
6D-Al69 645 A GARBAGQE COLLECTOR FOR A LARGE DISTRIBUTED ADDRSS 1 -
SPC() ROYAL SIGNALS AND RADAR ESTASLISHNENT NALVERN

(ENGLAND) 5 R NISENAN JUN 85 RSRE-B5099 DRIC-BR-97054
UNCLRSIFIEDF/6 9/2 N

EoEE.on

1.01 1.O -5 28 L

36 Q LIIII U
jjl1.25 *.j4 __6_

MICROCOPY RESOLUTION TEST CHART
k7 AONAL RUAEAU OF STANDAROS- 963- A

%
No- .

* *,.. .-
).~

UNLIMITED 9\)75.

Report No. 85009
CD

CD ROYAL SIGNALS AND RADAR ESTADUSMENT.
z MALVERN

A GARBAGE COLLECTOR FOR A LARGE DISTRIBUTED
ADDRESS SPACE

Author: S R Wiseman

L?.J ~

PROCURIMENT EXECUTIVE, MINISTRY OF DEFENCE
RSRE

June 199

UNLIMITED10 2 8

..........................

UNLIMITED
ROYAL SIGNALS AND RADAR ESTABLISHMENT

Report No 85009

Title: A GARBAGE COLLECTOR FOR A LARGE DISTRIBUTION ADDRESS

SPACE

Author: Simon R Wiseman

Date: June 1985

SUMMARY

A new on the fly garbage collection algorithm is presented. It is

suitable for use in distributed systems, where the address space is very

large. The time taken to recover garbage is reduced by recursively

structuring the address space. Consideration is given to the practical

implementation of the algorithm.

Accession For

NTIS GRA&I
DTIC TAB
Lhannounced 13
Justificatio ,

By - - -
Distribution/_-

Availability Codes
-- Avall and/or

Dist Special

QUALI"v

IN4SPECTED

4

Copyright

C
Controler HMSO London

S83/16

-, . - . S ° % - , % . ° , - ' . . ' - ' - ° -. ° . . , o . °- • , , . , - % o

RSRE REPORT NO 85009

A GARBAGE COLLECTOR FOR A LARGE DISTRIBUTED ADDRESS SPACE

Simon R Wiseman

LIST OF CONTENTS

I Introduction

2 Block Structured Memories

3 General Garbage Collection Techniques

4 Recursively Organised Block Structured Memory

5 The Garbage Collector

6 Practical Implementation

7 Conclusions

8 Acknowledgements

9 Reference

Appendix A. Algorithm in Pidgin Algol

e'

* * S "~ .%

1. Introduction.

As address spaces get larger, existing garbage collection techniques

take longer to recover garbage. Therefore to ensure the free space is never

exhausted, greater amounts of spare memory are required..However, a single

address space that spans a distributed system vill be very large, requiring a

very large amount of spare memory.

An important aspect of distributed systems is that they do not offer a

perfect environment. Transient faults, such as message loss, and more

permanent faults, such as network partitioning, must be tolerated by the

garbage collector. Also, the additional costs of communication may cause a

severe degradation in performance.

In this paper, a new garbage collection algorithm is proposed. It is

intended for use in distributed systems where very large address spaces are
encountered. The time taken to recover most garbage is small, allowing a
better utilization of memory resources.

2. Block Structured Memories.

A Block Structured Memory is one where the memory is viewed as a set
of memory blocks, rather than as one large linear array. Each block is an
array of words, where the words are either integers or pointers to blocks. A
pointer points to a block as a whole; to address an individual word a pointer

and an offset must be supplied. This is illustrated by figure 1.

Block structured memories are found in computers which use capability

based addressing (Fabry74I, where the pointers are primitive capabilities, in
LISP systems (McCarthy60] and Smalltalk systems [Ungar84J. They differ from
the more usual segmented memories in the way addressing is performed. A
segmented memory places an order on the segments and uses an index, rather
than a pointer, to address a segment.

4* Address Space is Divided into Blocks
4* Doc*.s Contain Integrs I Pointers to Blocis

SIZE

Fig. 1. Blocks and Pointers.
4.,. -....

