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ABSTRACT

Development and Validation of a Vertically

Two-Dimensional Mesoscale Numerical Model. (August 1985)

Michael Kent Walters, B.S., Texas A&M University

Chairman of Advisory Committee: Dr. Dusan Djuric

S.. A vertical, two dimensional, grid-point mesoscale

model is developed, using the equations of motion and

thermodynamics in a dry flow. A non-dimensional vertical

coordinate s is used. The hydrostatic assumption is made.

To avoid the sensitivity of the continuity equation,

several derived equations are used based on the first law

of thermodynamics, the pressure tendency equation, and the

top boundary condition, which was that the vertical motion

was zero at the top boundary. These derived equations

include the equation for prediction of density,

Richardson's equation for vertical motion, and the

pressure tendency at the top of the model. A simplified

- calculation of dry, subgrid convection is made to prevent

instability. The equations are integrated using explicit

finite differences with a time step of 2 minutes. . .

. A test made with a static start and no forcing

showed no change in initial variables. The kinetic energy

budget for the model was calculated by modifying the

initial state through differential heating. The test

k
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showed a diffusion of kinetic energy of less than 1% per

hour. A calculation of mass continuity using solid

lateral boundaries showed mass continuity preserved to

computer accuracy. Problems which occurred in duplicating

the low-level jet calculations of Shen (1980) were solved

by rederiving Richardson's equation with a top boundary

condition in which the vertical gradient of vertical

motion vanished at the top of the model, and by specifying

a temperature gradient at the left boundary. Results were

consistent with those reported by Shen. The conclusion is

made that the model is formulated correctly and is capable

of physically realistic results in two dimensions on a

vertical plane.. These results are consistent with the

imposed boundary conditions.

A-............................-.u--.
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1 INTRODUCTION

Since the advent of computers in the 1940's it has

become increasingly popular to apply them to the numerical

solution of complicated fluid dynamics problems for which

no analytical solutions are possible. One of the original

applications of computers to the solution of such problems

was in the field of meteorology. Numerical models have

been developed to simulate many atmospheric processes,

from land-sea breezes to global general circulation. With

computer resources becoming increasingly available and

powerful, many investigators have become interested in

applying them to the simulation of meteorological events

on horizontal scales of less than 1000 km, i.e. mesoscale

events.

It has been recognized by many recent investigators

that the study of the mesoscale environment is very

important in understanding the growth and development of

convective clouds. Ulanski and Garstang (1978) have noted

that the size of the area of surface convergence is a

critical factor in attempting to forecast the total amount

of rainfall which can be expected to be produced by a

given storm. Tripoli and Cotton (1980) pointed out that

the level of kinetic energy which an individual cumulus

cloud can achieve is a function of the pre-existing

The citations on the following pages follow the style
of the Journal of the Atmospheric Sciences.
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low-level mesoscale convergence of moist static energy.

It has become increasingly evident that events on the meso

scale, or horizontal scales of 20 km to 200 km (Orlanski,

1975), are of primary importance in the study of

convective phenomena. For this reason, it is desirable to

-[. .search for suitable research tools to study these
N....

phenomena.

This study was undertaken to aid in the development

of a suitable numerical tool which could be used to study

such important mesoscale phenomena.
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2. BACKGROUND AND STATEMENT OF THE PROBLEM

a. Previous studies

* ."As part of the Texas High Plains Experiment, or

HIPLEX, Djuric and Das (1982) recognized the need for a

simple operational model for predicting mesoscale

convergence fields of mass, moist-static energy and

vorticity. They realized that such a model would be

limited in scope but expected that it would prove powerful

and useful in the pre-storm and early-storm conditions

when the feedback from the clouds to the environment is

relatively unimportant. The existing models such as the

NCAR-Drexel model (Perkey, 1976), the Florida sea breeze

model (Pielke, 1974; Pielke, 1976), the mesoscale models

developed at Pennsylvania State University (Anthes and
4.o'.

Warner, 1978; Warner et. al., 1978) and the NOAA/ERL

models (Nickerson et. al., 1978; Nickerson et. al., 1979;

Fritsch and Chappell, 1980) were deemed unsuitable for

such an application because they were complex and demanded

computer time which was considered excessive for a simple,

real-time forecast model of the type envisioned. They

also rejected the models of Tapp and White (1976), Klemp

and Wilhemson (1978), Schlesinger (1978), Cotton and

Tripoli (1978), and Tripoli and Cotton (1980), because

they were even more complex than the previously mentioned

models and were thus unsuitable for their purposes. Faced

6L- I.4...



4

with the alternative of adapting one of these complex

models to their purpose or writing their own model, Djuric

and Das (1982) chose the latter approach.

b. Statement of the problem

A three-dimensional numerical model designed to meet

the requirements mentioned above was developed by Djuric

and Das (1982). This model was named the TAMU Mesoscale

Numerical Model. When they entered the validation phase

of the model, problems began to become evident with the

program itself. These difficulties were manifested as

numerical instabilities which occurred unpredictably in

certain grid points of their model. They traced the

origin of the numerical instabilites to certain advective

terms in the model, but were unable to resolve the

difficulties. Because of these persistent numerical

instabilities, they postponed planned modifications to

their boundary conditions which they hoped would improve

the model, and focused their research efforts on the

removal of the numerical instabilities. However, the

problem has remained unsolved.

The objective of this study is to design and verify a

vertically two-dimensional mesoscale numerical model based

-,- on the equations of motion, continuity, and thermo-

dynamics, which is capable of simulating profiles of wind .-0'-

and thermodynamic variables. This model will be similar
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to the model of Djuric and Das (1982), except that it will

be only vertically two-dimensional. Numerical testing of

this vertically two-dimensional model may give insight

into the nature of the numerical instabilities which

plagued the TAMU model because the predictive and

diagnostic equations and the finite-difference forms used

in the two models will be very similar. In addition, it

will be possible to test various boundary conditions which

could be later used in a three-dimensional version.

Successful completion of the simpler model should make

possible the further systematic development of a

three-dimensional version which can fulfill the

-/. requirements of Djuric and Das (1982) mentioned above.

e:

1.

U."

. .. . . . . . . . . . .... U U . . . . . . . . . , . ., . . , . . .::;
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3. THE NUMERICAL MODEL

a. The coordinate system

The model uses a terrain-following vertical co-

ordinate system. The vertical coordinate is a non-

dimensional height s with s = 0 at the ground and s = 1 at

the top of the model, as shown in Fig. 1. The relation-

ship between the vertical coordinate s and the height z

above sea level is given by

s ( Z - ZO ) / ( Zt - ) = ( Z - Z) / H
-- (1)

where Z is the terrain elevation above sea level, Z
0 -

is the height above sea level of the top of the model, and

H is the model thickness in meters. The height Z at a

coordinate surface s = constant is a space dependent

variable, but is independent of time.

