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, NONLINEAR ANALYSIS OF UBITRON/FREE-ELECTRON LASER
AMPLIFIERS IN THREE-DIMENSIONS

1. INTRODUCTION

The Ubitron/Free-Electron Laser (FEL) has been successfully demonstrated for operation over a

broad frequency range from the microwave to the optical parts of the spectrum, and shows promise as a

high power source of radiation at millimeter and submillimeter wavelengths.' - " The distinction

between the Ubitron and the FEL is not well-defined in the literature. In our work, we find it con-

venient to distinguish between the FEL and the Ubitron primarily on the basis of the electron beam

- energy, and we shall refer to such devices as Ubitrons when the electron beam energy is less than or of

the order of 500 keV. While this choice of energy is arbitrary, it is motivated by the fact that most

devices that operate at energies below 500 keV are characterized by operation frequencies that occur

close to the waveguide cutoff. The Ubitron12 therefore, may be though of as a weakly relativistic FEL

operated as a microwave tube, and we emphasize that the physical mechanisms for the FEL and the

Ubitron are identical.

The motivation for the present work is to develop a fully three-dimensional nonlinear analysis and

simulation code of the FEL/Ubitron. Theoretical investigations of the Ubitron/FEL have been con-

fined, principally, to the linear regime,13- 24 however, a fully nonlinear treatment is required to describe

the interaction through the linear stages to saturation. We judged it important to include the effect of

an axial guide magnetic field on the interaction in the analysis because (1) axial guide fields are

included in many experimental configurations to confine high current electron beams against the effects

,- of self-fields, (2) linear analyses of the interaction have shown that substantial enhancements in the

*" gain are possible due to the presence of the guide field, and (3) nonlinear simulation in one-dimension
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has shown corresponding enhancements in the saturation efficiency. Three-dimensional effects become

important when the transverse quiver velocity due to the wiggler magnetic field becomes large. In this

regime, the electron displacement from the axis of symmetry also becomes large, and a one-

dimensional approximation for the wiggler magnetic field breaks down. In addition, the transverse

mode structure of the radiation field is also important in the description of the overlap of the radiation

field and the electron beam, and is a crucial feature of the analysis when the interaction occurs in the

vicinity of the waveguide cutoff in Ubitrons.

In this paper, we derive a fully three-dimensional nonlinear analysis of the FEL/Ubitron for a

. configuration in which an energetic electron beam is propagating through a loss-free cylindrical

., waveguide in the presence of a helically symmetric wiggler and a uniform axial guide field. To this

end, a set of coupled nonlinear differential equations is derived which self-consistently describes the

evolution of both an ensemble of electrons and the electromagnetic fields. Space-charge fields are

neglected in the analysis; therefore, the treatment is applicable to the High-Gain Compton (or strong-

" pump) regime. The nonlinear current which mediates the interaction is computed from the microscopic

.- behavior of an ensemble of electrons by means of an average of the electron phases relative to the pon-
.o,

" deromotive wave formed by the beating of the radiation and wiggler fields. These equations are solved

"i for the case in which a monoenergetic electron beam of arbitrary initial cross-section is adiabatically

injected into the interaction region. The adiabatic injection is modelled by allowing the wiggler field

amplitude to increase slowly from zero in ten wiggler periods. The finite waveguide geometry is

included in the analysis by the introduction of the boundary conditions appropriate for either the TE or

TM modes in a loss-free cylindrical waveguide. Thus, all transverse and finite geometry effects are

included in the static wiggler and radiation fields in a self-consistent manner. In addition, since the

problem of interest is that of a Ubitron/FEL. amplifier, only single wave-mode propagation is con-

sidered. This permits an average over a wave period to be performed which eliminates the fast time

scale phenomena from the formulation. The resulting equations are equivalent to a kinetic description

of the problem, and result in a great increase in computational efficiency over a full-scale particle-in-cell

simulation.
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The organization of the paper is as follows. The general equations are derived in Sec. il. The

numerical solution of the coupled particle and field equations is given in Sec. III for parameters

appropriate to both Ubitrons and FEL's. A summary and discussion is given in Sec. IV.

II. GENERAL EQUATIONS

The physical configuration we employ includes a uniform axial guide field and a helically sym-

*' metric wiggler field generated by a bifilar helix, so that the static magnetic field can be written in the

form

S(x) - Bo + B.(), (1)

where

JI
B.(x) - 2B,(z)[lI (X) i, cosX - -i,(,)e sinX + 11() ez sinX1 , (2)

A

represents the wiggler field in cylindrical coordinates. In Eq. (2), B,,(z) describes the wiggler ampli-

t tude, A z--k,,r, x 0 - k,z, k, (--- 2r/X,,, where ,,, is the wiggler period) is the wiggler

wavenumber, and 1, () and i. (W) represent the modified Bessel function of order n and its derivative

respectively. The adiabatic injection of the electron beam is described by allowing the wiggler ampli-

tude to vary slowly in z, and is valid representation as long as

d:': "z7InB,, << kw.