A pointer can be distinguished from a non-pointer. This is done either
by tagging, where a bit is used to distinguish between the two possibilities,
or by having two kinds of block, one which can contain only pointers and one
which can contain only non-pointers. Tagging is used by LISP systems [White8O]
and the Flex computer [Foster791, while partitioning is used by the Cambridge
CAP computer [Needham&Walker77J, the Intel iAPX-432 [Tyner81i and the Plessey
PP250 (England75).

2

%"~

A pointer contains either the physical address of the block it points

* to, or an Index into a table of physical addresses. The Indirection technique

allows a block to be moved about in physical memory, since Its physical

address appears in only one place which allows it to be readily updated,

though the indirection imposes some extra run-time overhead..

If blocks can be of various sizes, as in the case of the capability

computers and Smalltalk systems, then It must be possible to determine a

block's size. This is often done by storing the size in the first word of the

block, in which case it is usual for the computer to hide this word from the

programmers. An alternative is to store the size with the address in the

indirection table.

The registers of the computer can contain pointers or non-pointers.
The pointers that are stored in the registers form the root of the accessible
structure that is in memory. A block that is pointed to by a pointer in a
register is said to be directly accessible. Either tagging or partitioning of
the registers can be used to distinguish between pointers and non-pointers

stored in them.

Any block that cannot be reached by following a chain of pointers
starting at the root can never be accessed. These inaccessible blocks can
therefore be recovered and the storage they occupy can be used to make new
blocks. It is the responsibility of the garbage collector to identify and
recover these inaccessible blocks.

For the purposes of discussing the garbage collection of a block
structured memory, the Instructions obeyed by the processor will be considered
to be made up of five primitive operations. These are:

1. xead a word from a directly accessible block and
store it into a register;

2. write a word from a register into a directly

accessible block;
3. create a new block and store a pointer to it into

a register;
4. copy a word from one register into another;
5. load a numeric value into a register.

All these operations may change the structure that is accessible,
because they may create new pointers or destroy existing ones. More powerful
operations, such as appending an item to a list, are readily constructed from
this set of primitives. The primitives also cater for the more mundane
arithmetic operations.

3. General Garbage Collection Techniques.

There are many techniques which can be used to recover garbage in a
* block structured memory. (Cohen8IJ and [Wiseman85l give comprehensive surveys.
*" There are two ways in which the garbage collector can operate. It can either
*: interrupt the computer's normal processing, and garbage collect the entire

memory in one operation, or proceed in pseudo parallel with normal processing,
with the garbage collection proceeding gradually.

The former approach can be more efficient in terms of memory cycles,
but gives rise to pauses in program execution which could be embarrassing In
many applications. The overheads incurred by the latter, "on the fly" approach
may be an acceptable price to pay for steady program execution.

3

There are two main types of on the fly garbage collector, the
mark-scan type and the copying type. The mark scan type was first proposed by

[McCarthy60 and is formally described by [Dijkstra.et.al.
7 8. It gradually

scans the accessible structure and marks all the blocks that are accessible.

The storage occupied by the inaccessible blocks, which are those that are not

marked, can then be reclaimed.

The copying type of garbage collector, first proposed by [Hansen
691

and refined by (Cheney7O], divides the memory into two spaces. Only one space

is used at a time. It is garbage collected by copying all the accessible

blocks from it into the other space. When all of the accessible blocks have
been copied from it the roles of the spaces are reversed. A similar algorithm
is used by [Ungar8 4] in a Smalltalk system.

The advantage of the copying type of garbage collector is that the
accessible blocks are inherently compacted to one end of the store. This makes
the allocation of new blocks very simple. In contrast, mark scan garbage
collectors leave the accessible blocks scattered about in memory, interspersed
with the free space. This makes allocation of new blocks more difficult. If
the free space becomes severely fragmented, then compaction may be necessary
to allow new blocks to be created. This would have to be done as a separate
action.

Another technique often proposed for garbage collection is Reference
Counting. Here a count is kept with each block of the number of pointers that
refer to it. When a pointer is copied the appropriate count is incremented and
when a pointer is overwritten the count Is decremented. When a block's
reference count drops to zero, it is scanned for pointers and the counts of
blocks that these point to are decremented. The block is then deallocated.

The main drawback of reference counting is that it cannot recover all
garbage. Blocks in cyclic structures which become Inaccessible still have
positive reference counts and so are not deallocated. For example a block
which contains a pointer to Itself will never be deallocated because, even if
no other pointers to it exist, its reference count will always be at least
one.

