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ABSTRACT

Computer control of ship steering provides track
following as well as course keeping. The desired track is
stored in the computer,and the position of the ship(as
provided by a satellite navigation system) is compared with
track coordinates.A heading correction is calculated contin-
uously and used to up date the course command.
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. I. INTRODUCTION

The basic reasons for using an autopilot on a ship are
to reduce the number of operator controls,minimize rudder
orders for Course-keeping,and reduce the travelirg time
between destinations.

In the past autopilots were used extensively to maintain
a given course. They work well but most autopilots are for
course control only,the effect of an ocean current and/or
wind during travel are not considered. When a disturbance is
applied,the ship follows the desired course but does not
follow the given track without correction. This problem has
been studied [Ref. 1]. The correction needed to compensate
for errors due to the effect of a current and/or wind were
found.

The purpose of this thesis is to develop a procedure to
compensate for the error in position and reduce it as much
as possible, then the autopilot can be used for both
Course-keeping and Track following. .

Today,many ships have computers on board. The computer
can be wused to solve the problem of Track following.
First,the desired trajectories are stored in the computer.
When the computer receives measured X and Y positions the
computer will provide the desired position with respect to X
and Y and compare with the actual position.An error signal
is obtained from trajectory information,and can be wused to
drive the ship close to the desired trajectory.

Actual position must be provided by the navigation
system. The navigation system used in the Track following
autopilot must be accurate,must give continuous information
about the position of the ship,and the system must be
useable everywhere in the world. It 1is felt that the
NAVSTAR/GLOBAL POSITIONING SYSTEM can be used.

9




...........

The NAVSTAR/GLOBAL POSITIONING SYSTEM(GPS),currently
being developed by the Department of Defense,is a satellite
based navigation system that will provide the user with
extremely accurate three-dimensional position,velocity and
time information on a 24-hour basis and in all weather
conditions at any point on the earth.The user position is
determined by measuring its range to four satellites.For
more details refer to [Refs. 2,3].

10
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II. COURSE-KEEPING

A. THE PRIMARY TRANSFER FUNCTION OF THE SYSTEM

The equations of motion by Davidson [Ref. 4] are:

mz2yp + Co¥ - m@ = )

Y
nQ + CKQ - cmw = cuG

where Q(s)= (2/V)6
8 = turning angular velocity ;
V = ship speed;
Yy = drift angle ;
§ = helm angle ;
2 = ship length ;
denotes d/ds = (o/N)d/dt  , s = (V/)t
m = Gm-cf)
m,m2,n = coefficient of inertia ;
CaCsCsCy = coefficient of resistance ;

Cu’ck = coefficient of rudder force.

The former equation is the equation of lateral transla-
tion and the latter 1is the equation of turning angular
motion.

Then rewriting the equations of motion in terms of time
and taking the Laplace transform,we obtain the turning rate

of the ship in steering [Ref. 5] is:

0(s) .  K(14Tss) §(s) + [TyT,5+(T;+T,)18(0=)+T1T,06(0-)
“(1+T,s)(1+Tz8) (1+T1s)(1+7T,s)

The first term corresponds to the ship motion excited by
the steering,and the second corresponds to the memory of her
motion at the beginning of the steering. Therefore,a rela-

tional function is:

11
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f Q.S S 2 = +Ta18
.. §(s) (1+T,s) (1+T2s)
N :

Equation(l) describes the response character of the ship
- to steering, which may be called the transfer function of
: the ship in steering.
In this study of automatic Course-keeping we will be
working with a 200,000 DWT super-tanker of the following
characteristics [Ref. 6],

length = 310.00 meters
breadth = 47.16 meters
.. Draft = 18.90 meters
- Steering Quality indices.
Tl = -269.3 seconds
T2 = 9.3 seconds
i T3 = 20.0 seconds
5} K = -0.0434 red/sec

Maximum Rudder Deflection 30 degree

NN

Maximum Rudder rate 2.32 degrees/second

Substitute T1,T2,T3 and K in equation (1), we get:

0(s) - =0.0434(1+20s)
5(s) (1-269.35)(1+9.3s

B. STABILIZING THE SYSTEM

From equation(2),we see that one pole of the steering
transfer function is in the right half plane,so the system
is unstable. We have to stabilize the system by using an
autopilot.

- 12




Assuming the autopilot has a gain G,

Figure 2.1 is the
block diagram of the system with an autopilot.

Oref 7 e LI [ d [ Kiery,sy __l06[1] 6
+ I+ TS 19T,V (1+T3S) S
Figure 2.1

Block Diagram Of The System With An Autopilot.

The open loop transfer function for the system is

H(s) _ GK(1+Tss)
- s(1+T15)(1+Tzs)(l+TEsi
Where -TT%T;ET-= the rudder servo transfer function.

From experience the value of Tg is
good choice is

1l to 2 seconds and a
1.7 seconds,so the only parameter available
to make the system stable is G.