TOP OF MODEL s-I

S
% . S -CONSTANT "

Fig. 1. Diagram of the vertical coordinate system.

%2
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b. The basic governing equations

The model uses the basic equation set used by Djuric

and Das (1982) with the exception that the equation for

continuity of water vapor is not used because the model is

dry. The equations are as follows:

dV .. +-1-K (2)
dV - f X 1 Vp - g Vz + T2. s (PKm s

'PI

= -pgH (3)

_+ V + (p) + P- VH = 0 (4)

dT .gH Q(
+t - g p (5)

p =pRT (6)

The symbols to be used here are defined as follows:

= horizontal wind vector

k = vertical unit vector

= vertical component of wind

x = horizontal coordinate

s vertical coordinate

t = time coordinate

p = pressure

. = density

f = Coriolis parameter

.................... ,,r.-............ ...... i
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"* g = acceleration due to gravity

z = height above sea level

H = thickness of the model

2 -1K = eddy diffusivity of momentum = 5 m s
m

= eddy stress

Cd = surface drag coefficient 0.15

T = temperature

Q = heating rate

C specific heat at constant pressure

*- Cv= specific heat at constant volume
/Cv /---

R = gas constant for dry air

Equation (2) is the horizontal equation of motion,

(3) is the hydrostatic equation, (4) is the continuity

equation, (5) is the first law of thermodynamics, and (6)

is the equation of state. Equations (2)-(6) form a

complete set for dry flow when Q and Km are specified.

To solve this equation set numerically, several

derived equations are used (Djuric and Das, 1982). These

are based on the pressure tendency equation

" 4P g V . (Hp V) ds' - gHp 1s-
t5

+gHps , (7)

the first law of thermodynamics, and the boundary

:::: ::.:..:...::.........:.....-.....=.=...=...==....=...=.=.=......======*====.= ===========
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condition = 0 at the top of the model. The derived

equations used are the following:

E''V .s".

s 3 p o t1

D -V.Vp Q
pC-) ' (8)

S 5
= 1()) ds' + 0 D - Vp

ro1 o o f
Q

CT HI HV ds'
P'J (9)

D_ V__7p Q 1 V

P CT - H

1ds'

p
0

-"(10)

Equation (8), used for the prediction of density, is

derived from the first law of thermodynamics in order to

avoid the sensitivity of the continuity equation, (9) is

the Richardson equation for vertical motion, and (10) is

the equation for pressure tendency at the top of the

model. The function D used above is the integrated

. divergence above the level s and is given by

D = .(PHI) ds' (11)
.f

Ss

I'.

*.* ' . . . . .:......................... ... I
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The derivations of (7)-(10) are given by Djuric and

Das (1982) and are presented in the Appendix.

In addition to the above derived equations, the

component equations of motion are expressed in flux

divergence form using (2) and (4) as follows:

[-(pu) + 6 2 2+ +-- ) + H 6x = - X

i 1 6u -

+ pfv - pg + H spKm ( (12)

6 6 6 p = - -f puv bH
.- (Pv) + (p uv) + iPv ) -pfu H 6H

H bs(pKm -) (13) -

At the lowest level of the model the internal

frictional terms in (12) and (13) are replaced by

where T" is equal to pCd *Jul* u and pCd *IvI* v,
HOs

-. respectively, at the surface, and Cd is the surface drag

coefficient.

c. The numerical grid system

The domain of integration is divided into a

vertically and horizontally staggered grid similar to that

used in the TAMU mesoscale model (Djuric and Das, 1982).

.* The location of the model variables and the indicies used

are shown in Fig. 2. The horizontal grid points are

evenly spaced at an interval of Ax/2, while the vertical

grid points are evenly spaced at an increment of As/2.

ii- -. .. .. . ... .. ... .. .. .. .. . ... . . . . . .. . . . . . . . .. .. - - .]
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A x is equal to 45 km, while A s is equivalent to 250 m in

the simulations to be Presented here. The horizontal wind

component, u, is defined on both the left and right

lateral boundaries, while pressure is defined on both the

upper ard lower boundaries. As shown in Fig. 2., the

variables are subdivided into triangular regions carrying

the same computational indicies, to simplify the notation.

d. The lateral boundary conditions

A simplified lateral boundary condition of u = 0 is

used for purposes of model validation. This boundary

condition was chosen because it allows the finite

difference formulas used in the interior of the model to

also be applied at the lateral boundaries. Due to the

centered nature of the horizontal space derivatives, use

of the interior finite difference formulas at the grid

points immediately adjacent to the lateral boundaries

. requires the knowledge of values of pressure and density

outside the model. Use of this boundary condition makes

it possible to set the pressure and density immediately

adjacent to the boundary on the outside equal to that

immediately adjacent to the boundary on the inside. This

* excludes the need for introducing separate forward or

backward space differencing at the boundaries which would

• -. complicate the validation of the model.

P'VI

* .. * .
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e. Method of solution of the equations

Solution of the equations is accomplished in the

following manner. The horizontal divergence is calculated

from known wind components and densities for each level of

the model. Equation (11) is then solved at each

appropriate grid point. Next, the following individual

parts of (10) are evaluated.

DV Vp
Tp (14)

Q
C T (15)"- p ,

1 and(- (V H ) n16)

1 ds' (17)p

Once these are calculated, (14), (15), and (16) are

integrated over the depth of the model. The pressure

tendency at the top of the model is then found using (10),

following which the Richardson equation, (9), is solved.

At this point the density tendency, (8), is computed.

* Next, the nonlinear components of the equations of

horizontal momentum are evaluated. Once these values are

known throughout, the pressure at the new time level is

obtained from integration of (3) using the pressure

tendency at the top of the model and the density tendency

previously calculated. Temperature is then obtained

diagnostically from (6) using the new values of pressure

"... • " |

. . .. . . .. . . . . . . . . . . . , -
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K.:. and density. The temperature profile is checked for

possible dry-convective adjustment, following which the

pressure and density are recalculated hydrostatically if

necessary. Finally, the u and v components of the wind

are evaluated. The computation then proceeds to the next

time step by repeating the entire numerical process.

f. The finite-difference equations

The preceding computational process is accomplished

using the following explicit finite-difference equations,

in which DX refers to the horizontal grid increment, DS

refers to the vertical grid increment, variables i and k

* . refer to spatial indicies as shown in Fig. 2, and DT is

the time step. The time step used was 120 s, which was

chosen to satisfy the Courant-Friedrichs-Levy (CFL)

condition for computational stability. To satisfy the CFL

DTcondition DT must satisfy c- < 1, where c is the

wave speed of the fastest wave expected in the model,

which in this case is a sound wave with c equal to 340 m

S-1, which was based on the warmest temperature expected

in the model. Superscript variables n and n+l refer to

the present and future values respectively. Other

superscripts refer to exponentiation in the usual manner.

Subscript 1 indicates the variable is defined at the top

o of the model. The remaining variables have been

previously defined.

