
P) 
P) 
co 
0 
CD 
w-
<( 
I c 

<( 

- . ..... - ...... ~- ~- i( ... \1(4 \' W" 

IJNCLASSIF'IED 

REPORT DOCUMENTATION PAGE 
GOVT ACC~IIION NO J . .-~c 

A~M 864 

• TIT\,.[ l.,.d SufHII/o) 

A Robust Layered Control System for a Mobile 
Robot 

AI, f1emo 

0 ) 

Rodney A. Brooks 

1. CONT .. OL.L.ING OII'II'IC~ NAill! AND AOO .. CII 

Advanced Research Projects Agency 
1400 Wilson Blvd. 

VA 22209 

Information Sys tems 
Arlington. VA 22217 

Distribution is unlimited. 

II. "C~ .. T DATI 

September 1985 
~~~----------~ 

D~tmON sTATEMEN'I'I) 

Approved tor public releaaee . J 
Diatribution Unlimited ~ } 

'--~=-=-=---------- ...,. 
17 . DIST._I.UTION ITATCMINT (el lite ....... , .,,-..4 llo ..... H, II.,,,__,"- ...... ) 

II. IU"'"'L.IMIInA.-Y NO 

None 

II. KIY WO"OI ......... ··- , ..... earp ., ...... lr ., 

Mobile Robot 

Robot Control 

........... 
We describe a new architecture for controlling mobile robots. Layers of 

control system are built to let the robot operate at increasing levels of compet 
ce. Layers are made up of asynchronous modules which communicate over low 
ndwidth channels. Each module is an instance of a fairly simple computational 
chine. Higher level layers can subsume the roles of lower levels by suppres 

heir outputs. However, lower levels continue to functions as higher levels 
re added. The re is a robust and f bot 

DO , ~~:-;, 1~73 IDITION 011' I NOV II II 0810LITI 

S/11 0:02•0 ... 6601 I 
UNCLASSIFIED 

IICU .. ITY CLAIIIP'ICATION OP' TMII "'Ael ,_ IMf• ..,_ 



20)
is intended to control a robot that wanders the office areas of our laboratory,
building maps of its surroundings. In this paper we demonstrate the system controlling
a detailed simulation of the robot.

VIP(-A...

................................................



MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL INTELLIGENCE LABORATORY

A. I. Memo 864 September. 1985

A ROBUST LAYERED CONTROL SYSTEM

FOR A MOBILE ROBOT

Rodney A. Brooks

Abstract. "Ve describe a new architecture for controlling mobile robots. Layers of control

system are built to let the robot operate at increasing levels of competence. Layers are made

up of asynchronous modules which communicate over low bandwidth channels. Each module

is an instance of a fairly simple computational machine. Higher level layers can subsume

the roles of lower levels by suppressing their outputs. However, lower levels continue to

function as higher levels are added. The result is a robust and flexible robot control system.

The system is intended to control a robot that wanders the office areas of our laboratory,

building maps of its surroundings. In this paper, we demonstrate the system controlling a

detailed simulation of the robot.

Acknowledgments. This report describes research done at the Artificial Intelligence Lab-

oratory of the Massachusetts Institute of Technology. Support for the research is provided

in part by an IBM Faculty Development Award, in part by a grant from the Systems

Development Foundation, in part by an equipment grant from Motorola, and in part by the

Advanced Research Projects Agency under Office of Naval Research contracts N00014-80-

[-: C 0505 and N00014-82-K-0334.

"-) Massachusetts Institute of Technology 1985

. . - 85. 11 04 051

. . . . . . . . . . .hnafmliH |I . . . . . . ....



A R..-bust Layered Control System for a Mobile R.bct

z 8
W 4 Actuators

Figure 1. A traditinal decomposition of a mobile rob-t control system into functional

modules.

reason about behavior of objects

plan changes to the world

identify objects

monitor changes

Sensors - - Actuators
build maps

explore

wander

avoid objects

Figure 2. A decomposition of a mobile robot c ,ntrol system based on task achieving

behaviors.

1. Introduction

A control system for a completely autonomous iobile robot must perform many complex

information processing tasks in real time. It operates in an environment where the boundary
conditions (viewing the instantaneous control problem in a classical control theory formula-
tion) are changing rapidly In fact the deverrrimathn of those boundary conditions is done

over very noisy channels since there is no straightforward mapping between sensors (e.g.

TV cameras) and the form required of the boundarv conditioi%.,

o'........................



A Ro bust Layered Cc·ntr(·l ~y~teno br ~ M c·b il £- Ro ho t 2 

The usual approach to building control syst.ems for such robots is to decompose the 
problem into a series (roughly) of funct ional units as illustrated by a series of vertical slices 
in figure 1. After analysing the com put at ional requirements for a mobile robot we have 
decided to use task achieving beha v1'ors as our primary decomposition of the problem. This 
is illustrated by a series of horizontal slices in figure 2. As with a functional decomposition 
we implement each ~li ~e explici tly then tie them all together to form a robot control system . 
Our new decomposit ion leads to a radically different architectare for mobile robot control 
systems. with radically differen t implementation strategies plausible at the hardware level. 
and with a large number of advantages concerning robustness, builda.bility ar..d testability. 

1.1 Requirements 

We can identify a number of requirements of a control system for an intelligent autonomous 
mobile robot . They each put constraints on possible control systems we might build and 
employ. 

• Multiple Goals. Often the robot will have mul t iple goals, some conflicting, which 
it is trying to achieve . It may be trying to reach a certain point ahead of it while 
avoiding local obstacles. It may be trying to reach a certain place in minimal time 
while conserving power reserves . Often t he relative importance of goals will be context 
dependent . Getting off t he railroad tracks whE>n a train is heard becomes much more 
important than inspecting the last 10 track ties of the current track section. The 
control system must be responsive to high priority goals. while still servicing necessary 
"low level'' goals (e.g. in gett ing off thE> railroad tracks it is still important that the 
robot maintains its balance so it doesn 't fall down) . 

• Multiple Sensors. The robot will most likely have multiple sensors (e.g. TV cameras, 
encoders on steering and drive mechanisms. and perhaps infrared beacon detectors, an 
inertial navigation system, acoustic rangefinders, infrared rangefinders, access to a 
global positioning satellite system , etc.}. All sensors have an error component in their 
readings. Furthermore, often t here is no direct analytic mapping from sensor values to 
desired physical quantities. Some of the sensors will overlap in the physical quantities 
they measure. They will often give inconsistent readings- sometimes due to normal 
sensor error and sometimes due to the measurement conditions being such that the 
sensor (and subsequent processing) is bei ng used outside its domain of applicability. 
Often there will be no analytic characterization of the domain of applicability (e.g. 