To get the values of G for stability,we refer to the
Routh criterion:

GK(1+T3s) - -1
S(1+Tgs)(1+Tls)(1+T2s)
S(1+Tes)(1+T1ls)(1+T2s)+GK(1+T3s) = 0
s(1+1.7s)(1-269.3s)(1+9.3s)-0.0434G(1+20s) = 0

$*+0.692s?+0.06s%-(2.35X10"-2.04%10*G)s+1.02X10%G = O

s* 1 0.06 1.02X10%G
13
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s? 0.692  -(2.35%10™-2.04X10™G) 0

s? A 1.0210%6G
s' B 0
s*  1.02x10°G

v i)
a e

A AR AL A AL

Where

>
"

0.692 0.06+(2.35x10™-2.04%10°G)
0.692
-A(2.35x10™-2.04x10%G)-0.692 1.02%10%G
A

™
"

To find the limits of G for stability,the values of A,B
and 1.02X10°G must be greater than zero.
In the s? row
A>0
0.692 0.06+(2.35%X10™-2.04%x10*G) > O
4.1755%X107-2.04x10*G > O
G < 204.68

R In the s! row
- B >0
-A(2.35%10™-2.04X10*G)-0.692x1.02%X10°G > O
After manipulation.
' G2- 85G + 240 < O
3 <G < 82
In the s! row
1.02x10%G > O
G>0
So the condition of G for stability is
3 <G < 82
By using DSL/360,the system was simulated. The system
was represented by the block diagram of Figure 2.1. The
computer program for this system is contained in Appendix A.

14
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Values of G were selected between 12 and 36,which are the
ones with better time constants.

Figure 2.2 to Figure 2.9 are the computer outputs for
different values of G. By comparing,we found that when
G=24.2 (Figure 2.4,2.5) and G=30 (Figure 2.6,2.7) the
settling time is almost the same and shorter, with less
oscillation than for other values of G. When we compare the
rudder angle for both values,we can see that when G=30 the
rudder angle is larger so in this case G=24.2 is the best
value.

Next we simulate a disturbance that produces the rate of
turn caused by waves. For a large super tanker the rate of
turn can easily reach as much as 0.2 or 0.3
deg./sec.(0.00349 or 0.00524 rad./sec.).

In this thesis the rate of turn 0.2 deg./sec. was used

LRI 2 AR v vy
| ISR AMSGhOASAON
. . DR Y S . R R

in the program. Figure 2.10 to Figure 2.17 are the computer
outputs of this program. Figure 2.12,2.13 show that when
G=24.2 the settling time and rudder angle are better than
other values. Figure 2.18 is the Bode plot of this system
which phase margin = 11.17 degrees and gain margin =-18.46
DB that are lower than normally used in practise.
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Cc.

IMPROVEMENT OF THE SYSTEM

Now the system is stable but the rudder angle 1is too
large which 1is not practical at all. It is necessary to
improve the system performance by using a compensator to
obtain acceptable transient and rudder angle performances.

1. Cascade Lead Compensation

Lead filter compensation has a transfer function as
follows:

4 1
1 (s+2) P .z . 1tge) 14gs
a (s+P) yA P (lt%s) 1+%s

Where «=Z/P and P>Z. The system is shown in Figure

SisTvaganct

dl| K(l+TyS) ) 1 6
(14T,5) (14T, 5) S

ér AR
£ L —FILTER 6 M o

Figure 2.19 The System with the Compensator.

The characteristic equation is:
(G/x)K(1+T3s)(s+z)
s(s+p) (1+T1s)(1+T2s)(1+Tes)
-0.0434(G/x)(s+ p)(1+20s)
s(s+p)(1-269.3s)(1+9.3s)(1+1.7s)

]
(@)




s(s*p)(1-269.3s)(1*9.3s)(1+1.7s)-0.0434(G/a)(s+ap)(1+20$)
=0

4257.6338%+(2946.49+4257.633p)s*+(258.3+2946.49p)s® 4+

{-1+258.3p+.868(G/x)}s2+{(-1+.868G)p+.0434(G/ax)}s+.0434Gp
=0

From this equation,the NPS PAROLE program was used
to find the best values of P and Z. The family of root loci
are given on Figure 2.20.

From experience a good value of X was 0.1 and we
select the damping ratio about 0.42. -We obtain:

P=20.4
«=0.1
Z = xP = 0.04

Hence the transfer function of the 1lead filter
compensator is:

1+ET%ES = 1+25s
1+ ? S 1+2.5s

Figure 2.21-2.24 are the computer outputs of Figure’
2.19 with different values of G. It can be observed that to
have a quick response a high gain is necessary but this
could demand an excessive operation of the rudder which can
be bad for the following reasons:

(1) To get a quick response,faster rudder operation and
greater rudder angle are needed.

(2) This faster response may cause accelerations that
are too sharp for personnel aboard ship.

(3) Too much rudder action would cause the rudder
machine with all the hardware to have its 1life
reduced.

In Figure 2.22 - 2.24 the system reaches steady
state in very short time but the rudder angle is too high.
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In Figure 2.21 the rudder angle is at the limit but the
system takes a long time to reach steady state.

