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!. INTRODUCTION

This report is essentially an appendix to Ref. 1. We shall show here how Eqs. (44) and (49) of

Ref. I are derived from Eq. (43)of Ref. I. The derivation is a lengthy, purely mathematical exer-

cise, which requires no assumptions or approximations not already implicit in Eq. (43) of Ref. I.

'The article in Ref. I addresses the problem of theoretically calculating the instantaneous

power backscattered from a cloud in a so-called "monostatic lidar system." Such a system consists

of essentially two components: a pulse-type laser, which fires a short, highly collimated pulse into

the cloud at time t = O; and a colocated, conically baffled receiver, which measures backscattered

radiation at times 1>0. The ultimate quantity to be calculated is J(t), the power measured by the

receiver at any time t due to photons that have been scattered exactly n times by the cloud

particles, where n is any positive integer. In Ref. I it was shown that, for a sufficiently small

receiver, J,,(t) is completely determined by a certain function P,At,0,0) Isee Eqs. (19), (21)-(231 of

Ref. I I. It was further shown that P,,(1,0,0) has the following formal representation Isee Eq. (43)

and Eqs. (30)-(33) of Ref. 11:

"(0,0) Jexp(-#Ct) du* .. u I dOt  dt ... dO,1

X explflbM - fz-e -)l F f lO,)sinO, I( ut (z .e1)>b) I/-z e, >cos,, )

X 15f t-c - I  u [I-(z-e )(z-e ) 1 V " )(x-e)-(z-e)(x-e )(z.e )-Il

=o=0,x"(\u I(y.e )-(z-e {y'e )(z'e I-il). (I)

'The mathematical meanings of the various quantities in this formula are as follows: ., II, b and q'0

are any constants satisfying
.2 ~o1 ;,/ Sj1[, h._>t, 0)-q'(o<_tl2. (2a)

S[is any function satisfYing

S- l r 0)':fifo f2h)

N is t h I)irac delta funct ion, defined hy the Pair 01fequations

". - X()) - 0. if .r X t . (3a)

, h.) .-(x - . WA 4 (A (31h)

3
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K

for any function g of x; I is the "inequality function", defined by

1, if "inequality" is satisfied,
I ("inequality") --- (4)

10, if "inequality" is not satisfied;

* x, y and z are the basis vectors of a Cartesian coordinate frame, hereinafter referred to as "the xyz-

frame;" and finally, e0 , et, ... , e n are unit vectors given by

e 0 =z. (5a)

ei = x, sinOcosI ' + y, sinO, sino, + z, cosO. (i- 1... n) (5b)

where the auxiliary basis vectors x,, y, and z, are defined recursively according to

x, = x, y= y and zzZ, (6a)

y, =(zxet)/Izxeij (i 2,... n) (6b)

Because of the recursive nature of Eqs. (5) and (6), the xyz-frame components ore, will depend on

all the angles 0 I, 11 .... ,,. A computer-oriented procedure for calculating x-e,, ye, and z-e, from

these angles is developed in the Appendix Isee Eqs. (A7)l.

Physically, the vector
u e, -- u, t S + 1  IU =0, 1,., n) (7)

may be interpreted as the trajectory of an n-scattered photon between its ith scattering, at point S,

and its (i + I)th scattering, at point S, + I, with So and S, + 1 both coinciding with the origin 0 of the

xyz-frame [see Fig. 11. Eq. (5a) shows that the photon initially leaves the origin 0 along the + z

axis, and Eqs. (5b) and (6) show that the direction of u for i I ! is measured by the polar and

azimuthal angles 0, and 0, in a frame whose polar axis points along u ,

Eq. (1) is the starting point for our analysis here. Simply stated, our goal is to "pacify" Eq.