under what precise> conditions does t he Sobel operator return valid edges?) . The robot 
must make decisions under t hese conditions. 

• Robustness. The robot ought t.o be robust . When some sensors fail it should be able 
to adapt and cope by re>lying on those sti ll functional. When the environment changes 
drastically it should be able to sti ll achieve some modicum of sensible behavior, rather 
then sit in shock, or wander a imlessly or irrationally around. Ideally it should also 
continue> to function well when there arP faults in parts of its processor(s} . 

• Additivity. As more sensors and capabilities are added to a robot it needs more 
processing power : otherwisE' the original capabilities of t he robot will be impaired 
relative to the How of time . 

"" 

,r 



A Rcbust Layered Control System for a M,*bfle R-bct 3

1.2 Other Approaches

a Multiple Goals. Elfes and Talukdar 83 designed a control language for :Moravec
831's robot which tried to accommodate multiple goals. It mainly achieved this by
letting the user explicitly code for parallelism and to code an exception path to a
special handler for each plausible case of unexpected conditions.

* Multiple Sensors. Flynn 85, explicitly investigated the use of multiple sensors, with

complementary characteristics (sonar is wide angle but reasonably accurate in depth.
while infrared is very accurate in angular resolution but terrible in depth measurement).
Her sN stem has the virtue that if one sensor fails the other still delivers readings that
are useful to the higher level processing. 'Giralt et al 83, use a laser range finder for
map making, sonar sensors for local obstacle detection, and infrared beacons for map
calibration. The robot operates in a mode where one particular sensor type is used at

a time and the others are completely ignored. even though they may be functional. In
the natural world multiple redundant sensors are abundant. For instance Kreithen 83
reports that pigeons have more than four independent orientation sensing systems (e.g.
sun position compared to internal biological clock). It is interesting that the sensors do
not seem to be combined but rather. depending on the environmental conditions and
operational level of sensor subsystems, the data from one sensor tends to dominate.

* Robustness. The above work tries to make systems robust in terms of sensor avail-
ability. but little has been done with making either the behavior or the processor of a
robot robust.

0 Additivity. There are three ways this can be achieved without completely rebuilding
the physical control system. (1) Excess processor power which was previously being
wasted can be utilized. Clearly this is a bounded resource. (2) The processor(s) can be
upgraded to an architecturally compatible but faster system. The original software can
continue to run. but now excess capacity will be available and we can proceed as in the
first case. (3) More processors can be added to carry the new load. Typically systems
builders then get enmeshed in details of how to make all memory uniformly accessible
to all processors. Usually the cost of the memory to processor routing system soon

comes to dominate the cost (the measure of cost is not important-it can be monetary,
silicon area. access time delays, or something else) of the system. As a result there
is usually a fairly small upper bound (on the order of hundreds for traditional style
processing units on the order to tens to hundreds of thousands for extremely simple
processors) on the number of processors which can be added.

1.3 Starting Assumptions

Our design decisions for our mobile robot are based on nine dogmatic principles (six of
these principles were presented more fully in Brooks 85"):

* Complex (and useful) behavior need not necessarily be a product of an extremely
complex control system. Rather, complex behavior may simply be the reflection of a
complex environment Simon 69. It may be an observer who ascribes complexity to
an organism-- not necessarily its designer.

0 Things should be simple. This has two applications. (1) When building a system of
many parts one must pay attention to the interfaces. If you notice that a particular

": . :.... ; " .. '.. i ... .".;.. .'.".'"". .".. . . .".. . . "".. . ".. . . . ." . . .."-". . . ..". ."'" ","" i-'- .'-.'-.'.:-."'-..'



A R-,bust Layered C.,.rtr I S)so n f..r M4 hilt R J-1 4

interface is starting to rival in complexit. the components it connects, then either the

interface needs to be rethought or the decomposition of the system needs redoing. (2) If

a particular component or collection of components solves an unstable or ill-conditioned

problem, or, more radically. if its design involved the solution of an unstable or ill-

conditioned problem. then it is probably not a good solution from the standpoint of

robustness of the system.

* We want to build cheap robots which can wander around human inhabited space with

no human intervention, advice or control and at the same time do useful work. Map

making is therefore of crucial importance even when idealized blue prints of an envi-

ronment are available.

* The human world is three dimensional: it is not just a two dimensional surface map.

The robot must model the world as three dimensional if it is to be allowed to continue

cohabitation with humans.

& Absolute coordinate systems for a robot are the source of large cumulative errors.

Relational maps are rnorc useful to a mobile robot. This alters the design space for

perception systems.

* The worlds where mobile robots will do useful work are not constructed of exact simple

polyhedra. While polyhedra ma) be useful models of a realistic world, it is a mistake

to build a special world such that the models can be exact. For this reason we will

build no artificial environment for our robot.

* Sonar data. while easy to collect, does not by itself lead to rich descriptions of the world

useful for truly intelligent interactions. Visual data is much better for that purpose.

Sonar data may be useful for low level interactions such as real time obstacle avoidance.

* For robustness sake the robot must be able to perform when one or more of its sensors

fails or starts giving erroneous readings. Recovery should be quick. This implies that

built-in self calibration must be occurring at all times. If it is good enough to achieve

our goals then it will necessarily be good enough to eliminate the need for external

calibration steps. To force the issue we do not incorporate any explicit calibration

steps for our robot. Rather we try to make all processing steps self calibrating.

- We are interested in building artificial beings-robots which can survive for days, weeks

and months, without human assistance. in a dynamic complex environment. Such

robots must be self sustaining.

1.4 The Physical Robot

I. the rest of the paper we describe a layered robot control system, It is intended to drive

an actual robot To give some concreteness to the cosntraints on the control system we
describe that robot here

We have constructed a mobile robot shown in photo 1. It is about 17 inches in diameter