So,it was necessary to reduce the rudder angle and
simultaneously reduce the settling time of the system. 1In
order to introduce a 1limiting value of rudder rate,the
steering gear transfer function must be replaced in the
system. The block diagram for an equivalent circuit was
given on Figure 2.25. -

Where K3 =1/T¢ = 0.588

With this transformation,we have the system on
Figure 2.26

Figure 2.27 - 2.30 are the computer outputs of this
block diagram with the gain selected before. We can see that
when the value of the gain(Kl) is greater than 10,the system
reaches steady state in a short time (about 3 minutes for
K1=10) but the rudder angle reaches the limit on one side.
In Figure 2.30,K1=3.5,the rudder angle is .within the.limits
but the settling time is still too long. Then we must try to
find a value of gain(Kl) between 3.5 and 10 to get the best
results for rudder angle and settling time.

Figure 2.31 - 2.33 are the outputs of this trial
with gain:4.6,5.3 and 6. We can see that: .

For gain = 6 the settling time 1is about 450
sec.(7.5min.) the maximum rudder rudder angle is about 28
deg. and the heading error about 0.77 deg..

For gain = 5.3 the settling time is about 470
sec.(7.8min.) the maximum rudder angle is about 26 deg. and
the heading error about 0.9 deg..

For gain = 4.6 the settling time is about
510sec.(8.5min) the maximum rudder angle is about 22 deg.
and the heading error about 1.1 deg..
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Figure 2.25 Block Diagram of the Steering Gear.
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Figure 2.26 The Complete Block Diagram for Course-Keeping.:

So we can conclude that the best value for
Course-keeping with the limiter is 4.6. Figure 2.34 is the
Bode plot of this system with phase margin = 42.2 degrees
and gain margin = -15.97 DB that are better than the Bode
plot of Figure 2.18. Then the system of Course-keeping is
satisfactory.
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III. TRACK FOLLOWING

Using the ship heading controller obtained previ-
ously,and assuming that the velocity of the ship is
constant(at 14 knots) during underway on the open sea,the
position of the ship can be found at any time.

In order to find the position of the ship,a right hand
rectangular coordinate system is established, the origin of
which is chosen to be in the body itself,as shown in Figure
3.1.

Yoa

<i

Xos 1//A

Figure 3.1 Orientation of the Space Axis(X0,YO0)
and the Moving Axis(X,Y).

The origin and the axes are fixed with respect to the
body but movable with respect to other systems of coordinate
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axes fixed in space.It is assumed that the two systems coin-
cide at t=0.

The transformation from the ship to space coordinate
system is J:z:fined by the following relations,obtained from

Figure 3.1
X = Vcos® + Usin®
Y = Vsin® - Ucos®
and
X = X0+ [Xdt
Y = Y0+[Ydt
where

X = Velocity in X-direction
Y = Velocity in Y-direction
X0 = Initial position of X
YO = Initial position of Y

V = Ship velocity

U

Assuming constant velocity and no lateral force,the
equations become:

Lateral velocity

X = Vcos8

Y = Vsin®
and

X = dx/dt

Y = dy/dt
then

X = X0 + ]dx

Y = YO + /dy

Knowing initial values of X and Y,the coordinates of the
ship are calculated. Figure 3.2 is the block diagram of this
procedure.
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Figure 3.2 Course-Keeping and Coordinate Calculation.

These equations were included in the program of the
Course-keeping autopilot in order to find the position of
the ship.

Figure 3.3-3.4 are the output of this program.

The purpose of the Track following is to keep the ship
following the desired trajectory from the beginning to the
destination. When the ship is not on the track a course
correction must be calculated to return the ship to the
track. The corrected course is a function of the distance to
the track.

A. TFINDING THE COURSE CORRECTION

Initially the navigator must design the trajectory from
the beginning point to the destination on the map. He has to
know the course and speed. When the ship is underway,it is
necessary to know(measure) the position of the ship.
Although the course of the ship may be the same as the
desired course,it may not be on the desired trajectory due
to the effect of sea current and wind. Therefore the navi-
gator has to calculate a new course to keep the ship
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following the desired trajectory until the ship reaches the
destination. This situation is depicted in Figure 3.5.

Figure 3.5 The Trajectory Followed by the Ship.

The procedure of an autopilot for track-following is the
same as that used by a navigator. First the coordinates of
the desired trajectory are stored in the computer as shown
in Figure 3.6 The position of the ship is measured by
NAVSTAR/GPS.The computer calculates the errors in X and Y
positions and calculates the course correction. These errors
should be zero in order to keep the ship always on the
desired trajectory.

The procedure to calculate the course correction(8,) 1is

shown in Figure 3.7
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B. FINDING THE DESIRED COURSE

The desired trajectory is stored in the computer,the
desired course can be found in a simple way,Figure 3.8 shows
the method. The X axis is divided into constant small inter-
vals. For each point of X,the corresponding Y coordinate is
found. The desired course is obtained by taking the arctan-
gent of the result of the division between increment in Y

and increment in X.

