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ASYMPTOTIC FIELDS IN STEADY CRACK GROWTH

WITH LINEAR STRAIN-HARDENING

P. Ponte Castafieda

Division of Applied Sciences
Harvard University

Cambridge, Massachusetts 02138

Abstract

The asymptotic stress and velocity fields of a crack propagating steadily and quasi-
4, ;

statically into an elastic-plastic material are presented. The material is characterised by J2

flow theory with linear strain-hardening. The possibility of reloading on the crack flanks is

taken into account. The cases of anti-plane strain (mode III), plane strain (modes I and II),

and plane stress (modes I and II) are considered. Numerical results are given for the

strength of the singularity and for the distribution of the stress and velocity fields in the

plastic loading, elastic unloading and plastic reloading regions, as functions of the strain-

hardening parameter. An attempt is made to make a connection with the perfectly-plastic

solutions in the limit of vanishing strain-hardening. , . - ,, . , ,

1. Introduction

Knowledge of the stress and deformation fields near the tip of an advancing crack is

central to the continued development of engineering fracture mechanics, and important

advances have been made in recent years. Under the assumption of quasi-static growth and

small-strain ideal elasto-plasticity, rigorous asymptotic solutions have been found in anti-

plane strain by Chitaley and McClintock (1971); in plane strain by Slepyan (1974), Gao
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(1980), Rice et a/. (1980), and Drugan et a. (1982); and in plane-stress mode 11 by Ponte

(1985a). Tn addition, a general discussion of the subject is found in Rice (1982).

The corresponding work for hardening elastic-plastic solids is at a less developed

stage. For linear-hardening materials Amazigo and Hutchinson (1977) (referred to as AH in

the sequel) produced steady-state asymptotic solutions using Mises flow theory for plane-

strain and plane-stress mode I, and for anti-plane strain. These solutions, however,

neglected the possibility of reverse plastic flow on the crack flanks which is known to

occur in the elastic-perfectly plastic solutions mentioned above. In a recent publication

Zhang et al. (1983) included reloading (as well as a Bauschinger effect) in their solution of

the plane-strain mode I problem.

Further work on the hardening elastic-plastic steadily moving crack include

publications by Slepyan (1973) who studied a mode III crack propagating in a linear-

hardening J2-deformation theory material, Lo and Pierce (1981) who considered a mode III

crack moving in a linear-hardening corner-theory material, Gao et al. (1983) who

investigated a mode III crack propagating in a power-hardening J2-flow theory material,

and Ponte (1985b) who studied the mode I crack propagating in a linear-hardening J2-

deformation theory material.

In this work we will include the possibility of reloading on the crack flanks of the

linear-hardening J2-flow theory problem. We will consider plane strain and plane stress

(modes I and II ), and anti-plane strain. Thus we will verify and expand the results of

Zhang et al. for plane-strain mode I, we will correct the results of AH for plane-stress

mode I and mode III, and we will produce new results for plane-strain and plane-stress

mode II.

We propose to use a simple scheme that can be implemented numerically in a

straightforward manner. Thus we formulate the problem in terms of a system of first order

ODE's in the angular variations of the non-zero components of the stress tensor and the

velocity vector instead of a single higher order equation in the stress function as was done

... .- ... , f t-
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by AH. This procedure has the advantage that it can directly make use of well-developed

Runge-Kutta integrators, and also that the boundary and continuity conditions are simplest

in form.

In our numerical solutions we will go to very low values of the hardening parameter

in order to try to make a connection with the perfectly-plastic problem. However, the work

of Dunayevsky and Achenbach (1982) suggests that the region of validity of the power

singularity solution to the linear-hardening problem vanishes in the limit of zero strain-

hardening. Thus it is not clear whether the limiting solutions to the linear-hardening

problem can in fact be related to the the perfectly-plastic solutions. Here, we will address

these and related questions.

2. Anti-plane strain (mode III)

2.1 Governing equations.

With reference to Figure 2. 1, let xi (i = 1,2,3) be a Cartesian coordinate system of

fixed orientation travelling with the crack tip such that the x3-axis coincides with the

straight crack front. Also let el be the unit vector corresponding to the xi direction.

Similarly, let r, 0 be polar coordinates corresponding to x. (a = 1,2) and er, ee be the

corresponding unit vectors. The crack tip moves with velocity V = Vel with respect to the

stationary coordinate system Xi.In our steady-state analysis the crack tip speed V is

constant so that the material derivative is given by
" =-V( )01 (2.1)

The non-zero stresses are T., = (73, and the only non-zero velocity component is

v3. Because it turns out to be simpler from an algebraic point of view, we choose to use the pg _z

polar components of the stress vector 'c so that 'rr r T. and v3 are the three variables of this 44 W51%

problem. Then the equilibrium equation is

1:? t
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(rtr),r + to,e = 0 (2.2)

For our bilinear flow theory material the stress-strain relation is
2GD = T + (U71 - 1) (Te'/ Te) % (2.3)

where D = (1/2)Vv 3 is the strain-rate vector, T = 'V is the stress-rate vector, T, = I[rl is

the effective stress, and cj is either at for loading (T.' > 0), or unity for unloading (r'< 0),

where at = G /G, the ratio of the tangent modulus to the elastic modulus in shear (Fig. 2.1),

is a measure of the hardening.

It can be seen that (2.2) and (2.3) form a system of three first order PDE's in the

two stress components and the single velocity component. Even though some of the

equations are nonlinear (namely the constitutive equations), all three equations are

homogeneous in the independent variables, which suggests that we look for solutions of

the form

Tr(r,O) = y0 Y1(0) rs ro(r,O) = Tro Y2 (0) 1s

(2.4)
v3(r,O) = V (To/G) Y3(0) IS/s

where r is nondimensionalised with respect to some measure of the plastic zone size, R.

Putting these into (2.2) and (2.3) we are left with a system of three first order ODE's in the

vector y = (IY, Y2, Y3)

y'(0) = f(0, y; S, ax) (2.5)

where the the components of f are given in Appendix A and depend on whether loading or

unloading occurs through the parameter

a =a ifo'>0
(2.6)

=1 ifb"< 0

where

0*(0) = r T'/T. = -s cosO + sin0 [y,'(0) / ye(O)] (2.7)

'e = To Y() rs (2.8)

and s is some as yet unknown function of a.

-7............................
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2.2 Boundary conditions

Anti-plane symmetry ahead of the crack tip reduces to the two independent

conditions

YI(O) = y3(0) = 0 (2.9)

and vanishing traction on the crack face requires that

y2(Tt) = 0 (2.10)

Thus we have three homogeneous boundary conditions to be satisfied by (2.5). It

follows that the strength of the singularity, s, will be determined as an eigenvalue of the

problem, and an amplitude factor corresponding to the stress intensity factor in the elastic

problem will be left undetermined in this asymptotic solution. We can then initially set

y2(0) = 1 (2.11)

even though once we obtain a solution we will renormalise it such that

y'(01) = 1 (2.12)

where 01 is the unloading angle (to be defined in the next section).

2.3 Loading history of a near-tip particle.

Consider the state of stress of a particle P at a given distance X2 above the crack line

as it moves past the crack tip (or, equivalently, as the crack tip moves past it) as depicted in

Figure 2.2a. Note that we can describe the location of this particle by giving its x1

coordinate, or, alternatively, by giving its angular coordinate 8 = tan-( 2/ x1).

It is expected that the particle will experience plastic loading ahead of the crack, but

then unload elastically for some critical value of 0, denoted 01, defining the location of the

straight unloading boundary. This is seen to be consistent with the fact that in the elastic

solution T, has a maximum for a value of 8 between zero and 7r.

For a hardening material (0 < (x < 1), a particle in the elastic unloading zone retains

the plastic strain state it had when it unloaded. Thus it is expected that when the particle is

- s..a.A~~a. 5 - 5 5
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deep into the wake of the crack ( 0 n it), its associated stress state will approach some

non-vanishing wake level, cw. Plastic reloading takes place on the crack flank if the

effective stress level, tw, associated with the wake stress state is greater than the effective

stress level, te I = 'to Ye(0 1) ( X2 / sin01 )S, that the particle had at unloading. Hence, it is

expected that for some values of a, plastic reloading will start at some critical value of 0,

denoted 02, defining the reloading angle.

