
ESD-TR-85-206

flt>,
Semiannual Technical Summary

Restructurable VLSI Program

31 March 1985

Lincoln Laboratory
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LEXINGTON, MASSACHVSETTS

Prepared for the Defense Advanced Research Projects AgenC)
under Electronic Systems Division Contract F1')628-85-l'.-0O02.

Approved for public release; distribution unlimited.

/\0A 11*0195"

The work reported in this document was performed at Lincoln Laboratory, a
(enter for research operated by Massachusetts Institute of Technology. This work

sponsored by the Defense Advanced Research Pro w\ under Air
Contract F19628-85-C-0002 (ARPA Order 3797).

This report may be reproduced to satisfy needs of U.S. Government agencies.

The views and conclusions contained in this document are those of the contractor
and should not be interpreted as necessarily representing the official policies,
either expressed or implied, of the United States Government.

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER

Thomas J. Alpert, Major. USAF
Chief, ESD Lincoln Laboratory Project Office

Non-Lincoln Recipients

PLEASE DO NOT RETURN

Permission is given to destroy this document
when it is no longer needed.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LINCOLN LABORATORY

RESTRUCTURABLE VLSI PROGRAM

SEMIANNUAL TECHNICAL SUMMARY REPORT

TO THE

DEFENSE ADVANCED RESEARCH PROJECTS AGENCY

1 OCTOBER 1984 — 31 MARCH 1985

ISSUED 9 AUGUST 1985

Approved for public release; distribution unlimited.

LEXINGTON MASSACHUSETTS

ABSTRACT

This report describes work performed on the Restructurable VLSI
Program sponsored by the Information Processing Techniques Office
of the Defense Advanced Research Projects Agency during the period
1 October 1984 through 31 March 1985.

in

TABLE OF CONTENTS

Abstract iii
List of Illustrations vii

I. PROGRAM OVERVIEW AND SUMMARY 1

A. Overview 1
B. Summary of Progress 2

1. Design Aids for RVLSI 2
2. Applications 2
3. Testing 3
4. Reduced-Dimension Laser Links 3

II. DESIGN AIDS FOR RVLSI 5

A. Linking Shell (LSH) 5
B. DSP Silicon Compiler 6

1. Phase I 6
2. Phase II 12

III. APPLICATIONS 21

A. DTW Wafer System 21
1. Simulations 21
2. DTW Architecture 22
3. Cell Designs 24
4. Support System 25

IV. TESTING 29

A. Optical Probe Distribution 29

V. REDUCED-DIMENSION LASER LINKS 31

References 33

LIST OF ILLUSTRATIONS

Figure
No.

1 Graph representation of digital elements

2(a) A simple network

2(b) Network graph.

3 Delay equalized network.

4 Phase I control unit.

5 An example of control distribution.

6 General architecture.

7 Storage units.

8 Description of a second order section filter bank

9 Example description and computation graph.

10 Example implementation.

11 Connection switch.

12 Microword fields.

13 DTW support system block diagram.

14 DTW subsystem block diagram.

Page

7

8

8

8

9

10

12

13

15

16

17

18

19

25

26

VI1

RESTRUCTURABLE VLSI PROGRAM

I. PROGRAM OVERVIEW AND SUMMARY

A. OVERVIEW

The main objective of the Lincoln Restructurable VLSI (RVLSI) Program is to develop
design methodologies, architectures, design aids, and testing strategies for implementing wafer-
scale systems with complexities approaching a million gates. In our approach, we envisage a
modular style of architecture comprising an array of cells embedded in a regular intercon-
nection. Ideally, the cells should consist of only a few basic types. The interconnection
matrix is a fixed pattern of metal lines augmented by a complement of programmable
switches or links. Conceptually, the links could be either volatile or nonvolatile. They could
be of an electronic nature, such as a transistor switch, or could be permanently programmed
through some mechanism such as a laser. The RVLSI Program is currently focusing on
laser-formed interconnect.

The link concept offers the potential for a highly flexible, restructurable type of inter-
connect technology that could be exploited in a variety of ways. For example, logical cells
or subsystems found to be faulty at wafer-probe time could be permanently excised from
the rest of the wafer. The flexible interconnect could also be used to circumvent faulty logic
and tie in redundant cells judiciously scattered around the wafer for this purpose. Also, the
interconnect could be tailored to a specific application in order to minimize electrical degra-
dations and performance penalties caused by unused wiring and links.

Further, the testing of a particular logical subsystem buried deep within a complex
wafer-scale system poses a very difficult problem. A properly designed restructurable inter-
connect matrix could be temporarily configured to improve both the controllability and
observability of internal cells from the wafer periphery. In this way, each component cell or
a manageable cluster of cells could be tested in a straightforward manner using standard
techniques. With an electronic linking mechanism, it is possible to think in terms of a
dynamically reconfigurable system. Such a feature could be used to alter the function mode
of a system to changes in the operating scenario, or it could be used to support some
degree of fault tolerance if the system architecture was suitably designed.

Several major areas of research have been identified in the context of the RVLSI
concept:

(1) System architectures and partitioning for whole-wafer implementation.

(2) Placement and routing strategies for optimal utilization of redundant resources
and efficient interconnect.

(3) Assignment and linking algorithms to exploit redundancy and flexible
interconnect.

