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FOREWORD

An article by D. T. Gillespie entitled “Stochastic-Analytic Approach to the Calculation of
Multiply Scattered Lidar Returns” was published in the Journal of the Optical Society of
America (JOSA) A, Vol. 2, August 1985, pp. 1307-24. That article derived a formal integral
expression for the intensity of laser radiation backscattered from a cloud as a function of the
number of cloud particle scatterings. This report reduces that formal integral expression to a
computable integral expression; i.e., an expression that can be numerically evaluated on a
digital computer. This reduction of the backscattering integral is an intricate, purely
mathematical task, the length of which made its inclusion in the JOSA article impractical.

This work was done at the Naval Weapons Center during 1983 and 1984. It was funded
jointly by the Naval Weapons Center Independent Research Program (Program Element
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1. INTRODUCTION

This report is essentially an appendix to Ref. 1. We shall show here how Eqs. (44) and (49) of
Ref 1 are derived from Eq. (43) of Ref. 1. The derivation is a lengthy, purely mathematical exer-

cise, which requires no assumptions or approximations not already implicit in Eq. (43) of Ref. 1.

The article in Ref. 1 addresses the problem of theoretically calculating the instantancous
power backscattered from a cloud in a so-called "monostatic lidar system.” Such a system consists
of essentially two components: a pulse-type laser, which fires a short, highly collimated pulse into
the cloud at time ¢ = 0; and a colocated, conically baffled receiver, which measures backscattered
radiation at times ¢>0. The ultimate quantity to be calculated is o/, (#), the power measured by the
receiver at any time ¢ due to photons that have been scattered exactly n times by the cloud
particles, where n is any positive integer. In Ref. 1 it was shown that, for a sufficiently small
receiver,dJ (1) is completely determined by a certain function P, (£,0,0) [see Eqs. (19), (21)-(23) of
Ref. 1. It was further shown that P (¢,0,0) has the lollowing formal representation |see Eq. (43)
and Eqs. (30)-(33) of Ref. 1}

n » " 2n " 2n
P (£,0,0) = 8" exp(—fct) ' dunn-l du ) I d()l [ (ldnl ’ di ' de
”" 5 0 0 n- n f n

0 0 0 )
r~1
x explphl — (z-e )" [I I/(O)sm() i N ul(z~el)>b)'I(-z-e”>cosq’“)
=1 1=0 |
n-1 n-1
x «S(l—c" l ulll—(z-el)(z-en)"l)(‘)( }_ utl(x-e,)-(z-et)(x-e”)(z'e")"ll)
=1} t =(}
n~1
x é{ }_ ul((y'el)—(z-e!)(y~e”l(z-e”i'll,. (1)
t=0

The mathematical meanings of the various quantitics in this formula arc as follows: 8, #, band g1,
are any constants satisfving

()<[is£ B h=0, 0~ q-”Su/‘Z; (2a)
[1s any function satisfying

Osfih <= for O0<0<u; {2h)

o
v
1."
-

)

'.l
’-
F.
r’.

& 1s the Dirac delta function, defined by the pair of equations

Slx-xy) =0, ifxzy,. (3a)

A

[ ‘ ’_u(.\)é(.t—x”) dr = ,L;(.x'”). (3h)
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Q for any function g of x; / is the “inequality function”, defined by
k.
1, if "inequality” is satisfied, .
I("inequality”) = (4)

0, if "inequality” is not satisfied;

x, y and z are the basis vectors of a Cartesian coordinate frame, hereinafter referred to as "the xyz-

frame;” and finally, €y €, ..., € are unit vectors given by
€, =z (5a)
e = x‘sinﬂlcosd:l + y,sinf sing + 2, cosl), . (i= 1,..,n) (5b)

where the auxiliary basis vectors x,, y, and z are defined recursively according to

X, =X, y,=y and 2z =2, (6a)
zl:el—l
y =(zxe _|)/|zxe, | (i=2,....n) (6h)
xlzylle

Because of the recursive nature of Egs. (5) and (6), the xyz-frame components of e, will depend on
allthe angles 0,,¢,,...,0,,¢,. A computer-oriented procedure for calculating x-e , y-e and z-e from
these angles is developed in the Appendix |see Eqs. (AT)].
Physically, the vector
ue =u =S3 (i=0,1,..,n (7N

tt z i+
may he interpreted as the trajectory of an n-scattered photon between its ith scattering, at point S,
with S and §

xyz-frame [see Fig. 1]. Eq. (5a) shows that the photon initially leaves the origin O along the +:=

and its (i + 1)th scattering, at point S, |, . +1 Poth coinciding with the origin O of the

axis, and Egs. (5b) and (6) show that the direction oful for i = 1 is measured by the polar and
azimuthal angles 6, and ¢, in a frame whose polar axis points alongu, _,

ﬁ Eq. (1) is the starting point for our analysis here. Simply stated, our goal is to "pacify” Fq
3 (1) — i.e., to reduce it to a form that can be evaluated by standard numerical techniques. The

- most obvious obstacle to a numerical evaluation of Eq. (1) is the presence of the three delta

:: functions in the integrand; these must be analytically integrated out. An important tool for
F accomplishing these integrations is the "delta function change-of-variable theorem” (see Ref. 2 for
:: a proof of this theorem): [f h is a differentiable function of x whose only zeros arcat x,. x,, ... . x .
[: andif h'tx) =0 for i=1,...,m, then
A " tS'(x—.r,)
Shix) = N —— (8)
— |h'(x)| .
=1 t
4
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Before beginning the task of eliminating the delta functions, we shall simplify Eq. (1)

. slightly by rendering the integration variables dimensionless. To do this, we make the scaling
transformation
u‘—bul' = u,let. (i=0,...,n-1) (9a)
Then
dul =ctdu/ (i=0,..,n-1)
and
- 1_‘1 l—l
' l( Ny zoe )>b):l( N ouz-e )>b/c¢). G=1,..,n)
— 7y J -— J
j:() J:O

Furthermore, since Eq. (8) implies that élax)=|a| "!4(x), then

T | n-1 n-1
é(t—c—l l u,al) =é{l— ¢ et \_ u!'al)= t-lé{l - -\_ ul'a,)
d =0 1= 1=1{)
an
n~-1 n —‘l n —‘l
6{ Ny ,)zd{cl }_ “['b,) = (cl)'lé( l ul'h' )
r=1{ 1=10) t=0)

