needed to

.P estimate the skew.

4.4 Sunnary

Drought was characterized by three statistics, drought severity, S

drought duration, D and drought intensity, ML. The likely values of these
L

statistics can be derived if the truncation level is defined and if a probabil-

* ity model for the streamflow process is properly inferred from observations.

Two methods for deriving the likely values of drought statistics were

- described. The first method, by Sen (1976), calculates exactly the likely

drought durations by integrating a joint conditional probability distribution

(i.e., assuming a joint normal distribution) for annual streamflow. The second

method utilized Monte Carlo simulation, a numerical technique, to solve the

same problem and to derive the likely values of drought severity. The

* equivalence between the methods was demonstrated.

Again, the fact that Monte Carlo simulation is a numerical technique for

-= integrating complex probability density functions is emphasized. Although

%
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this technique has been referred to in the past as streamflow "generation", A

the above example clearly demonstrates that the true interest is in evaluatingj

a conditional probability with Monte Carlo simulation. The advantage in using

Monte Carlo techniques is apparent when the engineering problem is complex and

explicit evaluation of the conditional probabilities is not possible, as

explained in Section 3.8.
AI
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SECTION 5

Evaluation of the Autoregressive Model

5.1 Introduction

The stochastic streamflow model discussed to this point, for example

purposes, is the lag-one autoregressive model. In Section 3 the discussion

focused on how to implement this model and the trade-offs in using annual vs.

season models. In this section an evaluation is made of the autoregressive

model in light of past criticism of the model, and more recently, support of

this model.

The reason that doubt has been cast on this model is the observation of

long-term persistence in streamflow records. For this reason, many stochastic

models have been proposed which better account for this observation.

Consequently, the discussion first focuses on defining persistence and its

* implications for stochastic models. Secondly, the perceived inadequacy of the

, autoregressive model due to persistence is described. Finally, an evaluation

of the autoregressive model is given, considering more recent research which

supports its use in light of the parameter uncertainty issue.

5.2 Persistence

5.2.1 Introduction

Drought is perceived when streamflow volumes remain below some expected

level, previously defined as the truncation level (e.g., the mean annual
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4 streemflow). Thus the important question to be answered in modeling drought is 4

given that the previous periods flow is below the truncation level, how likely

is it that the current periods flow is going to be below the truncation level?

This question can be answered if the serial dependence between successive

periods of flow is known, i.e., if the correlogram is known. Remember that

the correlogram is a plot of the serial correlation coefficient versus the h.."

period lag and indicates the degree of dependence of current flows on past

flows. -,

The number of lags to include in a probability model, or the amount of

serial dependence, may seem to be a simple matter based on analysis of the

correlogram. To the contrary, this has turned out to be a controversial

subject when modeling stochastic processes in hydrology.

The reason for this is the observation of persistence in hydrologic

records. Persistence occurs when a great deal of serial dependence is

observed in the hydrologic record. This essentially means the correlogram"

does not approach zero in a "reasonable" number of lags. In this subsection,

the discussion focuses on how this phenomenon was discovered, its physical

interpretation, and its impact on probability models for drought analysis.

5.2.2 Definition

The observation that hydrolbgic extremes are preceded or followed by the

same is generally referred to as persistance in hydrologic time series,

sometimes referred to as the Hurst phenomena (Hurst, 1951). The purpose of

this section is to derive a parameter, known as the Hurst coefficient, which

indicates the degree of persistence in streamflow. This parameter can then be

- Ii
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used to evaluate drought potential.

As an example, consider the calculation of the Hurst coefficient for the

annual streamflow volumes of the West Branch of the Oswegatchie River (Table

2.1) shown in Table 5.1. The calculation is based on analyzing the mass curve

(Rippl diagram) of demand and supply in Figure 5.1 (for an alternative approach

see Wallis and Katalas, 1970). The mass curve analysis performed here differs

-" from that described in Section 4. In this instance, the analysis determines

the reservoir storage needed to supply water under the worst drought conditions

and store water during the maximum flood without overtopping the dam. In

Section 4, the reservoir storage determined by mass curve analysis only

satisfied drought conditions.