Y| b--of22

L]

D L R e T

SVJ [P
(9]

X

>
(]

X

(&)
b 3
H

Figure 3.8 Algorithm to Compute The Desired Course.
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For selecting the value of the constant small interval
of X,we consider Figure 3.9

4 4

AY\

AX

Figure 3.9 The Condition such that the Algorithm Fails.

If the value of X is big,the straight line AB is not on
the curve,so the desired course is not true. To get the true
desired heading the straight line AB has to be on the curve
all the time. To accomplish this we have to select the value
of X small enough,so the straight line AB is part of the
curve.

2 C. FIRST ATTEMPT TO DO THE TRACK FOLLOWING

From the Figure 3.2, X and Y positions are obtained.
With these values, the desired heading and trajectory are
obtained. By using an integrator with the gain K4(as shown
in the block diagram of figure 3.2 ) we will obtain a new
block diagram which is shown in Figure 3.10. The purpose of
the integrator is to eliminate steady state position errors.

A suitable value of integrator gain is K4=.01.The value

was found by repeated simulation runs. Figure 3.11-3.14 are

308
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Figure 3.10 Block Dia%ram of An Autopilot
With The Integrator.

the results obtained without disturbances. From Figure
3.11-3.12 the actual trajectory and the desired trajectory
are coincident. In Figure 3.14 the time for the output to
reach steady state is about 800 seconds(13.3 minutes).

The system was also simulated with disturbances. Figure
3.15-3.18 are the results with K&=.0l. 1In Figure 3.15-3.16
the actual trajectory and the desired trajectory are not
coincident but the distance between them gradually increases
with time. In Figure 3.18 the time for the output to reach
steady state is about 1600 seconds(26.67 minutes).
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Figure 3.11 Desired Trajectory and X when K&4=.01.
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Figure 3.13 Rudder Angle when K4=.01.
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Figure 3.17 Rudder Angle with Disturbance
when K&4=.01.

66



(ST P i N ey

S1

49

(¥4

45

43

4.

Ry T ' L L 4 ¥ y
.6 0.5 18 15 208 25 S8 35 40 45 s.0
TIHE (10% SEC)

SHIP HEADING AND DESIRED HEADING VS TIME
IN2=0.00349 X-0 K4-.01

Figure 3.18 Ship Heading and Headlng Command
with Disturbance when K4 =.01.

67




Additional simulation runs included disturbances,but it
was also assumed that the ship was not on the desired
trajectory at the beginning. Figure 3.19-3.22 are the
results. In Figure 3.19-3.20,we can notice that the actual
trajectory stays away from the desired trajectory all the
time,there are no control actions to put the ship back to
desired trajectory.

The next step was to include the course correction(0 )
in the control loop, as shown in Figure 3.23.

Simulations were run with course correction and gain
K5,a best value of K5=.75 was obtained. Figure 3.24-3.27
are the results wusing this value. In Figure 3.24-3.25 the
ship comes back to the desired trajectory and follows it all

the time. The time from the initial position to the desired
trjectory is about 1400 seconds(23.3 minutes).
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IV. CONCLUSION

Use of the computer to control the autopilot for both
Course-keeping and Track following achieves an accuracy for
steady state conditions as high as may be desired. An
optimal wvalue of gain for the autopilot was obtained ° by
using the PAROLE program to study families of Root Loci.
Both negative and positive feedback can be used,but only
negative feedback is recommended.

In Chapter 2 for Course-keeping,the Bode plot is used to
show that the filter POLE ZERO and gain were the best for
the system. The actual heading in steady state was exactly
the desired heading with zero error. .

In Chapter 3 the problem of acquiring the track was
%, studied. If the Track following mode is turned on when the
. ship is many ship 1lengths off track,the amount of rudder
activity is determined by the distance off-track,the nature
of the Tracking algorithm,and the shape of track itself,as
well as the initial value of the ship heading.. It was found
- that the initial ship heading was important,and rudder
:f activity could be minimized by proper choice of the initial
' heading angle. This suggests that further study of the

effect of initial heading angle is desirable,since manual
adjustment of ship heading prior to activating the autopilot
could greatly reduce rudder motions. Once the ship reached
the track,the system was able to follow the desired trajec-
tory exactly in calm and rough sea.
Further studies may be conducted to include the cost
: function into these programs to minimize the fuel consump-
9 tion and to apply optimal control theory to find the optimal
track for ship maneuvering at sea.

0,

eta
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APPENDIX A
COMPUTER PROGRAM

* THIS PROGRAM REFERS TO FIGURES 2.2-2.17

//SOMMO7 JOB (2259,1435), 'PROJECT',CLASS=B

//*MAIN ORG=NPGVM1.2259P

//*FORMAT PR, DDNAME=PLOTX.SYSVECTR,DEST=LOCAL

// EXEC DSL

//DSL.INPUT DD *

TITLE AUTOPILOT DESIGN WITHOUT COMPENSATION

INTGER NPLOT

CONST NPLOT=1, IC1=0.,IC2=0.,IC3=0.,1C4=0.,C1=3,1415927

PARAM HEADRF = 10.