• * .. ,. .•
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The finite difference equations are as follows:

Nv H p V (i,k) =H(i+l) *(p(i+l,k) + p(i,k))*

* .; u(i+1,k) - H(i) *(p(i,k) +p(i-1,k) )*u(i,k)/

2 *DX )=DV(i,k) (18)

1 n=12

g V *H p )ds' (i,k) =DS *G *DV (i,n)

0o n=k

DIV (i,k) ,(19)

V V7 p (i,k) V -p (i,k) -p V * (i,k) =((p(i,k)

+p(i,k+1) + p(i+l,k+1) + p(i+1,k)) * u(i+l,k)

-(p(i,k) + p(i,k+1) + p(i-1,k+l) + p(i-1,k) *

u(i,k) )/(2 DX) -(p(i,k) + p(i,k+1)) *

(u(i+1,k) -u(i,kl)) /DX =VDP (i,k) ,(20)

DIV - VV p / p (i,k) = (DIV(i,k) + DIV(i,k+1)-

VDP (i,k) )/(1.4 *(p(irk) + p(irk+1)))

DVP(i,k) r(21)

(i, k) -Q (i, k) /(C T (i, k) )=QCT (i,k)CpT (22

-V 'V H (i,k) =(H(i+1) *u(i+1,k)-
H

H(i) *u(i,k) )/HP (i) =DHV(i,k) ,(23)

f ((D -7.P f TP) +QCT -DHV)ds' )(i,k)=

0 n=k

SDS *(DVP(i,n-1) + QCT(i,n-1)-

DHV(i,n-1) =DIS(i,k) (24)
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Id9/P (i,k) =DSP(i,k) 2D / (p(i,n) +p(i,n-1))

0n= 0 (25)

(~P) 1.4 *DIS(i,kel) /DSP (i,kel) ,

6t 1 (6

S(i,k) =SD (i,k) =DIS(i,k) -DIS(i,kel) *DSP(i,k)/

DSP(i,kel) (27)

(!.Q) (i,k) =-p(i,k) *(-DIS(i,kel)/( DSP(i,kel)*
6t

(p(i,k+1) + p(i,k) )*0.5 )+ (DVP(i,k',) + QCT(i,k))

-((SD(i,k+1) *(p(i,k+1) -p(i,k)) + SD(i,k)*

(p(i,k) - p(i,k-1)) /2 DS +(u(i+l,k) *(p(i+1,k)-

p(i,k)) + u(i,k) *(p(i,k) -p(i-1,k)) /(2 *DX

(28)

- . The new u and v components of the wind are computed

using a finite difference scheme which uses pressure at

the new time level and trapezoidal Coriolis terms, which

are averaged between the old and the new time levels.

Although the use of u and v at the new time level

seemingly makes the scheme implicit, it is possible to

solve for u and v explicitly using the follIowing set of

equations.

un ~ = AU +a *AV ) [nl a2 ); (29)

n+1n12
vAV -a *AU ) [n+ 1 +a 2 ]. (30)

- .In these expressions AU, AV, and a are given by the

following:



17

AU = (- )n+1 *DT + * (U n + a (v~ ni +

v n (i-1) )/2) -K u (,2)n (6 .n-

(p~.6Hf) *DT (31)

6 Pv n 6 n

AV A ~~(u) -(v)- (puv/H -L

- 1 6 v *D

a f*DT/2 (33)

* . The internal friction terms in (31) and (32) are

* .evaluated by the following finite difference formulas at

all levels above the first level.

1 p u K K (i,k) *(u(i,k+1) -u(i,k))-

Hiz~s -E s M -- m
* -2 2

K(i,k) u(i,k) -u(i,k-1) )/(DS *H ),(34)

1 6 bLv ( K (i,k) *(v(i,k+1) - v(i,k))-
H 6 sP~6sm

K (i,k) *(v(i,k) -vik1 )/(D 2  2) (35)

Boundary shear stress at the lowest level is

calculated from the following:

* H K (i,k) *(u(i,2) -u(i,1) )/DS -Cd*

u(i,l) *u(i,l) /DS (36)

1bv K (i,k) *~~l - il / DS2  Cd*
H 6s m

v(i,1) *v(i,l) /DS .(37)
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* Eqs. (36) and (37) assume that the eddy stress I is

1 6u 1 6vgiven by HpKm - and -pKm - in the layer immediately

*- above the lowest layer, while the eddy stress for the

lowest layer is given by pCd * u *luland pCd * v * Ivi

K is multiplied by the initial density at the beginningm

of the simulation rather than the updated density at each

future time step. Similarly, the Coriolis parameter and

the surface drag coefficient, which are assumed constant,

are multiplied by the initial value of density at each

grid point prior to the first forecast step. The initial

density is used because the change in density during the

simulation is small, and f, K and Cd are arbitrarym

constants. Use of the initial density for these

operations takes less computation time, and introduces

"- small error since the constants are arbitrary.

The nonlinear terms in the above formulas are

evaluated according to the following finite difference

" formulas:

"(pu 2 (ik) (p(i,k) * (u(i,k) + u(i+l,k) )2 -

p(i-l,k) * (u(i,k) + u(i-1,k) 2 * DX

(38)

. (pu ) (i,k) = ( (p(i,k) + p(i,k+l) + p(i-l,k+l) +

*.I pli-l,k) ) * (u(i,k) + u(i,k+l) ) * (SD(i,k+l) +

SD(i-l,k+l) ) - (p(i,k) + p(i-1,k) + p(i-l,k-l) +

*'2 p(i,k-1) * (u(i,k) + u(i,k-1) ) * (SD(i,k) +

SD(i-l,k) ) ) / ( 16 * DS ) ; (39)
.. W

! -, - -
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1 2 6H
H Pu 6x (i,k) =((p(i,k) + p(i-1,k)*

u(i,k)) * HP(i) -HP(i-1) )/(H(i) *DX)

(40)

Fx puv(i,k) =((p(i,k) +p(i+l,k) )*u(i+l,k) *

v(i,k) +v(i+1,k) )-(p(irk) +p(i-1,k))*

u(i,k) *(v(i,k) +v(i-1,k) )/(4 *DX

(41)

6s pv (i,k) =((p(i,k) +p(i,k~1) )*SD(i,k+1)*

v(i,k) + v(i,k4-1) )- (p(ijk) +p(ik-1))

SD(i,k) *(v(i,k) +v(i,k-1) )/(4 *DS

(42)

1 6
H puv 7- (i,k) =p(i,k) *(u(i,k) +u(i+1,k))*

v(i,k) *(H(i+1) -H(i) )/(2 *H *DX

(43)

The remaining variables to be forecast are pressure

and density. Density at the new time level is computed

after (28) is solved by the following:

n+1n
P (i,k) =p (i,k) + DT * (i k) (4

In (44) , the superscript n+1 refers to the forecast

time level and the superscript n refers to the present

time level. After the pressure tendency at the top of the

model is calculated from Eq. (26) , the pressure at the top

can be computed by the following:
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p(i,kel) - p(i,kel) + DT * 4)5"-. (45)

In the above finite difference formulas the vertical

index kel refers to the top of the model. At this point

it is possible to compute the pressure at remaining points

using the hydrostatic equation in the following finite

difference form:

p(i,k) p(i,k+l) + g * DS * (HP(i)) * p(i,k)

(46)

In the above finite difference formulas, H refers to

the thickness of the model at columns where u is defined,

and HP refers to the model thickness at columns where

pressure, density, v and T and defined, as shown in Fig.