and about 30 inches from the ground to the top platform. Most of the processing occurs

offboard on Lisp machines

The drive mechanism was purchased from Real World Interface of Sudbury, Ma-"-

sachusetts Three parallel drive wheels are steered together. The two motors are servoed by
a single microprocessor The robot bod) is attached to the steering mechanism and always ,%

...................................................................- . -n.i- i



A Robust Layered Contrl System f r a M,,bile R,b 5

Photo 1. The MIT Al Lab mobileyb4

points in the same direction as the wheels. It can turn in place (actually it inscribes a circle

about 1 cm in diameter).

Currently installed sensors are a ring of twelve Polaroid sonar time of flight range

sensors and two Sony CCD cameras. The sonars are arranged symmetrically around the

rotating body of the robot. i'he cameras are on a tilt head (pan is provided by the steering

motors). We plan to install feelers which can sense objects at ground level about six inches

from the base extremities.

A central cardcage contains the main onboard processor. an Intel 8031. It cormmuni-

cates with offboard processors via a 12Kbit sec duplex radio link. The radios are modified

Motorola digital voice encryption unit-,. Error correction cuts the effective bit rate to less

than half the nominal rating. The 8031 passes commands down to the motor controller pro-

cessor and returns encoder readings. It controls the sonars. and the tilt head and switches
the cameras through a single chaninel video transmitter mourited on top of the robot. The
latter transmits a standard TV signal to a Lisp miachine equipped with a demodulator and

frame grabber. Multiple Lisp machines work together to control the robot, communicating

r..



A R(.bust Layered Control System for a Mcbile Robct

rather infrequently over a Chaos net.

2. Levels and Layers

There are many possible approaches to building an autonomous intelligent mobile robot.

As with most engineering problems they all start by decomposing the problem into pieces.

solving the subproblems for each piece, and then composing the solutions. We think we

have done the first of these three steps differently to other groups. The second and third

steps also differ as a consequence.

2.1 Levels of Competence

TypicallN mobile robot builders (e.g. Nilsson 84], JMoravec 831, [Giralt et al 83', 'Kanayama

83 . Tsuji 84 , Crowley 85 ) have sliced the problem into some subset of:

* sensing,

* mapping sensor data into a world representation,

* planning,

. task execution, and

* motor control.

This decomposition can be regarded as a horizontal decomposition of the problem into

%ertical slices. The slices form a chain through which information flovbs from the robot's

eriv ronment, via sensing, through the robot and back to the environment, via action. closing

the feedback loop (of course most implementations of the above subproblems include internal

feedback loops also). An instance of each piece must be built in order to run the robot at

all. Later changes to a particular piece (to improve it or extend its functionality) must

either be done in such a way that the interfaces to adjacent pieces do not change, or the
effects of the change must be propagated to neighboring pieces, changing their functionality

too.

We have chosen instead to decompose the problem vertically as our primary way of

slicing up the problem. Rather than slice the problem on the basis of internal workings
of the solution we slice the problem on the basis of desired external manifestations of the

robot control system.

To this end we have defined a number of levels of competence for an autonomous mobile

robot. A level of competence is an informal specification of a desired class of behaviors for a

robot over all environments it will encounter. A higher level of competence implies a more
specific desired class of behaviors.

We have used the following levels of competence (an earlier version of these was reported

in Brooks 841) as a guide in our work:

0. Avoid contact with objects (whether the objects move or are stationary).

1. Wander aimlessly around without hitting things.

2. "Explore" the world by seeing places in the distance which look reachable and heading

for them. -

3. Build a map of the environment and plan routes from one place to another.

4. Notice changes in the "static" environment.

.. ,... .°.................................................... .° ,.°• . . -. •. .......



A Robust Layert>d Control Sy.stem fc·r a \ofobile Rvb(•t 

I J 
level S r--l 

.J )eve) e "I J 

..1 level 1 lr.. 
1. I 

Senaors --1 level 0 
I _.. 

"l I 
Actuators 

Figure 3. Control il! layered with higher level layers subsuming the roles of lower level 

layers when they wish to take control. The l'ystern can be partioned at any level, and 

the layer~ below form a complete operational control syHem. 

7 

5. Reason about the world in terms of identifiable objects and perform tasks related to 
certain objects. 

6. Formulat-e and execute plans which involve changing the state of the world in some 
desirable way. 

7. Reason about the behavior of objects in the world and modify plans accordingly. 

Notice that each level of competence includes as a subset each earlier level of competence. 
Since a level of competence defines a class of valid behaviors it can be seen that higher levels 
of competence provide additional constraints on that class. 

2.2 Layers of Coutrol 

The key idea of levels of competence is that we can build layers of a control system corre­
sponding to each !eve) of competence and simply add a new layer to an existing set to move 
to the next higher level of overall competence. 

We start by building a complete robot control system which achieves level 0 compe­
tence. It is debugged thoroughly. We never alter that system. We call it the zeroth level 
control system, Next we build a another control layer, which we call the first level control 
system. It is able to examine data from the level 0 system and is also permitted to inject 
data into the internal interfaces of level 0 suppressing the normal data flow. This layer, 
with the aid of the zerot.h , achieves level 1 competence. The zeroth layer continues to run 
unaware of the layer above it which somet imes interfNes with its data paths. 

The same process is repeated to achieve higher levels of competence. See figure 3. 
We call this architecture a subsumption architecture. 

In such a scheme we havE' a working control system for the robot very early in the 
piece- as soon as we have built the first layer. Additional layers can be added later, and 
the initial working system need never be changed. 



A Robu~t Layered Control Sy~tem for a M<·hile Rc·bc· t 8 

We claim that this architecture naturally lends itself to solving the problems for mobile 

robots delineated in section 1.1. 

• '\111ltiple Goals. Individual layers can bt> working on in::lividual goals concurrently. 
The suppression mechanism then mediat.es the actions that are taken . ThE' advantage 