Maintaining the reference counts can also be very time consuming.
Whenever a word is written to memory, and there is a possibility of
overwriting a pointer, the memory must first be read. This is so that the the
reference count of the block that a doomed pointer Fefers to can be
decremented. This is less of a problem if partitioning is used to identify
pointers, though it is a serious performance handicap in tagged systems.

4. Recursively Organised Block Structured Memories.

Existing techniques for garbage collection are inappropriate for a
block structured memory that spans a distributed system. One reason is that .,,

the memory Is likely to be very large. For example it may encompass the main
memories of many computers which are networked together. If a garbage
collector which suspends normal processing is used, then the pauses will he
very long, making the system impractical for most applications. If a mark scan
garbage collector is used then the scan will take a long time to complete.
During this time it is likely that the available free storage will become
exhausted so that program execution will either fall or have to be suspended.
Similar problems occur with copying garbage collectors, though there is the
additional problem of finding sufficient spare memory.

4

%° .

This paper proposes a way of reducing the time taken to recover
garbage using a mark scan garbage collector. This is done by partitioning the
memory into disjoint areas. Each area is garbage collected independently,
though blocks referenced by other areas require special treatment. If the
areas are chosen to exploit the locality of reference that is usually found in
distributed systems, then the independent garbage collections will recover

* significant amounts of Inaccessible blocks. Since the areas are much smaller
than the whole distributed memory, garbage should be recovered more quickly.

Blocks which are referenced by pointers In other areas must be kept
when their area is garbage collected. This could be easily achieved by using
one bit to mark the blocks as externally referenced or not. However, when a
block ceases to be externally referenced, this bit must be cleared so that the
block can be recovered if it becomes garbage. Unfortunately the independent
garbage collections of the areas cannot detect when a block ceases to be
externally referenced.

The simplest way to maintain the externally referenced marks of the
blocks, is to use a mark scan garbage collector that considers all the areas

*as a whole. This would detect when all external pointers to a block have
become inaccessible and would then mark the block as not externally
referenced. The garbage collector will cope with Inaccessible cyclic
structures that span the area boundaries.

The algorithm proposed by this paper goes further than this simple
two-level garbage collection. It structures the areas recursively, while still
retaining the single address space of the block structured memory. Therefore,an area at one level will consist of several areas at a lower level, and will
he part of a higher level area. A block will belong to some area at each level
in the hierarchy. Each area will have a garbage collector which is responsible
for recovering garbage that spans the boundaries of its component areas.

Inter-am-

Pointr nt

i'V7.

Inar

Fig. 2. Address Space is Divided into Areas.

5

Figure 2 shows a block structured memory divided into three areas.

Intra-area pointers can be Implemented as direct physical addresses or by

indirection. Inter-area pointers are Implemented through two indirection

entries. The pointer refers to an outward entry. This describes the location

of an inward entry which in turn gives the location of the block The inward

entry is essential, as it allows a block to be moved even if it is referred to

by another area. This inward entry in fact also takes on the role of the

externally referenced bit. The outward entry is however optional, but in a

distributed system it is likely that a pointer would not be large enough to
hold all the Information required to locate the inward entry. Also it allows a

useful optimization to be applied, which is described later.

The recursively structured areas are illustrated by figure 3. The
inter-area pointers are shown with their outward and inward indirection
entries. An inter-area pointer is said to be at level 'n', if the lowest level
area that contains both the source and destination of the pointer is level
In'. The indirection entries for a level 'n' inter-area pointer are shown
placed at level n.

The hierarchical mark scan garbage collections are not implemented as
separate processes. Instead there is a separate garbage collector process for
only the lowest level areas. These are responsible for the garbage collection
of their areas, but also contribute to the garbage collection of the higher
level areas above them. This means that the amount of scanning and marking is
no greater than if one system wide garbage collector was used. Garbage
collection of the lowest level areas can proceed as often as required as the
processes do not need to be synchronized.

Level 4

L3j

Fig. 3. Recursively Structured Address Space.

5. The Garbage Collector.

i. The Simple Garbage Collector.