2.

Because the equation set used is hydrostatic and

ignores any buoyancy contribution to vertical motion, a

dry convective adjustment is made similar to that

described by Haltiner and Williams (1980). At each time

step the vertical profile of temperature is examined for

superadiabatic lapse rates in each laver. If the lapse

rate is found to be superadiabatic in any layer, it is

adjusted to a slightly subadiabatic lapse rate by

correcting the temperature at the top and bottom of the

layer. This process simulates subgrid scale dry

convection in which convection transports heat vertically

-- * * - .
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until a neutral lapse rate is established. The kinetic

energy of the convective transport is assumed to be

dissipated into heat energy. The correction process is

iterative in that after a correction is made at one layer,

the adjacent layers are reexamined. The process is

repeated until no segment of the temperature profile is

superadiabatic. Because this correction is made at each

time step, the resultant temperature change in each layer

is small. The formula used for the dry-convective

adjustment is as follows:

1' 1 0' 0T = +A ; T = - At , where

0 1At = ( (T - T I ) - 0.0096 * DS * H ) / 2 (47)

and T1 and T are the temperature at the top and the

bottom of the layer to be adjusted, respectively. This

equation approximates the potential energy conserving form

given by Haltiner and Williams (1980), and requires much

less calculation time. Eq. (47) differs from the form

given by Haltiner and Williams (1980) in that the lapse

rate is slightly subadiabatic after the adjustment rather

than adiabatic. Because the model is hydrostatic, total

potential energy is conserved during the convective

adjustment process if the mean temperature of each layer

is conserved during the adjustment (Haltiner and Williams,

1980).

-.

-, . .
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The x component of the wind is smoothed horizontally

at each time step using a simple three point operator as

follows:

u(i) = 0.90 u(i) + 0.05 (u(i-1) + u(i+l) ) (48)

".. This horizontal smoothing is used to prevent spurious

growth of short waves in the model. The short waves which

result in the model simulations when smoothing by (48) is

not performed result from grid noise due to the spatial

averaging in the finite-difference equations. These short

waves are minor and do not contribute to instability in

the model, however, they are unrealistic meteorologically

and are removed from the final result for esthetic

reasons.

..

.
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4. MODEL VALIDATION

Before a numerical model can be used, it is necessary

to perform basic validation tests to establish the

credibility of the model and insure that no errors have

been made in programming the model equations. These tests

provide an important means of debugging the numerical

scheme. The validation tests performed on the mesoscale

model consisted of a simple static test, calculation of

the mass continuity and the kinetic energy budget, and

*• perfo)rming non-linear simulations which yield physically

expected results which can be compared with the results of

previous models.

a. Static test

The most basic type of test which a numerical scheme

must pass is a static test, in which an equilibrium

initial condition is allowed to remain at rest without any

forcing applied. This test checks that all of the terms

which should be zero in the numerical scheme are coded

correctly and are in fact making no contribution to the

result. Such a static test was performed with a domain

size of 30 horizontal grid points and 13 vertical grid

points, with a horizontal grid interval of 45 km and a

vertical grid spacing of 250 m. The initial state was

constructed so that the horizontal derivatives of all 2
• --
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variables were nonexistent initially, with initial wind of

zero at all grid points. The initial pressure was

calculated hydrostatically by specifying the surface

temperature, the temperature lapse rate, and the pressure

at the top of the model. Once the pressure is calculated

at all points the density is computed using the equation

of stat3. The initial values of all variables for the

static test are presented in Table 1. The temperature

lapse rate was specified at 8 K km -I. As can be noted,

this initial distribution of variables assumes a flat

model, with no terrain. From this initial starting

condition the model was run for 36 h with no change in the

initial state. An additional test run was made in which

the bottom of the model sloped so that the value of H at

the left boundary was 1 km, while the top remained at 3

km. The initial variables were determined in the same

manner as the orevious test, with the surface temperature

adjusted to fit the lapse rate specified as the surface

sloped upward in the model. Variables at the right

* boundary were the same as given in Table 1. Because the s

surfaces in this case sloped, the horizontal (s)

derivatives no longer vanished, except at the top of the

. model. All pressure surfaces were horizontal with respect

to sea level. This test also showed no change in the

initial state due to the inclusion of the terms involving

the geometry of the coordinate system. For all further

. . ." .
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testing, the model was assumed to be flat.

Table 1. Initial values of model variables for
static test and kinetic energy calculations.

Height (m) T (K) P (mb) Density (kg/m3

3000 690.0
2875 267.0 0.915
2750 712.0
2625 269.0 0.938
2500 735.0
2375 271.0 0.960
2250 759.0
2125 273.0 0.984
2000 783.0
1875 275.0 1.010
1750 808.0

0 1625 277.0 1.030
* 1500 833.0

1375 279.0 1.060
1250 859.0
1125 281.0 1.080
1000 885.0
875 283.0 1.110
750 912.0
625 285.0 1.130
500 940.0
375 287.0 1.160
250 969.0
125 289.0 1.190

0 998.0

b. Testing of mass continuity

The boundary conditions used are a severe test for

the mass budget of the model because no flux of any

quantity occurs at the model boundaries. To check the

conservation of mass in the model, an approximation of the

total mass initially was made by summing the values of the

density over all interior grid points where density is
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defined. The calculation was repeated at the end of the

simulation. This procedure was carried out during the

kinecic energy budget calculations to be discussed in the

next section. The result after 36 h showed a net increase

of the total density of 0.0004%. This small increase is

negligible and can be attributed to truncation errors in

the finite-difference approximations and computer round

off error. The accuracy of the computer on which the

model was run is limited to six digits in single

precision, which is sufficient to explain this small

o density variation. These results indicate that the mass

continuity of the model is satisfied, with no spurious

destruction or generation of mass occurring due to

programming error or the finite-difference equations used.

c. Testing of the kinetic energy budget

This test followed the general procedure of the

kinetic energy testing described by Pielke (1981). Using

the flux-divergence form of the equations of motion, (12)

and (13), together with the horizontal components of (2),

the following kinetic energy equation can be derived.