Substituting the above forms into Eq. (1), and then relubeling the integration variables u,' by
removing the prime,

u'—u

{ it

, (i=0,...n-1) (9bh)

we obtain

) n m 14 2n 14 2n
P 0,0) = [3 exp(—[}ct)(ct)'t‘l(ct)'zl du ’ du [ d0 l de ' db J dg
" 0 0 0 n-1 1 1 ), n

0 0 0 )
n -1
. . -1 N\ . S .
X explfbl —(z e) i ” IﬂOl)smOl I( e uj(z ej)>h/ct) -z e >cosy)
=1 1=0
n-1 n—1 .
xb(l - \_ ulll—(z-e()(z-e") 6{ N " l(x- e)—(7 e)(x e, )(7 -e ) I)
t =) t=0
n-~|
x b{ l u'[(y-el)-(z-e’)(y-e”)(z-e”)'ll). a0
t=0

For brevity we shall henceforth refer to the three delta functions in Eq. (10) as, reading from
left to right, the t-delta function, the x-delta function and the v-delta function fef. lg. (43) of Ref. 1.

We turn now to the task of integrating out these delta functions.

..
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2. ELIMINATING THE x- AND y-DELTA FUNCTIONS

We define the vector variables AA,, ., A by

-1 =1

=S u=Sue. (i=1,.,n an .
Lo J e J J
J=0 =0

Geometrically, A, is the (scaled) position vector f)—§i of the point at which the ith scattering occurs
[see Fig. 1]. We note in particular that A is independent of e, and hence of the two integration

variables 8, and ¢ . Interms of the vectors A , Eq. (10) can be written

) 0 x n i n 2n
Pn(t,O,O)=,B:c(ct)""3exp(—[3c't)J duo---I du J dOlJ d¢l---J de, II o |
! 0 0 o 0 o "o "=

n-1

X || i/(ommo KA, >ben| L, (12)

where we have defined

n 2n
L= L) dOJ dp, explBh1 —(z-e )~ )| A0, )sinf_

0
n—l
» X I(A >b/ct) K-z-e > cosy,) 6(1 -2y, +A,u(z-en)—l>
.. t=0
>
ﬁ Xé(A -A (x-e)(z-e )")é{A —-A (y-e )z-e )'l). 13)
3 nJx nz n n ny nzZ n n

The quantity L in Eq. (13) is seen to be an integral over all directions of the vector e, Our

goal in this section is to evaluate L analytically, and in the process eliminate the x-and y-delta

functions. To this end, we first change the integration variables in L from (8 . ), the polar and

azimuthal angles ofen in the x,ry"zn-frame (see Eqgs. (5) and (6)], to (0,¢), the polar and azimuthal
anglesof e inthe xyz-frame. This change of variables allows the dot products involving e inthe

integrand to be written in the relatively simple explicit forms
x-e = sinficosp, y-e =sinfising, z- e, = cosf). (14a)

The Jacobian of the transformation (0, ,¢,) > (60,¢) is such that the form of the differential solid
angle is preserved, so we have -

sind, d0, dg, = sinf d0 d¢p. (14b)

......
.......
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Since 0, appears as an argument of f in Eq. (13), we will also need a formula for f_ in terms of
and ¢. Such a formula can be obtained by first noting from Egs. (5b) and (6) that cos) =z -e =

e, - e .expanding the latter dot product in terms of xyz-components, we obtain
6,=0,06,¢) = arccosl(x-e, _,)sinfcosg + (y-e_ _,)sinOsing + (z-e, _,)cosOl. (15)

Now substituting Eqs. (14) into Eq. (13), we get

n 2n
L= [ do I de exp| b1 —sec())lﬂ()u(ﬂ,w)sin() I(Au>h/ct) I(—cosf >cosy,)
0 0 ’

n-1
X é(l - }_ u, + Ausecﬂ) é( A’u— AutanO oos¢)é(A"‘y— Autan() sing ), (16)
=0
in which 6, (8, ¢) is understood to be the function in Eq. (15). The dependence of the integrand on
the integration variables  and ¢ has now been rendered completely explicit, so we can perform
these two integrations. We shall integrate first over ¢ with the help of the y-delta function, and

then over 0 with the help of the x-delta function.

Since —cos0=cos(n - ), the second [-function in Eq. (16) essentially requires that 6>n - .
This requirement, co''pled with the fact that g, <n/2 means that 8> n/2, so we can increase the

lower limit on the O-integration from 0 to n/2. We rewrite Eq. (16) in the iterated form

n—-1

143 N
I = I dO expl (1 — sech)|sinf I(A" ’>b/ct)l(—cos0>cosw0)é(l - u, + An’zsecﬂ)ll', (17a)
nr2 * o
where
2n
L' = J dp 0 (O PNHRA -~ A tanflcosp)dA — A tanf sing). {17h)
n n n.x n.2 ny nz

The details of evaluating first L’ and then L turn out to depend upon the signs of A,,  and
A, ., i.e., upon which quadrant of the xy-plane the vector Gb?" projects [see Fig. 1]. But it isclear
from symmetry considerations that the final result must be the sume in all cases. Therefore, we

carry out here the analysis only for the case in which S, lies above the first quadrant —i.c., the
Case: A, >0 and /\,”>O. (18)
Denoting the argument of the y-delta function in Eqg. (17b) by

h(¢) = /\n_v-/\"_:tun()sin(b, a9

we rewrite that equation as
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[:-. 2n

; L' = ] . dp A0 (B.NSA, —A tanfcosp) A, |<|A _tanb) lhig)), (20)

- . e
-A‘“..‘- L

VR NN

where the /-function makes explicit a condition that is clearly necessary if & is to vanish for some
value of ¢. Assuming that condition is satisfied, it follows from Eq. (19) that there will in general

be two angles, ¢'Vand ¢‘2’, for which h vanishes, namely those angles for which

sing'!! = sing'?' = A, A, tanf). (21a)

Since A, ,>0and 8€(n/2, n) [cf. Eq. (17a)], while A, ,>0[cf. Eq. (18)], the quantity on the right
side of Eq. (21a) is negative. This means that ¢'!’ and ¢'2' must lie in the third and fourth

"‘.
e
.
b

quadrants, respectively; thus, using cos?¢'"' =1 - sin’¢'"", we deduce that
cosd)m = (A’lz,tanQH—A”‘Z\,)m/(/\utan()) = —cos¢‘2' . 21b)

Now, from Eq. (19) we have h'(¢) = - A, ; tanB cosg, so using Eq. (21b) we deduce that

@) = ') = cA”‘-’zmnza_A,f))W.