(4) Methods for expediting cell design with emphasis on functional level descrip-
tions, enhanced testability, and fault tolerance.

(5) Methods for testing complex, multiple-cell, whole-wafer systems.

Complementary work on the development of various link interconnect technologies as well as
fabrication/processing technology is being supported by the Lincoln Air Force Line Program,
and results are reported under the Lincoln Laboratory Advanced Electronic Technology
Quarterly Technical Summary.

B. SUMMARY OF PROGRESS

Work for this period is reported under four headings: Design Aids for RVLSI (Section
II), Applications (Section III), Testing (Section IV) and Link Technology (Section V).

1. Design Aids for RVLSI

Several improvements have been made in the wafer design and linking process. The
design system has been enhanced to facilitate the restructuring of small segments of a wafer.
The testing process has been improved to allow efficient use of test nets on a wafer when
the testing and linking process is spread over several work sessions. The program for testing
of the wafer interconnect has been improved by the inclusion of a more sophisticated model
for track capacitance, and by a routine which automatically diagnoses the causes of track
failures.

The first phase of the Digital Signal Processing Silicon Compiler is nearing completion.
The compiler can now generate a complete resource specification and a delay-equalized
netlist for simple, fixed-coefficient digital filters. The layouts of the multiplier, adder, and
storage cells necessary for these designs are also complete. The remaining steps are to inte-
grate these cell designs and the netlist with existing placement and routing routines to pro-
duce a completely automatic design system.

A general architecture for the second phase of the compiler has been developed. The
second phase will allow the design of more sophisticated structures. In particular, it will
allow sharing of computational resources to increase efficiency, and it will permit multiplex-
ing and decimation of data streams. The details of the architecture are described.

2. Applications

The detailed design of the Dynamic Time Warping (DTW) wafer is underway. The sim-
ulations of the wafer have been completed and the necessary questions about the architec-
ture and design parameters have been resolved. An overall layout for the entire wafer has

been completed. The detailed layout of one of the two cell types on the wafer is complete
and has been submitted to MOSIS for fabrication. A support system, which will be able to
demonstrate the wafer performance in various speech recognition tasks, is being designed.

3. Testing

The initial lot of optical probes has been distributed and a second lot is being
fabricated.

4. Reduced-Dimension Laser Links

The results of some recent experiments on reduced-dimension laser links are reported.

II. DESIGN AIDS FOR RVLSI

A. LINKING SHELL (LSH)

Several enhancements have been made to LSH, the set of CAD programs used for
design of each unique RVLSI wafer. The enhancements have been made to assist in incre-
mental restructuring and testing and to improve analysis of interconnect.

In general, it is desirable to do assignment and linking for the entire wafer so that it is
known that a restructuring is possible. In practice, however, an RVLSI wafer is restructured
and tested incrementally so that if faulty components develop during the linking, they can
easily be identified and replaced. To do this, the designer must be able to specify subsets of
the system and the sequence in which they are to be restructured. LSH has permitted the
generation of laser control files for a partial system by specification of a list of cells or a
net file. But this is not flexible enough and the designer has had to generate special net
files. The "zap" program has been changed to allow the user to specify a window on the
physical wafer in which zap and cut commands will be generated.

The generation and use of test nets has been made more efficient. In the 31 March
1984 Semiannual, an LSH enhancement was described which generates test nets for testing
of restructured interconnect and circuitry. It is desirable to link a large net in several pieces
but, in order to conserve interconnect resources, do so with only one test net. The "ictest"
program has been modified to support this operation. These improvements are sufficient for
the integrator and FFT systems.1 For testing the DTW wafer, the program will be further
enhanced to permit incremental system testing of the wafer as it is linked.

A new interconnect analysis program, "analyz," has been installed replacing "analyze,"
the earlier version. This LSH function, which identifies good and bad tracks based on a
statistical analysis of measured capacitance data, now has the ability to determine and
explain why a track is bad. "Analyz" examines the location, the measured capacitance, and
the predicted capacitance of each track in order to make its determination. The explanations
for faults which "analyz" offers include: short to adjacent track, short to crossing track, and
scratch on the wafer. Along with its explanation, "analyz" indicates how certain it is of its
conclusion.

An experimental version of "analyz," which makes fewer assumptions about variation of
capacitance across the wafer, has been written. The production version of "analyz" assumes,
for the sake of simplicity, that track and link capacitances exhibit a linear variation with
respect to coordinate location on the wafer. The experimental "analyz" makes no assumption
about the nature of this variation. Instead, the program partitions the wafer into a mesh of
rectangles and computes the capacitance parameters separately in each rectangle. Working
with relatively simple wafer circuit layouts, the two versions of "analyz" produce essentially
the same results. However, with wafer designs which exhibit denser and less regular geomet-
ric patterns of tracks and stubs, the more general point of view of the new "analyz" may
prove essential for obtaining accurate results.

B. DSP SILICON COMPILER

The DSP silicon compiler is designed to convert signal processing algorithms, described
in a high-level language, directly into a CIF file for circuit fabrication. The compiler can be
used to generate either discrete chips or cells which can be incorporated into wafer designs.
The designs consist of a collection of bit-serial arithmetic units plus the necessary storage
and control circuits.