In practice, we shall allow B.,(z) to vary only over 0 < z < iO.w, after which it shall be held constant.

In the simulation it is assumed that

"B. sin 2 (kwz/40) ;0 K, z K IOXw
B.(z) - B. ;z > 10h. (3)

Since the space-charge fields are neglected, the boundary conditions at the waveguide wall may be

satisfied by expanding the vector potential in terms of the orthogonal basis functions of the empty

." guide. Thus, we write the vector potential of the radiation field in the form

............................ :.. p



6N 8A,,(z) - J, (k , sinaI + J'(k.r) i. Cosa
~ (xI -0 ki. r l

for the TE modes, and

% , 8A(x, ) - BA(.(W J1'{k1. 0 , cos ca - J1 (kr) . sin a1I + -- J,(ki.r) i sin a, (5)
'.4,I Ei r~jJCff kki-0

R-I

for the TM modes, where for frequency w and wavenumber k (z)

fa = z dz'k(z) + 10 - t. (6)

In Eqs. (4)-(6), 1I and J' represent the regular Bessel function of the first kind of order / and its

derivative, and k1. describes the cutoff wavenumber. In the case of the TE,, mode k, " x1t'R,, where

J(xt.) - 0, and R9 is the waveguide radius. For the TM, mode k,, x1 /Rg, where J, (x,) - 0.

Thus, there is an implicit limitation on the magnitude of the beam currents which can be treated self-

consistently, and it is assumed that the mode amplitude 6A,,(z) and wavenumber k(z) are both

slowly-varying function of z such that both

ddIn BAI,(z) << k,
dz

and

dz
.2 dIn k(z) << k.

The microscopic source current can be written as the following sum over identical particle trajec-

tories:

8J(x, ) - - L enb  A-'- .!) VzT(z; x, VY 1(, t 1I). ) (7)

where L is the length of the interaction region, NT is the total number of electrons, nb is the average

electron density, v,(z; x., yj, 1,) is the velocity of the ith electron at position z which entered the

interaction region (i.e., crossed the z - 0 plane) at time t. and transverse position (xi, y,,,), and

foz  dz';"T (z: x, . Y o. ,o - 1 " (8)
.. y"0 f Z vo , ( z '; . X . , y o )

4
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The system is assumed to be quasistatic in the sense that particles which enter the interaction region at

times to separated by integral multiples of a wave period will execute identical trajectories. As a result,

vi (z, x 0., yo, t,. + 27rN/w) = v, (z; x,0, yio, ti) for integer N. The discrete sum over particles can be

*replaced by an integration over initial conditions, and we may rewrite (7) in the form

ST/2

8J(x, 0 enbvzo ff dxodyoop1 (x0, yo) fI;1 dto or,(to)
Ag

x v(z; Xo,Y, to) it - (z x, )Y, (9)

where v,0 is the initial axial velocity, Ag- =WR is the cross-sectional area of the waveguide,

- T -- L/v,, and a, (xo, y,) and o.,(t.) describe the distribution of the initial conditions subject to the

normalization

ff dxodyo a, (x., y.)= Ab, (10)
Ag

fT/ 2 dt°a°g(t 0) - T, (1)

where Ab is the cross-sectional area of the electron beam.

Substitution of the microscopic fields and the source current density into Maxwell's equations for

the TE mode yields

d a,, , - k- kl at, - 23oHV. (12)

• .and

2 K
2k1/ 2A(k /8a,, - 2b Hil IV v (13)

dz " C

" where 6a eAI/mc2. fo~ -- vo/C, oi 4¢re2 nb/rm, (vI, v2) are the transverse components of the

electron velocity relative to the basis vectors b - cosk,,z + y sink4 z and 2-- sink,,z

'" + iy cosk,,z. For the TM mode, we find the similar result

%S
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d2  + kL ,2  2 , WA
dI 2 1~ - 3-__H,

.z2 ,. + 1+ k i, C

VIT(+)+ VWl() +2.L-nvzJj(k,r) ia
x <I > (14)

and

" ~~ ~ 111 111 at. T "!"7 =H
21k + k-Ilk
2 k k) dzi kI I C 2

vi W(-)- v2T2(-) + k1_ vzJi(kjr) cos
SxIN I'- v2T! + d>(15)

In the preceding equations, HI., Ti"), and WI4±) are mode (i.e., polarization) dependent quantities

defined as

XIII

(x1 2 121) J,2(X) TE,, mode

1 (16)
S'2( TMfI mode

and

F / F,(sin,, + G:" cos,, TE,. mode
I FI(T) cos ' - G,") sin *Ji" TMI, mode (17)

j F/F' cosij - G1 ' sin ql ; TE. mode (18)

-- (F" ± sin 4, + G/(t cos to,) ; TMI, mode

where

,o + f0 dz' k + Ikw,- (19)

is the phase relative to the ponderomotive frame, tp
(= - wt,) is the initial phase.