The proposed garbage collector is first described in its basic form,
ignoring any Inter-area pointers. It is similar to that described by
[Dijkstra.et.al.78). All blocks have a field which indicates their state in
the scan. The colours white, grey and black are used to represent the states.
The garbage collector cycles through three phases; initialization, scanning
and recovery. It proceeds in pseudo parallel with the normal operations of the
processor, which are represented by the five primitive operations described
earlier.

.

* "'6'''."" . ¢''."..". .,' '.. ;" ''" """""" "" "" ' """ "" " " " "" ' " " " " "" '

Before initialization all blocks are either white or grey. The

initialization phase finds all blocks that are directly accessible, that is

those which are pointed to from the registers, and colours them grey. The

scanning phase then searches through all the blocks in the area looking for

ones that are coloured grey. When a grey block is found it is scanned for

pointers. All pointers that are found in it are followed and if the block that

is referred to is white then It is made grey, an operation called shading.

When all the pointers have been found, the block is coloured black, to

indicate that it has been scanned. The scanning phase continues until no more
grey blocks remain. The recovery phase then examines all the blocks in the
area. White blocks are inaccessible and so are recovered, while black blocks
may be accessible and are kept, though their colour is changed to white ready
for the next garbage collection cycle.

Since the garbage collector is operating in pseudo parallel with the

computer's normal operation, the five primitive actions must ensure that they
correctly maintain the colours of the blocks. In the simple case described so
far this means that when a pointer is read from store into a register, the
block it points to must be shaded. Also newly created blocks, which initially
contain no pointers, must be coloured black.

ii. The Final Algorithm.

The complete algorithm for one of the garbage collector processes is
now described. This is responsible for the garbage collection of one of the
areas at the lowest level, but also contributes to the garbage collection of
the higher level areas above it. The algorithm is given in pidgin Algol in
Appendix A.

Each BLOCK has a COLOUR field, which indicates its state in
the lowest level garbage collection. The colours white, grey and black are
used. During the scan white indicates that the block has not been found, grey

that the block has been found but still needs scanning for pointers, and black

that the block has been found and has been scanned for pointers.

Inter-area POINTERs refer to an OUTWARD entry. This in turn refers to
an INWARD entry which describes the location of the BLOCK. The level of the

inter-area pointer is given by the level field in both the INWARD and OUTWARD
entries. The INWARD entry also has a colour field and a colour level field.
These indicate the colour of the block in the higher level scans.

In the initialization phase, the garbage collector searches the
computer's registers, looking for POINTERs. Any pointers in the registers are
the roots of the structure in memory. They are therefore considered to be in
the highest level area. Intra-area pointers and inter-area pointers that are
found in the registers are shaded and externallyshaded respectively. This
ensures that the directly accessible blocks are all at least grey.

The garbage collector now works its way down the levels. At each level
it looks for blocks that are referenced by other areas and which are grey or
black at that level. This is determined by checking all the INWARD entries to
find any with colour a grey or black and colour level - level. These blocks
are known to be wanted at this level and so are shaded. The garbage
collector now scans all the grey blocks, looking for pointers. Any Intra-srea
pointers are shaded as usual. If an inter-area pointer is found, then it is
externallyshaded, but only if the pointer is at a lower or equal level to
that being scanned. This is because the pointer may not be accessible at the
higher levels.

7

• ** **"

To ensure that a block is not discarded by the lower levels before

it is shaded by a higher level that requires it, it is also necessary to shade

blocks referred to by white INWARD entries. However, inter-area pointers

accessible from such a block must not be externally_.shaded because of this.

Therefore scanning from white INWARD entries is delayed by one pass through

the levels.

Once the scanning of all the levels has been completed, any BLOCK
which has colour - white can be recovered, since it is not accessible from the

root.

During the recovery phase of one of the higher levels, any INWARD
entry of that level which has colour - white is inaccessible and is discarded.
The other INWARD entries of the level have their colour and colour level
reset, ready for the next scanning phase. Since the remaining INWARD entries
are now white, the recovery phase must not be entered for a second time,
before the next initialization and scanning phases. To ensure this the AREA
has a flag associated with it to show whether it has already performed the

recovery.