here is that there is no need to make an early decision on which goal should be pursued . 
The resul ts of pursuing all of them to some level of conclusion can be used for the 
ultimate decision . 

• Multiple Sensors. In part we can ignore the sensor fusion probl.r:!m as stated earlier 
using a subsumption architecture. Not all sensors need to feed into a central representa­
tion . Indeed certain readings of all sensors need not feed into central repres£,ntations­
only t l:ose which perception processing identifies as extremely reliable might be eligible 
to enter such a cent ral representation. At the same time however the sensor values may 
still be being used by the robot. Other layers may be processing them in some fashion 
and using the results to achieve their own goals, independent of how other layers may 
be scrutinizing them. 

• Robustness. Multiple seusors clearly add to the robustness of a system when their 
results can be used intelligently. There is another source of robustness in a subsumption 
architect ure. LowE'r levels which have been well debugged continue to run when higher 
levels are added. Since a higher level can only suppress the outputs of lower levels by 
actively interfering with replacement data, in the cases that it can not produce results 
in a timely fashion the lower levels will still produce results which are sensible, albeit 
at a lower level of competence. 

• Additivity. An obvious way to handle additivity is to make each new layer run on 
JtE own processor . We will seE' below that this is practical as there are in general fairly 
low bandwidth requirements on communication channels between layers. In addition 
we will see that the individual layers can easily be spread over many loosely coupled 
processors. 

~.3 The Structure of Layers 

But what about building each individual layer? Don't we need to decompose a single layer 
in the traditional manner? This is true to some extent, but the key difference is that we 
don 't need to account for all desired perceptions and processing and generated behaviors in 
a single decomposition. We are free to use different decompositions for different sensor-set 
t.ask-set pairs. 

We have chosen to build layers from a set of small processors which send messages to 
each other. 

Each processor is a fini te state machine with the ability to hold some data structures. 
Processors send messages over connecting "wires". There is no handshaking or acknowl­
edgement of messages. The processors run completely asynchronously, monitoring their 
input wires, and sending messages on t heir out put wires. It is possible for messages to get 
lost- it actually happens quite often . There is no other form of communication between 
processors, in particular there is no shared global memory. 

All proce:>sors (which we refer to as modules) are created equal in the sense that within 
a layer there is no cent ral control. Each module merely does its thing as best it can . 



A Robust Layered Control Sy~tem for :, :\kbile Robe•! 9 

Inputs to modules can be suppressed and outputs can be inhibited by wires terminating 
from other modules. This is the mechanism by which higher level layers subsume the role 
of lower levels. 

3. A Robot Control System Specification Language 

There are two aspects to the components of our layered control architecture. One is the 
internal structure of the modules, and t.he second is the way in which they communicate. In 
this section we flesh out the details of the semant.ics of our modules and explain a description 
language for them. 

3.1 Finitl' State Machines 

Each module , or processor. is a finite state machine, augmented With some instance variables 
which can actually hold Lisp data structures. 

Each module has a number of input lines and a number of output lines. Input lines have 
single element buffers. The most recently arrived message is always available for inspection. 
~essages can be lost if a new one arrives on an input line before the last was inspected . 

There is a distinguished input to each module called reset . 

Each state is named . When the system first starts up all modules start in the distin­
guished state named NIL. When a signal is received on the reset line the module switches 
to state NIL. A state can be specified as one of four types. 

• Output. An output message, computed as a function of the module's input buffers 
and instance variables, is sent to an output line. A new specified state is then entered . 

• Side effect. One of the module's instance variables is set to a new value computed as 
a function of its input buffers and variables. A new specified state is then entered . 

• Conditional dispatch. A predicate on the module's instance variables and input 
buffers is computed and depending en the outcome one of two subsequent states is 
entered . 

• Event dispatch. An sequence of pairs of conditions and states to branch to are 
monitored until one of the events is true. The events are in combinations of arrivals of 
messages on input lines and the expiration of time delays.* 

• The exact semantics are a!' follows. After an event dispatch is executed all input lines are 

monitored for message a rrivals. When the next event dispatch i~ execute:d it has !\ccess t o 

Jatche~ which indicate whether new messages arrived on each input line. Each condition is 

evaluated in turn . If it is true t.hen the dispatch to the new ~tate happens. Each condition it< an 

and/or expression on the input line latches. In addition, condition expressions can include delay 

terms which become true a t<pecified amount of t ime after the beginning of the execution of the 

event dispatch. An event dispatch wait~ until one of its condition expressions is true . 



A R..bust Layered C,,ntr.J Systemn fc.r o M bile Rb,,1 10

An example of a module defined in our specification language is the avoid module:

(defmodule avoid
:inputs (force heading)

outputs (command)

:instance-vars (resultforce)

: states

((nil (event-dispatch (and force heading) plan))

(plan (setf resultforce (select-direction force heading))

go)

(go (conditional-dispatch (significant-force-p resultforce 1.0)

start

nil))

(start (output command (follow-force resuitforce))

nil)))

Here, select-direction. significant-force-p and follow-force are all lisp func-

tions, while setf is the modern lisp assignment special form.

The force input line inputs a force with magnitude and direction found by treating

each point found by the sonars as the site of a repulsive force decaying as the fifth power

of distance. The fifth power was chosen as the force drops off reasonably quickly as objects

are further away than the manouevering resolution of the robot, but increase dramatically

as objects become very close to the robot. Function select-direction takes this and

combines it with the input on the heading line considered as a motive force. It selects the

instantaneous direction of travel by summing the forces acting on the robot. (This simple

technique computes the tangent to the minimum energy path computed by IKhatib 83].)