Therefore, we may use the rule in Eq. (8) to write

2
Sthi@) = (A 2 tan®0-A )12 S@-0'"" (22)
* t=1
Substituting Eq. (22) into Eq. (20), the ¢ - integration becomes trivial [cf. Eq. (3b)]: it vields
2
L= 1A, |sIA, tandh(A 2tan®9—A %) N 0 @6 NEA, — A, tanbcosp") (23)
' =1 i -
When the expressions for cos¢'’ in Eq. (21b) are substituted into the delta functions in Eqg. (23) we
find that, for the case A, >0 being considered here, the argument of the { = 2 delta function

never vanishes. That term may therefore be dropped, and Eq. (23) reduces to

L= 1A, |sIA, tandiA 2tan®0-A 2710 0.6 A ~14 Zanto-a 21 24

where l)"((),d)"’) is found from Eqgs. (15) and (21) to be

=, l)”((),dim = arccoslix-e  Jeosth A YA ‘:tunzf) ~-A i)w

{4 "

+(y-e”_l)cos()/\':}/\,v L tlz-e _l)co.sl)l. (25)

Substituting the above integrated form of 1" into Eq. (17a), we obtain
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n ":‘ .
L= I(Au > Wet) '”Qd() I(—cosf >cosy,) I(IA"\VISIAutanOI)é{\l - 2}) w + An‘zsec())
t=

X explBb(l —sech)lf0, 0.9 Nsind (A *tan’0-A )" skon,  (26)

where, in anticipation of using Eq. (8) again, we have redefined A to be

RO)=A —~(A Ztan®0-A )12 (27)
nx nz ny

Noting that the integration variable 6 is confined to the second quadrant, where the tangent is

negative, we see that k vanishes only at the angle 6!’ defined by

tand'!’ = -(A,l’~;+ AIZV)W/A . (28a)

4 14

This fact, coupled with the second quadrant restriction, implies that

singf' "= A2+ AN | o'V = ~A /A (28h)
. nx n.y n ngz n
':' The above formulas in turn imply that
9
ﬁ secl = —A A A an0' =2 A N2 A tan’-a P = A @280
n e ne nx ny n.z ny n.x
- Now, the derivative of the function in Eq. (27) is
g
E h'(Gy = — }(/\”itun")()—A ”‘“"b’ 1/22A,22,tun9 sec’d .
Putting = 6!’ und using Egs. (28), we find that
-
S O =A%+ a)aZata
. nx v ] n.x n._z
. The rule in Eq. (8) then allows us to write
ShON=A A A”TAT 4+ AT an_o, (29)
nx nz n n.x n.y

Substituting Eq. (29) into Eq. (26), the # - integration is now trivially performed, with the result

-1
L= IA,  >betl(—codt ' >cosg ) IIA v|s|A”mno“’|m(| =D A ')
- ’ =0

f

* explb1 —seet "NAO @1 @ Nsind A tan®0' 2 A )

<A A AT

"y

R

_+.f\_“~'> 2 (30)

.......
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Substituting for 8!’ from Eqs. (28) and simplifying, we finally obtain

n—1

— -3 \
L= I(A,u>b/ct) I(An'z /A >cosy ) explfbll +A"/An£)|ﬂ9")/\”‘z A é(l -S> u —A ), (31

=0

where 6, is now given by

()” = arccos(-e A"/A"). (32)

n-1

Notice that the result in Egs. (31) and (32) is manifestly independent of the signs of A, and
A, ., and hence of the case assumption in Eq. (18); indeed, if the foregoing analysis is repeated for
the cases in which either or both of A, ; and A, , are negative, the final result will still be Egs. (31)
and (32).

Substituting Eq. (31) into Eq. (12), and also putting sin()ldf)l = —dcosﬁl fori=1,..,n-1,we

obtain the following expression for P (1,0,0):

n © 1 2
P (6,0,0) = B" ctet)* S expl—fict) [ du J du J dcost) I dep, -
n s 0 0 0 n-1 ) t 0 1

n-1

|| 1A, >bec0 1A, > KA, /A, >cosy,)
2 4 ngz n 0
=1

1=

1 2
X J_ldoos()n_ljo dd)”_l(

Ty
f}

[

o

n-~1

n
x( [Iﬂf)l))exp[[}h(l+A“/A“,)I /\'“/\;36{1 - —An). (33)

=1 =0

[n this equation, the vectors A,,...,A aregiven by Eq. (11}, and ()” is given by Eq. (32).

3. ELIMINATING THE t-DELTA FUNCTION

The task of integrating out the remaining delta function [formerly the delta function
involving t in Eq. (1)] is accomplished differently for n =1 than for n =22. We consider first the

relatively simple n=1 case, for which Eq. (33) reads

r

- -2 ‘ -
P (1,0,0) = 8 _clct)” “expl—fet) ln dunl(Au>b/d)l(Alz/Al>co.sq,0)

X A0 expl b1 +A A WA AT —u ~A) (34)

Since, according to Eqgs. (11) and (5a),
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Ay = ugey = uyz,
then Ay ;=A =y, and Eq. (32) gives
0, = arccos( -e, - uje,/u,) = arccos(-1) = n.

The condition A;;/A)>cosy,, isjust 1>cosy,, which is always satisfied. Eq. (34) therefore
simplifies to

l’l(l,0,0) = B.c(ct)'zexp(—ﬂct) [ duol(u0>b/ct)ﬂn)exp(2ﬂb)uo_zé'(l —2u0).
¥ 0
Using the rule in Eq. (8), we have
. —a-lg
01 -2uy) = 27 8luy - 1/2).