PARAM IN2 = 0.0

PARAM G = 20

PARAM K = =-.0434

PARAM TE = 1.7

PARAM T1 = =269.3

PARAM T2 = 9.3

PARAM T3 = 20.

DERIVATIVE
IN1 = HEADRF*C1/180.
ERROR = IN1-THETA
DELTAR = G*ERROR
DELTA = REALPL(IC1,TE,DELTAR)
AMPLI = K*DELTA
comp = LEDLAG(IC2,T3,Tl,AMPLI)
CORREC = REALPL(1C3,T2,COMP)
THETAl = IN2+CORREC
THETA = INTGRL(I4,THETAl)
HEAD = THETA*180./Cl

' RUDANG = DELTA*180.,C1 '~ -~ "~ =7 =" """

ERRORD = HEADRF-HEAD

SAMPLE

CALL DRWG(1,1,TIME, HEAD)
CALL DRWG(1,2,TIME, HEADRF)
CALL DRWG(2,1,TIME, RUDANG)
CALL DRWG(2,2,TIME,HEEAD)

TERMINAL .

CALL ENDRW(NPLOT)

PRINT 8.,HEADRF, HEAD, ERRORD, RUDANG

CONTRL FINTIM=800.,DELT=.8,DELS=8.

END

STOP

//PLOT.PLOTPARM DD *

&PLOT SCALE=.65 &END

//PLOT.SYSIN DD *

HEAD AND HEADRE VS TIME

HEADRF=10 IN2=0.0 G=20

~ RUDDER ANGLE AND HEAD VS TIME

HEADRF=10 IN2=0.0 G=20

Vad

/*
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FILE: EE44181 DSL Al

* THIS PROGRAM REFERS TO FIGURES 2.21-2.24
//SOMMAR3 JOB (2259,1435), 'EE44181',6CLASS=B
//*MAIN ORG=NPGVM1.2259P,LINES=(10)

//*FORMAT PR,DDNAME=PLOTX.SYSVECTR,DEST=LOCAL
// EXEC DSL

//DSL. INPUT DD *

TITLE AUTOPILOT DESIGN WITH COMPENSATION
INTGER NPLOT

CONST NPLOT=4,ICl1=0.,1C2=0.,IC3=0.,IC4=0.,C1=3.1415927

PARAM HEADRE=0.
PARAM IN2=0.00349
PARAM G=3.5

PARAM K=-.0434
PARAM TE=1.7
PARAM T1=-269.3
PARAM T2=9.3

PARAM T3=20.

DERIVATIVE
IN1 = HEADRF*C1/180.
ERROR = IN1-THETA
FILTER = LEDLAG(O.,25.,2.5,ERROR)
DELTAR = G*FILTER
DELTA = REALPL(IC1,TE,DELTAR)
AMPLI = K*DELTA
COMP = LEDLAG(IC2,T3,T1,AMPLI)
CORREC = REALPL(IC3,T2,COMP)
THETAl = IN2+CORREC
THETA = INTGRL(I4,THETAl)
HEAD = THETA*180./Cl
RUDANG = DELTA*180./C1
ERRORD = HEADRF-HEAD

SAMPLE

CALL DRWG(1,1,TIME, RUDANG)
CALL DRWG(1,2,TIME,HEAD)
TERMINAL
CALL ENDRW(NPLOT)
PRINT 3.,HEAD, RUDANG
CONTRL FINTIM=800.,DELT=.8,DELS=8.

END -

STOP

//PLOT.PLOTPARM DD *

&PLOT SCALE=.65 &END
//PLOT.SYSIN DD *

RUDDER ANGLE AND HEAD VS TIME
SOMMART G=3.5 IN2=.00349
RUDDER ANGLE AND HEAD VS TIME
SOMMART G=10 IN2=.00349 X
RUDDER ANGLE AND HEAD VS TIME
SOMMART G=15 IN2=.00349
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FILE: EE44185 DSL Al

* THIS PROGRAM REFERS TO FIGURES 2.27-2.33

//SOMMAR? JOB (2259,1435), 'EE44184',CLASS=B

//*MAIN ORG=NPGVM1.2259P, LINES=(10)