Function significant-force-p checks whether the resulting force is above some thr-

eshold--in this case it determines whether the resulting motion would take less than a

second. The dispatch logic then ignores such motions.

Function follow-force converts the desired direction and force magnitude into motor

velocity commands.

This particular module is part of the level 1 control system described below. It es-
sentially does local navigation, making sure obstacles are avoided by diverting a desired

heading away from obstacles. It does not deliver the robot to a desired location-that is

the task of level 2 competence.

3.2 Communication

Figure 4 shows the best way to think about these finite state modules for the purposes of

communications. They have some input lines and some output lines. An output line from

one module is connected to input, lines of one or more other modules. One can think of

these lines as wires, each with sources and a destination.

Additionally outputs may be inhibited, and inputs may be suppressed.

An extra wire can terminate (i.e. have its destination) at an output site of a module.

If any signal travels along this wire it inhibits any output message from the module along



A Rc.bust Layered Contr.:,] Systern f.,r a M,:,,i& Rc,b.- 1

Inhibitor

•Inputs outputs

re~s~r Reset
Suppressor

Figure 4. A module has input and output lines. Input signals can be suppressed and

replaced with the suppressing signal. Ouiput signals can be irhibited. A module can

also be reset to state NIL.

that line for some pre-determined time. Any messages sent by the module to that output

during that time period is lost.

( iSimilarly an extra wire can terminate at an input site of a module. Its action is very
similar to that of inhibition, but additionally, the signal on this wire, besides inhibiting
signals along the usual path. actually gets fed through as the input to the module. Thus it
suppresses the usual input and provides a replacement. If more than one suppressing wire
is present they are essentially 'or'-ed together.

For both suppression and inhibition we write the time constants inside the circle.

In our specification language we write wires as a source (i.e. an output line) followed
by a number of destinations (i.e. input lines). For instance the connection to the force
input of the avoid module defined above might be the wire defined as:

(delwire (feelforce force) (runaway force) (avoid force))

This links the force output of the feelforce module to two inputs.
Suppression and inhibition can also be described with a small extension to the syntax

above. Below we see the suppression of the command input of the motor module, a level
0 module by a signal from the level I module avoid.

(defwire (avoid command) ((suppress (motor command) 1.5)))

In a similar manner a signal can be connected to the reset input of a module.

4. A Robot Control System Instance

We have implemented a mobile robot control system to achieve levels 0 and I competence

., as defined above, and have started implementation of level 2 bringing it to a stage which
exercises the fundamental subsumption idea effectively. We need more work on an early
vision algorithm to complete level 2.

.- 6
. . .

_o*.* * -- aa .

,- ". ", ". "o °o "o o " ". "w % . + °". " 
°

" • " -a " . .
° '

. . * " • . - " " , . . .• "• " • " • "



A Robust Layered Cc,ntrol System fcr a M,:bilt Rb.,,i 12

The complete code for the modules and interconnections of levels 0, 1, and 2 is given

in the Appendix.

4.1 Zeroth Level

The lowest level layer of control makes sure that the robot does not come into contact with

other objects. It thus achieves level 0 competence. If something approaches the robot it

will move away. If in the course of moving itself it is about to collide with an object it will

halt. Together these two tactics are sufficient for the robot to flee from moving obstacles,

perhaps requiring many motions, without colliding with stationary obstacles. The robot is

not invincible of course. and a sufficently fast moving object, or a very cluttered environment

might result in a collision.

* The motor module communicates with the actual robot. The module has an extra

communication mechanism, allowing it to send and receive commands to and from

the physical robot directly. It accepts a command specifying angle and speed of turn,

magnitude of forward travel and velocity. It sends a high, or busy, signal on a status

line it maintains then waits in a delay-induced loop for it to be finished. If at any time

a halt message is received, it commands the robot to halt. (Any additional motion

commands received during transit are lost.) At the termination of a motion, whether

by completion or halting, the module sets the status output line to low.

* The sonar module takes a vector of sonar readings, filters them for invalid readings,

and effectively produces a robot centered map of obstacles in polar coordinates.

* The collide module monitors the sonar map and if it detects objects dead ahead it

sends a signal on the halt line to the motor module. The collide module does not

know or care whether the robot is moving. Halt messages sent while the robot is

stationary are essentially lost.

0 The feelforce module sums the results of considering each detected object as a repulsive

force, generating a single resultant force.

6 The runaway module monitors the 'force' produced by the sonar detected obstacles

and sends command to the motor module if it ever becomes significant.

Figure 5 gives a complete description of how the modules are connected together. Notice
that the status line of the motor module is not used at this level.

4.2 First Level

The first, level layer of control, when combined with the zeroth, imbues the robot with the

ability to wander around aimlessly without hitting obstacles. This was defined earlier as

level 1 competence. This control level relies in a large degree on the zeroth level's aversion

to hitting obstacles. In addition it uses a simple heuristic to plan ahead a little in order to

avoid potential collisions which would need ', be handled by the zeroth level.

* The wander module generates a new heading for the robot every 10 seconds or so.

- The avoid module, described in more detail in section 3. takes the result of the force

computation from the zeroth level, and combines it with the desired heading to produce

a modfied heading which usually points in roughly the right direction, but is perturbed

* .°..

- - - ---~'- . . . .



A R,'bust Layered Contr,-4 System f-,r ;i .b l bt 13

robot colde robot

sonar -mapmor

command

Figure 5. The level 0 contrcl system.

to avoid any obvious obstacles. This computation implicitly subsumes the computa-

@ *tions of the runaway module, in the case that there is also a heading to consider. In
fact the output of the avoid module suppresses the output from the runaway module
as it enters the motor module.

Figure 6 gives a complete description of how the modules are connected together. Note