The current development effort has been divided into two phases. Phase I will produce
circuits with fixed topology and fixed assignment of resources. It will produce fixed digital
filter structures. Phase II will use the same types of resources but will generalize the ways
in which they can be interconnected and controlled. This will permit sharing of the re-
sources within the chip among several functions and will allow signals to be multiplexed at
the input and output. The architecture for these chips will also allow the compiler to be
extended to perform more general functions.

1. Phase I

The front end of the Phase I silicon compiler has been completed. It accepts as input a
high-level description of an arbitrary, fixed-topology, fixed-coefficient filter and produces an
output file containing a complete netlist of the filter describing both the data and control
interconnect. Work will begin shortly on converting this file into a CIF file.

Delay Equalization

Data streams experience a computation delay when processed by serial arithmetic ele-
ments. This delay or latency depends on the type of arithmetic element (multiplier, adder)
but is otherwise constant. Two data streams impinging on, say, an adder may have under-
gone different amounts of delay in arriving there and, therefore, must be brought into
alignment before being processed. The process of achieving this alignment in a serial digital
network is termed delay equalization.

During the past six months, an algorithm for automatically equalizing the delays in an
arbitrary, fixed-topology digital network has been developed. The procedure begins by
representing a digital network as a directed graph comprised of the elements given in Fig-
ure 1. The graph represents an adder graphically as a node followed by an arc having a
delay equal to the negative of the adder's latency. An explicit delay element, on the other
hand, is represented as a node followed by an arc having that delay. A simple network is
depicted in Figure 2(a) along with its associated graph in Figure 2(b), drawn for l.d - 1
and lm - 24. The graph corresponding to a network with negative delays to compensate for
the latencies of the arithmetic elements is a logically correct, although physically unrealizable,
representation of the original network. The process of delay equalization consists of manipu-
lating the graph in ways that preserve its functionality but result in a new graph without
negative delays.

Figure 1. Graph representation of digital elements.

ADDER

Ji.

FIXED COEFFICIENT
MULTIPLIER

* m

DELAY

D

<t>

WIRE

OPERATOR GRAPH

REPRESENTATION

A technique called retiming developed by Leiserson, Rose and Saxe2 in a context apart
from delay equalization can be employed to provide a solution to this problem. Specifically,
the Bellman-Ford3 algorithm employed by these authors in their retiming work can be used
to solve the delay equalization problem. Applied to a given graph, this algorithm either
concludes that delay equalization is impossible or else yields a specific assignment of delays
to the arcs of the graph such that each arc has a non-negative total delay. The functional-
ity of the graph is maintained by this delay assignment. The only case where equalization is
impossible occurs when there is a feedback loop whose total delay is negative, indicating
that the computational latency is so great that the fed-back result is not available in time
for the next computation.

Figure 2(a). A simple network.

Figure 2(b). Network graph. -24

r—
28 -24

6-+ 6 »o

1

C

-»M +

G>

Figure 3. Delay equalized network.

This procedure has been coded and debugged and is now part of the compiler. The
compiler produced the equalized network shown in Figure 3. The automatic equalization
algorithm has been tried on a variety of examples and so far has always produced a delay
equalization as good as any produced by hand.

Control Generation

The control unit of the compiled design must provide the necessary control signals to
each functional unit and to the external circuits to which the chip is interfaced. In the case
of the serial arithmetic units the required control is a one-bit signal coincident with the lsb
of the word being processed. The external control on these chips will operate in either of
two modes. The chip can be synchronized with the external circuitry by external frame
pulses or the chip can generate the required pulse to synchronize the external circuitry. This
flexibility also permits chips to be connected in tandem.

The logical design of the Phase I control unit has been completed. A diagram of the
unit appears in Figure 4. The design can be described as self-initializing, synchronizable ring

LSB STROBE

CLOCK

LSB IN

n 1

I

D Q

». LSB-OUT

N = WORD LENGTH

Figure 4. Phase I control unit.

counter. When lsb-in is held low, the feedback logic causes the counter to clear itself and
then inject a "one" into the left-most flip-flop of the chain. This single "one" travels to the
right-hand end of the chain and then gets clocked out of the system. At this point the
feedback logic again injects a "one" into the chain and the cycle repeats. Operating in this
mode, the controller circuit generates the desired lsb signal C0 as well as all possible
delayed versions of C0 namely, C|, C2,.Cn.| which can be used to control adders, subtrac-
ters and multipliers.

The controller can also be synchronized to an external lsb signal by injecting this signal
at lsb-in. It is easy to see that the counter will again clear itself and then fall into step
with the external lsb-in signal. The controller also supplies two signals to the outside world,
Isb-out and lsb-strobe. The signal lsb-out indicates when the lsb of the output data stream

is present and is shown in Figure 4 as C2. The particular C^ that coincides with lsb-out
depends on the filter being realized and is determined by the compiler. Lsb-strobe, shown in
Figure 4 as C0, is supplied to the outside as an indicator of when the chip expects the
input data lsb to be present on its data line. Under user control, lsb-strobe can be made
equal to any desired Ck.

The control signals generated by the controller are distributed to the arithmetic elements
in a way that attempts to minimize the connections directly from the controller and maxi-
mize the use of control storage within the elements. This is shown in Figure 5, which

ft
C3

C3

<^

^>

C4

27

C4

^>

z

Figure 5. An example of control distribution.

shows the control distribution for a second-order section. The signals C3 and C4 come
directly from the controller. The control signal output from an arithmetic element is used to
control a succeeding arithmetic element wherever possible. The algorithmically-derived control
scheme shown in Figure 5 utilizes this possibility to the greatest extent possible.