To calculate the Hurst coefficient, assume that the demand is equal to the

* average yearly streamflow, define the cumulative departures from the mean flow

or demand as:

S S k (1 (5.1)k S- ( !~ = Skc - kIcx~l
k i=l 

where: S * = cumulative departures from mean flow
kc

S = cumulative inflow at the end of the kth year

x = mean flow

x_ = observed annual flow

n = number of observation

Define the range R (Figure 5.2) as the difference between the maxium and

minimum values of Sk . R then would be the maximum reservoir capacity needed

to supply a constant outflow x without overtopping the dam, given the -

i11



historical inflow. (Note: in practice, reservoirs are not designed this

large. The reference to reservoir storage is a convenient artifice for

calculating the Hurst coefficients). Let the adjusted range be defined as:

R =R/s (5.2)
n n

where: Rn the adjusted range

sn = the standard deviation of the observed flows for a record
length of a years

R = range, difference between the maximum and minimum values
of Sk

Hurst then defined the relation:

Rn = (n/2)H (5.3)

where: H = the Hurst coefficient

The coefficient can be determined by taking the logarithm of equation (5.3):

log (Rn )n
log (n/2) - H (5.4)

l The results of Table 5.1 give H - .76. The larger the value of the Hurst

- coefficient the greater the level of persistence in the streamflow record.

Typically, the range of the Hurst coefficient is 0.5 < H < 0.9. Values of H

greater than 0.7 demonstrate a high level of persistence.

5.2.3 Physical Interpretation

• "The physical interpretation of long-term persistence has caused a great

deal of discussion because of its relationship with system memory (see Section

2.4.6). One would reasonably expect that the greater the system memory the

* higher the level of observed persistence. Consequently, streamflow records

which exhibit long-term dependence, correlogrums which approach zero at
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Table 5.1 Calculation of Hurst Coefficient (Volume in acre-feet)

YEAR *CUMULATIVE tCOMULATIVE MINZROM MAXIMUM RANGE MAXIMUM

STREAMPLOW DEPARTURE DEPARTURE DEPARTURE RANGE

1917 338.1 -34.5 -34.5 0.0 34.5 34.5

191 730.4 -14. -3 .S 0.0 34.5 34.5

1919 1136.6 18.8 -34.5 I8.8 53.3 53.3
,,1920 1487.2 -3.2 -34.5 1b.8 53.3 53.3

, 1921 1848.S -14.5 -34.5 10.8 53.3 53.3

, 1922 2262.6 27.0 -34.S 27.0 61.5 61.5 .

1923 2518.2 -90.0 -90.0 27.0 117.0 117.0

1924 2927.6 -S3.2 -50.0 27.0 117.0 117.0

1925 3327.9 -25.5 -90.0 27.0 117.0 117.0 L.

1926 3777.5 51.5 -90.0 51.5 141.5 141.5

1927 4125.7 27.1 -90.0 51.5 141.5 141.5
1928 4660.1 188.9 -90.0 188.9 278.9 278.9
1929 5123.4 279. 6 -90. 279.6 169.6 369.6

- 1930 5576.6 360.2 -90.0 360.2 450.2 450.2

- 1931 5826.3 237.3 -90.0 360.2 450.2 450.2

1932 6241.6 280.0 -90.0 360.2 450.2 450.2

1933 6596.3 262.1 -90.0 360.2 450.2 450.2

1934 6857.7 150.8 -90.0 360.2 450.2 450.2

1935 7221.1 141.7 -90.0 360.2 450.2 450.2

1936 7547.7 95.7 -90.0 360.2 450.2 450.2

1937 7969.1 144.5 -90.0 360.2 450.2 450.2

1938 8370.2 172.9 -90.0 360.2 450.2 450.2
t939 8683.7 113.8 -90.0 360.2 450.2 450.2

1940 9971.9 29.4 -90.0 360.2 450.2 450.2

1941 9212.9 -102.1 -102.1 360.2 462.3 462.3

1942 9548.6 -13P.8 -138.A 360.2 499.0 499.0

1943 )961.' -71.2 -138 8 3%n.7 499. 499.0 "

1944 10296.9 -135.9 -138.8 360.2 499.0 499.0

1945 10665.4 -140.0 -140. 160.2 500.2 500.2

194f 11045.5 -122.5 -1.40.0 360.2 500.7 500.2

-- 1.947 11650.0 99.4 -140 .0 360. 2 500.2 So00.2

1948 11991.i 67.9 -140 .0 360.2 500.2 500.2

1.949 12325.7 298-140.0 360.2 500.2 500.2
1950 12662.3 -6.1 -140.0 360.2 500.2 500.2
19S1 13054.7 13.7 -140.0 360.2 500.2 500.2