F - J,_l(kjr) cos (I - 1)( ± J1+(kjr) cos (I + 0)(. (20)

and

Gj J,_n(k,r) sin 11 - IX± J1+(kl,r) sin 11 + D)(. (21)

Finally.

' F> 2dR f dtbo,(4,o) dOodroroOa (ro, 00)F (22)

6
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describes the average of the beam electrons over both the axial phase and cross-section of the

waveguide. It is important to recognize that this average includes the effect of the overlap of the elec-

tron beam with the transverse mode structure of the radiation field (often included in one-dimensional

formulations in an ad hoc manner by the inclusion of a filling factor) in a self-consistent way.

In order to complete the formulation, the electron orbit equations in the presence of the static and

fluctuation fields must be specified. Since we describe an amplifier configuration, we choose to

integrate in z and write the Lorentz force equation in the form

= -eE - ± v x (B0 + B, + 8B,), (23)

where

8E, = - A,, ; 8BI, - V x 6A,.
c t

Substitution of the appropriate form for the vector potential shows that

d I I1v P -j - ( f l ° - ,kvz + 20. Tj(W) sin )P2 + lfl Pz 2 (.)W sin 2 X
VY Y

- mc~a,(cu - kvz)W t-' - 2k,v 2J,(k,.r) cosal - r,.v, rj+ (24)

I
vz -a-p2  -(1o - yk.v, + 2'I 1 () sinx)pl - -IlpA0(k)I, + 12(1\) cos2x]

+ -L mc Bat. (w - kvlTi" - 2k,,J (kir) cosa, + F1ivz Wt + . (25)
2

d P I lp210( + 12(h) cos2)(] - f'wPl12(\) sin2X
.dz~' Y

L mc8a, k(vi W,'- - v2T-) + r,(v1 T/'+ + v2 W(+'). (26)

for the TEjf mode, where fl 0 .- leBo./mcl, ' (I - v2/c 2)- 1/ 2 is the relativistic factor, p is the

momentum, and

d

represents the growth rate of the wave mode. For the TMI, mode, we find

7

s % 
o ~~~~~~.-.° . .-...°-. .-. -o-. °. - . . . . ., . ............ . . . ..........

.' . . ' . . " - . ' . . . . ' . .- . . - , . , . , . . . " . - ' . " . - - - . . ' . . - . : , . - . - . - . . ." . . . ' . - . " . - - -. . - . : ' L . . , . - '
% . . .: -. , , - , .. . '. . ' . . . . . ..: .'. . . , , y -, ' . , ' . . '. ' ./ . .. - . , - .. . ,, : .. -. . -: .. .. .. - .. , . . . .. . . . . -, . ., . - .-. . . . .. . .-, . . .. .-, . - . : . . . .. . ... .. . -. .



v-p, 1(flo  ykv, + 2fl.l1() sinX)p 2 + Pi2(k) sin2X

=~~~~~~ -2 kv 1- ~IOMc 8 { k2 + kn 1  Wt(' - F1 v.T'I, (27)

2 (Qo - ,k.v, + 2fll(0) sinX)p - -n wP,[o(k) + 12(,) cos2x]
z 'Y

+ - a¢Sa, - k nvzT + F)vz w/i+) (28)

vd P. -fD2,p 2[10 (A + 12 (A) cos2X I - f1.wP1f 2(A) sin2X

2 mc8ai4 (v W -  2 - v2T1
-1 ) + F,.(v1 T( + v2 Wy j1)

+ 2w--k-J(ki.r) cosa, (29)
k

In a addition, we have that for either the TEn or TM,. modes

d = v1 cos kz - V2 sin kz, (30)
" dz

Vdz = v, sin kz + v2 cos kz, (31)
dz

and

d k + ik- . (32)
dz Vz

Both the linear and nonlinear evolution of the FEL/Ubitron amplifier are included in the formula-

tion through Eqs. (12)-(15) for the fields, and (23)-(32) for the particles.

111. NUMERICAL SIMULATION

The set of coupled differential equation derived in Sec. 1i is solved numerically for an amplifier

configuration in which a single wave of frequency w is injected into the system at z = 0. Maxwell's

Eqs. (12)-(15) can be reduced to a set of three first order differential equations for 8a,, Ft,, and k.