The algorithm for assigning the control interconnect begins by traversing the delay
equalized network looking for delay line outputs. The proper signal from the control genera-
tor is then connected to all arithmetic elements connected to this delay line output. The
selection of the particular control signal to use in this step is derived from a delay potential
function that was already computed while doing the delay equalization. The delay potential

10

is essentially the delay from a reference node in the network (usually an input pin) to all
other nodes and thus contains the information needed to determine the proper control signal
to send to a given node.

The assignment algorithm continues its work by recursively searching the output inter-
connect lists for each arithmetic element encountered in the last step for arithmetic elements
whose control inputs are as yet unconnected. Such inputs on the new elements are con-
nected to the arithmetic element control output of the previous step. The algorithm finishes
up by making another pass through the network looking for uncontrolled arithmetic ele-
ments and connecting them to the proper control generator output. No claim of optimality
in any sense is made for this algorithm, but in the cases tried thus far it seems to do an
excellent job.

Cell Design and Layout Issues

The layouts for most of the cells needed for the Phase I compiler have been completed.
These are the shift registers, adder, subtracter, and several multiplier cells. All these designs
include the extra circuits required for feeding through the control signals and clocks. The
circuit for the control unit has been designed, but the layout remains to be done.

The routines for the automatic generation of large functional blocks based on the cells
are being tested. Two types of parametric units have been defined: arbitrary length shift reg-
isters and fixed coefficient multipliers. These programs are written in L5, a LISP-based lan-
guage for integrated circuit layout developed at Lincoln Laboratory.4 The parameter for the
shift registers is the bit length and for the multiplier the binary expansion of the coefficient.
The programs place all the interconnect between the cells, all the control signals, and all the
clock and power lines.

Multiplier Units

An improvement has been made in the design of the serial multiplier. The bit-serial unit
described in5 assumes the two top bits in the data are equal, thus restricting the dynamic
range of the data. If this condition is not met, the top bit in the result is not correct. In
numbers represented in two's complement notation, the most significant bit carries a negative
sign. This fact is the cause of the improper operation of the multiplier when the two last
bits of the data are not equal. The unit was modified to solve this problem. By adding two
pass-gates, we can alter the carry calculated by the unit's adder when the top bit is present
(as this carry will not be needed) and produce the correct sign extension. This result is
saved in a new register and now we are able to select the correct partial product being cal-
culated by each unit the same way as before.

11

2. Phase II

Work on the Phase II compiler falls into two categories, architectural and algorithmic.
All designs described by the signal processing language will be transformed into an architec-
ture, i.e., hardware framework, which will be described. The following goals guided the
development of the architecture:

• Low control-wire-density method of interconnecting functional units.

• Compact storage of state and temporary variables;

• Simple and versatile control units.

A block diagram of the architecture at the highest level is shown in Figure 6; each of
the architectural components, i.e., functional units, storage, interconnection and control unit
will be discussed individually below.

INTERCONNECT

t 1 ' t
FUNCTIONAL

UNITS
STORAGE

UNITS
CONTROL

UNIT

Figure 6. General architecture.

m
in

Algorithms are being developed to transform the signal processing language into a
hardware design which is a particular instantiation of the general architecture of Figure 6.
The goals of algorithm development are to make the transformation in a way which mini-
mizes the number of storage units and the complexity of interconnection. The algorithms
themselves should be efficient, i.e., the programmed algorithm should run in time and space
which is polynomial with respect to problem size. The discussion below will first concentrate
on the architectural components shown in Figure 6, describing each in turn. Following that,
the transformation algorithms will be discussed and finally, a summary of the work com-
pleted on the algorithms will be presented.

Functional Units

Functional units perform serial arithmetic and have serial-in and serial-out interfaces.
Each functional unit also has a built-in auxiliary shift register which allows a control bit to
shift through the functional unit in synchronism with the lsb. Two categories of functional
units are defined, inexpensive and expensive. The expense of a functional unit is directly
related to the silicon area necessary to realize that functional unit. Expensive functional

12

units, such as multipliers, must be used efficiently, i.e., a minimum number of them must
be used and they must be kept as busy as possible performing useful calculations. The
number of inexpensive functional units, such as adders, will be allowed to increase above
the minimum specified by the signal processing in order to achieve a more efficient overall
design.

Storage

Storage for state variables, temporary variables, and coefficients is provided by the two
types of storage shown in Figure 7. The read/write storage unit is a set of registers physi-
cally contiguous in silicon. An operand to be written into a storage unit is shifted into a

IN

L.

SHIFT/RECIR
(WRITE)

I

WRITE ENABLE

I
SHIFT/RECIR

(READ)

(a)

1
OUT Figure 7. Storage units.

I

(b)

-*•

SHIFT/RECIR

n
OUT

13

serial shift register, and if the write is enabled, data words are written in parallel to one oi
the registers in the memory. The register to be written is selected by the 1 in a recirculat-
ing shift register shown on the left of the read/write storage unit in Figure 7; similarly, a
register to be read is selected by a 1 in the shift register on the right. Data to be read is
transferred in parallel to the output serial shift register and shifted out. Both the read and
write recirculating shift registers work in a similar fashion. A signal from the control unit
issued during each word time causes the 1 to remain stationary (SHIFT/RECIR signal = 0)
or to proceed to the next shift register stage (SHIFT/RECIR signal = 1). The read-only
storage unit is the same as the read/write storage unit except that hardware associated only
with the write function is omitted.