that it is simply figure 5 with some more modules and wires added.

4.3 Second Level

Level two is meant to add an exploratory mode of behavior to the robot, using visual
observations to select interesting places to visit. At the time of writing only the non-vision

aspects of this level have been fully implemented. They provide a means of position servoing

the robot to a desired relative position despite the presence of local obstacles on its path
(as detected with the sonar sensing system). The wiring diagram is shown in figure 7. Note

that it is simply figure 6 with some more modules and wires added.

* The grabber module ensures that level R has control of the motors by sending a halt
signal to the motor module, then temporarily inhibiting a number of communications

paths in the lower levels so that no new actions can be initiated (thus for a brief two
seconds the robot is unable to avoid approaching objects), and waiting for the motor

module to indicate that it is no longer controlling a robot motion. At this point the
sensors will be giving stable readings sufficient to plan a detailed motion, so a goal can

be sent to the pathplan module.
- The monitor module continually monitors the status of the motor module. As soon

as that module becomes inactive the monitor module queries the robot via a direct
connection to get a reading from its shaft encoders on how far it has travelled. Thus

- t. .... ,,...,.,... .~L.d tJ 5 lm nm a mnal~od I ~lml ' -
"
:" : ' '- " . " " " 7,-",



A Rnbust Layered Control System f.r a M. bile R..b.-,t 14

b'p.

ery robot comde robot

ap sonar map motor

T a m li command a

f~fforce

hdgttaheadingL- wander

Figure 6. The level 0 control system augmented with the level 1 system.

nit is able to track each motion, whether it termina te actlnded or if there was an
.. early halt due to looming obstacles.

t The Integrate module accumulates reports of motions from the monitor module
"' and always sends its most recent result out on its integral line. It gets restarted by

.

• application of a signal to its reset input.
0 The pathplan module takes a goal specification (in terms of an angle to turn, a distance

to travel, and a final orientation) and attempts to reach that goal. To do this it sends
headings to the avoid module, which may perturb them to avoid local obstacles, and
monitors its integral input which is an integration of actual motions. The messages
to the avoid module suppress random wanderings of the robot, so long as the higher
level planner remains active. When the position of the robot is close to the desired
position (the robot is unaware of control errors due to wheel slippage etc., so this is a
dead reckoning decision) it outputs the goal to the straighten module.

% The straighten module is responsible for modifying the final orientation of the robot.
Any command with just an angular heading will not get through the avoid module as

. ~ ~it filters out small motions, since the pressure of forces from remote obstacles would .!i
," otherwise make It "buzz" with large turns and small forward motions. Therefore the

fn or.t.-..g . .. a .... pla. p. . . -, - . .. -. ... . . .me-ns . t
, ' " ,% m "." . . . - % • --.* ,• t . . ".. ="% " ,.o." " .° . •" ° . ." ." • I.'" : J .% *."



A R,,bust Layered Ccntr .l System fcr a M i tile R:,b 1 15

robot only has to turn in place there is no danger of a collision, although there is
always the danger of an approaching object. The straighten module thus sends its
commands directly to the motor module, and monitors the integral line to make sure

it is successful. For good measure it also inhibits the collision reflex, since there is no
chance of a collision from forward motion, but the collide module might indicate there

is a collision imminent as the robot rotates past an obstacle. This extra control signal

is not necessary, as the straighten module would reinitiate another turn if the first
were unsuccessful, but it does make for a smoother final reorientation.

The current wiring of the second level of control is shown in figure 7, augmenting the two
lower level control systems. Note that four of the inhibition and suppression nodes are used

only to gain control of the lower levels of the system, not to supplant it during operation of
the second layer. The zeroth and first layers still play an active role during normal operation

of the second layer.

The remainder of control for level 2 competence is not implemented at the time of
writing. It will take stereo depth data Grimson 85', produce descriptions of freeways.

or corridors of space, and send commands to the goal line of the pathplan module. In
addition extra monitoring of the integral ouput of the integrate module will ensure that

if the robot wanders outside of the perceived limits of the corridor of free space then it will
stop and take more visual observations. This last capability will make additional use of the
reset capability to halt the path planning behavior.

5. Performance

At the time of this writing (August 1985) the physical robot and communications links are
not yet complete enough to support tests of the layered control system. We have, however,
tested all of layers 0 and 1 and part of layer 2 on a simulated robot.

5.1 A Simulated Robot

The simulation tries to simulate all the errors and uncertainties that exist in the world of the
real robot. When commanded to turn through angle a and travel distance d the simulated

robot actually turns through angle a + ba and travels distance d + 6d. Its sonars can bounce
off walls multiple times, and even when they do return they have a noise component in the

readings modeling thermal and humidity effects. We feel it is important to have such a
realistic simulation. Anything less leads to incorrect control algorithms.

The simulator runs off a clock and runs at the same rate as would the actual robot.
It actually runs on the same processor that is simulating the subsumption architecture.
Together they are nevertheless able to perform a realtime simulation of the robot and its
control and also drive graphics displays of robot state and module performance monitors.
Figure 8 shows the robot (which itself is not drawn) receiving sonar reflections at some of
its 12 sensors. Other beams did not return within the time allocated for data collection.
The beams are being reflected by various walls. There is a small bar in front of the robot
perpendicular to the direction the robot is pointing,



A Rc-bust La~yered C'ontrol System f-Dr it M-hile- Rrbcrt

Fgreo7.thlve an cie~ robos umntdwt telve yt

........... r map halt-- motor.. .. .. .. .. ..

command .****.<.....- . .. . .



A R<·bu!lt Layered Control Sy11tem for a ~obile Robot 

Figure 8. The simulated robot receive!' 12 eonar reading11. Some sonar beam!! glance off 

wall~ and d"=' nN return wit hin " certain time. 

--------- ·---· ·--- - --- -·-

Figure 9. Cnder levels 0 and 1 control t he robot wander1.1 around aimlessly. It does not 

hit obstacles. 

5.2 Zeroth and First Level 

17 

Figure 9 shows an example world in two dimensional projection. The simulated robot with 