Hence, the numerical resolution of the problem consists in the simultaneous solution of 6NT + 3 first

order ordinary differential equations, where NT is the total number of electrons. The algorithm we

!!!8



* employ involves the use of a 4th order Runge-Kutta method to calculate the first three steps after the

initial state, after which an Adams-Moulton predictor/corrector is employed for all further steps. The

averages in Eqs. (12)-(15) are performed by means by an Nth order Gaussian quadrature technique in

each of the variables (l0, ro, 00); hence, N3 - NT. For all cases discussed in this work a choice of

N - 10 was found to provide an accuracy of better than .1%.

The initial state was chosen to model the injection of a solid, axi-symmetric monoenergetic elec-

tron beam of zero emittance and uniform cross-section. Hence, we choose o = a% = 1, and initially

set PL = 0 and pl = mc.' - I. In addition, the electron positions are chosen b. means of the Gaus-

sian algorithm within the ranges - < i 0 < 7', 0 K 00 < 27r, and Rmin < r0 a< Rmax, hence, we may

model the case of either a solid or an annular electron beam. Within the context of this beam

geometry, the plasma frequency is related to the total beam current It by means of the relation

(o 2 = 4e ib (331m vo (R -R ,)"

In order to self-consistently satisfy the neglect of space-charge fields and treat the High-Gain Compton

regime, we must require that

(o" < < V y , 1 3 4 1

-y'ck.

' within the uniform-wiggler region. This limitation on the beam current will vary with the choice of

energy, wiggler and axial magnetic field strengths, and wiggler period, but will be adhered to in all the

. cases we study. The initial conditions on the radiation field are chosen such that t',,(: = 0) - 0 and

; k(z - 0) = 1C2 -k/ for an arbitrary initial power level. Observe that the time-a 'eraged Poynting

. flux, P,, for the waveguide mode is related to the field amplitude by the relation

P. i 2
-c 4R

2
- 1

8e2 Hl,,

9
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for the TE1, mode, and

P. -M C + l_' a,2(36)
8e 2  H k

for the TMI. mode.

It is important to observe that, although the analysis applies to the High-Gain Compton regime,

collective effects are included through the dieleccinc response uf the plasma to the waveguide mode,

* and the analysis is not purely single-particle. Thus, while the wavenumber is set initially by means of

"" the vacuum dispersion relation, the system evolves through an initial transient regime into a fully self-

consistent dielectrically loaded waveguide mode.

The first case we consider is that of a wide-band 35 GHz Ubitron amplifier operating in the TEnt

mode. To this end, we assume a wiggler field with an amplitude and period of B, = 2kG and

x = 1.175 em, and a waveguide radius of R, = 0.36626 cm. The electron beam configuration is that of

"" a solid (i.e., pencil) beam with an energy of 250 keV, a current of 35 Amperes, and an initial radius of

, R max = 0.155 cm. The initial distributions in the axial phase space and beam cross-section are shown in

. Figs. I and 2. Each dot in the illustration of the axial phase space (Fig. 1) describes a "phase-sheet"

composed of 100 electrons distributed throughout the cross-section of the beam. Each phase-sheet,

therefore, represents a cross-sectional slice of the beam, which is chosen initially as shown in Fig. 2.

The circle shown in Fig. 2 represents the waveguide wall. Each phase-sheet is initially chosen to be

identical, however, the subsequent evolution of the particle trajectories in the presence of the radiation

field is followed self-consistently. It should be remarked that the particle distribution described herein

represents a uniform electron beam. The positions in (ro, 0 o, t#,o) were chosen by a 10-point Gaussian

weighting, and the nonuniformity in the positions of the electrons is compensated for by a nonuniform

". weighting of the particles.

We now digress, briefly, to describe the types of single-particle trajectory in the combined wiggler

and axial guide magnetic fields. The optimum orbit for FEL/Ubitron operation is characterized by a

coherent electron motion in phase with the wiggler. Such orbits would have a constant axial velocity

"' 10
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Axial Phase Space (kwz =0)

.0148!
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V
- 0.142-

0.140-
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-u -ir/2 0 Tr/2 T

Fig. I - Initialization of the axial phase-space. Each point represents the superposition of
100 particles distributed throughout the cross-section of the beam.
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* (to preserve the resonance condition between the particles and the ponderomotive wave formed by the

. beating of the wiggler and radiation fields) as well as a transverse velocity of constant magnitude. A

class of orbits of this type may be found in the presence of both a wiggler and an axial guide field.2 27

These ideal orbits describe helical trajectories about the axis of symmetry (axi-centered), and are

characterized by

V - v,, + v11i, (37)

T - v./vil, and X 7 r i/2, where (v,, v11) are constants, and

o - 20 vi1 W/X (38)vw"flo - "kw, v11 ± 2flw.11(k ) "

*. Self-consistent solution for the axial velocity as a function of B0, Bw, k,., and y may be found by sub-

stitution of the expressions for y and vw into

v, + V
2  

y-2) c
2.  (39)

The solution is obtained by numerical means, and is shown in Fig. 3 as a function of

B0 for B - 2kG, X -, - 1.175 cm, and Vb - 250 keV (y ==-1.489). As shown in the figure, there are

two types of orbit. Group I orbits are found for relatively low axial guide fields and are characterized

by f00 < ykwvll. In contrast, Group 11 orbits occur for high axial fields and have fl 0 > YkwVl. The

dashed line represents orbitally unstable trajectories.