Therelore, the above equation is

n

P.(60,0) = 2_l[3qc(ct)_2expl-[J(Ct—‘zb)l/(u)l dug l(uy>betuy *Sluy~1/2).
' 0
The u,-integration is now trivially performed with the aid of Eq. (3b), giving

P (£,0,0) = l(ct>2b) 2¢  (eti™* expl - Blet—2b)| fin). (35)

This result agrees exactly with Eq. (28) of Ref. 1, which was obtained from comparatively simple
physical arguments. This agreement constitutes a reassuring, if somewhat limited, consistency

check on our calculations thus far.

We now turn to the more interesting and challenging case in which n=2. As a prelude to
eliminating the remaining delta function in Eq. (33) for that case, we make two more integration

variable transformations. The first of these is the transformation
(u,_y,cos0, b, _)>(A  cosyp,n), (36a)

where ¢ and n are the polar and azimuthal angles of the vector A, in the xyz-frame. Since hoth
sets of integration variables in Eq. (36a) simply integrate the point S, over all space, we have the

differential relation

2 .
u du w1 (Ico.sl)“ . d¢” _

n-1

| = AZdA deosy . (36h)

Using this relation and the fact that A, ,= A, cosy, Eq. (33) becomes, for n 22,

LA
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,l

P (t,O,O)=B"c(ct)"—3exp(—lict)I du ] du ] dA
n s 0 0 0 n-2 0 n .

2

1 2n 1
dq)l [ dcosG'l’2[ do, _3 I doosy [ dn
| 0 ~1 0

[ R
y 4
-

I

2n

v r

1
X I dcosf I
. | 1

r
LA

0

f.f

n-1
X( Il I(Au>b/ct))I(A"msw>Hct)l(costp>coswo)

=1

T
AR .
A

n n-—-1
x( I ﬂGl))exp[[ib(l +secy)] cosypu, T b(l -, - An) . (=2) (37
(=1 1=0

in which it is understood that the integration variables cosf, and ¢, are absentif n=2.. The
quantities appearing in the integrand are given in terms of the integration variables as follows:
The (n~ 1) vectors e, .., e, , arecalculated from the recursion relation in Egs. (A7). The (n~1)

vectors A,.., A _, aredefined through Eq. (11):
A=Nue. G(=l.,n=1 (38a)

The vector u, _,, and its associated magnitude u, _, and unitdirection vectore, _|,arealso

defined through Eq. (11), but now written for i = n in the form
n —_‘2
=u =A - Nue (38h)

u—len—-l n-1 n — ]
=0

And finally, 6, _ and 0, are given by [see Fgs. (5), (6) and (32)}

/4

0,_, = arccos(e, _,-e ), (38¢)

i

arccos(-e, A /A)). (38d)

n
Our second transformation of integration variables is another scaling transformation,

we = ul//\”, (i=0,..,n-2) (39a)
which evidently gives

- 4 _l [T ¥
duy-du, _,dA = A" degde, L dA {39b)
This transformation has the effect of making A , the "unit of length” for all distance vectors. Thus,
fori=0,.,n-2, we have u =A v, where

v =pe. ((=0,.,n-2) (40a)

! Pt

And using Eq. (38b) we sce that we canalso write u, | =A v, provided wedefinev, | by

12
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n-2
v e =v —a- > ve ., (40b)
n—1"n-1 n-1 — gy
L] J=0
where a is the unit vector in the direction of A
a=A /A = xsinpcosn + ysingsinn + zcosyp. (41)

Finally, we see from Eq. (38a) that we can write A=A B, fori=1,..,n-1, where

(-1 -1
B=Nv=\Nye (i=1,.,n=1 (42)
t —f )}

I:() j:()

With Egs. (39) - (42), the integral in Eq. (37) takes the form

&

n—1
du, - [0 du”__,]( A A

P £,0,0) = B”c(ct)"' expl(— [ict)[
“Jo

0

1 2n 1 2n 1 2n
X I dcos()l[ de, f deost) [ d¢ . [ dcosq)[ dn
n-2 n-2
-1 0 -1 0 cosy 0
n-1
x( [ naB,_>bet ) 1A cosy>bico
=1 -
n n-1
x( | 1 70,1 )expipbit +secyrt cosp A -0 " b(l -A ll + e ) (n=2) (43)
=1 l=()
Now we define
::—.l
VEla+ > o (44)
=0
Then the delta function in Eq. (43) can be written
n-‘l
6(1-/\" 1+ >0 )zé'(l—VA'I)=V“6‘(A”—V"). (45)

1=
where the last step follows from the rule in Eq. (8). When Eq. (45) is substituted into Eq. (43), the
A, -integration can be trivially accomplished: the delta function is thereby eliminated, und A is

everywhere replaced by V '

Before writing down the result of the A ”-inlcgruli()n, we want to do two more things to Eq.

plane, which thus far has not been specified. Owing to the symmetry ol our problem about the z-

[ R

(43). The first is simply to replace deosy by =singdy. The second is to fix Lthe orientation of the xz-

..........
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axis, which exists because the laser and receiver both lie on that axis, we can choose the
orientation of the xz-plane freely without affecting the integrand. Let us now stipulate that the xz-
plane contains the vector a. 'This implies, firstly, that n =0 in Eq. (41), and secondly, that the n-

integration in Eq. (43) can be replaced by a simple factor of 2n.

Performing all the operations described above, Eq. (43) becomes

» @ 1 21
P 0,0) = 2nBs"c(ct)"—3exp(—Bct) ‘0 du, - L d”n-?[ _ldcosf)l L) dp, -

n—-1

1 2n U
X I deos) J de, _, [ dq!( [ I(V—'Bm>b/ce))l(v-‘msw>ucn
-1 0 “Jo

=1

n
2)

X expl[Bb(l + secy)] ( I I /(f)l))cosq'sinq) vy, -2 (n=2) (46)

n-17?
r=1

in which it is understood that, for n =2, the integration variables cosf, and ¢, are absent. The
quantities in the integrand of Eq. (46) are related to the integration variables according to the

following specifications: The unit vectors €, -, €, o are found from the recursion relation in

Eqgs. (A7), while the quantities e Y 1 6"_ ¥ 0, B,, ..., B, _,and Varedetermined from the
formulas:
a = xsiny + zcosy; (47a)
n-2
e =a—3 ve (47h)
n-1t " n-1 — Ty
=0
f,_, = arccos(e, _,-e ) (47c¢)
6, = arccos(~e, _ -a) (47d)
l-‘l
B=Xve: (i=l,.n-1) (47e)
=0
n—1
V=1+ D o, (470

The content of the above relations is summarized geometrically for the cases n =2, 3 und 4 by the

diagrams in Fig. 2.