2.4 Continuity conditions

We need to connect the solutions in the different regions through appropriate

continuity conditions. Recalling that in this problem we have a third order system in the

two stress components and the single velocity component, we require three independent

continuity conditions in these three variables across each unloading and reloading

boundary.

Let [ ] denote the jump in a quantity as 0 increases infinitesimally. Then the traction

component of the stress must be continuous

[t 0 ] = 0 (2.13)

and the displacement field must be continuous

[u3] = 0 (2.14)

Also for a work-hardening material it is consistent with the plastic rule to assume that the

plastic strain vector is continuous

[I Y'] = 0 (2.15)

It follows from (2.14) that

[Yr] = [U3,r] = 0 (2.16)

This condition, together with (2.15) yields

[Yrell = 0 (2.17)

which in turn implies that

[tr] =0 (2.18)

' ... . : ... '-.: "..'.---"i ' -" . -'". -. .: . ' -".' . " ' " . " 3 -: ."- "." .L ' . : , '.- .%.-% . .'"'....
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and also that

[tJ = 0 (2.19)

Similarly, it follows from (2.13) that
[,Yoe l] = 0 (2.20)

and that

IM] = 0 (2.21)

Finally, note that the velocity is given by

V3 = -Vu3,1 = -V(cos0 U3,r- sine u3,o) (2.22)

so that it follows from strain continuity that the velocity field must also be continuous

Iv 3] = 0 (2.23)

Conditions (2.13), (2.18), and (2.23) are the three independent conditions needed,

and they take the convenient form in terms of angular variations

[Y1] = [Y2] = [Y3] = 0 (2.24)

In order to close the mathematical problem we need to specify the conditions for

unloading and reloading which determine the angles 01 and 02.

Unloading occurs at 01 when the effective stress-rate of the particle vanishes, or

(see (2.7)) when

CO1 -- 0 (2.25)

Reloading occurs at 02 if the effective stress of the particle regains its unloading

value, or (see (2.8)) if

ye( 0 I) / (sin0I)s - y( 02) / (sin02)s = 0 (2.26)

2.5 Numerical integration

We need to solve the third order system (2.5) subject to the three boundary

conditions (2.9) and (2.10), and the continuity conditions (2.24). We selected a Runge-

Kutta-Verner fifth and sixth order scheme to perform the numerical integration.

7---. , ,a.e.
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We provide the initial values of the dependent variables yi(0) through (2.9) and

(2.11), and we need to guess the value of s for a given a. We then integrate equations

(2.5) to find the values of yi(0) for 0 < 0 < 7t, keeping track of whether unloading or

reloading occurs in order to make use of the appropriate value of a. Once we have the

values of yi(r) we check to see whether Y2(7) is zero, and we iterate in our guess for s

until convergence is achieved.

Note, however, that we cannot use (2.5) to find numerically the values of yi'(0),

but we can easily take the appropriate limits to find that

y1'(0) = (1-s 2/a) / (1-s/a)

Y2'(0) = 0 (2.27)

Y3'(0) = -s2/CC

Similarly, equations (2.5) are numerically ill-conditioned at 0 = 7r, but we can

integrate them out to 0 = 7t - e, and make c as small as needed to obtain accurate results.

Since y2(0) is well behaved near 0 = 7t, this approximation presents no difficulties.

2.6 Results.

The results are summarised in Figures 2.3 through 2.6, and in Table 2.1. Figure

2.3 is a plot of the strength of the singularity, s, versus the square root of the hardening

parameter, a. It is observed, as pointed out by AH, that s - .-alI2 for small aX.

Table 2.1 presents values of s, 01 and 02 for values of a such that 10-6 < a < 1,

and it also includes for comparison the values of s and 01 obtained by AH. It is found that

reloading occurs for all values of a such that 0 < a < a* where 0.05 < aX*< 0.1 (a more

accurate determination of W) is an expensive task not worth the investment at this time).

See Figure 2.2b for a schematic depiction of the loading history of a fixed particle. For

a#< a < 1 our results agree with those of AH as expected. For 0 < a < a* the appearance

of the thin reloading sector affects rather weakly the values of s and 01. Finally, observe

that as a - 0 the values of 01 and 02, though still far from the corresponding perfectly-

,-.-,-......-.. -. .' ." -" . , . '...-' ,".'.. . ."-'.. -... - ,.,- ." -'..-. .-. - .. ,.. . ... .. -.. . . .- .....-.-. .,.. . ... , . -. ., - .
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plastic values (19.69" and 179.63 °) of Chitaley and McClintock (1971), do appear to have

an appropriate trend.

Figure 2.4 -)ows plots of the particle effective stress (fixed x2) for 0 < 0 < n for

three values of ax (0.75, 0.1, 0.001) corresponding to large, moderate and small strain-

hardening. The result for large strain-hardening is actually quite close to the elastic result,

and no reloading is necessary. As x becomes smaller, the stress level ahead of the crack

(0 < 0 < 01) approaches a flat distribution, and a tiny reloading zone appears on the crack

flank.

Figure 2.5 presents plots of the angular (fixed r) variations of the stresses and

velocity for large, moderate and small strain- hardening. The curves corresponding to c =

0.75 are not very different from the elastic curves with the exception of tr (and r,) which

near 0 = 7t suddenly become unbounded. For ax = 0.1 the angular variations of the stresses

and velocity undergo significant changes, and for a = 0.001 they start taking the general

shape of the perfectly-plastic results which are depicted in Figure 2.6. This is a remarkable

result: even though the radial dependence of the velocity of the small-ax problem (eS/s) Joes

not approach that of the perfectly-plastic problem (Inr), the factored-out angular vriation

of the velocity of the small-a problem does seem to approach the perfectly-plastic result.

3. Plane strain (mode I)

3.1 Formulation.

Here the non-zero stress components are artl and 0 33 , and the non-zero velocity

components are va. Again for algebraic convenience we choose to use the cylindrical

components of the stress tensor CY and of the velocity vector v, so that 0 r0, onr, (OO,033 ,

vr, and v0 are the six variables of this problem. Then equilibrium requires

(rcrr),r + r0,0 - Yee = 0 (3.1)

. - . . .
A .i
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(rar).r + Ceeo + = 0 (3.2)

For a bilinear (cc = Et/E) flow-theory material the stress-strain relation is

ED = (I+v)l - v Tr(l) I + (3/2) (W-1) (e* 'ye) S (3.3)

where v is Poisson's ratio, I = eje i is the identity tensor, D = (1/2)[Vv+(Vv)t] is the

strain-rate tensor, 1: = W is the stress-rate tensor, S = a - (1/3) Tr(o) I is the stress-

deviator tensor, aY = [(3/2)S:S]1/2 is the effective stress, and j, is either cc for loading

(oe"  2 0), or unity for unloading (a,* < 0).

Note that there are four non-trivial equations in (3.3) (including the plane strain

condition D 33 = 0) which means that (3.1), (3.2), and (3.3) form a system of six first order

PDE's in the six dependent variables of the problem identified above. As we found in mode

11I, all six equations are homogeneous in the independent variables which suggests that we

look for solutions of the form

vr(r,0) = V (-torE) y1(O) rS/s ve(r,O) = V ('to/E) Y2( 0 ) s/s

ar(r,O) = Yt Y3(0) es Of(r,0) To Y4(0) Es (3.4)

aeo(r,O) = o Ys(0) rs  a 33(r,O) = to y6( 0 ) "

Putting these in equations (3.1) through (3.3) we are left with a system of six first order

ODE's in the vector y = (Yl, Y2, .- Y6)

y'(0) = f( 0, y; s, a, v) (3.5)

where the components of f are given in Appendix A, and depend on whether loading or

unloading occurs through the parameter

X = if '0
(3.6)

1 if <0

where
= r e/*/ae = -s cosO + sin0 (y,'/y) (3.7)

"= tO YC(0) r  (3.8)

and s is some as yet unknown function of a and v.