This method of storage appears to satisfy storage needs for a wide range of signal pro-
cessing applications and offers two advantages over a more conventional addressable RAM
or ROM register file. The storage units presented here require no address decoding logic,
resulting in a significant silicon area saving. In addition, control of individual storage units
requires only 2 bits for a read/write storage unit and 1 bit for read-only storage unit,
resulting in a shorter microword and fewer signal lines to be routed to the storage units.
An additional global signal line is also needed by all read/write or read-only storage units
to synchronize reads and writes with the input or output shift registers. The Write Enable
signal for a storage unit is generated locally by ORing the states of its input connection
switches. Connection switches will be described later. An algorithm to partition the storage
requirements of a problem into units of this type has been developed.

Interconnection

Interconnection is a much more difficult problem in Phase II than it was in Phase I.
When functional units and storage units are shared, a method must be found to dynamically
switch connections when a shared functional unit changes uses.

In order to simplify the design we impose the following design rules:

(1) Connections are changed only at the word boundaries.

(2) The control settings for the interconnect elements are distributed serially during the
word interval to all switches and can take effect on the action of one global
timing signal.

The interconnection will be described by means of an example.

Figure 8 describes a second-order-section filter bank as an explicit loop in the signal pro-
cessing language. The compiler will realize this function using two multipliers which will
alternately be performing the two equations specified. Figure 9 shows a computation graph
associated with the description given in Figure 8. Horizontal lines labelled tj, t2, t3 and t4

represent word boundaries which occur when the input data is valid and every n bit times
thereafter until new input data is valid, where n is the number of bits in a word; thus.

14

X)
in
p>
CO
in

FOR I = 1 TO 20 DO

z = c[i]*x(n) + d[i]*x(n-1)

y(n,i) = a[i]*y(n-1,i) + b[i]*y(n-2,i) - z

Figure 8. Description of a second order section filter bank.

moving down in the figure corresponds to the passage of time. The boxes representing func-
tional units and delays have a length approximately equal to the latency of the unit, i.e.,
the amount of time between the entrance of a least significant bit of a data word and its
emergence at the output of the functional unit. Connections should be regarded as taking
zero time. To make the graph more readable, actual latency times have been distorted and
connections have time greater than zero. One significant point is that the serial multiplier
functional unit will have latency greater than a word time. To obtain maximum utilization
of resources, the computations performed during the word time starting at t3 can be done
in parallel with the first two multiplications, resulting in the movement of the dashed com-
putations in Figure 9 to the word time bounded by tj and t2. The same computations are
shown solid in that word time rather than dashed.

The minimum number of functional units needed to implement the description of Fig-
ure 8 is 2 multipliers, 2 adders and one subtracter. An assignment of particular functions to

functional units is shown in Figure 9. However, to meet restriction (2) above and still allow
the data to be pipelined through the multiplier and adders, we use an extra adder (an
inexpensive resource). Adder 1 is now in use from boundary t(to boundary t3, despite the
fact that the actual use of adder 1 is half that time. During the remaining time, adder 1 is
computing junk. The reason for this inefficiency is the requirement that the connections to
adder 1 must be established at boundary t(and must be maintained until boundary t3, i.e.,
for the entire operational time of adder 1. The resulting simplification of connection switches
appears to result in a net savings of silicon area for most applications. Expensive functional
units will be required to begin operation at word boundaries; this restriction permits expen-
sive functional units to be reused one word time later, i.e., as soon as possible. Thus, there
is no inefficiency in the use of expensive functional units.

Figure 10 shows an implementation of the example shown in Figures 8 and 9. Only the
connections that may change are shown; fixed connections have been eliminated to simplify
the figure.

15

c[i] x(n) d[i] x<n-1)

'3

V/^Vi LJ

OLD COUNT

/

NEW COUNT

in
ro
m
in

Figure 9. Example description and computation graph.

16

1
*

2

IN IN

1^
in
e>
m
in

Figure 10. Example implementation.

17

Algorithms and Status

Several algorithms are needed to translate the signal processing language description of
the hardware to be designed into silicon. In particular, algorithms will be required to per-
form the following functions:

(1) Parse signal processing language.

(2) Schedule functional units into microinstructions.

(3) Delay equalize the scheduled design.

(4) Group the storage registers into read/write and read-only storage units.

(5) Assign functions to units.

(6) Generate microcode.

(7) Complete the physical design, e.g., layout, routing.

Phase I currently uses algorithms of types (1) through (3) and algorithm (7); algorithms
(4) through (6) are unique to Phase II. The Phase I algorithms will have to be modified
somewhat due to the addition of explicit loops and redundant inexpensive resources. Also, a
control unit layout with parameterization must be completed, new primitives for storage
units and connection switches must be generated, and a modified overall automatic layout
method must be determined.