The purpose of the adiabatic entry taper in the wiggler field is to inject electrons into the wiggler

-. region onto trajectories approximating these ideal helical orbits. Numerical integration of the particle

* trajectories (i.e., in the absence of a radiation field) shows that such injection is feasible for particles

* initially on-axis (i.e., r(z = 0) = 0) as long as the orbit parameters are not too close to the magnetic

resonance at fno - ykvll. Thus, there are practical limitations on the operation of the Ubitron/FEL

near gyroresonance. Of course, the injection process is not perfect, and the orbits differ slightly from

the ideal trajectories in that periodic motion is also observed corresponding to Larmor oscillations due4
to the axial guide field, Betatron oscillations due to the transverse gradient in the wiggler field, and

. higher harmonics of the wiggler period. These problems intensify somewhat for electrons which are
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Fig. 3 - Graph of the axial velocity as a function of the guide magnetic field for the ideal helical orbits
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injected off-axis (i.e., r (z - 0) > 0), in addition to which the magnitudes of the transverse and axial

velocities of the ideal helical component of the motion vary with radial position. This occurs because

the electrons "see" a higher average wiggler field as the displacement from the axis grows, and an elec-

tron injected at an initial radius of r0 will be characterized by a wiggler velocity of2

vw = 1*° - ykwVlI ± 211.io(ko)i(A) " (40)

" where X0 E kwro. As a consequence, the finite extension of the electron beam will correspond to a

spread in (v., v11) across the beam which, in turn, will result in a broadening of the wave-particle reso-

nance. The net result of all of these effects is that the beam may display a very complex overall bulk

motion, and we emphasize that all of these effects are included in the simulation in a self-consistent

-[ way.

In order to illustrate the particle trajectories which occur in the combined field structure, it is use-

ful to show the evolution of the beam cross-section at a series of axial positions within the interaction

region. We consider a set of parameters consistent with Group I orbits and choose an axial field of

"- Bo = 1.3kG. This is sufficiently far from the gyroresonance (see Fig. 3) that injection onto near-ideal

- orbits is possible. In Fig. 4, we show the beam cross-section at kwz = 75, which corresponds to a point

just after the start of the uniform wiggler region at kz : 62.83. Note that the initial value of the radi-

ation field was chosen to correspond to an input power of P,, =- IOW at a frequency a,/ck, = 1.3, so

that the perturbation to the single-particle orbits at this point due to the electromagnetic field is negligi-

ble. It is immediately evident from the figure that the beam has been substantially compressed due to

- the focussing effect of the wiggler. In addition the beam center is shifted off-axis corresponding to the

"" helical motion imposed by the wiggler. Thus, the beam has "spun-up" due to the transverse velocity v.

arising from the combined influence of the wiggler and guide magnetic fields. The injection process for

* these parameters yields orbits close to the ideal helical trajectories, and kwrcente, - .25 for the beam

center which is in good agreement with the result expected from the ideal trajectories. The beam also

displays a rotational motion about the center which is accounted for by the combined effects of the

.
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variation in v across the beam cross-section and the betatron oscillation due to the transverse wiggler

gradient.

Overall bulk motion of the beam is expelted to display a periodicity at the fundamental wiggler

harmonic, and to twist the beam into a helix about the axis of symmetry. Such motion is observed as

is shown in Figs. 5-8, which displays the beam cross-section as it evolves from k~z = 150 through

kwz - 156 (approximately one wiggler period). Note that this is well within the region of strong linear

(i.e., exponential) growth of the radiation field, and substantial amplification of the input signal has

occurred. As a result, each phase-sheet has reacted in a slightly different way. This is indicated by the

"smearing" of the dots in Figs. 5-8 which marks small displacements of the beam centers in each phase

v sheet as well as small differences in the rates of rotation about the beam centers.

We conclude, therefore, that the motion of the beam includes an overall bulk helical motion

about the symmetry axis at the wiggler period, as well as a "pinwheeling" type of rotation about the

beam center at a much longer period.