1952 11361.8 -51.8 -140.0 360.2 500.2 500.2

1953 13687.6 -98.7 -140.0 360.2 500.2 500.2

1954 14129.9 -28.9 -140.0 360.2 500.2 500.2

1955 14536.. 4.6 -140.0 360.2 500.2 500.2

1916 14969.3 -14.7 -140.0 360.2 500.2 soo.2

1957 1169.7 -106.9 -140.0 360.2 500.2 500.2
1958 35533.2 -116.1 -140.0 360.2 500.2 500.2

1959 15886.5 -135.4 -140.0 360.2 500.2 500.2

1960 16300.3 -94.1 -140.0 360.2 500.2 500.2 I
1961 16,S7.0 -160.1 -160.1 360.2 540.2 540.2

1.962 16941.7 -197.9 -197.9 360.2 558.1 558.1

1963 11261.0 -251.3 -251.3 360.2 611.4 611.4
3964 17531.7 -3S.1 -353.1 360.2 713.3 713.3

1965 17778.7 -478.8 -478.8 360.2 839.0 839.0

1966 18099.4 -530.6 -530.6 360.2 890.8 890.8

1967 18399.2 -603.5 -603.5 360.2 963.7 963.7

1968 18706.2 -669.0 -669.0 360.2 1029.2 1029.2

1969 19116.0 -631.9 -669.0 360.2 1029.2 1029.2

1970 19426.6 -693.9 -693.9 360.2 1054.1 3054. I
1971 19832.7 -660.3 -693.9 360.2 1054.1 1054.1

1972 20229.1 -636.6 -693.9 360.2 1054.1 1054.1

1973 20680.1 -558.2 -693 .9 360.2 1054.1 1054.1
1974 21107.9 -503.0 -693.9 360.2 1054.1 1054.1

31975 21490.1 -502.7 -693.9 360.2 1054.1 1054.1

1976 22044.8 -311.2 -693.9 360.2 1054.1 1054.1

1977 22487.2 -241.5 -693.9 760.7 1054.1 1054.1

1978 22950.5 -150.8 -693 .9 360.2 1.054.1 1054.1
1979 23361.7 -112.1 -693.9 360.2 1054.1 1054.1

3980 23496.6 -147.9 -693.9 360. 2 3054.3 1054 .1
1981 24219.1 0.0 -693.9 360.2 1054.1 1054.1

* (11111lative annual streaml low in a' ',-feet

f Departure from simple mean annual t'l,,w
X=gample mean annual flow-372.6 s=samplu standard deviat i,=74.8

H=Hurst coefficlent-log(R)/log(N/2)=1,,g(105
4
.l)/lo(

6 
/.,).

76

where R=Maxlmum Rane, N,=Number of Tlitia Years
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relatively long lags, should demonstrate high levels of persistence. Thus,

probabilistic models which use the observed correlogram as a means of

calculating the conditional probability of a drought should correctly account

for persistence in the streanflow record. Unfortunately, this is not true.

Mathematicians and statisticians have consistently shown that the Hurst

coefficient has a value H = 0.5 for any stationary process with finite system

memory (Klemes, 1974; Haan, 1977) as the number of observations approach

infinity. Obviously, this is in direct contradiction of Hurst's findings that

H > 0.5.

Further, Nandlebrot and Van Ness (1968) and Nandebrot and Wallis (1969)

produced probabilistic models which produced H > .5; but required that the

system have infinite memory. The implication is that the correlogram diverges

even at infinite lag, i.e., the lagged serial correlation coefficient is

always greater than zero!

There is a problem because there is no identifiable watershed process

which is endowed with infinite memory. However, researchers have suggested

that atmospheric processes may exhibit long-term memory. The high level of

persistence seen in streamflow records may be due to this atmospheric effect.

The actual mechanisms that would account for this phenomena has yet to be

identified. Certainly, long-term groundwater storage, which is a physically

plausible explanation for serial correlation, does not endow a watershed with

infinite memory for past meteorologic events. Consequently, the argument for

a process with infinite memory is less than conclusive.

Klemes (1974) clarified the situation by noting that the ability to fit a
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*" model (probabilistic or deterministic ) to data only mimics observed phenomena, -

but does not necessarily explain the nature of the processes which cause them.