Mode I symmetry ahead of the crack tip requires the four independent conditions
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Y2( 0 ) = Y3(0) = y4'(0) = Y6'(0) 0 (3.9)

and vanishing tractions on the crack faces requires that

Y3 (nt) = y5 (t)= 0 (3.10)

Thus we have six homogeneous boundary conditions to be satisfied by equations

(3.5). As before s will be determined as an eigenvalue of the problem for given o and v,

and we can arbitrarily pick the amplitude factor of the angular variations.

The same arguments used in the mode III problem can be repeated here, and they

lead us to expect a similar near-tip loading history for this case.

We next use the same development as before to determine the continuity conditions

across an elastic-plastic boundary (unloading or reloading).

The traction components of the stress tensor must be continuous

[uro] = [a 00] = 0 (3.11)

The displacement field must also be continuous

[ur] = [U] = 0 (3.12)

and it is consistent with the plastic rule to assume that the plastic strain tensor is continuous

[EP, 1=0 (3.13)

It follows from (3.12) and the plane strain condition that

[frr] = [ 331 = 0 (3.14)

which together with (3.11) and (3.13) imply that

[Orr] = [1 33] = 0 (3.15)

and also that

[j =0 (3.16)

We can next show that all the strain components are continuous, and therefore that

[Vr] = [v0] = 0 (3.17)

Conditions (3.11), (3.15), and (3.17) are the six conditions needed, and in terms of the

angular variations they take the convenient form

[Y] =[Y2] .Y6] 0 (3.18)

r' '-"" ,"T"""' ." '.........,.".......""". ."..."",".... "". ""-"."..-....."."-"...-."-......-.......' '-.-'''.-,'''-.-
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To these conditions we must add an unloading condition which determines 01

COO( = 0 (3.19)

and a reloading condition which determines 02

ye( 0 I) / (sin0)s - ye(0 2) / (sin0 2)s = 0 (3.20)

The numerical integration of equations (3.5) was performed using the same scheme

used in the mode III problem. In order to get started we need to provide the values of y(0),

y'(0) and s for given a and v.

We have already seen in (3.9) that Y2(0) = Y3(0) = 0. If we now pick the

normalisation y4 (0) = 1, and guess the values of ys(0) and s, we find using (3.5) that

Y1(0) =-S {y 4(O)/a - )[Y5 (O) + Y6(O)]1

Y6(O) = I Y[Y4(0) + Y5(0)] (3.21)

with X = v + (ot-1l)/2.

Similarly, since y4'(0) = y6'( 0 ) = 0, we can use (3.5) to find that

Y1'(O)= y0'(O) = 0

Y2'( 0 ) = -YI(O) - s2{y 5(0)/a - XIy 4(0)+Y6(0)]} (3.22)

Y3'(0) = -(l+s)y4(0) + Y5(0)

We then integrate equations (3.5) to find the values of y(O) for 0 < 0 < x keeping track of

whether unloading or reloading occurs. Given the values of y3(7r) and y5(0) we check to

see whether they vanish, and iterate in our guesses for Y5(0) and s until convergence is

achieved. Once this is accomplished we renormalise our solutions such that ye(0 1) = 1.

Note that Y3 and y5 are well behaved near 0 = 7r, so that even though (3.5) is numerically

ill-conditioned at 0 = 7, a procedure analogous to that used in the mode III case is

appropriate.

3.2 Results.

In this case we produced results for v = 1/3 for several values of a. It was noted by

All that the dependence of s and of the angular variations of the stresses on v is weak.
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Figure 3.1 depicts a plot of s versus ot12; for large strain-hardening it looks very much like

the corresponding plot for anti-plane strain, but as ox gets smaller the curve reverses

curvature, and s does not seem to be approaching zero.

Table 3.1 shows values of s, 01 and 02 for 0.001 _< a :9 1, and it also includes for

comparison the values of s and 01 obtained by AH ignoring reloading. We first note that

our results agree very well with those reported by Zhang el al. (1983). It is found that

reloading occurs for 0 < ac < (x where 0.2 < W < 0.3 . See Fig. 2.2b for a pictorial

representation of the loading history. In contrast with the mode III results, reloading here

starts at higher strain-hardening (ox* - 0.3), the width of the reloading sector is much larger

(31.6" at a = 0.001), and the values of s and 01 are significantly affected by reloading (s is

weaker by 10%, and 01 is smaller by 14% at ax = 0.01). Note further that for aX = 0.001

the width of the elastic sector is only 1.35, and still decreasing strongly. Finally, we

should remark that the values of 01 and 02 do not appear to be approaching the

corresponding perfectly-plastic values (123.1' and 160.4" for v = 0.3) of the solution of

Drugan et al. (1982).

Figure 3.2 shows plots of the particle (fixed x2) effective stress for 0 < 0 < 7 for

large, moderate and small strain-hardening corresponding to values of a of 0.75, 0.1 and

0.001, respectively. For large strain-hardening small changes from the elastic solutions

occur, and no reloading is necessary. For moderate strain-hardening well-defined changes

take place: a smooth unloading (continuous as), and a sudden (discontinuous oe')

reloading are clearly observed. As we make o smaller, the elastic unloading sector virtually

disappears, and even though the stress level ahead of the crack increases, it is still far from

approaching a flat distribution corresponding to the perfectly-plastic yield condition.

Figure 3.3 presents plots of the angular (fixed r) variations of the stresses

aOr, ai, (OO, U33, and ae for large, moderate and small strain-hardening. The curves for

ax = 0.75 are not very different from the elastic curves except that art, Y33 and a. become

unbounded near 0 7c. Figure 3.4 shows the angular variations of the Cartesian

I



-14-

components of the stress for a = 0.001. It can be seen that the angular variations of the

stresses seem to be approaching the general shape of the stresses in a Prandtl field. But for

cc = 0.001 the agreement is still not very good; for instance oe(0) changes by 50% between

zero and 01 instead of remaining constant throughout.

Figure 3.5 shows plots of the angular variations of the Cartesian components of the

velocity for large, moderate and small strain-hardening (a = 0.75, 0.1, 0.01). It is

observed that, contrary to what happens in mode III, the angular variations of the velocity

do not remain of the same order of magnitude as those of the stresses, and do not seem to

be approaching a limit as a -4 0. This is an understandable consequence of the fact that s

does not vanish in the limit in this case.

4. Plane strain (mode II)

4.1 Formulation.

The formulation of this problem is identical to that of the mode I problem except for

the boundary conditions ahead of the crack tip. Mode II symmetry requires the four

independent conditions

YI(O) = Y4(O) = Y5(0) = Y6(0) = 0 (4.1)

It is convenient here to pick the normalisation y3(O) = 1, and to guess the values of y2(O)

and s. We can then use equations (3.5) to find that

Y1'(0) = (l-s) Y2( 0 ) - 2s2 [(1+v) + (3/2)(a-1-1)] y3(0)

Y2'( 0 ) = Y3'(0) = 0 (4.2)

y5'(0) = -(s+2) Y3(0)

plus two other more complicated equations for Y4'(0) and y6'(0) which we will not write

out in detail.
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Given the values of y(O) and y'(0) we can start integrating equations (3.5) making

use of the continuity conditions developed in Section 3 to connect regions of different

physical behavior. As before we need to check whether y3(x) and y5 () are zero, and to

iterate in the guesses of s and Y2(0) until convergence is achieved. When we are finished

we renormalise the solution in the usual way such that ye(0i) = 1.

4.2 Results.

In this case we produced results for v = 1/3 for several values of oa. Figure 4.1

shows a plot of s versus aX1 2; it looks very much like the corresponding mode IUl plot, and

unlike the mode I plot it is seen that s - --a" 2 for small a.