Algorithm (4), which was described earlier within the section on interconnection, has
been designed but not programmed. The purpose of algorithm (5) is to assign actual func-
tional units to functions in such a way as to minimize the number of switch connections
necessary. Algorithm (6) involves the generation of necessary sequencing instructions, inser-
tion of redundant microwords to maintain efficient data flow in the presence of loops and
conditionals, and specification of the contents of the next address field in the microword.
Algorithms (5) and (6) are currently being developed.

20

III. APPLICATIONS

A. DTW WAFER SYSTEM

1. Simulations

A bit-level simulation of the DTW level building algorithm was used for architectural
studies concerning the wafer-scale implementation of a DTW level building processor. The
simulation was written in the language "C" on a VAX-11/780. Much of the performance
evaluation was done with a data base provided by the University of California/Berkeley con-
taining both isolated-word and connected-digit utterances.

The DTW processor is composed of an array of computational elements (1 X N) each
with nearest-neighbor communication. Each element performs a distance measurement
between a frame of a stored reference utterance and a frame of an unknown test utterance.
It then adds that computed local distance to the minimum accumulated path of the previous
iteration from itself and the elements nearest it.

The issues which were studied in detail and the resulting parameters selected are as
follows:

(1) Filter bank coefficient quantization — 6 bits;

(2) Distance metric 4-bit approximation to 6-bit squared Euclidean;

(3) Path constraint and path weightings - flipped Itakura with weights 1/2,
I, and 2 applied to the different paths;

(4) Local distance accumulation quantization — 12-bit, saturating arithmetic.

Coefficient Quantization

Though the actual knee of the error curve occurs at 4-bit quantization of the filter
bank coefficients, additional improvement occurs out to 6 bits. For some speakers this
improvement can be considerable. Because a compact approximation to a 6-bit square can
be realized, and because of the performance improvement, a 6-bit coefficient quantization
was selected.

Distance Metric and Approximations

The squared Euclidean distance metric proved to be superior to the others considered.
Approximations to this distance metric which would increase its dynamic range at reasonable
levels of integration complexity were considered. The approximations concerned mainly the
squaring operations, although others could have been attempted. The 6-bit square approxi-
mation is accomplished using a 4-bit squaring table. The 6-bit magnitude difference of indi-
vidual frame coefficients are separated into two overlapping 4-bit fields. When the magnitude

21

of the value to be squared is greater than that which can be represented by the 4 LSBs,
the upper 4 bits of the 6-bit value are entered into the squaring circuit. This constitutes a
division by 4 (2-bit right shift). Subsequently, a multiplication by 16 (4-bit left shift) is
required on the output of this squaring operation. A simple rounding mechanism is pro-
vided. If the MSB of the 2 unused bits of the input is set, then the LSB of the upper
4-bit quantity is set. The scaling of the output is implemented using multiplexers on the
output register of the squaring circuit. The square approximation works as well as the exact
implementation in our simulations. Even more simplified approaches which produced greater
error in the squaring operation, produced similar results.

Path Constraint and Weighting

The "flipped" Itakura path constraint was developed particularly for the row-oriented
architecture. This path constraint uses only one row of look-back in its path minimization
process. This eliminates the need to include extra storage registers for delaying data by
more than one iteration. Both the "flipped" Itakura path constraint and its weighting were
selected for their demonstrated recognition performance advantages. However, it appears that
this advantage diminishes with increased range in the local distance calculation resulting
from either increased coefficient range or by the metric selected. When 4 bits are used to
represent the channel energies, percentage error rates vary by as much as 38% depending on
the constraint used; while at 6 bits, the variation is only 11% (using squared Euclidean).

The path weights specify the scaling applied to the local distance before it is added to
the minimum path value. This scaling is applied to the newly computed path distance before
it is passed to the next nodes. Weights of 1/2, and 1 and 2 are applied to paths with
shifts of 0, 1 and 2 units respectively.

Path Accumulation

Tests were conducted on the quantization of the local distance accumulation. Preliminary
statistics on average local distances along selected global warping paths showed these values
to be around the 6- to 10-bit range. Tests on quantization with saturation showed that
there was no decrease in error rate after 10 bits of quantization. Twelve-bit accumulation
was selected, first to maintain a reasonable ripple carry propagation time in the accumula-
tor, and second, to prevent pruning of valid warping paths by early saturation.

2. DTW Architecture

The DTW wafer is a pattern matching processor composed of a linear array of compu-
tational elements. Each element performs a distance calculation and a warping-path calcula-
tion. These operations define the two basic cell types used in composing an element in the
array. The distance calculator (DCALC) contains the circuitry necessary to perform an
accumulation of the square of the magnitude difference of two 6-bit coefficients, the squared

22

Euclidean distance metric. It also contains the buffer which holds a frame of the input
speech for which we are trying to find a match. The path calculator (PCALC) contains
path selection logic (minimizer) and adders for adding to the selected global path value the
distance between frames at this node. Also contained in the PCALC is the level processor
which performs inter-reference word decision processes. The level processor maintains the
best global path across the reference word set out to each frame of the input speech.
Initialization information and results are also loaded and unloaded through the level proces-
sor registers. The detailed architecture of the cells was determined from the simulations.

DCALC

The distance calculator first computes an approximation to the square of the difference
of the coefficients. The two 6-bit coefficients are subtracted, and the two's complement of
the result is taken if the sign bit is high. The 6-bit magnitude difference is entered into a
4-bit squaring unit as follows: the least significant 4 bits are entered if the value is repre-
sentable by 4 bits, otherwise the four most significant bits are entered. In the latter case,
the output of the square circuit is placed in the upper 8 bits of a 12-bit output register.
This rescales the output by the square of the inverse of the scaling applied to the input.