.* In the above reference, KIemes proposed a number of alternatives to the

"- infinite memory explanation of the Hurst phenomena. In one of these, the

stationarity constraint was relaxed and a system was assumed to have zero

* memory (no serial dependence) and a mean (average) value that fluctuated with

time. Klemes demonstrated this type of model was capable of producing H > 0.5.

* The above argument demonstrates the danger of inferring physical properties

. of a watershed from statistical analyses alone. The use of H in a statistical

analysis of drought is important from an operational viewpoint because it

indicates the potential severity of droughts. However, the "H" statistic does

*. not explain the hydrometeorologic process behind the drought.

5.3 Model Comparisons .

Criticism of the autoregressive model in the past has been that it is

unable to model long-term persistence. The reason for this is that the

"* autoregressive model is a "finite" memory model, that is there are a finite

number of lagged correlation coefficients preserved in the model. Referring q-

to the previous section a finite memory implies asymptotically (e.g., as the

number of generated fl-ws becomes large) that the Hurst coefficient, H f 0.5.

Consequently, this model would underpredict the drought potential of a stream

which exhibited long-term persistence, H > 0.5.

The inadequacy of the autoregressive model caused a great number of

alternative models to be proposed which could simulate long-term persistence

(see Kottegoda, 1980). However, these models present a disadvantage in that

1 20
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they are much more difficult to use than the autoregressive model, particularly

in multistation analysis.

More recently, research has indicated that the autoregressive model is

more appropriate for use in water resources analysis in general, and in

drought analysis in particular, than had previously been thought in the past.

There are two reasons for this change of perspective. First, although the

autoregressive model produces Hurst coefficient's, H = 0.5, asymptotically,

for finite record lengths an H > 0.5 is produced. This is particularly true

when employing an annual model with multiple lags. A seasonal autoregressive

model will have greater difficulty in producing large H, unless the

corresponding annual statistics are preserved through a disaggregation scheme

*- (see Section 3.7 and Salas et. al, 1980, Chapter 9). Second the efficacy of

using high powered mathematical models as alternatives to the autoregressive

model is highly suspect when it is difficult to obtain reliable estimates of

the model parameters such as the serial correlation coefficients and H.

Bowles et. al. (1980) investigated the range of applicability of the lag

two autoregressive model (AR) and four other more advanced stochastic models

(autoregressive moving average (ARMA), broken line (BKL), fast fractional -

Gaussian noise (FFGN) and the ARMA-markov model (AMK)) based on a range of

criteria. The applicability was determined based on a water supply study of

four -treams in Utah.

The models were evaluated based on the following range of criteria:

(1) Ability to preserve annual persistence statistics (the Hurst TI
coefficient and serial correlation) and the run properties of the

121
"...................



'.1-

seasonal statistics (such as number of droughts per year).

(2) Cost and ease of model use.

(3) Magnitude of economic regret associated with drought related losses

(the economic damage associated with flows generated by each model

were compared).

(4) A comparison of reservoir capacity and critical drought design

1 parameters (reservoir design capacities were determined based on

specified yield requirements from generated flows of each model. The . -

critical drought parameter evaluated was the drought magnitude, L).

Criteria (1), (3) and (4) are related. The expectation is that the models that

preserve long-term persistence should also produce the worst droughts and thus

the largest economic regret (3) and the most conservative reservoir capacity

(4).

The results of the study indicated the following: Criteria (2), the

AR(2), ARMA and AMAK were much less costly to run then the FFGN and BKL.

Implied in the conclusions is that the parameter estimation for the AR(2) was

easiest. Criteria (1) indicated that all models except the AR(2) model are

., effective in preserving the Hurst coefficient, the AURA model being most

effective. All models seemed to be equally effective in preserving the

expected number of droughts per year. Criteria (3) indicated that use of the

BKL model minimized the expected agricultural damage. This is an interesting

result since the DKL model was judged under criteria (1) to be inferior to the

ARMA model in preserving long-term persistence. Based on this result, the
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authors conclude that, pg. 59, "the objective of preserving the persistence

statistics is not compatible with the objective of minimizing economic regret

for the study streams." Criteria (4) indicates that the ARlA and AAICK were the

most conservative in estimating the required reservoir capacity, followed by

the AR(2) model and then the FFGN and BKL models. All models produced drought

magnitudes, ML, considerably larger than the worst historical drought.

As a result of this study, the authors developed a model choice strategy.