This case has the new feature that, since y,(0) has two peaks (recall the elastic

result), two additional regions appear and the two angles 03 and 04 are required to describe

the beginnings of the new reloading zone and the new unloading zone, respectively. The

two angles 01 and 02 retain their old meanings. Table 4.1 shows values of s, 0 1, 02, 03,

and 04 for 0.001 < a5 1. It is found, as depicted in Fig. 2.2c, that for a+ < ax < 1 (0.3

< a+ < 0.5) there is a four region solution: a plastic loading zone ahead of the crack,

followed by a wide elastic unloading sector, followed by a thin plastic reloading sector,

followed by another elastic unloading sector. For oa*< a < a+ (0.05 < a* < 0.1) there is

a two region solution, and for 0 < ax < a* reloading occurs on the crack flank, and there is

a three region solution. It should be noted that for ox < a < 1 two unloading conditions

are needed, and the appropriate obvious notational changes were made in equations (3.19)

and (3.20); for 0 < a < a+ the old formulation holds. By comparison to the mode III

results we find that reloading on the crack flank occurs roughly at the same level of

hardening (moderate), the singularity is a little stronger and the width of the reloading

sector on the crack face is smaller. By comparison to the mode I results we find that for

large strain-hardening the singularity is a little weaker, and reloading starts later and is less

important. Finally, we observe that the trend of the values of 01 and 02 as a -+ 0 are

-. . . . '- -.- •. .: 'o ,- " , , o . .- ~ o - , .. -,o .--. . . . . . . . .. o * . o . . . . . . . *
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compatible with the corresponding mode H perfectly-plastic values (9.57" and 179.82) of

Slepyan (1974) for a material with a Tresca yield surface with v = 1/2.

Figure 4.2 shows plots of the particle effective stress as a function of 0 for large,

moderate, and small strain-hardening. It is noted that for large strain-hardening small

changes from the elastic result take place, and the isolated plastic reloading zone is clearly

observed. As ox becomes smaller this initial reloading zone disappears, and for still lower

values of a a thin plastic reloading zone appears on the crack flank. At the same time a flat

variation in cer is approached ahead of the crack.

Figure 4.3 presents plots of the angular variations of the stresses aY.0, O'rr, NOe,

(33, and a,, for large, moderate, and small strain-hardening. For large a, the usual

observations are made. For small cc, we observe from this and Figure 4.4 (showing the

angular variations of the Cartesian components of the stress) that the stress distribution

agrees in character with the perfectly-plastic results of Slepyan (1974); we observe, for

instance, a centered fan distribution developing ahead of the crack.

Figure 4.5 shows plots of the angular variations of the Cartesian components of the

velocities v, and v2. We remark that for small a they agree in form with the perfectly-

plastic results of Slepyan (1974). They are of the same order of magnitude as the angular

variations of the stresses, and they approach a constant level in the elastic unloading, and

plastic reloading zones as az -0.

5. Plane stress (mode I)

5.1 Formulation.

The variables for this geometry are the three non-zero components of the stress

tensor a(,r,,qo , co, and the two in-plane components of the velocity vector vr, v0 (v3 does

not enter the formulation of the problem). The governing equations are the two equilibrium

. .. *... .. .,***
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equations (3.1), (3.2), and the three in-plane components of the stress-strain relation (3.3)

where we set C33 equal to zero. These equations form a system of five first order PDE's in

the five dependent variables identified above. If we now put

Vr(r,0) = V (to/E) y1(0) rs vo(r,0) = V (to/E) Y2(0) Is

(5.1)

ato(r,0) = 'To Y3(0) LS cyrr(r, o ) = 'to Y4(0) ts (TO(r,0) = to Y5(0) Es

into the five equations mentioned above, we obtain a system of five first order ODE's in the

vector y = (Y1, Y2, .. 5 Ys)

y'(0) = f(0, y; s, a, v) (5.2)

where the components of f are given in Appendix A, and depend on whether loading or

unloading occurs in the usual way.

Mode I symmetry ahead of the crack requires the three independent conditions

Y2(0) = Y3(0) = y4'(0) = 0 (5.3)

and vanishing tractions on the crack faces requires that

Y3(t) = Y5() = 0 (5.4)

Thus we have five homogeneous boundary conditions to be satisfied by our fifth order

system. As usual, s will be determined as the eigenvalue of the problem, and it will depend

only on ox. Similarly, we will be able to arbitrarily pick the amplitude factor of y(0).

Next we can use the usual arguments to show that the five dependent variables of

the problem are continuous across any unloading or reloading boundary so that

[Yl] = [Y2]= .... = [Y] = 0 (5.5)

Similarly, we use the unloading condition (3.19) and the reloading condition (3.20) to

determine 01 and 02 respectively.

Once again we use the same numerical scheme to perform the integration, but we

need to get started by providing the values of y(O), y'(0), and s for a given o.

From (5.3) we have that y2(0) = y3(0) = 0. If we now pick Y4(0) = 1, and guess

the values of y5(0) and s, we find using (5.2) that

, -..'..-.-........-.---.... .- . . . ... . -,.---. + .,.? i. ,.%. --
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YI(0) = -s [Y4(0)/a - X y5(O)1 (5.6)

and given that y4'(O) = 0 we find that

y1'(0) = y5 '(0) = 0

Y2'( 0 ) = y1(0)- S2 [y5(0)/a - . y4(O)] (5.7)

Y3'(0) = -(l+s) y4 (0) + Y5(0)

We then integrate equations (5.1) numerically to find the values of y(0) for 0 < 0 < N.

Given the values of Y3(ir) and y5(7E), we check to see whether they vanish, and if they do

not, we iterate in our guesses for Y5(0) and s until convergence is achieved. The solutions

are finally renormalised in the usual way (y.(0 1) = 1).

5.2 Results

In this case we produced results for a value of v equal to 1/2, and several values of

a. AH showed through their formulation of the problem that both s and the angular

variations of the stresses are independent of v. Only the angular variations of the velocities

depend on v. Figure 5.1 shows a plot of s versus a 1/2, and we can see that s - -oXl /2 for

small a.

Table 5.1 shows values of s, 01, and 02 for 0.0001 < a 5 1, and it also includes for

comparison the values of s and 01 obtained by AH neglecting reloading. The loading

history is depicted in Figure 2.2b. It is found that reloading occurs for all values of x such

that 0 < a < cc* (0.005 < a*< 0.01), but that the width of the reloading sector is so small

(less than 0.001") that the values of s and 01 are virtually unaffected by reloading. As

expected, for a* < c < I our results agree very well with those of AH.

Figure 5.2 depicts plots of the particle effective stress for 0 < 0 < 7 for the three

usual values of a. It is noted that for large strain-hardening a small perturbation from the

elastic result occurs. As a becomes smaller the tiny reloading zone on the crack face

appears, and the stress level ahead of the crack approaches a flat variation corresponding to

the perfectly-plastic yield condition.

. . . . . . . . .. |
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Figure 5.3 presents plots of the angular variations of the stresses for large,

moderate, and small strain-hardening. The curves for large strain-hardening show little

variation from the elastic result with the exception of aYr (and Ue) which becomes

unbounded as 0 - 7r. The results for small strain-hardening show that the stresses ahead

of the crack are approaching a centered fan distribution. Figure 5.4 presents the

corresponding angular variations of the Cartesian components of the stress tensor.

Figure 5.5 shows the angular variations of the Cartesian components of the velocity

for the three values of co. We observe that they stay of the same order of magnitude as the

stresses, and we can also see that they are nearly constant in the elastic unloading sector.

6. Plane stress (mode II)

6.1 Formulation.

The formulation of this problem is identical to that of the corresponding mode I

problem with the exception of the boundary conditions ahead of the crack which for mode

H become

y1(0) = y4(0) = Y5(0) = 0 (6.1)

It is convenient here to pick the normalisation y3(0) = 1, and we must guess the values of

Y2(0) and s for a given cc. We can then use equations (5.2) to find

yi'(0) = (1-s) yi(0) - 2s2 [(l+v) + (3/2)(ac- 1-1)] y3(0)

y2'(0) = y3'(0) = 0 (6.2)

y5'(0) = -(s+2) Y3(0)

plus a more complicated expression for y4'(0). With these results we can start integrating

equations (5.2) numerically, iterating in the values of y2(0) and s until a solution is found

satisfying y3(t) y5 (it) = 0. Finally, we renormalise the solution in the usual way.