//*EORMAT PR,DDNAME=PLOTX.SYSVECTR,DEST=LOCAL

// EXEC DSL

//DSL.INPUT DD *

TITLE AUTOPILOT DESIGN WITH COMPENSATION AND LIMITER
PARAM IN2=0.00349

PARAM K1=24.2 )
PARAM K2=-.0434,K3=.588,...
' Pl=-.1222,P2=.1222,P3=-.52,P4=.52,K4=0.0
; PARAM HEADRE=3
» INTGER NPLOT
CONST NPLOT=1,C1=3.1415927
iﬁ DERIVATIVE
) IN1 = HEADRF*C1,/180.
- ERROR1 = IN1-THETA
8 FILTER = LEDLAG(O.,25.,2.5,ERROR1)
- DELREF = FILTER*K1
s DELDES = LIMIT(P3,P4,DELREF)
.- " DELTAl = DELDES-DELTAC
DELDOT = LIMIT(P1,P2,DELTAl)
DELDOC = K3*DELDOT
DELTAC = INTGRL(O.,DELDOC)
AMPLI = K2*DELTAC
COMP = LEDLAG(O.,20.,-269.3,AMPLI)
CORREC = REALPL(O.,9.3,COMP)
THETAl = IN2+CORREC :
THETA = INTGRL(O.,THETAl) = T e e
RUDANG = DELTAC*180.,/C1
HEAD = THETA*180./Cl
ERRORD = HEADRE-HEAD
SAMPLE

- CALL DRWG(1,1,TIME, RUDANG)
- CALL DRWG(1,2,TIME,HEAD)
TERMINAL
CALL ENDRW(NPLOT)
PRINT 8.,RUDANG, HEAD, ERRORD
CONTRL FINTIM=7Q0.,DELT=.7,DELS=7.
INTEG RKSEX
END »
STOP
//PLOT .PLOTPARM DD *
&PLOT SCALE=.65 &END
//PLOT.SYSIN DD *
RUDDER ANGLE & HEAD VS TIME
IN2=0.00249 K1=24.2 HEADRF=3
/*
/*
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FILE: T2 DsSL Al

* THIS PROGRAM REFERS TO FIGURES 3.3-3.4

//SOMMA21 JOB (2259,1435), 'PROJECT',CLASS=B

//*MAIN ORG=NPGVM1.2259P,LINES=(10)

//*FORMAT PR, DDNAME=PLOTX.SYSVECTR, DEST=LOCAL

// EXEC DSL

//DSL.INPUT DD *

TITLE SIMULATION OF SHIP DYNAMICS (TEST OF FOLLOWING)

PARAM Kl=4.6,K2=-.0434,K3=.588, ...
Pl=-.1222,P2=.1222,P3=~.52,P4=.52

PARAM V=0.0038889

* SPEED IN MILES/SECOND WHICH IS EQUIVALENT TO 14 KNOTS

PARAM IN2=0Q.0Q,HEADRE=5

CONST NPLOT=1,C1=3.1415927

INTGER NPLOT

DERIVATIVE
IN1 = HEADRE*C1/180.
El = IN1-THETA
FILTER= LEDLAG(0.,25.,2.5,E1)
E2 = FILTER*K1l
E3 = E1*K4
E4 = INTGRL(O.,E3)

DELREF= E2+E4 -
DELDES= LIMIT(P3,P4,DELREF)
DELTAl= DELDES-DELTAC
DELDOT= LIMIT(Pl,P2,DELTAl)
DELDOC= K3*DELDOT
DELTAC= INTGRL(O.,DELDOC)
AMPLI = K2*DELTAC
coMpP = LEDLAG(O0.,20.,-269.3,AMPLI)
CORREC= REALPL(0.,9.3,COMP)
THETAl=. IN2+CORREC

= INTGRL(O.,THETAl)
HEAD = THETA *180./Cl
RUDANG= DELTAC*180./Cl

DX = V*COS(THETA)
DY = V*SIN(THETA)
X = INTGRL(O.,DX)
Y = INTGRL(O.,DY)
SAMPLE

CALL DRWG(1l,1l,TIME, HEAD)
CALL DRWG(1,2,TIME,HEADRF)
CALL DRWG(2,1,TIME,X)
CALL DRWG(2,2,TIME,Y)
TERMINAL
CALL ENDRW(NPLOT)
PRINT 8.,HEAD,HEADRF,X,Y
CONTRL FINTIM=650.,DELT=.4,DELS=.65
INTEG RKSEX
END
STOP
//PLOT.PLOTPARM DD *
&PLOT SCALE=.65 &END
//PLOT.SYSIN DD *
HEAD AND HEADRE VS TIME
HEADRE=S5 IN2=0
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“FILE: SOM2 DSL al

N * THIS PROGRAM REFERS TO FIGURES 3.11-3.22
TITLE SIMULATION OF SHIP DYNAMICS (TEST OF FOLLOWING)
PARAM K1=4.6,K2=-.0434,K3=,.588,K4=0.01, ...
Pl1=-,1222,P2=,1222,P3=~.52,P24=.52

PARAM V=0.0038889

* SPEED IN MILES/SECOND WHICH IS EQUIVALENT TO 14 KNOTS

PARAM EPSILX=0.125,G=-.074¢

PARAM IN2=0.00349

CONST C1=3.1415927

NLEGEN YPATH=-20.,-30.,-10.,-12.5,0.,0.,10.,10.,20.,...
18.,30.,25.,40.,31.,50.,36.,60.,40.,70.,43.,80.,...
45.,90.,46.5,100.,48.