The initialization phase of a higher level garbage collection iso .
needed to ensure that all the lower level areas have completed a scan. This
guarantees that all the roots of the area have been externally_shaded. The
scanning phase then continues until no Inter-area pointers between the lower
level areas are coloured grey at, or above, that level. The recovery phase is
now entered. This recovers the inaccessible INWARD entries and resets the
colour of the remaining INWARD entries. Once all constituent areas of the area
have been recovered, the area continues another garbage collection cycle with
the initialization phase.

The OUTWARD entries are treated very much like blocks. They have a
colour field which shows their state in the lowest level gsrbage collection.
However, since they are not blocks which can contain pointers, tt.ey are
coloured black Immediately. Any OUTWARD entries with colour - white during the
recovery phase are discarded, because no accessible pointers point through
them.

iii An Example Garbage Collection.

To illustrate the garbage collector in action, consider figure 4, This
shows five areas, A..E, grouped together into two level-two areas, R and S.
These in turn make up a level-three area, T, which is the entire address
space. The blocks that are of concern are numbered 1..6. The root of the
accessible structure is the pointers that are contained in the registers of
the computer. These are considered to be at level-four. In this example the
root is a pointer to block 4. Four pointers, W..Z, at various levels are
shown. Initially all the INWARD entries have colour - white. Figure 5 shows
how these values change as the garbage collection proceeds.

.', .. °o . o o . .8

Area A Area B Area C Area D Area E

Fig. 4. The Initial State for the Example Garbage Collection.

W X Y Z
Initially: W W W W
Garbage Collect C: 4C --

Garbage Collect D: 4B 4G
Garbage Collect B:
Garbage Collect A:
Recover R: discard
Garbage Collect E: 4G -- 4B
Recover S: W
Garbage Collect B: 4B
Recover T: W W --

Fig. 5. States of the Inward Entries during the Example Garbage Collection.

First suppose that the garbage collection process for area C performs
a cycle. The pointer to block 4 would be found in the root and the block would
be shaded. The scan would then find the outgoing pointer Y. This would be
externally shaded at the level of the scan, which is level 4. Therefore the

*: INWARD entry of Y changes from white (W) to level 4 and grey (4G). Note that
the OUTWARD entry of Y was coloured black by externalshade. This ensures that
it is kept during the recovery phase of area C.

Now suppose that area D performs a garbage collection cycle. The level
*4 scan finds the INWARD entry for pointer Y, because it is now 4G. Therefore
" block 5 is shaded. The INWARD entry is made 4B to indicate that it has been

scanned. The level 4 scan proceeds and the outgoing pointer Z is found. The
* OUTWARD entry for Z Is made black and the INWARD entry is made 4G.

If area B now performs a garbage collection, then its level 4 scan
will find nothing. This is because no roots point into the area and no INWARD
entries are 4C or 4B. Similarly the level 3 scan does nothing, because the
INWARD entry for X is white, and so is not considered until the level 2 scan.
The level 2 scan does find X, and so block 3 is shaded and is therefore will
not be discarded. The level 2 scan does not consider pointer W because it is

*- white. This is found by the level 1 scan, so block 2 is also kept.

Block 1 in area A is not accessible. The garbage collection of area A
will therefore not shade block 1 and it will be discarded. Similarly the
OUTWARD entry of pointer W will not be found and it will be discarded. The
INWARD entry of W will however remain, since it may still be used by other
OUTWARD entries.

9

- -*-o*-*o*-*o*-**o***%*********.**. ...- -..- --o -.-. -.. * ** - .

Now that areas A, B and C have each completed a garbage collection

cycle, it is possible for area R to proceed from the initialization phase to

the scanning phase. However, since there are no grey INWARD entries coming

into the area, it can immediately proceed to the recovery phase. This will

consist of the three areas A..C performing another garbage collection. Only

that of area B is of interest, so that will be explained in more detail.

The garbage collection of area B, with area R in the recovery phase,

starts off with a level 4 scan and a level 3 scan which do nothing. The level

2 scan proceeds differently because the level 2 area is in the recovery phase.

The level 2 INWARD entries are examined. White entries are discarded, Snd

black entries are reset to white. Therefore the INWARD entry for pointer W is
discarded, which completes the destruction of the inaccessible pointer. Then
the INWARD entry for pointer X is found, because it is white and in the next
highest level. Block 3 is shaded and will therefore eventually be kept. After
the level I scan, block 2 remains white and so it is discarded.