The evolution of the waveguide mode corresponding to these transverse beam motions is shown

in Fig. 9. The electromagnetic wave was a TE1I waveguide mode (for Rg - 0.36626 cm) at

/ck,, - 1.3 which corresponds to a frequency of f = 33.2GHz. Beam voltage and current were 250

kV and 35 A respectively for an average beam power of 8.75 MW. As shown in the figure, the growth

of the wave mode was approximately exponential after an initial transient period for kz < 80. During

the linear phase of the interaction the growth rate was Fil/k,, - 0.029, and a small increase was

* observed prior to saturation at kwz - 267. The radiation power at saturation was 1.87 MW for an

*. overall efficiency of "7 = 21.4%. A complete spectrum of the efficiency at saturation versus frequency

is shown in Fig. 10, in which the dots represent the numerical results of the simulation. We observe

that peak efficiency occurs for wmk - 1.3ck, with a bandwidth ACo/Wp.k - 54%.
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Fig. 9 - Evolution of the radiation power and growth rate of the TEII mode as a function of axial position
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Fig. 10 - Spectrum of the interaction efficiency versus frequency for the TE, I mode
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Saturation is by means of particle trapping in the ponderomotive wave formed by the beating of

the radiation and wiggler fields. This is clearly shown in Fig. 11 in which we plot the axial phase space

at saturation for the case of w/ck. - 1.3. The solid lines in the figure represent approximate separa-

trices calculated under the assumption that all particles are executing the ideal helical trajectories.

Thus, the actual number of electrons trapped may differ slightly from that shown in the figure, but the

conclusion remains valid. The beam cross-section at saturation is shown in Fig. 12. Although the fig-

. ure seems to show a chaotic state in which the initial uniformity in cross-section of each phase-sheet

has been destroyed, a closer examination of the positions of the electrons within each phase-sheet

shows that the electron positions have retained their coherence and appear much as shown in Figs. 5-8.

However, the beam centers in each phase-sheet have shifted markedly so that the superposition of the

electrons in all the phase-sheets gives the appearance of a random distribution.

The consistency of the code has been checked several ways. The most fundamental is the

requirement of energy conservation between the particles and the wave, and agreement between the

energy lost by the beam and that gained by the wave was found to be significantly better than 0.1% in

all cases considered. In addition, the growth rate in the linear regime has been checked against the

,- predictions of a three-dimensional linear theory of the interaction. Although the linear theory

represents an idealized model in which all particle trajectories are described by the ideal helical orbits,

* agreement between the simulation and the linear theory is good. At the frequency corresponding to

* peak efficiency (o/ck, = 1.3), the linear theory predicts a growth rate of Fidk. " 0.031, which com-

pares well with the simulation result of ri/kw - 0.029. Finally, an estimate of the efficiency on the

basis of the simple heuristic phase-trapping model yields an estimate of a 19.1% efficiency, which is

close to the 21.4% efficiency obtained from the simulation.

The case of the TM11 mode has also been examined using the simulation code. In order to facili-

tate comparison with the TE11 mode, the parameters specifying the external magnetic fields and elec-

tron beam remain unchanged; that is B 0 - 1.3kG, B,,, - 2.0kG, ,,, - 1.175 cm, Vb - 250 kV,

1b  35 A, and the initial beam radius is Rb - 0.155 cm. The only alteration is in the choice of the
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. waveguide radius in order to shift the waveguide dispersion curve relative to the beam resonance line

* (i.e., w - (k + k.)vll). We choose R. - 0.76223cm so that the waveguide cutoff is identical to that of

the TE1 1 mode, and the interaction occurs over the same frequency band. Numerical results then yield

a peak efficiency 7ma, " 5.92% at a frequency of w/ck., - 1.78. This is significantly lower than the

peak efficiency of 21.4% found for the TE 1 mode at a frequency of w/ck- 1.3. The growth rate was

also significantly lower, and we observe a growth rate of only Ftl/k. 0.012 at the frequency

"" corresponding to peak efficiency. For this reason, we shall confine our attention in the remainder of

this work to the TE modes. However, we emphasize that no attempt was made to optimize the interac-

tion with respect to the TM11 mode, and it would be unjustified to conclude (as in the case of the

Gyrotron, for example) that the FEL/Ubitron interaction favors the TE mode.

The cases discussed thus far dealt with waveguide modes with an I - 1 azimuthal mode number.

Examination of the dynamical equations shows that as long as X is an approximate constant along the

particle trajectories (X - I- v/2 for the ideal helical orbits) a selection rule exists whereby TE1, or TMI.

modes interact via wave-particle resonances at w - (k + /k.)v11. It has been conjectured, therefore,

that no interaction is possible for the I - 0 modes, and numerical study of test cases for TEO, and TM0o

modes has, indeed, shown that no gain occurs. Higher harmonic interactions may also be studied by

the selection of higher order (i.e., I > 1) modes, and the results of a series of simulations is shown in

. Fig. 13 for the TE21 mode. As in the case of the TM,, mode, the parameters specifying the external

magnetic fields and the electron beam are chosen to be identical to those used to study the TE,, mode

in order to facilitate comparison of the interaction at the two harmonics. Only the waveguide radius has

