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Abstract

The 60 even permutations of the ligands in the five-coordinate

complexes, ML5 , form the alternating group A5 , which is isomorphic

with the icosahedral pure rotation group I. Using this idea, it is

shown how a regular icosahedron can be used as a topological repre-

sentation for isomerizations of the five-coordinate complexes, ML5 ,

involving only even permutations if the five ligands L correspond either

to the five nested octahedra with vertices located at the midpoints

of the 30 edges of the icosahedron or to the five regular tetrahedra

with vertices located at the midpoints of the 20 faces of the icosa-

hedron. However, the 120 total permutations of the ligands in five-

coordinate complexes ML5 cannot be analogously represented by operations

in the full icosahedral point group Ih, since Ih is the direct product

I x C2 whereas the symmetric group S5 is only the semi-direct product

A5 A S2 .  In connection with previously used topological representations

on isomerism in five coordinate complexes, it is noted that the auto-

morphism groups of the Petersen graph and the Desargues-Levi graph

are isomorphic to the symmetric group S5 and to the direct product

S5 x S2 , respectively. Applications to various fields of chemistry

are briefly outlined.
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Introduction

The marked resurgence of interest in chemical graph theory (2,3]

over the past decade has brought in its wake an ever increasing number

of new applications, ranging from isomer enumerations (41, through

bonding theory applications [5,6] and the investigation of reaction

networks [7-91, to the characterization of chemical species by topolog-

ical indices [101. One application of importance which has recently

come to the fore [11,121 concerns the use of graphs to represent the

various transformations, such as interconversions or isomerizations,

which non-rigid chemical species can undergo. Graphs of this type

have been referred to as topological representations [13]. This line

of research was first initiated by Balaban and co-workers [141, who

used isomerization graphs to represent the 1,2-charge migrations

occurring in CH3CH2 carbonium ions. The graph they employed for this

purpose is known as the Desargues-Levi graph, a graph which has since

been shown to have several other applications in chemistry, such as

the representation of the rearrangements of the ML5 trigonal bipyramidal

complexes [15,16]. It was soon demonstrated that a closely related

graph, the Petersen graph, can be used for the same purpose if no dis-

crimination of the enantiomers is required. Randic has investigated

both the Desargues-Levi [17] and Petersen [18] graphs, especially in

regard to their role in elucidating complex chemical relations.

The visualization of chemical transformations which graphs make

possible has led fairly naturally to the use of graph vertices for

the purpose of representing isomers which arise from the possible per-

mutations of species or ligands. By the same token, graph edges have
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been associated with the isomerization processes taking place. Hence,

the various applications of chemical graphs in this area require

knowledge of the symmetry properties of graphs. Clearly, an appropriate

use of group theory to study the symmetry properties of such graphs

will enable deductions to be made concerning the symmetry of the trans-

formations involved. Now, it is well-known that the symmetry elements

"" of a graph do not depend on the manner in which the graph is depicted

but rather on its neighborhood relationships, i.e. the connectivity

or, more loosely, the topology, it expresses. Thus, although the same

graph may be drawn in several different ways, each of which shows an

apparently different symmetry, its actual symmetry will in fact depend

on which vertices of the graph are connected together and which are

not. As an illustration of this point, we present in Figure 1 three

differing representations of the Desargues-Levi graph displaying three

apparently different symmetries.

The representation adopted in practice for a given chemical graph

will depend primarily on its value in illustrating the specific chemical

problem under construction. Balaban [191, however, has proposed that

the criteria adopted be based on both scientific and aesthetic consider-

ations. An appropriate type of representation should take the cognizance

* of the following prescriptive criteria:

(1) Display the graph, if possible, with a Hamiltonian circuit;

(2) Exploit the particular chemical interpretation to the full;

(3) Exhibit as high a degree of symmetry as possible.

Frequently, it is not possible to satisfy all three of these criteria

simultaneously, either as a result of mutual conflicts in these requirements

*" or because of the absence of some symnetry elements in the graphs them-%
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selves. In practice, however, it is possible in most cases to satisfy

at least two of them.