Now suppose area E does a garbage collection. The level 4 scan finds

the INWARD entry for pointer Z, and so it is changed from 4G to 4B and block 6
is shaded. The level 4 scan then finds the pointer X in block 6, so the INWARD
entry of X is made 4G.

Area S has now completed its initialization phase, and also its
scanning phase. During the recovery phase Z is returned to white. Now that
both areas R and S have completed their scan phases, area T can enter the
scanning phase. However, because the pointer X is still grey area T has not
completed its scan phase. However, once area B has completed another garbage
collection, X will have become 4B, so area T enters the recovery phase.

During the recovery phase of area T, the pointers X and Y are reset to
white. This completes a cycle of the garbage collection of the whole system.
The initial condition is restored, except that blocks I and 2 have been

discarded.

6. Practical Implementation.

In a practical implementation of this algorithm, the memories of each
computer in the distributed system would probably be a separate area. The next
level of area might be a local area network which connects together a group of
computers. Higher levels could be an inter-network of the local networks.
However, it is also possible to have the area which is one computer's memory

composed of smaller areas. This partitioning of the memory may be useful in
controlling the allocation of memory and garbage collection time in a
time-sharIng system.

Pointers which point between computers will have INWARD and OUTWARD
indirection entries. The OUTWARD entry would exist in the memory which
contains the pointer and the INWARD entry would exist in the memory which
contains the block. The operation of external shading therefore requires a
communications protocol between the two computers. Since this is likely to be
unreliable, it should be noted that the shading operation can be repeated
without adverse affect.

The amount of traffic generated by external shading can be reduced by
using the OUTWARD entry to remember the highest shade sent through it. If a
pointer is found more than once during a scan, then the shade need only be
sent once. The OUTWARD entry would be reset during the recovery phase of the
appropriate level.

10

Another optimization that can be performed with OUTWARD entries, is
reference counting. If the INWARD entries keep a count of the number of

OUTWARD entries which refer to them, then if the count drops to zerq the

INWARD entry can be discarded. Whenever a new OUTWARD entry Is created, the

count must be increased. This will occur when a pointer is copied from one

area to another. The incrementing must be performed by the originator of the

pointer, and must complete before the originator is allowed to decrement the

count. Whenever an area discards an OUTWARD entry, it can decrement the count

in the INWARD entry. This requires a communications protocol. Note that

decrementing a count must never be retried, in case it is actually performed

more than once. However, incrementing a count can be retried. If the reference

count does become too high, because of communications failures, then the

*INWARD entry will be recovered using the normal scanning action of the garbage
* collector.

The garbage collectors need to agree when to change the phase of the
higher levels of garbage collection. This requires a communications protocol
which is tolerant of many types of failure. The simplest form of protocol
would be polling the various areas to see if they are ready. When a complete
circuit is made without finding any dissenters, then the next phase can begin.
This Is similar to the algorithm given by (Dijkstra.et.al.78). However, this
simple protocol is prone to node crashes and network partitioning.

The correct operation of the garbage collector relies on the
participants correctly obeying the communication's protocols. For example an
area could crash the whole system by placing an incorrect INWARD entry
identifier in a request. We must therefore be sure that the garbage collector
is correct. However, if the network is open to other systems then these too
could conceivably crash the distributed system by forging a transaction. This
is the general problem of authentication on an open network, which is a
research topic beyond the scope of this paper.

Some implementations of block structured memories have a kind of
pointer which does not protect the block they refer to from garbage
collection. Some LISP systems call them weak, as opposed to strong, pointers,
and the Flex computer calls them shaky, as opposed to firm, pointers. If the
garbage collector finds a block which is only referred to by weak pointers,
then the block is discarded and all the pointers that refer to the block are
made into the nil pointer. This can be achieved in a scanning garbage
collector by introducing another colour, say silver. If a weak pointer is
found during the scan, then the block is weakly shaded. This causes white
blocks to become silver. Silver blocks are not scanned. During recovery,
silver blocks are discarded, but a tombstone JLomet75] must be erected in
place of the block, so that the weak pointers may be set to nil during the
next scan.