* been changed to R, - 0.28 cm in order to bring the intersection points between the TE2 dispersion

curve and the beam resonance line, w - (k + 2k,)vll, sufficiently close together to obtain a relatively

broad-band gain spectrum. The growth rate found at the frequency which corresponds to peak effi-

ciency (i.e., owp,.k/ck. - 2.9) was r21/k - 0.025 which is comparable to that found for the TE,, mode

(r,,/k - 0.029 at wick., -- 1.3). The efficiency is plotted as a function of frequency for the TE2,

mode in Fig. 13. While the bandwidth Aw/wpuk - 43% is comparable and the frequency is more than

doubled relative to the TEi, mode, the peak efficiency of 4.7% is greatly decreased.
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We now turn to the case of a higher energy electron'beam. In Fig. 14 we plot the variation of the

axial velocity of the ideal helical orbits versus BO for I MeV electrons and a wiggler characterized by

* B,, - L.OkG and X,, - 3 cm. As indicated in the figure, Group I orbits are found for axial guide fields

B0 < 6.4kG, and Group II orbits for Bo > 8.2kG. No such orbits are possible between these limiting

values. The first case we consider is that of B0 - 3.5 which corresponds to a Group I type of trajectory,

and we assume a 1 MeV, 50 Amp electron beam with an initial radius of 0.2 cm. The waveguide radius

was chosen to be R. = 0.45 cm, so the upper and lower intersection frequencies between the TE11

* dispersion curve and the beam resonance line are well-separated and occur at (O/ck, - 10.9 and 2.8

respectively. Gain is, indeed, found in the vicinity of these frequencies, as shown in Fig. 15 in which

we plot the interaction efficiency versus frequency for this case. We observe that the efficiency drops

rapidly near the upper (lower) range of the lower (upper) frequency band. The lower frequency band

corresponds to frequencies f - 28GHz which are comparable to those found for the TE,1 mode for a

250 keV beam, and although the bandwidth is narrower than that found previously (see Fig. 10) the

efficiencies are comparable. The upper frequency range shows a broader bandwidth and somewhat

. reduced efficiency ('qpek - 13.7%).

The results of a series of simulations for BO - 11.75kG and Rg - 0.5 cm are shown in Fig. 16 for

parameters consistent with Group 11 orbits, in which we plot the interaction efficiency as a function of

)-" frequency. It should be remarked that for some of these runs a small fraction of the beam was lost to

the wall. The procedure followed when this occurred was to eject such particles from the simulation,

and the efficiencies shown include this effect. The bandwidth observed was 57% over a

frequency range of 28GHz - 45GHz. However, while the frequency range is comparable to that used

for the lower energy (250 keV) case, the observed efficiencies are considerably higher. We observe a

peak efficiency 7
p,,k - 47% at frequencies in the range Wpak/ck. - 3.0-3.1, which is more than dou-

ble that found for the Group I orbits with a I MeV beam in this frequency range. It should be

- emphasized here that this efficiency is found with uniform wiggler and guide magnetic fields, and no

magnetic field tapering was used. This enhancement in the interaction efficiency associated with Group

i orbit parameters has also been observed in one-dimensional simulation.2 9

29

.. ........... ..... .. ,... '.. .-'. . ..... " -. ' •h.• . . . . •.," -- ,-"."• -.... ,,. ..•". .-.. .-....... ...- . ..-
. . .. . " •' ". . . . . . . . . . .. ,. .. . , ,. .. . .. . .

,- . " o . o • . .• " •'. '•• ' •.O o °..' + ' ° •+ , • " . " + ', ° % ° • ° o • ° ,. -,* ..o • .- ° + % o ° - • .' . . ... -° - . o ~ o • • • °. o-. . -



Group I Orbits
0.8 /

0.6- o o

V., leGroup 11 Orbits

0.4

0.2- Bw =1.0 kG

Aw =3.0 cm
Vb =1.0 MeV

2 4 6 8 10 12 14

B0 (kG)
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The small degree of variation in the efficiency about the line of best fit is difficult to precisely

account for due to the complexity of the system of coupled equations. Some of the causes of this aidl-

tional structure undoubtedly include: (I) variations in the number of particles which are lost to the

wall, and the positions (in z) at which they are lost, (2) the variation in the ponderomotive potential

with the frequency at which the interaction occurs, and (3) variations in the evolution of the radial pro-

file of the beam near saturation (where the radiation field is large) have an effect upon both the overall

filling factor and the trapping fraction. However, this is an area of ongoing investigation, and we can-

not rule out the possibility of an additional modulation of the interaction due to departures of the elec-

tron trajectories from the ideal helical orbits.