In the graphs discussed in this paper, it is possible to satisfy

all three of the above criteria. We shall be examining relationships

existing between the permutations of the five ligands in ML5 complexes

.- and the proper rotations of the regular icosahedron. The relevant graphs

involved here are the Desargues-Levi graph (or, alternatively, the

Petersen graph) and that of the icosahedron. All three of these graphs

display a high degree of symmetry. Moreover, the Desargues-Levi and

icosahedral graphs are possessed of a Hamiltonian circuit, although

the Petersen graph contains no such circuit. The Desargues-Levi graph

has a total of 240 symmetry operations partitioned into 14 classes;

the Petersen graph belongs to a symmetry group of 120 and is partitioned

into 7 classes [111. The chemical significance of all three graphs

is now well-established and is exploited in the present study.

The Role of Simplexes

A number of workers [20-231 have related the permutation groups

on sets of identical ligands to the symmetry point groups on the various

MLn species. Special interest has focused on the species with

5 < n < 6 for two principal reasons. First, these complexes have been

* studied very extensively by experimental chemists; and second, when

n < 5 there is little need to introduce graphs to represent the possible

geometric isomers in view of the extreme simplicity of the systems involved.

If we consider complexes with 3 < n < 6 exhibiting skeletons of the

highest possible symmetry, the triangular ML3 complex will be of D3h
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symmetry and have only one isomeric form even if the three ligands

L are nonequivalent. The tetrahedral form adopted by ML4 complexes,

which is of Td symmetry, can give rise to only two geometric isomers,
.

corresponding to the two enantiomers of an asymmetric carbon atom,

even if all four of the ligands L are nonequivalent. When we reach

the trigonal bipyramid ML5 of D3h symmetry, the number of possible

geometric isomers increases to 20 in the case where all the five ligands

are nonequivalent.4  Similarly, for octahedral ML6 complexes of Oh

symmetry the number of geometric isomers equals 30 when all six ligands

are nonequivalent. Thus five and six are the minimum coordination

numbers, n, in the most symmetrical MLn complexes for which the graphs

representing their rearrangements become nontrivial.

The alternating group A3 and the symmetric group S3 on three objects

are isomorphic with the point groups C3 and D3 , respectively. The

latter two point groups correspond to the symmetry of the two-dimensional

simplex [241, i.e. to the planar triangle found in ML3 derivatives

such as the boron trihalides. Similarly, the alternating group A4

and the symmetric group S4 are, respectively, isomorphic with the point

groups T and Td, which correspond to the the symmetry of the three-

dimensional simplex, i.e. to that of the regular tetrahedron found

in many ML4 derivatives as well as the sp3 carbon atoms in organic
L4

'

derivatives. By direct analogy with the permutation groups on three

and four objects, we would expect the A5 and S5 permutation groups

-" to display isomorphism with the symmetry of the four-dimensional simplex,
'

of which the non-planar complete graph K5 [25] is the 1-skeleton [241.

Yet, although this expectation is in fact fulfilled, it turns out to

be neither very useful nor particularly relevant in the present context.

.4
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The Practical Implications

Accordingly, we shall discuss here the problem of how to treat

the isomorphism of the alternating group A5 and the symmetric group

S5 on five objects with various symmetry point groups in a chemically

meaningful way. Of considerable interest is the relationship existing

between the permutation groups A5 and S5 and the point group symmetries

of actual three-dimensional figures. Now, the only conceivable three-

dimensional point groups which could be related to the A5 and S5 permuta-

tion groups are, respectively, the I and Ih point group These repre-

sent the symmetry of the regular icosahedron and that of its dual graph

[24], the pentagonal dodecahedron, respectively. The regular icosahedron

has 12 vertices, 30 edges, and 20 faces; the pentagonal dodecahedron

has 20 vertices, 30 edges, and 12 faces.

An analysis of the type presented here can provide valuable new

insights into a number of problems of considerable current interest.

In our introduction we have already mentioned the use of graphs for

the visualization of chemical transformations. This approach has been

adopted by Balaban [191, Muetterties [20], and Gielen and Depasse-Delit

[211, among others, for the depiction of intramolecular isomerizations

of octahedral complexes which occur via twisting mechanisms. The

symmetry of such graphs has aided greatly in achieving self-consistent

notations for the various isomeric species involved. Moreover, in

the field of crystallography [26-29], crystallographgic orbits - also

sometimes referred to as regular point systems or point configurations

- and site symmetry groups are proving to be highly topical at present.