The output of the squaring circuit is fed into an accumulation loop. The accumulator is
a 12-bit, magnitude-only, saturating adder with ripple carry. The augend is either the partial
accumulation or, for reinitializing the accumulation for the next frame, zero. At the end of
a frame computation, the accumulated local distance is loaded into a 12-bit, parallel/serial
conversion register. The output of this register is connected to the path calculator.

Inputs to the distance calculator come from two sources. The reference data is provided
on a 6-bit bus, which is routed globally to all active elements. The input data (or
unknown) is held in a 6 X 12-bit buffer in the distance calculator, called the I-buffer. The
I-buffer also retains the initial frame data for each level. This double buffering scheme
allows for reference word changes (level reinitialization) without reloading input data, thus
providing 100% processor utilization during the matching process.

PCALC

The PCALC performs both local path decision processes and level decision processes.
During each reference word, the path processor compares all incoming paths from the pre-
vious iteration. The smallest path is identified and is used to produce the outgoing path
which has added to it the local distance computed at this node. This process continues,
producing the global warping paths which best match the current reference word out to
each associated frame of the input speech spanned by the processing array.

In the level processor these final path values are compared to the minimum global
paths to each node in the array for all previous reference words. When the current refer-
ence word is longer (in frames) than the previous word, then the resident level information

23

must be shifted to align it with the resulting paths for the current word. The shifted data
in the earliest input frame alignment positions are transferred to an external memory. This
implies a preordering of the reference vocabulary to insure that the words enter in a
shortest-to-longest fashion. This ordering is a one-time operation performed off-wafer and
does not affect the wafer performance. This transfer operation is performed by concatenating
three internal registers of the level processors into three long, serial-bit streams and shifting
their contents out through three output pins. These registers contain the path accumulation,
column traceback, and reference word pointer and are each 24 bits in length.

One failure-avoidance feature was added to prevent a single element dropout from
rendering the entire wafer inoperative. This feature is an enable bit which is included in
each element. The enable bits are linked into a long shift register. Cells are enabled by
entering a serial bit pattern equal in length to the number of linked elements. The pattern
contains a one in the position of each active element. Disabled cells are bypassed by
actively switching the inputs of the cell directly to the outputs.

3. Cell Designs

Cell and wafer layout for the DTW wafer-scale processor has continued during the
period. Of the two wafer cell types, the DCALC and PCALC cells, the DCALC was the
first to be laid out. The internal logic of this cell has completed layout, and the entire cell,
as well as time critical subportions of the cell, has been submitted to MOS1S for fabrica-
tion (see Table I). The PCALC cell has been floor-planned and layout is proceeding.

TABLE 111-1 [U]

Mosis Run Projects Submitted

Feb. 21 — CBPM2 l-buffer

Mar. 14 —CBPE2 l-buffer (revised)

DLA cell (Squaring Circuit)

Diff/Absv.

Apr. 4 — CBPM2 DLA cell (revised)

Accumulator

Complete DCALC

Wafer floor planning and signal-routing channel allocation have also proceeded in the
last Quarter. The wafer will consist of vertical columns of fabricated DCALC, PCALC
pairs. The row architecture of the completed system will be realized by routing nearest-
neighbor connections in the routing channel between the pairs. The columns will be con-
nected together alternately at the top and bottom of the wafer, thereby "snaking" the row

24

up and down through the wafer. Broadcast data and control signals will enter the top of
the wafer and be distributed in the routing channels on the outside of the DCALC and
PCALC pairs.

4. Support System

A compact, peripheral hardware unit is being developed to support the DTW wafer
application. This system will contain the necessary processing resources to parameterize and
recognize continuous speech in real time with a vocabulary of up to 4000 words. As shown
in Figure 13, the support system includes: (1) a general purpose control processor, (2) a
DTW subsystem containing the wafer, and (3) a front end having speech analysis capability.
Each system block of Figure 13 will be one or more Multibus boards.

The control processor coordinates all data traffic over the Multibus, including (1) the
accepting of processed digitized speech from the front end, (2) DTW subsystem configura-
tion, high level control, and interlevel speech data processing, and (3) data formatting for
display of recognition results at an operator terminal.

CONTROL
PROCESOR

HOST TERMINAL

c^>

FRONT END o

o DTW
SUBSYSTEM

«
REFERENCE

MEMORY

Figure 13. DTW support system block diagram.

25

Control Processor

A Heurikon HK68 single board microcomputer has been selected for use as the high-
level, DTW system control processor. The HK.68 is a 68000-based Multibus board with
4 Mbyte/sec quad channel DMA, 1 Mbyte of dynamic RAM, 64 kbyte EPROM capacity,
4 serial I/O ports, 3 programmable timers, vectored interrupts, and a number of other fea-
tures. Application software for the HK68 will be developed using a Hewlett Packard 64000
microprocessor development system. The software will be written using a combination of a
68000 assembler and a "C" compiler.

DTW Subsystem

The DTW subsystem is projected as a slave controller board to the HK.68 control pro-
cessor, consisting of: (1) the DTW wafer, (2) three subsystem memories, and (3) a microcon-
troller for coordinating fast control and wafer-to-memory data transfers. A block diagram is
shown in Figure 14.