1 i 2 1 3 16 2. 1 C 2.
-K = 2 2 6 uvs pv s 2  5 pus-

23
y puv 2 6H 6z 1 u HU P v v 3x p g 5 p l -H

6x v2 2 H uu Z-x (49)

V::::
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In this equation K is equal to p(u +V2)/2. It

should be noted that this kinetic energy equation neglects

the contribution of s to the kinetic energy because it is

negligible compared to the horizontal motions. The

equation is an expression of the kinetic energy change per

unit volume since density is used in the expression for

S--kinetic energy rather than mass. By calculating the

individual terms of this equation and integrating over the

domain of the model, an estimate of the expected kinetic

energy change for the entire model can be made. The

, individual terms in (49) are calculated using

* -finite-difference formulas which are similar to those used

in the model forecast. The finite-difference formulas

used in this calculation are centered on grid points where

the x component of the wind is defined. Perfcrming this

calculation at each time step allows an estimate of the

rate of change of total kinetic energy per unit volume for

the model from which the total kinetic energy per unit

volume at the next time step can be obtained. This is

compared periodically with the observed kinetic energy,

which is calculated from the observed winds and density,

also centered on grid points where u is defined so that

* the two quantities can be compared. According to Pielke

(1981), if the two results closely agree, the modeler can

be certain that mistakes, such as coding errors, are not Li
* causing significant sources of unexplained changes of

. . ...
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kinetic energy. To perform this calculation a model

domain of 40 horizontal grid points and 13 vertical grid

points was forced by slowly heating the left hand side of

the model at two grid columns. The heating rate was

sufficient to cause a temperature change of 0.35 K h-  at

the left hand boundary.

The results of this test are given in Table 2. They

indicate that the rate of kinetic energy increase

calculated by the model is about 1% h - less than that

calculated by the individual terms on the right hand side

of (46). According to Anthes and Warner (1978), the

difference between the two different calculations is

i- .partly due to truncation errors in the horizontal and

vertical flux terms in the equation of motion. The

remainder of the difference can be attributed to numerical

diffusion which results from the finite-difference scheme

used in the forecast. Based on these results, the

conclusion is made that no programming errors are

contributing to spurious generation of kinetic energy in

the model domain, although some damping of kinetic energy

* """does occur. The initial conditions for this test were the

same as those given in Table 1., except for the warming of

., the left side of the model.

.. ... .....- -... . . .. . . .... . .. - .-. '.. ;. . .- .... -.• .-..- ' . .- .'
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Table 2. Results of kinetic energy budget
calculations. Column A gives the total integrated kinetic
energy per unit volume as observed from the model
forecast. Column B gives the total calculated from
individual terms in Eq. 49.

-3 -3 "'''-
Hours A (J m ) B( J m 3

1 0.845 0.831
2 2.94 2.96
3 5.33 5.43
4 8.00 8.23
5 11.00 11.40 .
6 14.2 14.8
7 17.6 18.6
8 21.2 22.6
9 24.9 26.8

10 28.6 31.1
11 32.4 35.5
12 36.1 40.0
13 40.0 44.8
14 43.9 49.8
15 48.0 55.0
16 52.4 60.7
17 57.1 66.7

d. Nonlinear simulations

In addition to the basic tests described above, an

attempt was made to duplicate the model results obtained

by Shen (1980) in his simulation of the development of a

low-level jet. Successful comparison of such a simulation

with the work of Shen (1980) will give further support to

the validity of this numerical scheme. In order to

successfully carry out this simulation, changes in the

boundary conditions of the model were made as described

below. Because Shen's model did not include any terrain,
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the simulation here was performed with a flat model so

that the results could be compared more directly.

1) Boundary conditions

In order to duplicate the work by Shen (1980), it

was necessary to change the boundary conditions from those

used in the first portion of numerical testing. While the

boundary conditions used above have certain advantages for

numerical testing of the interior finite-difference

formulas, they are inappropriate for a realistic

simulation of a low-level jet similar to that carried out

by Shen (1980).

For this purpose the top boundary condition was

chosen to be 5- 0 and =2 0. These are identical to
s 6t

the boundary conditions used by Shen (1980). The pressure

tendency at the top of the model was set equal to zero in

order to isolate the problem from the effects of levels

higher than 3 km. The flux through the top of the model

allows for the expected subsidence or downward vertical

motion to occur when the model is forced at the left

boundary. The top boundary condition used in the earlier

part of the testing, = 0, was also tried for this

*, portion of the simulation, but caused significant return

flow at the upper levels on the left hand boundary, which

is inconsistent with the forcing applied at this boundary

and thus considered somewhat unrealistic. This boundary

. . . . . . . . . . . .7
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condition is best used when the top boundary is far

removed from the computational region of interest, which

is not the case for this simulation. For this reason, and

in order to provide better comparison with the work of

Shen (1980), the top boundary conditions were changed as

described. In addition, the left boundary was moved to a

cclumn where p was defined, rather than a column of u as

shown in Fig. 2. The x and y components of the wind were

calculated next to the left boundary by a simple forward

differencing of (12) and (13) because the

finite-difference scheme used for the interior points

could not be used here. At the left boundary the boundary

condition applied was

6-5 Tk K r(
= -4.44 x 10 (1 K m-1 (50)

where k is the vertical index. This provides a

temperature difference at the left hand boundary of 2 K

across the grid interval nearest to the left boundary.

This temperature gradient decreases to zero at the top of

the model. This is consistent with an assumption of

warming occurring outside the model domain which causes

the left boundary to be slightly warmer than the nearest

grid point in the interior. This warming at the boundary

was also specified in the interior portions of the model

in a manner which decreased it exponentially to zero

,,'I.
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farther from the left boundary in the positive x

direction. This was accomplished by assuming an

exponential profile of Q in the x direction, with a

maximum value at the left end of the model, decreasing to

zero in the x direction in the interior. This heating

rate was a maximum at the ground and decreased linearly to

zero at the top of the model. The surface heating rate is

given in Table 3. Heating the model in this manner

combined with the left boundary condition described above

-1 5Table 3. Surface heating rate (K s x 10 ).
Values decrease linearly to zero at the top of the model.

A X Q/Cp

2 22.08
3 13.40
4 8.13
5 4.92
6 2.98
7 1.81
8 1.10
9 0.66

10 0.40
11 0.24
12 0.15
13 0.09
14 0.04
15 0.03
16 0.02
17 0.01
18 0.00

insured that the left boundary was always slightly warmer

than the nearest interior grid point and thus outflow was

achieved at the left boundary. This combination of

-" 'S
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forcing mechanisms is similar to that used by Shen (1980),

who specified a heating rate at the left hand boundary

only. For this reason Shen's model became considerably

warmer at the left hand boundary than at the nearest

internal grid point, building a horizontal temperature

gradient of 20 K over the first grid spacing adjacent to

the left boundary over his 28 h forecast period. The

forcing used here implies a strong horizontal diffusion of

heat, and prevents a large temperature gradient from

occurring at the left boundary as in Shen's model. The

pressure gradient at the right boundary was assumed zero,

following the procedure of Shen (1980). The above forcing

mechanism was chosen because it is similar to that used by

Shen (1980), although it is not physically realistic

because no diurnal variation of the heating is allowed.