So called "forbidden" fivefold symmetry has recently been observed

......................

* .. *.. . . . .
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in quasicrystals [301, a highly organized state of matter which is

quite distinct from that in regular crystals or glasses. Structures

possessing the rotational symmetry of the regular icosahedron, although

forbidden in classical crystallography, have been discovered [311 in

rapidly cooled melts of aluminum with an admixture of transition metals

such as iron or manganese. Our analysis is also applicable to the

study of electron and cage compounds. For instance, the larger
+

sodium clusters, Nal 3 and Na13 , are known to possess icosahedral

symmetry, whereas the smaller clusters, Na7 and Na7, have a pentagonal-

pyramidal structure [321. Other alkali clusters, e.g. the lithium

clusters [331, appear to follow the same general pattern. Symmetry

constraints are known to play a vital role in determining the equilibrium

geometries of such species.

In the field of molecular biology, too, our analysis may have

important implications. Crick and Watson [341 have convincingly argued

that in biological systems such as viruses the protein molecules are

likely to be positioned according to some underlying geometrical ground

plan. High resolution cluster microscopy studies on isolated viruses

have revealed that this is indeed the case for these systems. So-called

"spherical" viruses are in fact based on one of three main geometrical

plans and exhibit either helical, icosahedral, or complex symmetry.

The basic model for a capsid having icosahedral symmetry has 12 morpho-

logical units in the form of pentamers located on the 12 fivefold rota-

tional symmetry axes of an icosahedron. Systems of this particular

type have been observed in the electron microscope [351, one such system

being the comparatively well-known bacteriophage X174. To determine

the numbers of morphological units or capsomers for a given virus part-

icle, it is necessary that at least two of the 12 fivefold rotational
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symmetry axes be identified. Analyses of the type we now present below

could be very helpful in establishing this type of information.

Some Applicable Group Theory

We now apply some basic group theory to the problem we have outlined

above. Both the alternating group, A5 , and the pure rotation group,

I, have a total of 60 symmetry operations. Similarly, both the symmetric

group, S5 , and the full icosahedral point group, lh, have 120 operations.

Examination of the conjugacy class structure [26,27] of the permutation

groups A5 and S5 on the one hand, and that of the point groups I and

Ih on the other hand, reveals that they correspond to each other. In

fact, it is an elementary exercise to show [28] that:

I m A5 (isomorphism) (M)

S5 = A5 A S2 (semi-direct product) (2)

Ih- Ix C2 (direct product). (3)

In this context, a group G is a direct product of two groups A and B

(i.e., G - A x B) when:

(1) For any aC A and any b C B the automorphism (b) of A is the

identity thus:

i(b)a a. (4)



(2) There is an isomorphism between G and the group of pairs (ab), with

a C A and b6B, which satisfies the multiplication law:

(al,bl)(a2 ,b2 ) = (ala 2 ,blb2 ). (5)

"" Similarly a group G is a semi-direct product of two groups A and B

* (i.e. G = A A B) when:

(1) For any a 6 A and any b C B there is an automorphism 0(b) of A

* such that:

0 (bl)[0(b2 )a] = 0(blb 2 )a. (6)

(2) There is an isomorphism between G and the group of pairs (ab) with

a A and b 6 B which satisfies the multiplication law:

(al,bl)(a 2 ,b2) = (al[ o (bl)a 2l,blb 2 ). (7)

* An automorphism of any group is an isomorphism with the graph itself.

Two different numberings of the vertices which preserve the adjacency

*. relationship will be an automorphism.

One of the present authors has recently discussed the concepts

of direct products and semi-direct products of symmetry groups in another

- context [361.