a first level control system connected was allowed to wander from an initial position. The 
squiggly line traces out its path . Note that it was wandering aimlessly and that it hit no 
obstacles. 



A Rhust Layered Contrl System fcr a Mrbile R,,b.:.t 18

?- 7

Figure 10. With level 2 control the robot tries to achieve commanded goals. The nominal
goals arc- the two straight lines. After reaching the second goal, since there are no new
go~als forthcoming, the robot reverts to aimless level I behavior.

5.3 Second Level

Figure 10 shows two examples of the same scene and the motion of the robot with the
second level control system connected. In this case two goals were fed to the goal line of
the grabber module. The two straight lines show the nominal commanded path. While
achieving these goals the lower level wandering behavior was suppressed. The goals were
not reached exactly. The simulator models a uniformly distributed error of ±5% in both
turn and forward motion. As soon as the goals had been achieved satisfactorily the robot
reverted to its wandering behavior.

6. Implementation Issues

One of the motivations for developing the layered control system was additivity of processing
power. The fact that it, is decomposed into asynchronous processors with low bandwidth
communication and no shared memory should certainly assist in achieving that goal. New
processors can simply be added to the network by connecting their inputs and outputs
at appropriate places-there are no bandwith or synchronization considerations in such
connections.

The bug in this idea is that our modules, while themselves simple finite state ma-
chines, have access to Lisp programs (e.g. select -direction) which require additional
computational power.

6.1 A Spatial Processor

In building the control system we noted that all non-triv'ial uses of Lisp (e.g., some pred-



A Rc busl Layered C.: ntr:,l System f r a M- hZl, R t.i 19

icates used are so trivia] that they can be implemented as a single gate) relate to spatial
reasoning. Approximately 60 trivial processors. each with a one bit alu, arranged in a cir-
cular network seem sufficient to carry out the hard Lisp computations of any given module.
The communication network topology would model the space around the robot. Such a
network could easily be fitted a single chip. Connection machine processors seem suitable
for such arrays Hillis 85.

6.2 Sizing The Processors

The finite state processors need not be large. Sixteen states is more than sufficient for all
modules we have so far written. (Actually 8 states are sufficient under the model of the
processors we have presented here and used in our simulations. However we have refined
the design somewhat towards gate level implementation and there we use simpler more
numerous states.) Such processors could easily be put in the corner of an array processor
chip. or many could be packed on a single chip.

6.3 Shorter Term Approaches

While we have been able to simulate sufficient processors on a single Lisp Machine up until
now, that capability will soon pass as we bring on line our vision work (the algorithms have
been debugged as traditional serial algorithms but we plan on re-implementing them within
the subsumption architecture). Building the architecture in custom chips is a long term

U @ goal. In the shorter term the connection machine Hillis 85. seems bendable to support a
large scale simulation. The communication within modules can use the NEWS network.
and the between module communication can use the cross omega network. The low band-
width interrnodule communication requirements suggest that the network w.ll not soon be
saturated.

7. Conclusion

The key ideas in this paper are:
* The mobile robot control problem can be decomposed in terms of behaviors rather

than in terms of functional modules.

* It provides a way to incrementally build and test a complex mobile robot control system.

* Useful parallel computation can be performed on a low bandwidth loosely coupled
network of asynchronous simple processors. The topology of that network i. relatively
fixed.

* There is no need for a central control module of a mobile robot. The control system
can be viewed as a system of agents each busy with their own solipsist world.

Besides leading to a different implementation strategy it is also interesting to note the way
the decomposition affected the capabilities of the robot control system we have built. In
particular our control system deals with moving objects in the environment at the very
lowest level, and has a specific module (runaway) for that purpose. Traditionally mobile
robot projects have delayed handling moving objects in the environment beyond the scientific
life of the project.

. . . . . . . . . . . - . . . . . . . . .



A Robust Layered Control System fPr a .Mik Rrb,',t 20

Most lacking in this paper are:

0 A demonstration of the control system with a real robot.

* Details of how the full level 2 control system will be implemented.

* A clear separation of the algorithms for control of the robot from the implementation

medium. We felt this was necessary to convince the reader of the utility of both. It is

unlikely that the subsumption architecture would appear to be useful without a clear

demonstration of how a respectable and useful algorithm can run on it. Mixing the

two descriptions as -e have done demonstrates the proposition

* We are not completely happy with the fact that a level 0 module has an output (the

motor-status output of the motor module) which is not used within that level but only

in level 2.

Nevertheless we are confident that the methodology presented in this paper will continue

to bear fruit as we bring it up on our physical robot.

Acknowledgement

Tomis Lozano-Pdrez. Eric Grimson, Jon Connell and Anita Flynn have all provided helpful

comments on earlier drafts of this paper.

References

[Brooks 84] "Aspects of Mobile Robot Visual Map Making", Rodney A. Brooks, Robotics

Research 2, Hanafusa and Inoue eds, MIT Press, 1984, 369-375.

[Brooks 851 "Visual Map Making for a Mobile Robot", Rodney A. Brooks, IEEE Confer-

ence on Robotics and Automation, St Louis, March, 1985, 824-829.

[Crowley 85] "Navigation for an Intelligent Mobile Robot", James L. Crowley, IEEE

Journal of Robotics and Automation. RA-I, March 1985, 31-41.

[Elfes and Talukdar 83] "A Distributed Control System for the CMU Rover", Alberto

Elfes and Sarosh N. Talukdar, Proceedings IJCAI, Karlsruhe, West Germany, August 1983,
830-833.

[Flynn 85] "Redundant Sensors for Mobile Robot Navigation", Anita Flynn, MS Thesis,

Department of Electrical Engineering and Computer Science, MIT, July 1985.

[Giralt et al 83] "An Integrated Navigation and Motion Control SYstem for Autonomous

Multisensory Mobile Robots". Georges Giralt. Raja Chatila, and Marc Vaisset, Robotics

Research 1, Brady and Paul fds, MIT Press, 1983. 191 -214.

[Grimson 85] "Computational Experiments with a Feature Based Stereo Algorithm", W.

Eric L. Grimson, IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-