IV. SUMMARY AND CONCLUSIONS

In this paper we have developed a fully self-consistent nonlinear theory and numerical simulation

of the Ubitron/FEL amplifier in three-dimensions. The particular configuration considered consists of

a cylindrically symmetric electron beam of arbitrary cross-section injected into a loss-free cylindrical

waveguide in the presence of both a helically symmetric wiggler and a uniform axial guide magnetic

field. In addition, the adiabatic injection of the electron beam has been modeled by including an initial

taper of the wiggler field amplitude. The system of equations derived describes the self-consistent evo-

lution of both the wave fields and the trajectories of an ensemble of electrons. The analysis has been

performed for both the TE and TM modes, and describes the overlap of the transverse mode structure

and the electron beam (i.e., the filling factor) in a self-consistent manner. Space-charge fields have

been neglected in the analysis, so the treatment is applicable to the High-Gain Compton regime of

operation. In addition, self-field effects of the electron beam have been neglected. Since the problem

of interest in the Ubitron/FEL amplifier, only single wave-mode propagation is considered. This per-

mits an average over the wave period to be performed which eliminates the fast time scale phenomena

from the formulation, and results in a great increase in computational efficiency over a full-scale

particle-in-cell simulation code.
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The electron trajectories are integrated using the exact Lorentz force equations, so that we are

able to examine the detailed motion of the electron beam in the combined field structure. Overall bulk

motion of the beam exhibits a dominant oscillation at the fundamental wiggler period, as expected,

which twists the beam into a helix about the axis of symmetry. In addition, a significant focussing

effect is observed to occur due to the radial inhomogeneity of the wiggler which can result in a signifi-

cant contraction in the beam radius. Superimposed on this bulk motion is (1) a shear in the electron

velocity across the beam, and (2) a slow time-scale Betatron oscillation whose net effect results in a

slow pinwheeling motion about the beam center. Larmor motion due to the axial guide field is more

difficult to identify because the period may be comparable (especially near gyroresonance) to the

* wiggler period. However, the adiabatic beam injection technique was found to be effective as long as

the parameters were not too close to gyroresonance, and the Larmor motion can be kept small.

Numerical simulations were conducted for parameters corresponding to a 250 keV Ubitron and a I

MeV FEL. In all cases, comparison of the energy lost by the particles to that gained by the wave

"*_" showed energy to be conserved to within an accuracy significantly better than 0.1%. The consistency of

,. the simulation was also checked by comparison of (1) the growth rate found by the code with that

','." predicted from a linear theory of the instability, 24 and (2) the saturation efficiency obtained in the

simulation with that found by simple phase-trapping arguments. In both cases, good agreement was

found.

The parameters chosen to model the 250 keV Ubitron and the 1 MeV FEL were chosen so that

the output frequency was in the neighborhood of 35 GHz for both cases. In each case, the peak

"- efficiency for the TE,1 mode was found to be in the neighborhood of 20% for parameters corresponding

to Group I trajectories (i.e., a relatively low axial guide field). However, the Group Ii type of trajectory

was found to result in substantial enhancements in both the efficiency (- 45%) and bandwidth for the

case of the higher energy (1 MeV) beam. This is consistent with the results found for a previous one-

-  dimensional simulation of a 1.25 MeV beam. The amplification of the TM11 was also studied for

parameters associated with the 250 keV Ubitron, and found to result in substantially lower growth rates
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and saturation efficiencies than the TE11 mode. However, since no optimization of the parameters for

the TM mode was attempted, it is premature to conclude that the FEL/Ubitron interaction favors the

TE mode.

,- Higher harmonic interactions have also been studied, and arise from the azimuthal variation of

the modes in a cylindrical waveguide. Since the phase of the TEr, and TM,, modes vary as

exp(ikz + d10 - wr) and the azimuthal variation of the ideal helical orbits is given by 0 - k.z, the

beam resonance condition is w = (k + 1k.) v. and both the TEI, and TM,, modes resonate at the i4

*. Doppler upshift. It should be remarked that such higher harmonic interactions do not depend upon a

corresponding higher harmonic component in the single-particle orbits. In view of this, simulation runs

- were made for the TE21 mode, and growth rates were found to be comparable to those for the TEi1

mode at approximately half the frequency. The saturation efficiency, however, was found to be greatly

reduced relative to the TE11 mode.

In view of the high efficiencies found for the 35 GHz examples shown, important future areas of

investigation include the detailed scaling of the saturation efficiency at a given frequency with such

• "parameters as the beam energy and the wiggler parameters. The extremely high efficiencies found for

parameters associated with high axial field Group I trajectories lend particular importance to a determi-

nation of the operational limits of this regime. Finally, it should also be noted that these results have

been obtained for a monoenergetic electron beam, and the inclusion of a finite energy spread in the

simulation is currently being pursued.
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