14
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4. BOUNDING THE INTEGRAND AND INTEGRATION DOMAIN

AR SO ] rrrv-v1

In Eq. (46) we have, at last, an expression for P (1,0,0) for n=2 that is free of delta functions.
It is evidently a (3n - 4)-dimensional integral, the complexity of which will usually dictate that it
be evaluated numerically rather than analytically. However, Eq. (46) is not suitable for numerical
evaluation for two reasons: First, the integration domain is unbounded, since the integration
variables v,,...,v, o have infinite runges; and second, the integrand is unbounded, since v, _,can
vanish. |Since secp—®» as p—>n/2, the exponential factor involving secy in the integrand might
also scem to present a boundedness problem; however, the last I-function in the integrand imposes
the condition bsecy <ct/V <ct, where the last incquality follows from the definition of V, so the
exponential is not a problem.| It must be emphasized that these unbounded features of Eq. (46) do
not imply that the expression therein is mathematically ill-defined. But they do imply that, if we
want to evaluate the integral using conventional numerical techniques, we will have to subject it
to some integration variable transformations that render the integrand and the integration

domain bounded.

The key to obtaining a set of integration variables for which the integrand and integration
domain are bounded turns out to be the set of vectors Co' Cirn Cn _y» Where Cl is defined to be the

vector from point S to point S, (see Fig. 3):

a, if (=0,

C = (48)

Notice in particular that

C,=1 and C__,=v _,e (49)

n n-
These vectors C, will not themselves be our new integration variables, but they will be crucial for
defining those new variables. Essentially what we are going to do now is, first, replace each pair of
integration variables (6,¢ ) in Eq. (46) by a new pair of variables (6" ,¢" ), and second, replace each

length integration variable v, by a new angular variable \

The variables 0 and ¢, were defined to be the polar und azimuthal angles respectively of the
vector e relative to a coordinate frame whose polur axis is z =e _,. We now change integration

variabhles according to

. (cus(ll,r[;')«D(('os(l",(b"), (u=1,.,n=-2) (50a)
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where 6, and ¢', are the polar and azimuthal angles respectively of e, relative to a coordinate
frame whose polar axis is z',= C,/C;. The Jucobian of this transformation is such that each

differential solid angle element dcos@ d¢ is preserved, so we have the differential relation

dcos, d,---dcosO, _, dep, _, = dcost)', d@’,--dcost’, _,de’, _, -
= (sin@'-sin@’ | _,) dO’ de’|--dO’, _,dP’, .

(50b)

Since the integration limits on § and ¢ encompass all possible directions of e , it follows that 6",
and ¢', will have the same respective limits. By definition, 0’| is the angle between e and C, for

i=1,..,n-2,and we can evidently extend that definition to i =0 by simply defining
0, =y (51)

The geometrical relations between the old and new polar angles are illustrated in Fig. 3. The
orientation of the azimuthal plane that defines the zero of ¢’ is open, but there will be a minimum
of computational work later on if we take this plane to be the one defined by C, and z. Thus, we are

essentially transforming from the x,ylzl-frame of Egs. (5) and (6) to the x'ry’lz"-frame defined by

' =C,IC,
" =(zxC)/|lz2xC| (i=1,..,n-2) (52a)

«
It

X X, =y, X,
relative to which e has the component representation
e, = X', sinf’ cos@’, + y' sinf) sing’ + 2’ costh . (i=1,..,n-2) (52h)

A detailed procedure for calculating the xyz-components of e from the xyz-components of C and

the angles 6’ and ¢’ is developed in the Appendix [see Eqs. (A8)].

Q)

A I3 "v” n-2 . " M
Pn(l,0,0) =2n /I\_"r(r‘l)"—"cxp(—[ir‘l) [ llv(' ‘ (I()'n{ | | [ v [ do’ [ de¢’ l
: n 0 S N "o '

n-1
x( [ 18, > Vbien | lcosty > Vien explipbid +sect’ )|

t=1

n w-2

X( I |ﬂ()')) c()s()'"( l I sin()', )v”'_!l V—("_z’, (n=2) (53)

t=1 1 =0
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wherein it is understood that the product in braces is to be omitted in the case n=2.

Next we make the integration variable transformation
v —C. cos)' .
|3 t 13
C sinf’ ) '
] 14

vy Earctan( (i=0,...,n=-2) (54)

The nature of this transformation can be best appreciated in terms of the geometry of the triangle
formed by the three points S ,S | and S , as shown in Fig. 4: [f the line through S, perpendicular
to the line through S and S _ | intersects the latter in the point T, then v, is just the angle between
-S_:fl and 'S-n_S"H. It can be seen from Fig. 4, and it can also be shown from Eq. (54), that as v, runs
from 0 to », the angle v, runs from -(n/2 -0’ )to n/2. Therefore, this transformation renders the

integration domain bounded; we shall see shortly that it also renders the integrand bounded.