2) Rederivation of Richardson's equation.

Because the form of Richardson's equation used in the

earlier validation testing was derived using a too

boundary condition of s = 0, it was necessary to rederive

this equation. The following equation used in the

derivation is presented by Djuric and Das (1982):

-7 a lI d _p Q I .. .".-S 1 - , ( 51) :"-
6s" dt + C T HVHV

Applying the top boundary condition 0 and
6s

assuming Q 0 at the top of the model gives the following

. . . ... |
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relationship:

42) - E - V (52)

Also given by Djuric and Das (1982) is the following

equation:

dt (*V)1 -g .PV ds' + )t 1 -gp 1 H 1

5 (53)

which can be written as

dtlp) g( H (54)

(dt (1Vp 1 -g 1  1 + )t 1 (4

since the integral vanishes at s=1.

Combining (52) and (54) gives the following:

( 2 1 (V *HV)1  (V *Vp)1  gpHs1  (55)
6t I H111

Substituting (53) into (51) yields:

- VVp g (V -HpV)ds' g, l

(56)

Q V QH1
p

Eq. (55) can be substituted into this equation to

give:
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" - P • Vp - (V Vp), - g (V. HpV)ds' -

-VHV)I + V* HV (57)
H 1 CpT H

which can be integrated to yield the Richardson's equation

as follows:

1 ds' D - Vp Q 1
s=+f.p + C T H V -HV) ds'

0 0

5

+P-1 (V HV) f ds' (58)
H 1p

0

where the function D is the same as previously defined.

Application of the other top boundary condition eliminates

the first term in this equation. It can be noted that

only one term of this form of Richardson's equation is

different from the previous form. For this reason little

additional programming was necessary to include the new

top boundary conditions. The equation for density

tendency becomesV -
= &S v C) 'Pi Q

P.- p C.T..
. m (D - VV p+ Q )

S Tp (59)

Derivation of this equation follows that given in the

Appendix, with the term involving s at the top included.

. .....-. ,
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It can be noted from (55) that ( )1= 0 requires the

following relationship:

Hi (V "Hg) = gpIHl (60).

This equation is used to determine u at the top

boundary by integrating from the right boundary where u is

zero, to the left boundary. This provides a slight

horizontal convergence at the top of the model to

counteract the subsidence so that the resultant pressure

tendency at the top of the model vanishes. This is

necessary for the wind field at the top of the model to be

dynamically consistent with the boundary conditions

stated. Using (60) to find u at the top boundary results

in a very small u field because the necessary convergence

required by (60) is small. Following the integration of

(60), the v field at the top is obtained using the

horizontal equation of motion for v, with the assumption

that the vertical advection term is small. The resultant

correction of u and v at the top of the model, while

dynamically consistent with the boundary conditions,

actually has very little effect on the results obtained.

This was shown by making an additional simulation in which

the simple condition u v = 0 at the top was used,

effectively ignoring the right hand of (60). While not

dynamically consistent, virtually identical results were

obtained. This is due to the fact that the pressure

-. 71.
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tendency at the top is quite important, appearing in the

density tendency equation at all levels, while the wind at

the top of the model is used only in the vertical

advection terms in the equations of motion and in the

calculation of internal friction at the top of the model

where a vertical derivative of the wind is required. Both

the vertical advection terms and the internal friction ,.

terms involved are very small, and have little effect on

the rest of the computation.

3) Initial conditions

The initial conditions used for the simulations

consisted of a slightly stable boundary layer, capped by

an inversion. Initial values-for all variables are given

in Table 4. The temperature lapse rate assumed in the

boundary layer was 8 K km slightly less than dry

adiabatic. The pressure surfaces were all calculated

using the hydrostatic equation based on the initial

temperature profile and the pressure at the top of the

model. Density was calculated from the pressure and

temperature using the equation of state. The initial wind

field was zero throughout. The initial values of all

variables were horizontally uniform, because the model was

assumed to be flat.

, ,----
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e. Results of the simulation

The equations were integrated for 28 h beginning with

the initial conditions given in Table 4. The resulting

flow was forced by a combination of the left boundary

condition and the heating in the interior of the model.

Results are shown in the sets of Figs. 3 - 9. The first

figure in each set consists of an x - s cross section

showing an isotach analysis of the v component of the

Table 4. Initial values of variables for nonlinear
simulation of low-level jet.

3
Height (m) T (K) P (rb) Density (kg/m

3000 677.0
2875 267.0 0.898
2750 699.0
2625 269.0 0.920
2500 721.5
2375 271.0 0.942
2250 744.6
2125 273.0 0.965
2000 768.3
1875 275.0 0.989
1750 792.5
1625 277.0 1.012
1500 817.3
1375 264.0 1.096
1250 844.1
1125 266.0 1.124
1000 871.7
875 268.0 1.151
750 899.9
625 270.0 1.180
500 928.8
375 272.0 1.209
250 958.4
125 274.0 1.238

0 988.7

. . . , -

. . . . .



39

3000 ..

2750 0.00.

2500

2250

2000

1750

1500

1250

1000

750 
0

50

C) 180 270 360 450 540 630 720 810

X(M)

Fig. 3a. Isotach analysis at 4 h for v.
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Fig. 4a. Isotach analysis at 8 h for v.
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Fig. 5a. Isotach analysis at 12 h for v.

3000
2750

'-- 270
2500

2250

2000 276 276

1750

1500 276 27

125027
N _2J

1000

750 C 7: 270_____

500

250

90~ 180 270 360 450 540 630 720 810

X(KM)

Fig. 5b. Isothermns at 12 h.



42

3000
2750 -_0. _-------------

2500

2250

* 2000

1750

1500 0
~-1250

1000

750

250

00 180 270 360 450 540 630 720 810

X(KM)

Fig. 6a. Isotach analysis at 16 h for v.
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Fig. 8a. Isotach analysis at 24 h for v.
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wind, while the second figure in each set consists of an

x - s cross section showing an isotherm analysis.

Selected isotachs in the first figure of each set are ... ,-

labelled in m s . Selected isotherms in the second

figure of each set are labelled in K. The sets of figures

are given at intervals of 4 h, beginning with the results

at 4 h.

1) Propagation of the low-level jet

Because the coriolis parameter f was considered

constant during the calculation, the x axis will be

considered an axis of constant latitude in the following

discussion. For this reason, negative values of u are

referred to as easterly, while positive values of v are

referred to as southerly in the following comments. As

shown by the isotach analysis in Fig. 4,. a low-level

southerly wind develops adjacent to the left boundary

where the maximum warming occurs. The maximum value of

the wind remains near the left boundary, with the

southerly wind speed increasing throughout the integration

period. This result is similar to that obtained by Shen

(1980), with the exception that the maximum wind value did

qI not show the slight eastward movement obtained by Shen

(1980). The maximum value of the wind obtained is less

than one-half the value obtained by Shen (1980). This is

due to the difference in forcing mechanisms between the
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two models discussed earlier. The temperature gradient

achieved by the heating mechanism in this model was only

about 7 K across the entire domain. The temperature

increase at the lowest level on the left hand boundary was

about 7 K, less than the heating rate obtained by Shen.