The algorithm given in Appendix A, does not show the critical sections
that are required to ensure the correct operation of the garbage collector.
This is because the algorithm is intended to be used on a very coarse basis.
For example the computer may have a garbage collection instruction which would
perform some garbage collection for a fixed amount of time. This would
guarantee that no list processing operations are being performed while the
garbage collector was operating. It is however necessary to specify safe
places at which the garbage collector may suspend its operation. The only
difficult requirement is that pointers stored in the registers must never
point to white blocks. This could occur if the garbage collector was suspended
during recovery. Therefore if this happens it is necesary to shade all
pointers stored in registers before continuing with list processing.

11

*1

7. Conclusions.

This paper has presented an algorithm which allows the timely garbage
collection of a large block structured memory. This makes it suitable for use
in a distributed system which has one very large address space. More research
is required to develop suitable communications protocols to allow the
algorithm to function correctly in a faulty environment. The problem of
operating in an open communications system also needs to be addressed.

8. Acknowlegements.

Thanks go to Prof. Brian Randell of the University of Newcastle
upon Tyne and Dr. Derek Barnes of RSRE for their helpful comments on earlier
drafts of this paper.

9. References.

C.J.Cheney
A Nonrecursive List Compacting Algorithm.
Comms. of the ACM
Vol 13, Num 11, Nov 1970, pp6 77 ..678

J.Cohen
Garbage Collection of Linked Data Structures.
ACM Computing Surveys
Vol 13, Num 3, Sept 1981, pp34 1..36 7

E.W.Dijkstra, L.Lamport, A.J.Martin, C.S.Scholten & E.F.M.Steffens
On-the-Fly Garbagae Collection: An Exercise in Cooperation.
Comms. of the ACM
Vol 21, Num 11, Nov 1978, pp9 66 ..9 75

D.M.England
Capability Concept Mechanisms and Structure in System 250.
Rev. Fr. Autom. Inf. Rech. Oper. (France)
Vol 9, Sept 75, pp47..62

R.S.FabryCapability Based Addressing.

Comms. of the ACM
Vol 19, July 1974, pp403..412

J.M.Foster, C.I.Moir, I.F.Currie, J.A.McDermid, P.W.Edwards, J.D.Morison
& C.H.Pygott

An Introduction to the Flex Computer System.
RSRE Report 79016
Oct 1979

W.J.Hansen
Compact List Representation: Definition, Carbage Collection, and

System Implementation.
Comms. of the ACM
Vol 12, Num 9, Sept 1969, pp4 99 ..5 07

D.B.Lomet
Scheme for Invalidating References to Freed Storage.
IBM Journal of Research and Development
Jan 1975

12

Vo

J.McCarthy
Recursive Functions of Symbolic Expressions and Their Computation

by Machine, Part I.
Comm. of the ACM
Vol 3. 1960, ppl8l..l 9 5

R.M.Uoedhas & R.D.H.IWalker
Th. Cambridge CAP Computer and Its Protection System.
Operating System Reviews
Vol 11. Nun 5. Nov 77, pp1..10

IP.Tyner
iA.PX-432 General Purpose Data Processor: Architecture Reference Manual.
Intol Corp. Jan 1981

D.Ungar
Generation Scavenging: A Non-disruptive high Performance Storage

Reclamation Algorithm.
ACM SigPlan Notices
Vol 19, Num 5. May 1984, pp157..16 7

J.*L .WIh t e
Address/Memory Management for a Gigantic LISP Environment,

or GC Considered Harmful.
Procs. LISP 80 Conference
July 1980, pp1 19..12 7

* S.R.Wisesan
On the Garbage Collection of Block Structured Memories.
ASRE Report 85006.
May 1985.

AZPC3T QUOTED ARE NOT NJECESSARILY

AV.-tLAfq F 10 MFMF:rRS 6' INE PUBLIC

OR TUOW-VMERCIAL ORG ,N' ,ONS

13

APPENDIX A. Algorithm In Pidgin Algol.

TYPE
COLOUR - (whlte,grey,black),
PHASE - (init,scafl,recover),
AREA - STRUMT PHASE phase, BOOL ready,

BLOCK - STRUCT(COLOUR colour,)

INWARD - STRUCM IN? level, REF BLOCK block,
COLOUR colour, IN? colour -level)

OUTWARD - STRUCT COLOUR colour, IN? level, REF INWARD Inward,.