To calculate the Jacobian of the transformation defined in Eq. (54), we begin by solving that

equation for v;:

v, = C' sin()’l tanv, + C,. cos()". (55)
From this it follows that
(')vl .
— =C sinf' sec’v (56)
av t t t
[}

We also note from Fig. 4 that

C _ ,cosv. =TS =C sinf’,
+1 t S t ]

from which it follows that
C = (,'l sinO’isecvl. (57)

i+1

Now, a moment’s inspection of Eqs. (55) and (57) will show that v depends on v, and C, while C in

turn depends on C 1 and v,_y ete, and hence that v, depends on v o Vio 1 Voo but noton v 1

Vi Ve o . This implies that the Jacobian determinant o(v Jav) has zero entries everywhere
on one side of the main diagonal, and therefore that the determinant is simply equal to the product
of its diagonal elements:

Mogrt, ) "2 v

— =[] =. (58)
0(1’0,....\'”_2) =0 ()vl
Taken together, Fqgs. (56) - (58) imply that
alv,,...,v0 y jn-2 n-2 r)v

(—————](VO “'V'l:jz, ( | l sinf)’l ) I I ; sm()
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But Eq. (49) implies that C, _,=v, | and (=1, so we conclude that

a(vo,...,vu_2 ( [,
a(vo,...,v"_) \

Eq. (59) tells us that the transformation Whses U,y )2 Vs v, ) defined in Eq. (54)

|0sino")u'2 = |]c. (59)
t=0

brings the integral in Eq. (53) into the form

5 :pn nf2 n-2 ¢ nf2 n
P (£,0.0) = 2r B "clct)" " “exp(—Bc) ‘“ do’, ] dvo{ [ ] [ do’ J dv, J" d«j;’l}

H’O- nr2 0" -n/2
n—-1
x( | I(Bu>Vh/cl))l(cos9'“> Vhict) expl BBl +sect’ )|
i=1
;on n—-2
- ' v . -t =2
x( |]/wl.)) cosf) "( [lc )v : (n=2) (60)
i=1 t =)

wherein it is understood that the product in braces is to he omitted in the case n =2.

For n=2 the last two factors in F.q. (60) are both unity (recall that C; = 1), so the integrand
is clearly bounded for n=2. [The exponential involving secf)’ in the integrand causes no
boundedness problems, because the last [-function in Eq. (60) imposes the condition
bsec' | <ct/V <ct.| For n=3the integrand of Eq. (60) contains factors of C,...,C, _,, any of which
can be arbitrarily large. However, the contribution of these factors to the integrand is moderated

by the quantity V according to
n-2 n-2

( [lc ) v = e, (n=3)
=0 =1
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The definition of V in Eq. (470) shows that V is just the perimeter of the figure OS, 8,0 [see
Fig. 31, and it is obvious that this perimeter cannot be less than twice the length of any cord C;

therefore, C,/V<1/2 for all i, whence

n-2
( [ C,-) v=1m? < e (n=3) (61)

We conclude that the integrand in Eq. (60) is bounded for n=3.

We collect below, in Egs. (62), the formulas through which the various quantities in the
integrand of Eq. (60) may be calculated in terms of the integration variables. Eq. (62a) follows
from Eqs. (48), (47a) and (51); Eq. (62b) follows from Eqs. (55) and (49); Eq. (62¢) is Eq. (52); Eq.
(62d) follows from Eqs. (48); Eq. (62e) follows from Eq. (55); the components e; ., ¢; , and e, , in Eq.
(62f) are to be calculated from C,, #',and ¢’ according to the formulas in kEqs. (A8): Kq. (62g)
follows from Eqs. (48); Eqs. (62h) and (62i) both follow from the second of Eqs. (49); Eqgs. (62)) and
(62k) both follow from Eq. (47e); Eq. (62]) is Eq. (470); and finally, Egs. (62m) and (62n) follow from
the definition of ) as the angle between e, _| and e, together with the fact thate, = —a= -C.

The geometric content of the formulas below is summarized in Figs. 3 and 4.

C0 = xsinO'n + zcos()'o (62a)
Uy = sin()'o tanv, + cosG'o {62bh)
e, = (62¢)
C,=C_,-v_,¢_, 162d)
v, = Clsin()’itanvl + C‘ cosO'i (n=3;i=1,..,n-2) (62e)
e, =xe +ye +ze, (620
Cn—l :Cn-‘l-un-‘leu-‘z (62g)
v, 4 = C"_l (62h)
e, =C, /C,_, (62i)
Bl =y, e, (62))
B=B_,+tcv _,e | (nz3.i=1,..,n-1 (62k)

) —‘l
V=1+ >0 621

1 =0
()l = arccoste, | -e) ti=1,..,n=-1) (62m)
f, = arccost-e _ -C) (62n)

. .". .' . G-
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Notice that Eqs. (62d,e,) and Eq. (62k) are not used if n=2. The interrelated, recursive structure
of the formulas for C, v, and e, in Egs. (62a - i) would make the derivation of explicit formulas for
those quantities quite complicated, especially if n = 3; fortunately, explicit formulas are not needed

for computational methods that utilize a digital computer.

Eqgs. (60), (62) and (A8) are quoted in Ref. 1 as Eqs. (44), (45) and (46), respectively.

5. CUBING THE INTEGRATION DOMAIN

The integral expression in Eq. (60) is free of delta functions and has a bounded integrand
and a bounded integration domain. It is therefore amenable to direct evaluation by stundard
numerical methods. However, many numerical methods are easicr to implement if the integration
domain is the unit cube. In this section we shall make a final change of integration variables to

bring Eq. (60) into the form of an integral over the (3n ~ 4)-dimensional unit cube.

Each of the integration variables €' , v and ¢’  in Eq. (60) measures an angle that has a
clear physical interpretation in terms of the geometry of the path of an n-scattered photon [sce
Figs. 3 and 4. We are now going to change from these integration variables to a new set of
variables, P, q, and w , whose physical interpretations are quite obscure but whose lower and
upper integration limits are all 0 and 1, respectively. The particular transformation that we shall
use for this purpose also has the convenient property that its Jacobian is a constant, this means
that, apart from a different factor in front of the integral, the integrand in Eq. (60) will be
unchanged by the transformation. The actual derivation of our transformation equations uses a
special analytical technique in Monte Carlo theory called the "generalized inversion gencrating
method.” This analytical technique is discussed in detail in Secs. 2-5, 2-6 and 4-6 of Rel. 3. The
derivation, although not particularly difficult, is moderately lengthy: therefore, we shall be
content here simply to state the result and then verify that the transformation indeed has the

special properties claimed.