The strategy is to use criteria (1) as the most important with (2) and (3)

being secondary considerations. Criteria (3) is relegated to secondary

consideration because, pg. 60, "economic regret will vary so much for different

uses of generated sequences that is not possible to use it in a generalized

choice strategy." Using criteria (1), the preservation of persistence

parameters as the primary strategy, the authors proposed (see Figure 5.3)

*regions based on the lag-one serial correlation coefficient and the Hurst

coefficient where various types of models are acceptable. Based on this

figure, the autoregressive lag-one or lag-two models are acceptable for serial

correlations less than 0.6 and Hurst coefficients less than 0.7.

Certainly the Bowles et. al. study demonstrates that an AR model is able to

produce generated sequences with useful Hurst coefficients. However, caution

should be used in interpreting these results. The study is based on only four

streams in a relitively small region. More importantly, the study does not

address the problem of parameter uncertainty on model choice.

Past studies have shown that there is a great deal of uncertainty in

estimating the correlation and Hurst coefficients. Rodriguez-Iturbe (1969)

examined the sampling variance of the mean, standard deviation and lag-one
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serial correlation coefficient assuming a linear, lag-one serial dependence

between annual streamflows. He concluded that sampling errors are extremely

high for all three variables for record lengths less than 40-60 years. Further

he adds (page 1421),

"... that in respect to Pl, (the lag-one serial correlation coefficient)
instability is the rule rather than the exception, even for records much
longer than normally found."

The estimates of the mean and standard deviation tend to be significantly more

reliable.

The sampling properties of the Hurst coefficient are also notoriously poor.

Wallis and O'Connell (1973) conclude "For many regions of the world there is

entirely insufficient hydrological data to make a reliable estimate of long-

term persistence." In fact, these researchers claim that for normally

available streamflow records it would be difficult to judge if persistence

exists at all (e.g., H f .5 or H 4 .5). Considering these findings, it

seems contradictory to judge a model based on its ability to preserve observed

Hurst and correlation coefficients when these parameters are very difficult to

estimate.

The importance of considering parameter and "intrinsic" uncertainty is

choosing between stochastic models is addressed by Klemes et. al. (1981).

They looked at parameter uncertainty by first comparing estimated reliability

of reservoir performance based on long memory (ARMA) and short memory (AR)

models. Second, reservoir reliability was investigated with a zero memory

(the serial correlation set equal to zero) model. Only in this case, the

parameters of the model, the streamflow mean and standard deviation, were

varied based on their sampling variance (see equation 2.11). The conclusion

S 125
" . . . .

"- -° - " "" . . . . . '- , -" • . f ""' ' " ' .'"" " " ' " '".
f

2 ' * ' . " " " 
' . '-

". " - "" " . " " " "



was that the difference between reservoir reliability* derived from a

comparison of long and short memory flow models (about 3% greater with the

long memory model) was insignificant compared to the 20% variability in the

estimate of reservoir reliability due to model and parameter uncertainty.

Consequently, parameter uncertainty tends to make the model choice academic.

Of more importance is the intrinsic uncertainty in defining future

conditions. In the case of a reservoir, these researchers point out that

social and economic changes during the project life of a reservoir are likely

to introduce error into any estimates of reservoir reliability. This

uncertainty has a greater effect on the estimate of reservoir performance

reliability then does parameter uncertainty.

Consequently, from Klemes' et. al. point of view the advantage of using

long memory flow models instead of an autoregressive models is marginal at

best. Quoting, pg. 750, "To summarize, the replacement of a short-memory

streamflow model with a long-memory model amounts to the incorporation of a

small safety factor into the reservoir performance reliability. However, in

most practical cases this factor will be much smaller than the accuracy with

which the performance reliability can be assessed." Based on this conclusion,

the model selection criteria given by Bowles at. al. seem to be to restrictive

and that the AR model is more widely applicable than Figure 5.3 indicates.

*Three types of reservoir reliability were investigated. In this part of the

analysis, quantity based reliability was investigated. This is the actual

amount of water supplied to the consumer expressed as a percentage of the 11
total demand over the period of simulation.
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5.4 Summary

In the opinion of many researchers, the observation of long-term

persistence in streamflow records invalidates the use of the autoregressive

model. Long term persistence is characterized by a Hurst coefficient that

exceeds 0.5. Researchers have been able to demonstrate that for any stationary

probability model, including the autoregressive model, the derived Hurst

coefficient is equal 0.5. Consequently, the autoregressive model was discarded

in favor of more sophisticated models which are able to better model observed

persistence.