" Because of the large difference in horizontal temperature

gradients obtained in the two models, it is expected that

the maximum winds obtained would be less in the present

study. While the maximum values obtained are lower, the

values of southerly wind produced in the interior of the

model are similar, as shown by Fig. 10. Values for the

maximum southerly wind obtained by Shen (1980) presented

in Fig. 10 are evaluated from the isotach analysis

presented in his paper. The numerical scheme used in the

present study causes the pressure fall to propagate

rapidly across the model domain when the model is heated

at the boundary. Attempts were made to achieve horizontal

temperature gradients similar to that obtained by Shen 4

(1980) by setting Q = 0 in the interior of the model and

heating strongly at the boundary, but it was not possible

to achieve as strong a pressure gradient across a small

grid interval as did Shen (1980) without excessive

heating.

2) Subsidence-type inversion

Part b in Figs. 3-9 shows the distribution of
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Fig. 10. Comparison of maximum speed of southerly
wind 400 km from left hand boundary in Shen's model with
TAMU two-dimensional model.

temperature at 4 h intervals, with isotherms labeled in K.

These results show the time evolution of a subsidence type

inversion very similar to that observed by Shen (1980) in

his study. Consistent with his results, the subsidence

inversion layer moves downward with time, with the

-v_- TME (H)"-'-

greatest vertical displacement occurring at the left

. iboundary and lesser vertical displacement occurring .-

* eastward across the model domain. The strength of the.-

inversion is also noted to decrease slightly in the

positive x direction. As noted by Shen (198), the

occurrence of a subsidence inversion and its importance to

the low-level jet have been noted by many investigators,

hiNtd•Cnitn ihhsrsls h usdne.

invesio 2ae oe onadwt ie ihte'..
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including Bonner (1966), Beckman (1973), and Damiani

(1979). It is significant that the subsidence was

sufficient to prevent the inversion from disappearing

despite the di'ferential vertical heating applied. Figure

11 shows the distribution of s at 28 hours in cm s . The

- result of subsidence occurring throughout the model domain

.--- i- at first surprising in light of the fact that Q makes a

positive contribution to Richardson's equation. Scale

analysis of the individual terms involved shows that near
1 '

the level of the maximum wind, the term -- V - H is

about 1 order of magnitude larger than the other terms in

the second integrand. This term makes a negative

contribution to vertical motion due to the horizontal

divergence of the wind field. The last term is also

negative due to the convergence which occurs at the top of

the model to satisfy the top boundary condition, and is

comparable in magnitude to the other divergent term

discussed above. The remaining terms make a positive

contribut4on which is too small to offset the contribution

of the negative terms. Setting u = 0 at the left boundary

*[ allows the development of a positive vertical motion in

the areas where heating is applied because of the

horizontal convergence which occurs near the left boundary

as the x component of the wind is forced to slow down.

* . Figure 11 indicates that mass is entering the top of the

model to partially compensate for the mass flux through

• . * * . . . . . ** .
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Fig. 11. Vertical motion s at 28 h in cm s

the left boundary, resulting in subsidence throughout the

model domain. Figure 12 shows the circulation in the x-s

plane given by the stream function defined by

u 1 a (61)

S (62)
H ox

The stream function values in Fig. 12 were

approximated by integrating (61) from the surface, where

the stream function is arbitrarily equal to zero, to the

,J top of the model. A more accurate stream function

calculation would involve solving

v 2q- (63)

: -.

.... - . . S. . . . . . . . . . . . . . . . . . 777
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Fig. 12. Streamfunction in m2 s'.

)- 16 lbuwhere = - H (64)

Solution of (63) would require boundary conditions

for Y on all boundaries. The approximate solution given

by (61) neglects the nondivergent part of the circulation .-.

in the vertical plane. Figure 12 also shows that mass is

entering the top of the model and exiting the lower left

* .- boundary, in agreement with Fig. 11. Values of "

' estimated from Fig. 12 by applying (62) are in fair

. agreement with the calculated values, giving some further

justification for the integration of (61) rather than the

complete solution of (63).

" 7.7"

-.-. .. ' < --" --:-. ...- ..': ." ,.- -.-" .-:. -°  , -." .-: -, 7 .-:- -7 -- ..-. '2 -.' ..': .': -,- -- , : : " :-: .:-.. -." ... .,:.. . . . .-.-.. .-.-.-.. . .... . .-.. ,.-.- -.. . .'...- , -{ ... . . .. . . . . . . . . .., . -. -. -.-. -. , .. -.. , - . .. .. .-.-. . .. ' ........ ..- .-.. .., .-- .... .-.. ... ., -. .... .- --. . ...
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3) The relation between the low-level t nd the

inversion.

As shown by comparison of the isotach and isotherm

analyses in Figs. 3-9, the maximum value of the southerly

'' wind occurs just at or below the inversion base in each

"" frame. By 28 h the bottom of the inversion layer is

almost coincident with the maximum southerly wind band.

As shown in the isotach analyses, the level of the maximum

*i southerly wind increases eastward slightly as the height

of the inversion increases eastward spatially. This

result also was obtained by Shen (1980). For comparison,

a model simulation was also carried out in which the

initial conditions were similar with the exception that

the initial temperature profile was slightly stable

throughout with no inversion layer. The isotachs in the

x - s plane for the southerly ccmponent of the wind
• -1

achieved at 28 h are presented in Fig. 13 in m s

Comparison of these isotachs with those in Fig. 9 b shows

that the resulting wind is deeper in the no-inversion

ca.se, with a weaker vertical wind shear produced above the

level of the maximum wind. The strength of the maximum

wind obtained is similar due to the similar forcing

mechanism. The only difference which reasonably could be

expected concerns the vertical variation of the wind,

S./ " - . -'. -. ' " . . . - .-". . - .% '. i - ._ -. . . i : --°- : 2 : . -- .• .
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which is shown to be quite different in the no inversion

case, particularly in the interior region of the model.

3000
2750 ______0.0_."

2500
2250

2000

1750

1500

1250 "'

1000 1
750

500

250
0

90 180 270 360 450 540 630 720 810

X(KM)

Fig. 13. Isotach analysis at 28 h for v for no
inversion case.

4) Quasi-geostrophic adjustment of the southerly

flow.

Because pressure is not allowed to vary along the y

axis in this study, the u component of the wind is the

isallobaric wind. Figure 14 shows the time evolution of

the maximum values of the easterly and southerly wind.