NLEFGEN XPATH=-30.,-20.,-12.5,-10.,0.,0.,10.,10.,18.,...
20.,25.,30.,31.,40.,36.,50.,40.,60.,43.,70.,45.,...
80.,46.5,90.,48.,100.

DYNAMIC
TRAJE]l = NLEGEN(YPATH, X)
TRAJE2 = NLFGEN(XPATH, ¥)
DELTAX = (X+EPSILX)=-X )
DELTAY = NLEGEN(YPATH, X+EPSILX)-NLEGEN(Y?ATH X)
2 = DELTAY/DELTAX - -
2R = ATAN(2) N
THECOM = 2R*180./Cl T
DERIVATIVE
IN1 = THECOM*Cl1,/180.
E = IN1-THETA -
El = 10.*E
FILTER = ZEROPL(O.,.04,0.4,El)
E2 = FILTER*K1
E3 = E*K4
E4 - = INTGRL(O.,E3)
DELREF = E2+E&
DELDES = LIMIT(P3,F4,DELREF)
DELTAl = DELDES-DELTAC
DELDOT = LIMIT(P1l,P2,DELTAl)
DELDOC = K3*DELDOT
DELTAC = INTGRL(O.,DELDOC)
AMPLI1 = K2*DELTAC
AMPLI = G*AMPLI1
comMp = ZEROPL(O.,.05,-.0037,AMPLI)
CORREC = REALPL(0.,9.3,COMP)
THETAl = IN2+CORREC
THETA2 = INTGRL(0.7853982,THETAl)
PROCED THETA = COR(THETAZ2,Cl)
THETA3 = THETA2

3 IF(ABS(THETA3).LT.Cl) GO TO 5
IF(THETA3.LT.0) GO TO 4
THETA3 = THETA2-Cl

GO TO 3
4 THETA3 = THETAZ2+Cl
GO TO 3
5 THETA = THETA2
ENDPRO
HEAD = THETA *180./Cl"
RUDANG = DELTAC*180./Cl
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FILE: soM2 DSL Al
v DX = V*COS(THETA)
Y DY = V*SIN(THETA)
- X = INTGRL(O.,DX)
. Y = INTGRL(O.,DY)
- PRINT 125..,RUDANG, HEAD, THECOM, X, TRAJE1, Y, TRAJE2
o CONTRL FINTIM=24000.,DELT=6.,DELS=20.
v SAVE (Gl)12.,HEAD, THECOM
SAVE (G2)12.,TRAJE1,Y
) SAVE (G3)12.,TRAJE2,X
) SAVE (G4)12.,RUDANG
GRAPH (Gl/G1,DE=TEK618,P0=0,.5) TIME(LE=8.0,SC=500.,...
NI=10,UN='SEC'),...
HEAD(LE=9,NI=9,L0=37,SC=2.,UN='DEGREES'), ...
THECOM(LE=9,NI=9,P0=8.,L0=37,SC=2.,UN='DEGREES' )
GRAPH (G2/G2,DE=TEK618,P0=0,.5) TIME(LE=8.,SC=2000.,...
NI=12,UN='SEC'),...
- TRAJE1 (LE=9,NI=9,L0=0,SC=6.,UN='MILES'), ...
- ¥Y(LE=9,NI=9,P0=8.,L0=0,SC=6.,UN="'MILES') .
- GRAPH (G3/G3,DE=TEK618,P0=0,.5) TIME(LE=8.,SC=2000.,... -
o NI=12,UN='SEC'),... . ‘
- TRAJE2(LE=9,NI=9,LO=0,SC=9.,UN="'MILES'), ...
L5 X(LE=9,NI=9,P0=8.,L0=0,SC=9.,UN="MILES')
B, GRAPH (G4/G4,DE=TEK618) TIME(LE=8.,sSC=300.,...
s NI=12,UN='SEC’'),...
RUDANG(LE=9,NI=9,LO=-30, SC=7.,UN='DEGREES' )
LABEL (Gl) SHIP HEADING AND DESIRED HEADING VS TIME
e LABEL (Gl) IN2=0.00349 X=0 K4=.01
- LABEL (G2) DESIRED TRAJECTORY AND
- LABEL (G2) ACTUAL TRAJECTORY (Y) VS TIME
LABEL (G3) DESIRED TRAJECTORY AND
: - LABEL (G3) ACTUAL TRAJECTORY (X) VS TIME
b LABEL (G4) RUDDER ANGLE VS TIME
-~ END
- STOP
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FILE: SOM1 DSL al

* THIS PROGRAM REFERS TO FIGURE 3.24 TO 3.27

TITLE SIMULATION OF SHIP DYNAMICS (TEST OF FOLLOWING)

PARAM Kl=4.6,6K2=-.0434,K3=.588,K4=0.01,KS=0.75,.