.. '*"." . . . .,.€ ,,a, ,,- ' ' 
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6.2 Results.

In this case we produced results for v = 1/2, and several values of a. Figure 6.1 is

a plot of s versus a112, and it shows the usual behavior of s - --11 2 for small cx.

Table 6.1 shows values of s, 01, 02, 03, and 04 for 0.001 5 at 5 1. The four

angles have the same interpretation as in the plane-strain mode II problem. The loading

history is shown in Figure 2.2d. A four region solution is found for Oa* < a < 1 (0. 1 < Or*

< 0.2), a five region solution for ox+ < o < cx* (0.01 < ox+ < 0.05), and a three region

solution for 0 < ac < at+. We remark that for Wt < a < I two unloading and one reloading

conditions are needed, and for a+ < a < a* two unloading and two reloading conditions

are needed. Thus for ox+ < a < 1 the appropriate obvious notation changes were made in

equations (3.19) and (3.20), and for 0 < ax < ox+ the old formulation holds. Reloading

starts at intermediate strain-hardening, and the size of the reloading zone is small but not as

small as in mode I. The strength of the singularity is between that of the mode I (plane

stress) and mode III problems. As a -- 0 the values of 01 and 02 seem to be approaching

limiting values that compare favorably with the perfectly-plastic values (13.31* and

179.61") of Ponte (1985a).

Figure 6.2 depicts plots of the particle effective stress as a function of 0 for large,

moderate, and small strain-hardening. It is noted that for large strain-hardening small

changes from the elastic result occur, and the isolated reloading zone is observed. As c

becomes smaller the initial reloading zone disappears, and a new reloading zone appears on

the crack flank. Simultaneously, the stress approaches a constant level in the plastic sector

ahead of the crack.

Figure 6.3 presents plots of the angular variations of the stresses for the three usual

values of ox. Figure 6.4 presents a plot of the corresponding variations for the perfectly-

plastic material. It is seen that the agreement between the small-a and perfectly-plastic

results is very close.

;-...... ........,-: ........... 4.............................. ...... . -. .-.. ". .. ... -... ...
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Figure 6.5 shows plots of the angular variations of the Cartesian components of the

velocity vector for the linear-hardening material. Figure 6.6 shows the corresponding

variations for the perfectly-plastic material. Once again, remarkably, it appears that the

linear-hardening variations approach the corresponding perfectly-plastic variations as cc

approaches zero.

7. Discussion of the small-a limit

It is natural to separate the perfectly-plastic problems into two groups according to

their solutions. For the anti-symmetric modes (I1 and III), asymptotic solutions exist with

continuous stress and velocity fields, and they have roughly the same configuration: a

(singular) centered fan plastic sector ahead of the crack, followed by a (non-singular)

elastic sector, followed, in turn, by a (non-singular) constant stress plastic sector on the

crack flank. For the symmctric mode (I), fully-continuous solutions with the above, or

other configurations have not been found, and presumably do not exist. For plane-strain

mode I, a solution has been found (Rice et al., 1980) which admits a discontinuity in the

tangential component of the velocity vector at the plastic-plastic boundary (0 = 45*)

separating the constant stress sector ahead of the crack from the centered fan sector. For

plane-stress mode I, no solution (of any type) seems yet to have been found.

On the other hand, our small-a numerical solutions to the linear-hardening problem

seem to follow a similar pattern. For the anti-symmetric modes, the following features

appear as ac -4 0: the strength of the singularity vanishes as s - -c ext' 2 (c > 0), the angular

variations of the stress and velocity fields seem to approach limits which agree with the

corresponding perfectly-plastic variations, but the radial dependence of the velocities ( rS/s )

does not approach the corresponding perfectly-plastic variation ( lnr ), whereas that of the

stresses does in a pointwise sense (rs - 1). For plane-strain mode I, s does not approach

.............
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zero, and neither do the angular variations of the velocities appear to approach a limit as ax

approaches zero, even though the angular variations of the stresses appear to approach a

limit that is reminiscent of the Prandtl field. For plane-stress mode I, s does seem to

approach zero as a -4 0, and the angular variations of the fields also seem to approach a

limit, but we were unsuccessful in relating this apparent limit to a perfectly-plastic solution

with a similar configuration.

In this section we will first attempt to corroborate the observations from our

numerical results that as c --- 0, s - --ca1 ' 2 , and the angular variations of the fields of our

small-oa solutions approach the corresponding perfectly-plastic variations. We will second

try to understand the breakdown as a - 0 of the radial dependence of our power

singularity solution. For simplicity we will initially address these two questions in the

context of the mode III problem, and then we will try to extend our conclusions to the

mode II problems. Finally, we will have some comments about the mode I problems.

7.1 Small-a eigenvalue and angular variations in mode II1

In Section 2 we solved numerically the eigenvalue problem given by the third order

system (2.5) subject to consistency conditions that determined the value of a, and to the

boundary conditions (2.9) and (2.10). It yielded as eigenvalue the strength of the

singularity, and as eigenfunctions the angular variations of the power-singularity solution

(2.4) to the linear-hardening problem. The problem was solved for several values of t

ranging between zero and unity. The small-a results indicate that s - -catl 2, and that the

angular variations of the fields approach the corresponding perfectly-plastic variations. We

would like to demonstrate that this is indeed the case. In order to accomplish this goal

rigorously, we would need to produce an analytical expression for the small-a solution,

and then take its limit as a -+ 0. However, we were not able to find such small-a( solution,

but we did find a solution to the eigenvalue problem corresponding to the value of ax 0. If

I
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the small-oa solution has a unique limit as c -+ 0, then it seems reasonable that this limit

should agree with our a = 0 solution, which we derive below.

Equations (2.5) are in a form that is inconvenient to work with in the limit as a -* 0,

and they can be rewritten in the following fashion

Y2' + (l+s) Y1 = 0 (7.1)

(s/a) sinO (Yl'-Y2) Y1 - (s2/_Q) (cos( Ye2 + sinO YIY2) - Y2Y3' - SY1Y3 = 0 (7.2)

YlY3'- [Y2Y3 + sinO (ye 2 - Y2Yl' + YlY2')] = 0 (7.3)

It is expected that as a -- 0, s -- 0 so that for a =_ 0, we take s - 0. Then (7.1) takes the

simplified form

Y2' + Y1 =0 (7.4)

In the elastic sector a = 1, and (7.2) and (7.3) reduce to

sine (Yl'-Y2) - Y3 = 0 (7.5)

Y3' = 0 (7.6)

for otherwise we would have to require that yi = Y2 = 0. The solution of (7.4) to (7.6) is

Yj = A sine + C cose + B (0 sine + cose Inisin0l)

Y2 = A cosO - C sinO + B (0 cose - sine injsin0[) (7.7)

Y3 = B

In the plastic sectors Q = a. In order to have an appropriate balance of terms in

(7.2), we need to let either s/a or s2/a approach a constant non-zero value as a -* 0.

Our numerical results support the second possibility: s2/a - k. Then (7.3) allows us to

identify two cases:

(i) Y, =0 (7.8a)

In this case (7.4) yields

Y2 = I (7.8b)

where we have picked a normalisation, and it follows from (7.2) and (7.3) that

Y3 = -sine (7.8c)

and k = 1.
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(ii) y3' 0

Then (7.2) yields

Y'-fY2= 0

which together with (7.4) yields

Yi = a sine + c cosO (7.9a)

Y2 = a cosO - c sinO (7.9b)

Also

Y3 = b (7.9c)

In order to construct a solution to the full problem we assume that equations (7.8),

which obey the boundary conditions at 0 = 0, hold in the interval 0 < 0 < 01, equations

(7.7) hold in 01 < 0 < 02, and equations (7.9) with a = 0 (in order to satisfy the boundary

condition at 0 = t) hold in 02 < 0 < t. We then impose continuity of the stresses and

velocity at the two boundaries, the unloading condition which in this case is superfluous,

and the reloading condition which yields Icl = 1. The result, not very surprisingly, agrees

with the angular variations of the perfectly-plastic fields (see Appendix B), and

demonstrates (under the presumption that the small-a solution has a unique limit) the

validity of the original assertion.