These results show that the easterly wind is stronger

U' .

,-................................. . -:

'-- . . . . . . . . . . . . . .. . .... . . . .. "... . . ... . .. .. . ."" "''".*
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Fig. 14. Time variation of the maximum southerly and.
easterly wind.

for the first 6 h of the simulation, after which the

southerly wind becomes increasingly stronger with time due

to the Coriolis effect. The easterly wind appears to

become relatively steady after 16 h. These results

indicate that the southerly wind becomes increasingly

quasi-geostrophic with time during the simulation. The

easterly wind does not become increasingly quasi-

geostrophic because this would require the development of

a pressure gradient in the y direction which is not

allowed in this two-dimensional simulation. Examination

"U.,, 1!
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of Figs. 3 - 9 shows that the thermal wind relationship is

approximated above the level of the maximum wind, above

which the wind decreases with height. This would result . .

in a thermal wind at these levels whose magnitude is less

than zero. This is consistent with the warming at the

left boundary.- Below the level of the maximum wind the

surface frictional effects do not allow the thermal wind

to be approximated. These results are consistent with the

gecstrophic adjustment reported by Shen (1980) in his

simulation.

• . . ,.

- - ;. k -i. .--. .

,, ...-
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5. CONCLUSIONS AND RECOMMENDATIONS

As a result of this study, the following conclusions

can be made:

1. Conservation of mass is not violated by the

,* * finite-difference equations used at interior grid points

in this model. Any loss or gain of mass which occurs in

the model domain is due to differential flux of mass

through the boundaries of the model.

2. Kinetic energy production by the model is

slightly lower than that predicted by an analysis of

individual terms in the kinetic energy budget. This

analysis shows that no spurious kinetic energy is created

by the finite-difference equations.

3. The finite-difference scheme is numerically

stable for at least 28 h with the parameters used in this

study.

4. The results obtained in a simulation of the ..-

". development of a low-level jet are very similar to those

obtained by Shen (1980). The low-level jet showed

"- ,comparable development and was associated with an

inversion which capped the maximum southerly wind. The

inversion was maintained by subsidence in the model. The

quasi-geostrophic adjustment of the southerly flow was

similar in both cases. The model results differed in the

strength of the ma:imum wind due to the different pressure

..

-. . . . .- °*



57

gradients which were produced as a result of differential

heating. A control case involving no inversion showed a

deeper wind field with weaker vertical wind shear above

the level of maximum wind.

5. The finite-difference equations used in this

study were similar to those used in the three-dimensional

model of Djuric and Das (1982), except for those used in

the advection scheme. In light of the fact that no

numerical instabilities occurred in the two-dimensional

version used here, it is likely that the difficulties

experienced in the three-dimensional model of Djuric and

Das (1982) were due to unresolved programming errors,

possibly related to the three-dimensional advection

scheme. The three-dimensional model used an enstrophy and

kinetic energy conserving advection scheme (Djuric and

Das, 1982), which was not used in the simplified model

presented here because it is not appropriate for a

two-dimensional model. The finite-difference forms of

Richardson's equation and the density tendency equation

used here appear to be sound because they were used

successfully. A three-dimensional model incorporating

forms of Richardson's equation and the density tendency

* equation similar to those used here appears feasible if

*22 * the advection scheme used is carefully formulated.

* '. The following recommendations are made:

1. The model should be improved by adding moisture

-.- -'..* *.t*- . . . . . . .
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to the equations used, with careful attention given to the

convective adjustment process.

2. Improvements should be made in the internal

friction terms to provide a more realistic simulation in

the boundary layer. Also, resolution should be increased

in the lower boundary layer.

3. Further testing should be undertaken by

incorporating real data into the model to attempt to

simulate actual atmospheric processes.

4. Further attempts at modeling of a low-level jet

should use more realistic lateral boundary conditions than

those used here. In addition, the forcing mechanism

should be more physically realistic than that used here or

by Shen (1980). Diurnal variations of heating should be

included. Such simulations should be three-dimensional if

possible.

5. The model should be extended to three dimensions,

.. with careful attention given to the advection scheme used.

The validation tests used here should be repeated on the

new three dimensional version, followed by verification

tests involving real data. Succesful completion of such a

model would fulfill the requirements of Djuric and Das

*t (1982) given previously.
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APPENDIX

The following derivations are given by Djuric and Das

(1982) and are repeated here for convenience.

a. Derivation of the pressure tendency equation (7)

Differentiation of the hydrostatic equation (3) with

respect to time yields:

.- :- g (65)

Elimination of between (65) and (4) gives:

(66)

which can be written

s = g 7.HpV +gH ps (67)

Integration of (67) from some level s to the top of

the model gives

s g-VHpV ds + gHp- - gHp 1
_

s (68)

which is (7).

A,.%

i4P:
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b. Derivation of Richardson's equation (9)

The continuity equation (4) can be written

•P .6" -V

P 6t PV'~~V - ps H ' (9

or

1P - V V7H (70) .--
p dt =s H .-(70)

The First Law of Thermodynamics in entropy form is

Q 1 dT R dp
C T T dt pC dt (71)

Writing the equation of state (6) as

dT dp dp
T p p (72)

and substituting into (71) gives the result

Q Tp dtRt d
C T p dt p dt pC dt (73)p

or
Q I- -- a + d p  ( 1 R )( 4

Cp T p dt Cp (74)

This can be written as

p dtr p dt CpT , (75)

Cwhere =

Eliminating dt between (70) and (75) and solving for

1 Q 1  ,H- . (76)
3s- TP dt CT H

p

. -.. --. 4 . . . .
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or

-s d -CV HV (77)
3 TPdt C H

p
Adding V VP + to both sides of (68) gives

~+ VVp V = Vp+ []- V HP'Vds'+

[gHp]- gHp1j 1 + ()i (78)

The hydrostatic equation can be used to eliminate the

bracketed terms since they cancel one another.

* Substituting the result into (77) gives

6 +D+ Q V H
~p p ~pap )I C T H H (79)

where D =g V. HpVds' and gp1 H~1  0 because s1 =0.

5

Integration of (79) gives

5 5

D V -7p +Q 1 HVo ds'(6p
fpC T H 2r bt 1 p

0 0o

(80)
which is Richardson's equation (9).

C. Derivation of equation for pressure tendency at s=1

Application of the top boundary condition s 0 at s

=1 to (80) and rearranging terms gives



65

DV___ Q 1 OV d

r- 'p C CT -VH V ) d

ds

f p
0 (81)

which is (10).

d. Derivation of density tendency equation.

Eq. (75) can be written

V. VP +s - - + VP Vp C
Ft s -p 6tCT

(82)
Substituting (68) into (82) and simplifying using

the hydrostatic equation and the top boundary condition

gives

~2V .7P P + L~F -V Vp 1
bt s bt1 L rP Cp

A (83) -

* which is Eq. (8).
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