-. (I) - i.e., to reduce it to a form that can be evaluated by standard numerical techniques. The

most obvious obstacle to a numerical evaluation of Eq. (1) is the presence of the three delta

functions in the integrand; these must be analytically integrated out. An important tool for

accomplishing these integrations is the "delta function change-of-variable theorem" (see Ref. 2 flor

a proof of this theorem): If h is a differentiable function ofx whose only zeros are at x1 , X1, .... X

and if h'fx,)0 for i= I,..., m, then

N'(h(x)) = \ "  ' (8)
, ' Ih'(x, )1

.4
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Before beginning the task of eliminating the delta functions, we shall simplify Eq. (1)

slightly by rendering the integration variables dimensionless. To do this, we make the scaling
transformation

u,-* u" = 1u/ct. (i=0,...,n-1) (9a)

Then

du, =ctdu (i=O ,...,n-l)
and

I" "u (z'e)>b)([ u '(z-e )>b/ct). Ui=1...n)".'j =0 j=
J=O J=0

Furthermore, since Eq. (8) implies that 6(ax)= la - 1 (x), then

"'1 , - I U - 1 ,1 - I
• t - c- ) a ( c-I , a) t,5 I '

. ) =, t cL I=a - - u 'a)

and =0 =0 ,=0

It b )'b 4 " -' b
,.. u h,) =sct u,'b = (ct-s \ u 'h

-=0 =0 1=0

Substituting the above forms into Eq. (1), and then relabeling the integration variables u,' by

removing the prime,

Ui. n-l) (9h)

we obtain

,2n

1. (t,0,0) 11' exp( - fict) (co" I ( O) - '  du .. du, I j dO ( , ... I " d(,I I P,
-

0 
(O 0 0 0O 0 J

i==1

%"I- I "i-/I

- i
"  ll-(z.e )(z-e ) 5f a [(x-e)-(z.e )(x-e )fz( e 1

= 0

:." (5({ u [(y'el)-(z-e,)(y.e ,){z-e,)- I)l. 0

• ., t=0

For brevity we shall henceforth refer to the three delta functions in Eq. )10) as. reading from
left to right, the 1-delta function, the x-delta function and the v-delta function Icf. Eq. (43) of Ref. 1I.

We turn now to the task of integrating out these delta functions.

5
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2. ELIMINATING THE x- AND y-DELTA FUNCTIONS

We define the vector variables A1 , A2 '..., A, by
%a..
a.. i-I g-i

a. ~ ue. (i1,..n) 1
At. u ,-J 0 1)

j=o j=o

Geometrically, A, is the (scaled) position vector OSi of the point at which the ith scattering occurs

[see Fig. 1I. We note in particular that Art is independent of en, and hence of the two integration

variables O and On- In terms of the vectors A,, Eq. (10) can be written

P n(t,0,0) =Nf. c(ctn -3 exp(-Pt) du... jdun dO fdly ... dO,, f dolI
• '0 0 0 0 0

X /0(in A >bNet) 1., (12)
I---- |

where we have defined

.'".. L d-- dobn exp[p b(! - ( - )I Ill/0 n )sin0 n

n- I"" R[A > blct)ft- z -e >costpo) Il - iu] +A (z-e-)

1=0

"6(A.-A,.Z(x -'ed (z'e )'6 Az(y'el)(z' - ,-.). (13)

The quantity L in Eq. (13) is seen to be an integral over all directions of the vector e,. Our

goal in this section is to evaluate L analytically, and in the process eliminate the x-and y-delta

functions. To this end, we first change the integration variables in L from (0, the polar and

azimuthal angles ofe n in the x,,y,zzn-frame [see Eqs. (5) and (6)1, to (0,0), the polar and azimuthal

angles of e, in the xyz-frame. This change of variables allows the dot products involving e, in the

integrand to be written in the relatively simple explicit forms

x e,n =sin0cosO, y-e,, =sinOsino, z .e,, =cos0. (14a)

The Jacobian of the transformation (0 , ) - (0,0) is such that the form of the differential solid

angle is preserved, so we have

sinOn dO, dO= sinOdO df. (14h)

*6
o ..............................
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Since 0 n appears as an argument of f in Eq. (13), we will also need a formula for On in terms of 0

and 0. Such a formula can be obtained by first noting from Eqs. (5b) and (6) that coso0 = z.. en

e, _ " e,; expanding the latter dot product in terms of xyz-components, we obtain