7.2 Small-a radial dependence in mode III

The radial dependence of the velocity in our power-singularity solution to the linear-

hardening problem suffers from the difficulty that it becomes unbounded as a (and hence

s) approaches zero. We observe however that for e-l1isl << r 1

[s = esln= 1 + s lnr + ... (7.10)

so that

ES/s = 1/s + lnr +... (7.11)

This suggests that adding solutions with eigenvalues of opposite signs would yield the

correct (perfectly-plastic) radial dependence for both the velocity and the stresses in the

L .. • ... .
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limit as (x -4 0, provided that the angular variations corresponding to both eigenvalues

approached the same limit. Moreover, it is apparent from the discussion in the previous

section that if a solution with the specified balance of terms in the limit (s2/a -4 constant)

exists, the limiting angular variations are insensitive to the sign of the eigenvalue.

However, because the linear-hardening equations are nonlinear, we cannot expect in

general that the sum of two such solutions with eigenvalues of opposite sign will also be a

solution, but in this problem it happens that in the limit as a - 0 the equations in the

plastic sectors become linear (in the elastic sector they are always linear) so that the sum

yields in the limit a solution to the linear-hardening problem which is precisely the

perfectly-plastic solution. In order to give some plausibility to the above ideas we will

study the following model problem.

Consider the eigenvalue problem specified by equations (2.2) and (2.3) with Q = cc,

subject to the homogeneous boundary conditions

r(r,0) = v3(r,O) = 0 (7.12)

= 0

where 01 = n/2. Two solutions to this problem are

V = t. rs * eo  v3* = -V (to/G) sin 0 rs*/ s* (7.13)

with s*= +a 1/2 as eigenvalues. Note that

te'* = -S* T. (V/R) cosO rs*-l (7.14)

It follows that Te'*(r,0 x) = 0, and that for 0 < 0 < 01, te'*(r,0) > 0 (< 0) for s* = -a l/2

(+CCI 2) so that of the two possible eigenvalues only the negative one is physically

acceptable, since we have assumed plastic loading.

Further note that the velocity in each solution becomes unbounded as a -4 0.

However, surprisingly, the addition of the two solutions yields an exact solution to the

(nonlinear) governing equations, and boundary conditions. Thus

"" - " "9, '. ", I
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IC* = o[0r  + r4')21 eo = x cosh( a l 2 IN.) e

(7.15)
v3*= -V ( o/G) sinO (1:4a - r " a) / (2a'/2) = -V (ro/G) sinG sinh(al 2 Inr) / a11 2

is another solution to our model problem. This solution was first obtained through a

different procedure by Dunayevsky and Achenbach (1982). Note that

're= "-al2 To (V/R) cosG sinh(ca1 /2 Inr) /r (7.16)

satisfies Te'*(r,01) - 0, and re**(rO) > 0 for 0 < 0 < 01 so that (7.15) is also a physical

solution. In addition, this solution has the desirable property that it is well-defined in the

limit as a -) 0

%* = lim { .10 cosh(a l /2 lnr) eq } = roe
a-0 (7.17)

v3* = -lim { V (To/G) sin0 sinh(cai /2 IN.) a /2 } = -V (To/G) sinG In
a--

We remark that these are the fields (corresponding to a centered fan sector) which

would be the solution of the corresponding perfectly-plastic model problem; this

demonstrates that the governing equations of a linear-hardening problem, at least for some

configurations, admit solutions that approach the corresponding perfectly-plasti; olutions

in the limit as a -+ 0.

In our model problem we find that the power singularity solution to the linear-

hardening equations is not general enough to yield the full perfectly-plastic solution in the

limit, but does yield the correct angular variations of the eigenfunctions. By adding an

appropriate nonsingular (mathematical) solution to the power-singularity solution we are

able to obtain the full perfectly-plastic solution in the limit.

We are now in the position to make an estimate for the range of validity of the

power singularity in the model problem. We pointed out in (7.10) that for e-I/IsJ << r << 1,

rs - 1. Therefore, only when 0 < r << e1'J4ca are we justified in neglecting r a compared to

r-- a . Hence, the range of validity of the power singularity solution (7.13) to the model

"-'. -- ":,:. ".".'-, --" -' .." .-.-" .". "'.".-" '", "."..". "-"."'.'................................,'"....".............".-..-'.-.,.".".. '
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problem is given by 0 < r << e-1/ 4a, and we remark that this domain vanishes as a -. 0,

as observed by Dunayevsky and Achenbach (1982).

The properties of the model problem are very suggestive, and we would expect that

at least some of these features would apply to the full problem. Indeed, it appears that the

full problem may have another (mathematical) solution with a positive eigenvalue that

would have the same limit for the angular variations of the fields and the radial dependence

of the stresses as the power singularity solution (and the perfectly-plastic solution).

However, the radial dependence of its velocity would have a singular term in ax that in the

limit has the opposite sign of the corresponding singular term in the radial dependence of

the velocity of the power singularity solution. Then the sum of these two solutions, which

is not a solution to the linear-hardening equations for general (X, would in the limit as a -+

0 become a solution to the full linear-hardening problem, and agree with the solution to the

perfectly-plastic problem. It is conceivable that one might be able to construct a uniformly

valid solution to the small-ax problem (analogous to (7.15) in the model problem) that

would rigorously demonstrate the above ideas, but such a solution, if it exists, has yet to be

found. On the other hand, one might expect that the behavior of such small-a solution

might not be very different in character from (7.15), and thus expect a similar range of

validity for our power singularity solutions to the full linear-hardening problem.

7.3 The mode II problems

As we have already pointed out, similar observations from our numerical small-a

solutions were made for plane-stress and plane-strain mode II. It seems plausible that the

same ideas developed for the mode III problem may apply here, but the technical

difficulties involved are even greater. Based on these comments we expect the range of

validity of our power singularity solutions to be roughly the same as that for mode III.

....................| . :-1. .-
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7.4 The mode I problems

For plane-strain mode I, we have already observed that the eigenvalue of the

power-singularity solution does not approach zero as a - 0, and also that the angular

variations of the velocities do not appear to approach a limit. Alternatively, the perfectly-

plastic solution involves discontinuities in the velocity, so that it might be conjectured that

due to the fact that our numerical formulation implicitly assumes continuity of the velocity,

our formulation of the linear-hardening problem may become overdetermined as X -+ 0,

and thus yield a spurious limit for s.

For plane-stress mode I, the small-a solutions seem to indicate that a limit is

approached with fully continuous fields. But when we searched for a perfectly-plastic

solution with that configuration we failed. This may be an indication that the small-ax

results may not actually be approaching a valid limit, in accordance with the plane strain

case.

Hence for the symmetric mode problems we expect our power singularity solutions

to be of limited relevance for small ox, and their ranges of validity to be even smaller than

those of the anti-symmetric modes.

8. Concluding Remarks

It was found that reloading on the crack flanks of the growing crack in the linear-

hardening material occurs for all values of a less than a critical value o* where a* < 1. On

the other hand, it was also found that the angular variation (fixed r) of the effective

stress oe becomes unbounded on the crack faces for any amount of plasticity in a linear-

hardening material (0 < a < 1). These two observations seem to be in contradiction. To see

that they are really not, we recall that the definition of reloading involves a fixed particle

(x2 = X2). Hence, even though the angular variation of the effective stress of a particle

; ,:. _ .. ' " ' : ..Z , ." . .: " r " . "€ :. " . fir Z ,V " it," -". '."- '"..' ' ,.. ' -"' ."
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becomes unbounded as the particle travels far into the wake of the crack ( 7 -- ,r), the

radial variation (rs) of the same stress vanishes, and the product of the two, namely, the

effective stress of the particle approaches a finite level, s" w. We expect Oew to be a

continuous function of oa, and we know that it vanishes for the elastic problem (ax = 1). On

the other hand reloading does not occur until aw exceeds the effective stress, act, that the

particle had at unloading. Hence, it follows that oa* < 1.