POINTER - UNION(REF BLOCK intra, REF OUTWARD inter)

12:maxJ AREA area;

PROC shade(BLOCK block)
BEGIN

IF block.colour - white THEN block.colour :grey FI
END;

PROC external-shade(OUTWARD Inter, INT level)
BEGIN

IF inter.colour - white THEN inter.colour :black FI;
IF inter.level <-' level
THEN

IF inter.invard.colour level < level
OR (inter.inward.colour-level level AND Inter.inward.colour -white)
THEN

inter.inward.colour :0 grey; inter.inward.colour-level :level
Fl

FI
END;

PROC scan(IN? level)
BEGIN

FOR each grey block
DO FOR each pointer in the block

DO IF pointer IS intra
THEN shade(pointer.intra)
ELIF level >- pointer.inter.level
THEN external shade(pointer.inter, level)
Fl

OD;
block.colour :black

OD
END;

PROC scan done(IN? lower level)
BEGIN

IN? level - lower level + 1;
IF area[level 1.3hase - mnit
THEN

IF all others are ready
THEN area[level).ready :false;

area[level J.phase :-scan
ELSE area[level].ready :true
Fl

Fl;'

14

IF area[level].phase scan
THEN

IF no inward entry has colour grey and colourlevel >- level

THEN
IF all others are ready
THEN area[level].phase : recover;

area[level].ready :- false;

scan done(level)
ELSE areaT level].ready : true

FI
Fl

ELIF area[level).phase - recover
THEN

IF all others are ready
THEN area[level].phase : nit;

area[level).ready :* false
ELSE area[level).ready : true
FI

FI
END;

{ initialize
FOR each register containing a pointer
DO IF pointer IS intra THEN shade(pointer.intra)

ELSE externalshade(pointer.inter, maxInt) FI
OD;
[scanl
scan(max mt);
FOR level :- UPB area STEP -I UNTIL 1
DO IF area[level).phase - recover

AND NOT area[level].ready
THEN

FOR each inward entry with inward.level - level
DO IF inward.colour - white THEN discard(inward)

ELSE Inward.colour :- white F1

OD
FI;
FOR each inward entry
DO IF inward.colour - black AND Inward.colour level - level

THEN shade(inward.block)
ELIF Inward.colour - grey AND Inward.colour level * level
THEN shade(Inward.block);

Inward.colour :a black;
area[level].ready :- false

ELIF inward.colour - white AND inward.level = level + I
THEN shade(Inward.block)
F1

OD;
scan(level)

OD;
scandone(1);
(recover)
FOR each block and outward entry

DO IF block.colour = white THEN discard(block)
ELSE block.colour : white Fl

OD.

15

DOCUMENT CONTROL SHEET

Overall security classification of sheetu, AS YF E

(As far as possible this sheet should contain only unclassified Information. If it is necessary to enter

classified information, the box concerned must be marked to indicate the classification eq (R) (C) or (S)

1. DRIC Reference (if known) 2. Originator's Reference 3. Agency Reference 4. Report Security

___ _85009_]UNNrtAI~TO Ica t Ion

5. Originator's Code (if 6. Originator (Corporate Author) Name and Location

known)
ROYAL SIGNALS AND RADAR ESTABLISHMENT

Sa. Sponsoring Agency's 6a. Soonsoring Agency (Contract Authority) Kane and Location

Code (if known)

7. Title

A GARBAGE COLLECTOR FOR A LARGE DISTRIBUTED ADDRESS SPACE

7a. Title in Foreign Language (in the case of translations)

7b. Presented at (for conference napers) Title. place and date of conference

8. Author 1 Surname, initials 9(a) Author 2 9(b) Authors 3,4... 10 Date pp ref
WI SEMAN S R"!,' L:

11. Contract Number 12. Period 13. Project 14. Other Reference

15. Distribution statement

UNLIMITED

Descriptors (or keywords)

continue on separate piece of paper

Abdtract'

An on the fly garbage collector for a distributed block structured

address space is described. The time taken to recover reasonable amounts of

garbage is reduced by recursively structuring the distributed system. This
makes it practical to consider a distributed computer system with a single

address space.

S8//

/%

S** S'o/.s

FILMED

12-85

DTIC

! k A1<%

o. - 4-. .4 ~r~'4

,'* *4