0= O,,(0,) = arccos[(xent- 1)sin0coso + (y-en i)sin0sino + (z-en- )cosOl. (15)

Now substituting Eqs. (14) into Eq. (13), we get

L = doiexplffi(l -secO)/1f,,(O,A))sinOI(A >5b/ct)1(-cos0>cosWo )
0 t,

n-I
6(, u +A A, secO A -Atancoso A, ,- A -A tanG sin4), (16)

I I ) ( _ l 4\ ?IY 11,z/
1=0

in which On(0, 0) is understood to be the function in Eq. (15). The dependence of the integrand on

the integration variables 0 and 0 has now been rendered completely explicit, so we can perform

these two integrations. We shall integrate first over 0 with the help of the y-delta function, and

then over 0 with the help of the x-delta function.

Since -cosO -cos(n - 0), the second I-Function in Eq. (16) essentially requires that 0 >r - q.

This requirement, co-pled with the fact that Wo-fr2 means that 0>n/2, so we can increase the

lower limit on the 0-integration from 0 to n/2. We rewrite Eq. (16) in the iterated form

O= dexplpIb(1-secO)IsinOI(A > /ct)I(-cosO>cosvo)  I - u. + AsecO L', (17a)
12 0

where

2n
L' J- dflO,(O,O))6(A ,, - A , 2tanOcoo4)i6(A 'I - A ,1 tanOsino). (17b)

m. 0

The details ofevaluating first L' and then L turn out to depend upon the signs of An and

A i.e., upon which quadrant ofthe xy-plane the vector 5S,, projects Isee Fig. II. But it is clear

from symmetry considerations that the final result must be the same in all cases. Therefore, we

carry out here the analysis only for the case in which S, lies above the first quadrant - i.e., the

Case: A >0 and A >0. (18)
t! .J 'l .V

l)enoting the argument of the y-delta function in Eq. ( I 7b) by

h(4i) AnI - A tanOsino, (19)

we rewrite that equation as

4-..... . . . .. . . .
L'.-i i .,. .,,--" .-.-' ..,.. .... ....-.-.- " -". .- -.-- -.-.. ...7. :...-. ; ... -..-.; ..--.-.'. .... . . .-. ."-. ... ,.-.... ... -."-..-... . .-
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2n
L ' = o dO fiO n(09,0D))6A n - A n tanO o.4 l)RIA,,,y I -IA,,,Z tanOj)#'{h(O)), (20)

where the -function makes explicit a condition that is clearly necessary if h is to vanish for some

value of . Assuming that condition is satisfied, it follows from Eq. (19) that there will in gener-i

be two angles, -(0) and p2, for which h vanishes, namely those angles for which

sin4') = sinoM2 ) = A n ./(A ,Ztan0). (21a)

Since A ,,Z > 0 and 0((r/2, a) [cf. Eq. (17a)I, while A,,y >0 [cf. Eq. (18) 1, the quantity on the right

side of Eq. (21a) is negative. This means that 0" ) and 2) must lie in the third and fourth

quadrants, respectively; thus, using cos2 (')= I - sin2 ,p jo, we deduce that

cos4fi (A 2 tanf)-A %'2 1//(A tanO) = -cos4Ob 2 . f21b)

Now, from Eq. (19) we have h'()= -A,.z tan0 coso, so using Eq. (21 b) we deduce that

h'(,P"1 )I =h ")I -- (A tan 2 0 -A).

Therefore, we may use the rule in Eq. (8) to write

2

6h(o)) (A 2 tan 20-A I F-I2 V 6( -0 1) (22)'12 tI~y
i=1

Substituting Eq. (22) into Eq. (20), the 0 - integration becomes trivial lcf. Eq. (3h)l: it yields

22..- 2
L' I(IA < _lA tan.z )(A 2 tan2 _A 2 )1/2a O , -A tanOco,4"')). (23)

When the expressions for cos4)(' in Eq. (21b) are substituted into the delta functions in Eq. (23) we

find that, for the case A,. >0 being considered here, the argument of the I= 2 delta function

never vanishes. That term may therefore be dropped, and Eq. (23) reduces to

- - 1/9 *a,,O.