With Ko defined by

Ky = @o2n- q'ﬂ)/uz, (63a)
we define the variables p, and g, so that

0y =all - (1 =k p'?L, (63b)

1

vy = all/2 = g (1 =ryp )" (63c)

]
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We also define the variables p, ¢, and w fori=1,..,n -2 so that

0, =n - p', (63d)
v, = n(l/2 - qp '), (nz3; i=1,.,n-2) (63e)
¢', = 2nw, (630

Consider Eqs. (63b—). The first of these two equations shows that, as p, runs fromOto 1, 6",

runs monotonically from 0 to

12 _
il = (L-xy) "t = g,

where the equality follows upon substituting for « its definition in Eq. (63a). Eq. (63c) shows that

for p, and hence also 0, fixed, as g, runs from 0 to 1, v, runs monotonically from n/2 to
n 12 = (1 =iy py) %1 = 0’ - 2,

where the equality follows upon substituting for (1 -« po)”2 from Eq. (63b). We conclude that
Eqs. (63b—c) map the unit square in p,q,-space onto the two-dimensional region in B’ yv,-space
defined by the integration limits on 6’ and v in Eq. (60). Since €' is independent of g, then the
corresponding Jacobian of this subspace transformation is

af) v)

0o LA

P, 9,

-172 12 2
- = (/2N —xc p )~ e Nkl —r p )T = K02
(pya,) 0fo 0 00 0

Turning next to Eqgs. (63d-0), the first of these equations shows that, as p runs from 0 to 1,
#', runs monotonically from n to 0. Eq. (63e) shows that for p, and hence also 6 fixed, as ¢, runs

from0to1,v runs monotonically from n/2 to
n(l/2 - p'*) = 0", - w2,

where the equality follows upon substituting for p‘”2 from Eq. (63d). And finally, Eq. (630) shows
that,as w runsfromOto 1, @', runs monotonically from 0 to 2. We conclude that Egs. (63d-0
map the unit cube in p g w -space onto the three-dimensional region in 0’ v ¢'-space defined by
the integration limitson #' ;v and ¢’ in Eq. (60). This mapping is one-to-one everywhere except
on the plane defined by p, =0, which is mapped onto the line defined by O = and v =n/2. But
since that plane and line have zero volume, this lack of strict one-to-oneness has no effect on the

three-dimensional integrals of interest to us here

AN

For i >0 we note from Eqs. (63d-e) that & is independent of both ¢ and w , while v is
. independent of w . [t follows that the Jacobian of the transformation between €' v @' -spuce
21
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and p,q,w;-space defined by Eqs. (63d-f) has zero entries everywhere on one side of the main

diagonal. Therefore,
‘ 6(9 W @' )|

] i -172 12 3
— — — | ={n(1/2)p: I H2n] = 1.
a(p.q w) P i

ap aq r)w

s AsS S,

Finally, since there is no cross-coupling between integration variables with different index

values, the Jacobian of the full transformation is just the product of the subspace Jacobians.

Therefore,
[ [ ' ’ ’ 2 .
a0 O,VO,O l,vl,cp l,...,o n_2,vn_2,¢ "_2) Ry ey n_a
= —— (n") =-n i, (64)
a(p0’qO’pl’ql’wl""'pn—2’qn-2’wn—2) 2 2
'. We conclude, then, that the integral in Eq. (60) transforms under Eqs. (63) to
1 n-2 1 1
P (£,0,0) = i*" Vi B c(ct” dexp(—Pet) dp dq [ [ dp J dq I dw ]
n 05 s 0 0 t g 1o t
n-1
x( I I(Bu>Vb’ct))l(cosﬂ'0> Viiet) expl b1 +sect’ )|
=1
n n—2 .
' v —m-l)
: x( | |ﬂ0l))cosf)0( |]c ) % (n22) (65)
.. =1 =0

In this our final expression for P, (¢,0,0), it is understood that the product in braces is to be omitted
in the case n=2, and also that the integrand is to be evaluated in terms of the integration

variables through the formulas listed in Eqs. (62) and (63) [see also Figs. 3 and 4|.

Egs. (63), (64) and (65) are quoted in Ref. 1 as Eqs. (47), (48) and (49), respectively.

‘-.. 22

BRI Ay e e e T L A T R K P T Rt P RPAURNE N N S NN
o pte e e e e " A " " ",-" NN AT NN NI AL o PPV NI e e -“ - R R T CRONGNOR




L 2. A e e e N T e P NTE VTN T TR T TN

A RARIASIANAIAC sl aio s Wiy el i A Ad S ERER C TN A S R NSRS

NWC TP 6605

FIGURE 1. Trajectory of an n-Scattered Photon. The photon leaves the origin O along the
positive z-axis, scatters exactly n times in the cloud, and then returns to O at an angle p with the z-
:: axis. The ith scattering, through polar angle f and azimuthal angle ¢, occurs at point Sl. The

vector fromS to S, , isdenoted by u =e u, where e isa vector of unit lengthand S;=§, =0
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(a) n=2 ®) n=3 (©) n=4

FIGURE 2. Geometric Interpretation of the Relations Among the Principle Variables in Eqgs. (46)
and (47) for (a) n=2, (b) n=3, and (¢c) n=4. The vector v, with magnitude v, and unit direction e,
represents the scaled path of the photon between the ith and (i + 1)th scatterings. The angles 6,and
@, are the polar and azimuthal angles of e relative to the polar directione, . The vector (Tgt for
i=1,.,n-1 isdesignated B; the vector ()_'S" is designated a, and has unit length and polar angle
@. The xyz-frame is defined so that e, =z with a lying in the xz-plane. Notice that the quantity V
defined in Eq. (47f) is the perimeter of the (generally non-planar) figure OS, 'S, O.
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(a) n=2 () n=3 (c) n=4

FIGURE 3. Geometric Interpretation of the Relations Among the Principle Variables in Egs.
(53), (60) and (62) for (a) n=2, (b) n=3 and (¢c) n=4. The angles 6’ and ¢/ are the polar and
azimuthal angles of v,=ue, relative to the polar direction Cizﬁ (i=1,...,n - 2); the other
quantities are as specified in Fig. 2. (The vectors Bl=6§‘ are still present, but they are not shown
here in order to avoid complicating the diagrams.) Note that a and g in Fig. 2 have here been

renamed C0 and 6,,', respectively.
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FIGURE 4. Geometric Interpretation of the Variable v, Defined in Eq. (54). Together, Figs. 3 and