It was found that the size of the plastic reloading sector is small (less than 0.5") for

all cases except for plane-strain mode I where the width of the reloading sector exceeded

40* for small ax. We also note that the width of the reloading sector for the plane-stress

mode I problem is significantly smaller (less that 0.001*) than for all the other cases. Thus

it turns out that, with the exception of the plane-strain mode I problem, the effect of

reloading on the global properties of the solution (the strength of the singularity, s, and the

size of the primary plastic loading sector, 01) is small, so that the approximation of AN is a

good one. On the other hand, in the plane-strain mode I problem we found that the effect of

reloading on s and 01 is sizeable; however, although the effect is consistent in the sense

that it makes s weaker for small a, it does not change the character of the solution

significantly. In any case the intuitive expectation that reloading should become relatively

more important as the perfectly-plastic limit is approached was verified for all cases.

The mode II results agree in general terms with those of the simpler mode III case.

They show a similar functional dependence of s, 01, and 02 on a, and a similar small-a

behavior. On the other hand, the mode II results introduce the new feature that for large ax

a small reloading sector floating in the middle of the elastic unloading sector is observed,

which allows for interesting particle loading histories, but this feature disappears for

smaller ac.

Some progress was made in understanding the small-a limit of the power

singularity solutions to the linear-hardening problem. For the anti-symmetric modes (II and

RI), we are inclined to think that the small-a solutions approach limits which are related to

. . . . . .
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the perfectly-plastic solutions. In fact, the angular variations of the small- a limits approach

those of the perfectly-plastic solutions. However, due to the singular nature (in a) of the

radial dependence of the velocity in these solutions, their range of validity (0 < I << e-1/a)

vanishes as a -+ 0. On the other hand, for the symmetric mode problems, it appears that

our small-a solutions are completely unrelated to the perfectly-plastic solutions.

Even though the validity of our small-a results may be restricted, the results for

moderate and large strain-hardening should prove to be applicable to appropriate materials

(such as reinforced ceramics), where these near-tip solutions may be embedded in finite-

element calculations of the full fields of a steadily propagating crack.
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Appendix A. The governing systems of O.D.E's.

Anti-plane strain

f, = ( sine T1 )- [ (s/g) cos8 Yi + sine T 2 2 + Y3]

f2 = -(S + 1) Y1

f3 = -s 2 sine Y -s 2 cosO Y2 - S (&- -I) T3 Y2 + s ( -1) sin6 YI Y2 fl

where

T, = [ I +( &-1-1) Y12 ]

T 2 = [1 + (W-'-1) (s+1) Y12]

T3 = [s cosO + (s+1) sinO Y, 2

and

Yi = (Yi / Ye)

Plane strain.

fl = (1-s) Y2 - 2s2 cose [ (I+v) + (3/2) (W-1-1)] Y3 - 2s sine T,

f= -Y - s2 cose [ z5 + (WI -1) x5 ] - s sine "'2

f3 = -(l+s) Y4 + Y5

f4 
= (1/sin) T3 {...}

f 5 = -(s+2) Y3

f6 = (1/sin) T 3 {...}

where

T= s (+v) Y4 - (3/2) (a-1 -1) -Y3 fe

T2 = S Y3 + v (f4 - 2Y3 + f6 ) - (Q-1 -1) X5 fe

T3 = {[1 + (-1.-1) x4
2 ][1 + (91--1) x6

2] - [v - 1(--1) X4 X6121 - 1

fe Ye'

x4 =Y4 - (1/2) (Y5 + Y6) x5 = Y5 - (1/2) (Y4 + Y6) x6 =Y6 - (1/2) (Y4 + Y5)

z4 Y4 - v (Y5 + Y6) z5 = Y5 - V (Y4 + Y6) z6 =Y6 - v (Y4 + Y5)

.'.- .- .' . .. .. , - -o- . %" . -. 'o." .. • , ,' . . ....".....".-".......,............-.......-..........."...........".......-....•..-..-..-., ..
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Plane stress.

f= (1-S) Y2 -2S
2 COS0 I (1+v) + (3/2) (2-1 -1) 1 Y3 -2s sine T,

f= -y, - S2 COSO I Z5 + W21 -1) X5 ] s sine T2

f3 =-(1+S) Y4 + Y5

f4=(I/sine) [i1 + &( I - 1) X4 2]-l1 {yi + s cose T3 +sinO T4 }

f= -(s+2) Y3

where

T,= S (1+V)Y 4 - (3/2) W -1) Y3 fe

T2 = SY3 + V(f4 - 2Y3 ) - (Q 1 -1) X5f

T3 = [Z4 + W1 -1) X4 1

T4= [(2-sv) Y3 - (-1 -1) (3Y3f3 + X5f5 ) X4 
2

fe = Ye'

X4 = Y4 (1/2) Y5  X5 =Y5 -(1/2) Y4

Z4 = Y4 V Y5 5 s= Y 5 - VY 4
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Appendix B. The perfectly-plastic solution for anti-plane strain

Centered fan plastic sector (0 < 0 < 0 1)

r T. ee

V3 -V CrIG) sine hIn

Elastic unloading sector (01 < 0 < 02)

T= T. [ (C + B Inlsin0i ) el + (A + B 0 )e 2 ]

V= V (T0I/G) B Inr

Constant stress sector (02 <0E < 7E)

V3 V (trO/G) B Int

where

A =cos0 1 + 01 sin01

B =-sin0 1

C =sinO 1 [1Injsin01 l - 1]

01 19.7112'

02 -179.6334*
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Tables

Table 2.1.- Mode III

a S S ~ 81 81* 82

1. -0.5 -0.5 90.00 90.0

0.75 -0.455 87.79

0.67 -0.437 86.83

0.5 -0.394 -0.394 84.39 84.4

0.3 -0.325 -0.325 79.81 79.8

0.2 -0.277 -0.277 76.09 76.2

0.1 -0.207 -0.207 69.82 70.0

0.05 -0.153 63.98 179.999

0.01 -0.0733 -0.0737 52.88 52.0 179.947

0.005 -0.0528 49.21 179.912

0.001 -0.0244 -0.0244 42.88 43.0 179.840

0.000001 -0.00081 33.88 179.731

()Results from Amazigo and Hutchinson neglecting reloading.

-7 ..
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Table 3.1.- Plane strain mode I v= 1/3

(X s S* 01 01" 02

1. -0.5 -0.5 88.62 88.6

0.75 -0.478 91.91

0.67 -0.469 93.65

0.5 -0.442 -0.442 98.40 98.4

0.3 -0.373 -0.373 107.46 107.4

0.2 -0.300 113.88 179.68

0.1 -0.197 -0.197 123.35 124.6 173.61

0.05 -0.142 -0.136 130.61 137.1 160.95

0.01 -0.0797 -0.0887 135.19 156.8 145.47

0.005 -0.0676 136.07 141.87

0.001 -0.0560 137.00 138.36

(*) Results from Amazigo and Hutchinson neglecting reloading.

-t~ . . .. . **.'. *... .. . . . . . ... .-..-... ..-...... .. . .... ....- .; . •.
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Table 4.1.- Plane strain mode Ii v 1/3

ac s 01 03 04 02

1. -0.5 42.22 128.76 137.66

0.75 -0.464 41.44 129.45 136.94

0.67 -0.449 41.10 129.99 136.63

0.5 -0.413 40.22 132.79 135.85

0.3 -0.349 38.43

0.2 -0.301 36.89

0.1 -0.229 34.12

0.05 -0.170 31.39 180.00

0.01 -0.0822 25.90 179.97
0.005 -0.0594 24.03 179.95

0.001 -0.0275 20.76 179.91

[ . . . . .