However, more recently, the significance of long term persistence has been

questioned because of the parameter uncertainty issue. Long term persistence

can be equated with extremely long system memory, or equivalently, a correlo-

gram that diverges (does not approach zero at long lags). Unfortunately,

estimates of the lag-one serial correlation coefficient based on existing

record lengths of 40 to 60 years has been shown to be highly uncertain.

Consequently, estimation of serial correlations at longer lags, which is

necessary to characterize long term persistence, must be even more uncertain.

Thus it probably does not make sense to propose a model more sophisticated

than an autoregressive model if its parameters are highly unreliable.

Another reason for some skepticism is the absence of a physical mechanism

that endows a watershed with the "infinite memory" needed to account for long

term perisistence. Although atmospheric processes have been suggested, the

actual physical mechanism has not been identified.

The autoregressive model was found to be more valid than research has
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indicated in the past. The reason for this is not only the effect of parameter

uncertainty in choosing a model but the uncertainty intrinsic to the long term

planning problem. The intrinsic uncertainty arises because the demands on a

water resources project are very difficult to forecast over its lifetime (say

50-years). Consequently, the autoregressive model may very well be as

sophisticated a model as needed given the intrinsic uncertainty involved in

modeling demand.
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Section 6

Concluding Remarks

There is an enormous volume of research devoted to the development and use

of stochastic hydrologic models. If stochastic models include the probability

models used in flood frequency analysis then at least some of this literature

has been of some relevance to the practicing engineer. However, the

. application of stochastic models which produce synthetic streamflows has been

of minor importance. This must be very disappointing to the research

hydrologist considering the enormous amount of research effort devoted to

stochastic model development.

Stochastic models do not receive widespread attention from the practicing

hydrologist because these models are not well understood and there is some

question as to how the models should be used. The reason that these models

are not well understood is probably due to the jargon of time series analysis

which permeates the literature on stochastic hydrology. However, this jargon

can be dispensed with when the relationship between frequency analysis, which

is understood by the practicing engineer, and stochastic streamflow models is

recognized.

The relationship exists because in frequency analysis, streamflow peak

discharge, for example, is modeled as an independent random variable and

stochastic streamflow models represent streamflow volume as a dependent random

variable. The link between the two is the incorporation of dependence to the

description of random variables. Practically speaking, this Is done by using

linear regression to ascertain the degree of linear dependence between random

variables. Thus, the combination of the probability models of independent
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random variables used in flood frequency analysis and the modeling of

dependence with linear regression results in a stochastic hydrologic model,

namely the autoregressive model. Consequently, with addition of one simple

concept, regression analysis, the engineer can see that stochastic models are

not much different than the familiar techniques in frequency analysis.

The utilization of stochastic methods in practice Is less easily addressed

due to the nature of the prediction problem the hydrologist is trying to

solve. The prediction problem generally involves estimating the likelihood of

severe droughts or floods over the lifetime of a project given a relatively

short historic record (i.e., a historic record that has length on the order of

_7 the useful life of the project being built). Obviously, there is a great deal

of uncertainty in any prediction made under these conditions. This uncertainty

is reflected in the uncertain estimates of the parameters in stochastic models

which in turn leads to a small level of confidence in the estimates of likely

levels of drought or high flow periods. Thus one might wonder what use, if

any, that these stochastic models may have for the practicing hydrologist.

Stochastic models are useful because they point out the effect that

variability in the hydrologic record can have on engineering design. Returning

to the single reservoir design problem of Section 3.6, the variability in

reservoir design capacity based on a probability model of the reservoir inflows

(a lag-one autoregressive model) is extreme as can be seen from Figure 3.6.

This exercise points out the need to modify a design based on the historic

record by some type of safety factor. The magnitude of this safety factor may

be based on engineering judgement or on simulations with stochastic model

which produce droughts that are more severe than contained in the historic

record. However, selection of a safety factor based on engineering judgement
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is probably as valid as that derived by using a stochastic model given the

uncertainties involved in the prediction problem.

The true value of stochastic methods results from the simulation approach

to analyzing complex water resource systems. Since the stochastic models can

be used to generate conditions as severe or more severe than the historic s

record, simulations using these models demonstrate the operational robustness

of the water resource system under both severe wet and dry conditions. This

is a convenient method of investigating the reliability of the system,

considering that severe conditions generated by the stochastic model represent

some safety factor.
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APPENDIX A

Computer Program for Drought Duration

and Severity Calculation
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