4 show geometrically the relations that obtain among the principle variables in Eq. (60) and (62).
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APPENDIX: COMPONENTS OF THE VECTORS e, IN THE xyz-FRAME

Let C be a vector with components C,,C, andC, relative to some coordinate frame F with
basis vectors x, y and z. Define frame F' as thét frame whose basis vectors x’, y' and z’ satisfy
z'«C and y'xzx C[see Fig. Al|. Finally, let e be a unit vector having polar angle 6’ and
azimuthal angle ¢’ relative to frame F'. We want to calculate the components e.e ande ofe

relative to frame F in terms of the quantities C , (,'y, C,0 andg'.
We begin by defining the auxiliary quantitiesc , ¢ , ¢, and Cyy by
— v v —_— v v = v v v 2 A 2 l’2
¢, =C,/IC, cy—(’y/(" C,/C, = (C, +(, )Y4C. (A1)
Then the polar angle 4 and azimuthal angle £ of C in the F-frame are given by

cosp = c,, sinug = Cyy (A2a)

cosé = ¢, /c”, siné = c, /ny' (A2h)

Fig. Al shows how the angles i and & determine the orientation of frame F’ relative to frame F.
From the geometry of that figure, we can see that the projections of the primed unit vectors onto

the unprimed unit vectors are as follows:

X'sx = cospcosé = c,c, /C.:y'

x'-y = cosusiné = ¢ c, /cxy, (A3a)
X'z = -sing = =Cp

y X = -siné = —c‘,/c”,

yry=cos =c, /c_ry, (A3b)
y-z=0;

z'-x = sinu cosé = o

z'-y = sinusiné = ¢, (Adc)

z'-z=cosu =c,

Also, since ' and @’ are defined as the polar and azimuthal angles of the unit vector e relative to

frame ', then the projections of e on the primed unit vectors are

sinf)' cosd’,

”
[ 4
H

y'-e = sinl) sing’, (A4)

2'-e = cosl).
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FIGURE Al. Relative Orientation of the xyz-Frame and the x'y'z'-Frame. The latter frume is
defined by z'xC and y'xzxC. The angles u and & are the polar and azimuthal angles of the

vector C relative to the xyz-frame.
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Now we observe that the x-component of e can be calculated as

e, =x-e=[x'(x-x)+y(y-x)+z'(z"- x)| - [x'(x"- e} + y'(y'- e) +2'(2"- &)},
or

e, = (x'-x)x'-e)+(y’- x)y'- ) +(z"- x)z'- e). (A5a)

Similarly, the y- and z-components of e can be calculated as
e, = (x'-y)x'-e)+(y'-yNy'-e)+(z'- y)z'- e), (A5b)
= (x"-z)(x"-e)+(y'-z)y'- e) +(z'- z)(z'- e). (A5¢)

If we now substitute Egs. (A3) and (A4) into Egs. (A5), we find that the resulting equations for e ,

e, and e, can be written in matrix form as

e ’ )
e, ., /cxy -c, le S 5in@’ cos¢
e = |e /e in@' sing’ A6
y :cy/cxy c le,y c, ||s nf' sing (A6)
e, -¢, 0 c, cos0

Together, Eqs. (A6) and (A1) give the F-frame components of e in terms of the F-frame
components of C and the angles 6' and ¢'. But notice that, if C should happen to coincide with z,
then ¢, =c =¢, = 0, and the four quotient elements in the above 3 X 3 matrix become
indeterminate. Since in that special case we will have z’' =z, then we may as well take x' =x and
y' =y. Therefore, if Cry= 0 then we shall simply take the 3 X3 matrix in Eq. (A6) to be the unit

matrix (with 1I's along the main diagonal and 0’s elsewhere).

The foregoing result is actually used in two different ways in the text to calculate the xyz-
frame components of the unit vectors e, The first way is in connection with Egs. (5) and (6).
There, e, (i=1,...,n) is stipulated to have polar angle 8, and azimuthal angle ¢, in the coordinate
frame whose z-axis points along e, _, and whose y-axis points alongzx e, _,. Therefore, ifeu e
ande, are the components of e in the xyz-frame, and if €, 1y =(e, 2+ el'y2)”2, then above resuit

implies the recursion relation

€ x €128 -1 /el—|..[)' _Pl-l,y/el—l..ty €1z sm() COS¢
eyl = €121y iay CcixCiixy G-ty sinf sing |, (i=1,..,n) (ATa)
e, —€ 1y 0 € 1.z cos0,

where, from Eq. (5a),

(ATb)
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and where it is understood that, if e; _ Lay™ 0, then the 3 X 3 matrix in Eq. (A7a) is to be taken to be

the unit matrix.

Egs. (A7) show how the xyz-frame components of e, may be calculated from the xyz-frame
components of e, _, and the angular variables 6, and ¢,. These relations are required for a
complete interpretation of the “early” formulas in our analysis [specifically, Eqs. (1) through (46)|.
However, our final formulas for P (£,0,0) for n=3 [Eqgs. (60) and (65)] have as their integration
variables, not the angles 6 and ¢, but the angles 6..' and ¢,/ (i=1,...,n-2). These primed angles
are defined [cf. Eqs. (52)] as the polar and azimuthal angles of e, in the frame whose z-axis points
along C, and whose y-axis points along z x C,, where C, is the vector defined in Eq. (48). It follows
from the foregoing analysis that, in Eqs. (62), the xyz-frame components of the vectors €,.,€, 5

are to be calculated according to the following formula:

M ’ ’
€ . €, ,Cix /c‘._xy =€y /ci_ty € e smOi cosg;
_ P .
e, | = cuc“y/cw cu/cuy €y sinf,'sing,'{, (i=1,..,n-2) (A8a)
'
e, ~Cixy 0 <, cosO‘.

where

€ = Cu C, €y = CU /Ci' €, = Ci.z Ic, ¢

= (0 240 D120
oy = (€ 2+C Ve, (ASD)

and where it is understood that if ¢, ay= 0 then the 3 X 3 matrix in Eq. (A8a) is to be taken to be the

unit matrix.

Eqs. (A8) are quoted in Ref. ! as Eqs. (46).
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