/\

<^>

<^>

<^>

C=C>

LEVEL
MEMORY

zx
SEQUENCER

REFERENCE
MEMORY

DATA

SEQUENCER fC

INPUT
MEMORY DATA

SEQUENCER^

MICRO
CONTROLLER

^>

0

CONTROL 5

DTW
WAFER

Figure 14. DTW subsystem block diagram.

26

The current design includes 8 kbytes of input memory, 1 Mbyte of reference memory,
and 8 kbytes of level memory. The reference memory, currently planned as thirty-two
64 K X 4 DRAMs, may be expanded to 2 Mbytes. It will be a dual port memory and will
be constructed on a separate card. Each memory is accessible via Multibus or a fast address
sequencer under the control of a 2910A-based microcontroller. Multibus access is also pro-
vided for sequencer address initialization, for downloading microcode to the microcontroller
writable control store, and for initiation of microcontroller program execution. Special 3-bit
data formatting is provided at the level memory/wafer interface. A subsystem clock genera-
tor will provide nominal 4 MHz and 8 MHz two-phase, nonoverlapping clocks to the wafer
at appropriate CMOS voltage levels, together with a FRAME marker and a family of use-
ful clocks for other portions of the subsystem. The microcontroller will be able to generate
a Multibus interrupt to the control processor at the conclusion of each subsystem level pro-
cessing interval.

The general notion of a microcontroller-based DTW subsystem with Multibus interface
will provide the flexibility to make control timing adjustments or to change subsystem
memory contents throughout the wafer development process. The first planned use for the
support system is to control a functional segment of the full wafer array comprised of
individually-packaged PCALC and DCALC cells.

27

IV. TESTING

A. OPTICAL PROBE DISTRIBUTION

An optical probe is now in operation at the University of Utah. Laser sources and
manuals have been delivered to the National Security Agency; Stanford University;
Mississippi State; Utah; Bolt Beranek and Newman, Inc.; and the Information Sciences
Institute. Manuals have been sent to Columbia and North Carolina, and a second lot of
10 laser sources is now being fabricated by an outside vendor.

29

V. REDUCED-DIMENSION LASER LINKS

It has been shown that laser links as small as 9 X 9 ^ra2, a factor of 4 smaller in
area than the present design, can be programmed with better than 99.9% yield. In fact, the
programming seems to become more reliable as the size decreases, since the power threshold
for making a substrate contact (which puts an upper limit on laser power) increases. The
results are for the simple pyramid pattern, which lacks any polyimide or thick glass insula-
tor. A test pattern for reduced-dimension, complete RVLSI links is being designed.

31

REFERENCES

Restructurable VLSI Program Semiannual Technical Summary, Lincoln Labora-
tory, M.I.T. (31 March 1984), DTIC AD-A148145.

L.E. Leiserson, F.M. Rose, J.B. Saxe, "Optimizing Synchronous Circuitry by
Retiming," Third Caltech Conference on VLSI, 87-116 (March 1983).

E.L. Lawler, Combinational Optimization: Networks and Matroid, Holt, Rinehart
and Winston, NY, 74 (1976).

K.W. Crouch, "L5 User's Guide," Project Report RVLSI-5, Lincoln Laboratory,
M.I.T. (7 March 1984).

R.R. Lyon, "Two's Complement Pipeline Multipliers," IEEE Trans. Commun.,
COM-24, 418-425 (1976).

33

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER

ESD-TR-85-206
2. G0VT ACCESSION NO. 3. RECIPIENTS CATALOG NUMBER

4. TITLE (and Subtitle)

Restructurable VLSI Program

5. TYPE OF REPORT & PERIOD COVERED

Semiannual Technical Summary
1 October 1984 — 31 March 1985

6. PERFORMING 0RG. REPORT NUMBER

7. AUTHOR^)

Gerald C. O'Leary

8. CONTRACT OR GRANT NUMBERS

F19628-85-C-0002

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Lincoln Laboratory, M.I.T.
P.O. Box 73
Lexington, MA 02173-0073

10. PROGRAM ELEMENT. PROJECT. TASK
AREA & WORK UNIT NUMBERS

ARPA Order 3797
Program Element N0.6HOIE
Project No.3D30

11. CONTROLLING OFFICE NAME ANO ADDRESS

Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, VA 22209

12. REPORT DATE

31 March 1985

13. NUMBER OF PAGES
44

14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)

Electronic Systems Division
Hanscom AFB, MA 01731

IB. SECURITY CLASS, (of thu Report)

Unclassified

15,i. DECLASSIFICATION DOWNGRADING SCHEDULE

16. DISTRIBUTION STATEMENT (of thu Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

None

19. KEY WORDS (Continue on reverse aide if necessary and identify by block number)

VLSI customization systolic array
Restructurable VLSI (RVLSI) hardware description language integrator
programmable interconnect placement waver-scale systems
defect avoidance routing speech recognition

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

This report describes work performed on the Restructurable VLSI Program sponsored by the
Information Processing Techniques Office of the Defense Advanced Research Projects Agency during
the period 1 October 1984 through 31 March 1985.

0D FORM

1 Jan 73
1473 EDITION OF 1 N0V 65 IS OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