Pl=~.1222,P2=.1222,P3=~-,52,P4=.52

PARAM V=0. 0038889

* SPEED IN MILES/SECOND WHICH IS EQUIVALENT TO 14 KNOTS

PARAM EPSILX=0.125,G=-.074

PARAM L=2.5,IN2=0.00349

CONST C1=3.1415927

NLEGEN YPATH=-20.,-30.,-10.,-12.5,0.,0.,10.,10.,20.,
18.,30.,25.,40.,31.,50.,36.,60.,40.,70.,43.,...
80.,45.,90.,46.5,100.,48,

NLEGEN XPATH=-30.,-20.,-12.5,-10.,0.,0.,10.,10.,18.,...
20.,25.,30.,31.,40.,36.,50.,40.,60.,43.,70.,...
45.,80.,46.5,90.,48.,100.

DYNAMIC
TRAJE1 = NLEGEN(YPATH,X)
TRAJE2 = NLEGEN(XPATH,Y)
DELTAX = (X+EPSILX)-X
DELTAY = NLFGEN(YPATH, X+EPSILX)-NLEGEN(YPATH, X)
z = DELTAY/DELTAX
ZR = ATAN(2)
THECOM = ZR*180./C1
DERIVATIVE
IN1 = THECOM*C1,/180.
E = IN1-THETA+THETAC
El = 10.*E
FILTER = ZEROPL(O.,.04,0.4,El)
E2 = FILTER*K1 ' S e e —
E3 = E*K4
E4 = INTGRL(O.,E3)
DELREF = E2+E4
DELDES = LIMIT(P3,P4,DELREF)
DELTAl = DELDES-DELTAC
DELDOT = LIMIT(P1,P2,DELTAl)
DELDOC = K3*DELDOT
DELTAC = INTGRL(O.,DELDOC)
AMPLI1 = K2*DELTAC
AMPLI = G*AMPLI1
COMP = ZEROPL(O.,.0S,-.0037,AMPLI)
CORREC = REALPL(O.,9.3,COMP)
THETAl = IN2+CORREC
THETA2 = INTGRL(0.9599311,THETAl)
PROCED THETA = COR(THETA2,Cl)
THETA3 = THETA2

3 IF(ABS(THETA3).LT.Cl) GO TO S
IF(THETA3.LT.0) GO TO 4
THETA3 = THETA2-Cl

GO TO 3
4 THETA3 = THETA2+Cl
GO TO 3
S THETA = THETA2
ENDPRO .
HEAD = THETA *180./Cl"
RUDANG = DELTAC*180./Cl
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FILE: sSOM1 DSL Al

DX = V*COS(THETA)
DY = V*SIN(THETA) .
X = INTGRL(1.,DX)
Y = INTGRL(O.,DY)
YERROR = TRAJEl-Y
XERROR = X-TRAJE2

DS = XERROR*SIN(IN1)
N = DS**2+[**2

P = SQRT(N)

M = DS/P

THETC1 = ASIN(M)

THETAC = KS*THETC1

T = THETAC*180./Cl

PRINT 125.,RUDANG, HEAD, THECOM, X, TRAJE1, Y, TRAJE2, DS

CONTRL FINTIM=20000.,DELT=6.,DELS=20.

SAVE (G1)12.,HEAD, THECOM

SAVE (G2)12.,TRAJElL,Y

SAVE (G3)12.,TRAJE2,X

SAVE (G4)12.,RUDANG

GRAPH (Gl/G1,DE=TEK618,PO=0,.5) TIME(LE=8.0,SC=2000.,...
NI=10,UN='SEC'),...

EEAD(LE=9,NI=9,L0=10, SC=7.,UN='DEGREES'), ...
THECOM(LE=9, NI=9, PO=8., LO=10, SC=7. , UN=' DEGREES ' )

GRAPH (G2/G2,DE=TEK618,P0=0,.5) TIME(LE=8.,SC=2000.,...

) NI=12,UN='SEC'),...

- TRAJE1(LE=9,NI=9,LO=0,SC=6.,UN="MILES'), ...

) Y(LE=9,NI=9,P0O=8.,L0=0,SC=6.,UN="MILES')

GRAPH (G3,/G3,DE=TEK618,P0=0,.5) TIME(LE=8.,SC=2000.,...
NI=12,UN='SEC'),...
TRAJE2(LE=9,NI=9,L0=0,SC=8.,UN="MILES'),...
X(LE=9,NI=9,P0=8.,L0=0,SC=8.,UN="MILES')

GRAPH (G4,/G4,DE=TEK618,P0=0,.5) TIME(LE=8.,SC=300.,...

- NI=12,UN='SEC'),...
RUDANG(LE=9,NI=9,LO=-25, SC=6. ,UN='DEGREES' )

LABEL (Gl) SHIP HEADING AND DESIRED HEADING VS TIME

LABEL (Gl) K5=.75 X=1 IN2=0.00349

LABEL (G2) DESIRED TRAJECTORY AND

LABEL (G2) ACTUAL TRAJECTORY (Y) VS TIME

"LABEL (G3) DESIRED TRAJECTORY AND

A LABEL (G3) ACTUAL TRAJECTORY (X) VS TIME

- LABEL (G4) RUDDER ANGLE VS TIME

-------------
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