Let us now consider the Sn permutation groups. In these groups

permutations having different cycle structures will necessarily belong

to different classes. Moreover, for these specific groups, a common

partition will be a guarantee that the elements do in fact belong to

the same class. Thus, the conjugacy classes of the permutation groups

.- A5 and S5 are indicated in terms of their cycle indices [37,38] in

'4,4
4 . . .. . . . .



the following way:

60 Z(A5 ) 
i  + 20xlx3 + 15XlX2 + 24x 5  (8)

120 Z(S5) + l~xlx 2 + 20xlx3 + 152

+ 30xlx4 + 20x2x3 + 24x5. (9)

Furthermore, the conjugacy classes [26,27] of the point groups I and

Ih are indicated from their character tables [391 to be the following:

2
I - {E, 12C 5 , 12C 5 , 20C 3 , 15C 2} (10)

2 3
Ih  {E, 12C 5 , 12C 5, 20C3 , i, 12S 10 , 12S 10 , 20S6 , 1501 (11)

To avoid any confusion here, note that in equation (11), Sl0 and S6

refer to improper rotations (rotation-reflections) rather than to symme-

tric groups.

It is now possible to compare equations (8) and (9) with equations

(10) and (11), respectively, by using the relationships expressed in

equations (1), (2), and (3). This process of comparison leads to the

following results:

(1) The class of A5 represented by the cycle index term 24x5 corresponds

2to the two classes 12C 5 and 12C 5 of I taken together;

(2) In the point group Ih, each class of improper rotations (i, Sl0,

3SAl , S6 and a) corresponds to a class of proper rotations of the same

2
size, namely to (E, C5 , C5 , C3 , and C2 , respectively), whereas the

classes of S5 are not partitioned analogously.

X ,& '- ' - '-'- '-S. - '- -.
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Visualization of the Operations

In order tc 4elve further into and to facilitate visualization

of the relationship between the alternating group A5 and the icosahedral

rotation subgroup I, the following approach is proposed. First, five

equivalent objects are located on a body having I point group symmetry,

such as a regular icosahedron or its dual [241, the regular pentagonal

dodecahedron. The permutations which these five equivalent objects

undergo as each of the rotations of I is applied to the body are then

observed. This procedure should lead us directly to the desired rela-

tionship between the terms in the cycle index of A5 and the rotations

of I. By making use of the graph of the regular icosahedron, a method

has been devised for the representation of the even permutations of

five objects, indicated by the permutation group A5 , as the proper

rotations of the regular icosahedron.

The construction of five equivalent objects from an icosahedron

requires the utilization of five equivalent sets of either four faces

. or six edges. However, five equivalent objects cannot be constructed
.1

from the vertices of an icosahedron for the simple reason that 12 is

not divisible by 5. The now classical work by Klein [401 on the icosa-

* hedron suggests the following prescription for partitioning the 30

* edges of an icosahedron into five sets of six edges each:

* (1) Draw a straight line from the midpoint of each edge through the

center of the icosahedron to the midpoint of the unique opposite edge;

(2) Divide the resulting 15 straight lines into five sets of three

mutually perpendicular straight lines. Then each set of three mutually

perpendicular straight lines resembles a set of Cartesian coordinates

.%

a . *I



and defines a regular octahedron.

Each of these octahedra can also be defined in terms of 12 faces

of the underlying icosahedron, where the 12 faces are the six pairs

meeting at the six edges, whose midpoints define the vertices of the

octahedron as described above. Thus, in defining the complete icosahedral

set of five octahedra in terms of the icosahedral faces, each face

will be used 5 x 12/20 = 3 times.

The construction outlined above is actually the dual [24] of a

construction described by DuVal [41] in which a regular dodecahedron

is partitioned into five equivalent cubes. The reader may find the

colored illustrations in DuVal's book [41] helpful in visualizing this

particular construction.

Correspondences Between I and A9

The rotations of the point group I are now applied to the complete

icosahedral set of five octahedra and the resulting permutations of

the octahedra are observed. The identity operation E of I will clearly

leave the octahedra unaffected and will therefore correspond to the

5 2A5 cycle index term x1 . The rotations 12C 5 and 12C 5 of I will cyclically

permute the five octahedra of the icosahedral set and thus correspond

to the A5 cycle index term 24x5 . The rotations 20C3 of I will leave

two of the octahedra fixed and cyclically permute the other three

2octahedra; they thus correspond to the A5 cycle index term 20xlx3 .