7, January 1985, 17-34.

[Hills 85] "The Connection Machine", Danny Hillis. PhD Thesis, Department of Electrical

Engineering and Computer Science, MIT, May 1985.

° .

-. - . . . . .. . .,. * . O . . , . . . . . . o o . .. . . . . - . . % .'



A R.-bust Layered CcrntrI System fr a M lie R:,b(t 21

.Kaiayarna 83] "Concurrent Programming of Intelligent Robots", Yutaka Kanavama.
Proceedings IJCA1, Karlsruhe, West Germany. August 1983. 834- 838.

L:Khatib 83] "Dynamic Control of Manipulators in Operational Space", Oussama Khatib.
Sizth IFTOMM Congress on Theory of Machines and Mechanisms, New Delhi. December
1983.

Kreithen 831 "Orientational Strategies in Birds: A Tribute to W. T. Keeton", Melvin
L Kreithen. in Behavioral Energetics: The Cost of Survival in Vertebratec. Ohio Slat(
Untrersity Press. 1983. 3--28.

'Moravec 83] "The Stanford Cart and the CMU Rover". Hans P. Moravec. Proceedings of
the IEEE, 71, July 1983, 872-884.

[Nilsson 84] "Shakey the Robot". Nils J. Nilsson. SRI A] Center Technical Note 323,
April 1984.

[Simon 69] "Sciences of the Artificial", Herbert A. Simon, MIT Press, 1969.

[Tsuji 84] "Monitoring of a Building Environment by a Mobile Robot", Saburo Tsuji,
Robotics Research 2, Hanafusa and Inoue eds, MIT Press, 1984, 349-356.

Appendix

On the following pages is the complete control code for the mobile robot control system
instance described in this paper. The lisp functions which compute forces etc. are omitted.
All modules and wires are conditionalized with reader macros that identify which layer they
belong in. A read macro conditionally tells the Lisp reader whether to process or ignore the
foloowing expression. Thus expressions prefixed by #+levell are only processed if some
global statement has said that level 1 modules and wires should be included. In this way
we can use a single source file, but still control which layers get loaded

..........



A Rcbumt Layered (Contr:1 Systen fr a Mr,.,ile R 1..1 22

#+levelO

4(defmodule motor

:inputs (command halt)

:outputs (motor-status)

:states

((nil (event-dispatch command drive))

(drive (output motor-status hi)

send-motion)

(send-motion (Lend *robot* :move command)

transit)

(transit (event-dispatch halt halt-robot

(delay 0.5) idle-p))

(halt-robot (send *robot* halt)

transit)

(idle-p (conditional-dispatch (lo? *bus-status*) done transit))

(done (output motor-status lo)

nil)))

#+levelO

(defmodule sonar

inputs ()

outputs (map)

:states

((nil (event-dispatch (delay 1.0) read))

(read (output map (convert-sonar-array-to-map *bus-readings*))

nil)))

#+levelO

(defmodule collide

:inputs (map)

outputs (halt)

:states

((nil (event-dispatch map monitor))

(monitor (conditional-dispatch (dangerous-motion-p map 5.0)

quit

nil))

(quit (output halt hi)

nil)))

#+levelO

(defmodule feelforce

:inputs (map)

:outputs (force)

:states

((nil (event-dispatch map compute))

(compute (output force (compute-force map))

nil)))

....

. . . . . . . . . . . . . . .."



A. .\ hust Lvc red C_. 1. Sysi em .,r \I %. ~ie R.H 23
t-3

# * levelO

(defmodule runaway

inputs (force)

:outputs (command)

* states

((nil (event-dispatch force decide))

(decide (conditional-dispatch (significant-force-p force 3.0)

runaway

nil))

(runaway (output command (follow-force force))

nil)))

#+levell

(defmodule wander

inputs ()

outputs (heading)

states

((nil (event-dispatch (delay 10.0) generate))

(generate (output heading (make-random-heading 200-0))

nil)))

#+levell

(defmodule avoid

tinputs (force heading)

outputs (command)

:instance-tars (resultforce)

:states

((nil (event-dispatch (and force heading) plan))

(plan (setf resultforce (select-direction force heading))

go)

(go (conditional-dispatch (significant-force-p resultforce 1.0)

start

nil))

(start (output command (follow-force resultforce))

nil)))

#+level2

(defmodule grabber
.inputs (goal motor-status)

.outputs (grab outgoal)

:states

((nil (event-dispatch goal reset))

(reset (output grab h:)

wait)

(wait (event-dispatch (delay 0.25) test))

(test (conditional-dispatch (lo? motor-status) gotit reset))

(gotit (output outgoal goal)

nil)))

...............



A Robust Layered Control System for a Mobile Robot 24

#+level2

(defmodule monitor

inputs (motor-status)

:outputs (travel)

:states

((nil (event-dispatch motor-status check))

(check (conditional-dispatch (lo? motor-status) out nil))

(out (output travel (send *robot* travel?))

nil)))

#+level2

(defmodule integrate

inputs (travel)

:outputs (integral)

instance-vars (accum-motion)

:states

((nil (event-dispatch travel initialize))

(initialize (set! accum-motion (make-zero-relative-motion))

add)

(add (setf accum-motion (increment-motion accuu-motion travel))

add2) -

(add2 (output integral accum-motion)

accumulate)

(accumulate (event-dispatch travel add))))

#+level2

(defmodule pathplan

inputs (integral goal)

:outputs (begin heading turn)

:states

((nil (event-dispatch goal init))

(init (output begin hi)

firstmove)

(firstmove (output heading (decide-local-goal goal '0))

wait)

(move (output heading (decide-local-goal goal integral))

wait)

(wait (event-dispatch integral test))

(test (conditional-dispatch (close-enuf-p goal integral)

turn

move))

(turn (output turn goal)

nil)))



..

A R:.,bust Layered C.,ntr.:.I Svtemn fr M c .ile R.:.b ,1 25

#+level2

(defmodule straighten

:inputs (goal integral)

:outputs (nostop command done)

:states

((nil (event-dispatch goal decide))

(decide (conditional-dispatch (close-enuf-orientation-p goal

integral)

over

send))

(send (output nostop hi)

sendturn)

(sendturn (output command (select-turn goal integral))

wait)

(wait (event-dispatch integral over))

(over (output done hi)

nil)))

level 0 wiring diagram

#+levelO (defwire (sonar map) (collide map) (feelforce map))

#+levelO (defwire (collide halt) (motor halt))

#+levelO (defwire (feelforce force) (runaway force)

#+levell (avoid force))

#+levelO (defwire (runaway command) (motor command))

level 1 wiring diagram

#+levell (defwire (wander heading) (avoid heading))

#+levell (defwire (avoid command) ((suppress (motor command) 1.5)))

; level 2 wiring diagram

#+level2 (defwire (motor motor-status) (monitor motor-status)

(grabber motor-status))

#+level2 (defwire (monitor travel) (integrate travel))

#+level2 (defwire (grabber outgoal) (pathplan goal))

#+level2 (defwire (grabber grab) ((inhibit (wander heading) 2.0))

((inhibit (avoid command) 0.25))

((inhibit (runaway command) 2.0))

((suppress (motor halt) 0.5)))

#+level2 (defwire (pathplan begin) ((reset integrate)))

#+level2 (defwire (pathplan heading) ((suppress (avoid heading) 15.0)))

# level2 (defwire (integrate integral) (pathplan integral)

(straighten integral))

#+level2 (defwire (pathplan turn) (straighten goal))

# level2 (defwire (straighten nostop) ((inhibit (collide halt) 2.5)))

#4level2 (defwire (straighten command)

((suppress (motor command) 1.5)))

. . ° .. . .. % . .... .. . . .. '..- . . . . . .-..-.(,:. . . . . , - . .,- . . . .' .-. .. ,. ,. . . . ... .. - .' .- . . , - . ,, .- , . . . , , ., . ,