. .. . . . . . . . . . . . . . . . . . . . . . . . .

... . . . . . . . . . . . . . . . . . . .
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Table 5.1.- Plane stress mode I v = 1/2

ot s s* 01 01" 02

1. -0.5 -0.5 79.92 79.9

0.75 -0.468 -0.468 80.78 80.8

0.67 -0.455 80.90

0.5 -0.420 80.76

0.3 -0.357 79.34

0.2 -0.310 78.58

0.1 -0.237 -0.237 73.65 73.6

0.05 -0.178 -0.178 69.53 69.6

0.01 -0.0863 -0.0864 61.09 61.1 180.000

0.005 -0.0623 -0.0624 58.23 58.3 179.999

0.001 -0.0287 53.20 179.999

0.0001 -0.00925 49.00 180.000

(*) Results from Amazigo and Hutchinson neglecting reloading.

. . . . . . . .
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Table 6.1.- Plane stress mode II v = 1/2

s 01 03 04 02

1. -0.5 46.35 102.58 134.13

0.75 -0.456 45.81 101.61 132.83

0.67 -0.439 45.57 101.33 132.28

0.5 -0.398 44.93 100.96 130.91

0.3 -0.332 43.62 101.37 128.46

0.2 -0.286 42.44 102.62 126.57

0.1 -0.219 40.27 106.56 123.50 180.00

0.05 -0.166 38.01 114.84 120.34 179.99

0.01 -0.0795 31.91 179.91

0.005 -0.0572 29.79 179.87

0.001 -0.0263 26.13 179.79

............................
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Figure 2.2-(a) Loading history of panicle P: it loads plastically (L) ahead of the crack.

unloads elastically (U) at 1. and reloads plastlcally (L) at 2. Loading history as a function

of a for modes Ill and I (b). plane-strain mode 11 (c). and pane-sms mode 1 (d).
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0.0 Mode III

-01

-0.

-0.3
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-0.5
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Hardening, a 12

Figure 2.3-Strength of the singularity in anti-plan shear.

1.5 Mode III

0.5

0 30 60 90 120 150 to0
Angle, e

Figure 2.4-Particle 0~2 fixed) effective stress distribution in anti-plane shear for large.

moderate, and small strain- hardening, normalised such that t(r.01) 1 .
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1.5 Mode IIl
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Figure 2Sa-Anular tr id)ess and velocity distbution in an-plane shea for ldae

strain-hadenin, nonalised such that ;S)=1
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0.0 Mode I (Pl. Strain v=113)

-0.1

U)

-0.3

-0.4
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0.0 0.2 0.4 0.6 0.8 1.0

Hardening, a 1/2

Figure 3.t1-Stentth of the singularity in plane swain odeI (v=-113).

1.5 Mode I (Pl. Strain)

a=-0.0O1

1.0- 
- - - - - - -

0.50.

0.0

0 30 60 90 120 150 180

Angle, 9

Figure 3.2-Particle effective stress distrbution in plane strain mode I for large. moderate,

and small strain-hardening, normnalised such that q,(r.O1) 1 .
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2.5 Mode 1 (Pl. Strain)

a=O.75

20

t3 1.5
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Figure 3.3a-Angular stress distribution in plane strain mode I for large srain-hardening.

noormalised such that 0.(81). 1.
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Figure 3.3b-Angular stress distribution in plane strain made I for moderat strain-

hardening, normalised such that c,(81) 1.
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25 Mode I (PI. Strain)
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Figure 3.3c-Angula sus distibution in plane &rain modeI for smaU strain-lhaining.

normalised such that aO(O)- I.

2. 2( ) Mode I (Pi. Strain)

a=0.001
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Fitgue 3.4-Angular sutus distbution in plant mn mode I for small strain hardening.

onnalised such that a,(91) 1.
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Mode I (P1, Strain)

a = 0.75

> - - ----
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-6 I
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Figure 3.5--Angular velocity distribution in plane srain mode I for large, moderate, and

small strain-hardening, normalised such that V'(6,) 1.
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00 Mode 11 (Pl. Strain v=1/3)

-01

.--.2

-0.3

-0.4

-0.5
0.0 0.2 0.4 0.6 0.8 1.0

Hardening, a 1/2

Figure 4.1-Srength of the singularity in plane strain mode II (V 1 1/3).

1.5 - Mode II (P1. Strain)

a = 0.001

1.0 -

0.5 0.7.

0.0 -
0 30 60 90 120 150 180

Angle. 6

Figure 4.2-Particle effective stress distribution in plane strain mode II for large,

moderate, and small strain-hadening. normalised such that aj(r.e9) - i.
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1.5 Mode 11 (PI. Strain)

a =0.75

1 0

-5 0 30 60 9 120 150 180

Figure 4.3a-Angular stress distribution in plant strain mode 11 for large straifl-hardening,

normalased such that Oe,(Gi) - 1.

1.5 Mode 11 (Pl. Strain)
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Figure 4.3bo-Angular stress distribution in plane strain mode 11 for moderate strain-

hardening. normalised such that G.(9 1) 1
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15 - Mode 11 (Pl. Strain)
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Figure 4.3c-Angular stress distribution in plane strain mode 11 for small strain-hardening.

nonnaliscd such that o(8 1) - I.

1.5 Mode II (PI. Strain)
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I.,
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Figure 4.4-Angular stress distribution in plane strain mode II for small strain-hardening.

normalhsed such that oJOI) - I.
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0.2 Mode 11 (Pl. Strain)

V2 (0)
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-0.4nu

-0.6
0 30 60 90 120 150 1S0

Angle, 69

Figure 4.5--Angular velocity distribution in plane swain mode U for larte. moderate, and

small strain-hardening, normalised such that io~ I.



-54-

0.0 Mode I (Pl. Stress)
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Hardening, a 1/2

Figure 5. 1-Strength of the singularity in plane Stress kd I (V - 1/2).
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Figure 5.2-Paticte effective sutss dimtbution in plan sunas mode I for large. modeite.

and small strain-hardening, normaliscd such that 0,0.61) 1 I

.. *.s.~~ 
I. .



15 Mode I (Pl. Stress)

Ct=O 75

oft (0)

1 0

~. ,I,,

oV(e

0,0

-0.5
0 30 60 90 120 150 1PO

Angle,.

Figure S.3a-Antular sumes distrbution in plane stress node!I for lage stin-hardening.

normalised such that oOI6) - 1.
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Figure 5.34-Angular stress distribution in plane suss mode I for small stin-hadening,

normaliscd such that ;(n) 1.
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Figure 5.4--Angular sess distrbution in plane sn-cia mode i for small sirsn-hardening,
L norrnaliled such dmat o,(e I) - i.
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Figmare S.S-Angular velocity distrbution in plan Stres mode JI arge.M moderate, and
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0.0 Mode 11 (PI. Stress)
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Figure 6. 1-Stengthi of the singularity in plane stress moeII(v -112).
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Figure 6.2-Panicle effective stress distibution in plane stress mode 11 for large,

moderate. and small strain-huderning. sormialised such Oiat a.(f.01) -1.
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1.5 Mode 11 (PI. Stress)
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Figure 6.3a-Angialar sums distrbution in plane stess mode 11 for large stran-hardening.

normalised such that ;.(0,) 1 .
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Figure 6.3b-Angular sites ditrbution in plane stress mode 11 for moderate %train-

hardening, normalised such that ;(0,) 1 .
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2.5 Mode If (Pl. Stress)
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Figure 6.3c-Angular stress distrbution in plane stress mode 11 for small tauin-baadeaing.

normalised such tat oe(61) 1 . normalized such that ;(6,) - I.
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Figure 6.4-Angular stress distribution in plane stress mode It for perfect-plasticity,

normalised such that a.- 1.
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0.4 Mode 11 (Pl. Stress)
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Figure 6.6-Angular velocity distribution in plan stress mode 11 for perrectlyplasiity.

F nomalised such that@ a, 1.
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