Similarly, the 15C 2 of I will leave o? octahedron fixed and interchange

pairwise the other four, thereby corresponding to the A5 cycle index

2
term 15xlx2 . These observations thus lead to the following
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correspondences between the rotations of the point group I and the

cycle index terms of the alternating group A5 :

5
E - (12)

2
12C 5 + 12C 5  * 24x 5  (13)

20C3  20xlx3  (14)

*e 2
15C 2  + 15xlx 2  (15)

An alternative approach to the above procedure is to partition

the 20 faces of an icosahedron into five sets of four faces, such that

the midpoints of the four faces in each set from a regular tetrahedron.

The relative positions of the corresponding five sets (each of four
-. '

vertices) on a regular dodecahedron, the dual of the icosahedron, are

indicated by the letters A, B, C, D, and E in Figure 2, the Schlegel

diagram of the regular dodecahedron. The permutations of these five

tetrahedra under the rotations of the point group I correspond exactly

to the permutations of the icosahedral set of five octahedra discussed

above. These permutations thus lead to the same correspondences, given

in equations (12)-(15), between the rotations of the point group I

and the cycle index terms of the alternating group A5.

Unlike the regular icosahedron, a regular tetrahedron does not

"S. have an inversion center. Accordingly, inversion of any of the five

tetrahedra of the icosahedral set will lead to a new tetrahedron which

is the enantiomer of the original tetrahedron. The inverted tetrahedron

.A
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is conveniently referred to as the diametral tetrahedron. Both a

tetrahedron and its diametral tetrahedron cannot be members of the

same icosahedral set of five tetrahedra. However, of interest is the

fact that the eight vertices of a tetrahedron and its diametral tetra-

hedron form a cube. Furthermore, if the eight faces containing the

vertices of this cube are subtracted from the 20 faces of the original

icosahedron, the remaining 12 faces are exactly those which define

an octahedron of the icosahedral set as outlined above. This relates

to the observation that the cube formed by a tetrahedron and its diametral

tetrahedron is the dual [241 of the octahedron. In this sense, the

partitionings of an icosahedron into five tetrahedra and five octahedra

are dual partitionings. Such partitionings should therefore yield

identical correspondences to those in equations (12)-(15) between the

rotations of the point group I and the cycle index terms of the alter-

nating group A5.

The correspondence between the operations in the full icosahedral

point group, Ih, and the symmetric group, S5 , can also be checked by

procedures analogous to those given above using the icosahedral set

of either five octahedra or five cubes, the latter arising from

diametrally related tetrahedron pairs. In this instance, however, the

3
improper rotations of Ih , namely i, 1

2S10, 12S 1 0 , 20S6 , and 15a, lead

to the same cycle index terms x5, 24x5, 20x2x 3 , and 15XlX2 , respectively,

as the corresponding proper rotations E, 12C 5 , 12C , 20C3 , and 15C 2 ,

respectively. Thus, when the pure rotational group I is expanded to

the full point group Ih, the even operations of the alternating group

A5 will be repeated rather than supplemented by the odd permutations

of five objects to give the full symmetric group S5. For this reason,

. . . .,. .. . . . . .. . ., . . 4, .* ., '- .' j . " '.A-'. .
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the regular icosahedron (or, with approximate adjustments, its dual, the

regular dodecahedron) can be used as a model for the even permutations

of five objects, such as five ligands attached to some central atom,

provided that these can be represented by the alternating group A5.

The regular icosahedron cannot, however, be employed to model the total

of the even and odd permutations of five objects represented by the

symmetric group S5.

Finally, the symetries (automorphism groups) of the Desargues-Levi

[171 and Petersen [18] graphs can also be related to the symmetrical

group S5 by examination of their conjugacy classes. It then becomes

immediately evident that the automorphism group of the Petersen graph

is isomorphic with the symmetry group S5 [181, and the automorphism

group of the Desargues-Levi graph is isomorphic with the direct product

group S5 x S2 .  The use of these graphs as topological representations

for rearrangements in five-coordinate ML5 complexes [15-171 is then

readily apparent.

Acknowledgment. We are indebted to the U.S. Office of Naval Research

-for partial support of this work.
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a regular dodecahedron.
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