'= [(IA,,.,. <-I~ tanO )(A 20 -A F1'2 V- )-)/A -IA - tan20 - A 2 1/2, (24)

where0 (0s !') is found from Eqs. (15) and (21) to be

III'I " 1 '

0,(0,4r)' a rcosl(x - e,1  )cos A - (A - i ,n2 ) 2 /
~I_ 'I.2'I

± (y-e 1)coA A + (z e )co.)I. (251
(y - e o.4 (2,5 ,

Substituting the above integrated form of U into Eq. (17al, we obtain

8
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• l. : RA,.z >h/ct) h2dOl(-esO> °: '°)('A'Y<A"'tnI"1 = ,.,,( '
I(A > N \) u +A secO)

2z/ 2 =0 1

x explflb( -scO)lIflO, ))sin0(A 2 tan 0-A -12 &(h(O)) (26)
nz 'I,y

where, in anticipation of using Eq. (8) again, we have redefined h to be

h(O) = A -(A 2 tan20-A 2)h/2. (27)

Noting that the integration variable 0 is confined to the second quadrant, where the tangent is

negative, we see that h vanishes only at the angle 0' defined by

tan0"' = -(A 2 + A )1"2 /A (28a)
r nJ .y ' ,

This fact, coupled with the second quadrant restriction, implies that

sin0'( ' = (A 2 + A 2 )1121A co.4) 1' -A 1A (28h)
. 11 ' '1 IZ 'I

The above formulas in turn imply that

sIe A) A + A 2)112, (A -tan 2 -A -1=A (28c
= -A IA.2 tn n= Y A"1

Now, the derivative of the function in Eq. (27) is

h'(0) (~A 2 tnO-A 2 K"2A 2 tanOsc 2
, ., t a na n -0

Puttin4 0 =0I and using Eqs. (28), we find that

0" 1h)1 (A,,2 +A A 1 2 A A -

,'12 '!,V 1 ' I.T ?Iz

The rule in Eq. (8) then allows us to write

6(h(0)) = A A A 2(A 2 + A 2 If2.O) 1). (29)

Substituting Eq. (29) into Eq. (26), the 0- integration is now trivially performed, with the result

I, B(A >h ctl,(-co.)' 1 >cosqo) IdA ,!j!IA,, tanO' I) 6(1 - + A 2 sec()

x expl/lhl I-secO'l (lfiO (0'1' siO I' (A 2 tan-0 -A - rA

A A ' A " (30)

9 '*. .
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Substituting for 0' 1) from Eqs. (28) and simplifying, we finally obtain

L=A >b/ct) RA IA /AIfl0)A + I -Ai - A (31)fl ,,Z nZ t FL , t! '

where O is now given by

0 = arccos(-en -A 1 /An). (32)

Notice that the result in Eqs. (31) and (32) is manifestly independent of the signs of A,,, and

An.Y, and hence of the case assumption in Eq. (18), indeed, if the foregoing analysis is repeated for

the cases in which either or both of A, 2, and A,,. are negative, the final result will still be Eqs. (31)

and (32).

Substituting Eq. (31) into Eq. (12), and also putting sinOdO, = - dcosO, for i 1 ,...,n - 1, we

obtain the following expression for P(1,0,0):

Pn(t,OO) P fl" exp(-ccet) t(U1 Jdu",- I dco4) d,0 -
1 0

X dcosO_ dip - I ((A ) I(A > hct) I(A,1 2 /A, 1 >cosq' o )

X( [fi0 1 )exprnhl+A, /AH )IA, AA (33)

-I n -I 0 I -

"1=0

In this equation, the vectors A, A...,A are given by Eq. (11 ), and 0, is given by Eq. (32).

3. ELIMINATING THE t-l)ELTA FUNCTION

The task of integrating out the remaining delta function I formerly the delta function

involving t in Eq. (1) 1 is accomplished differently fr n = I than for n -2 2. We consider first the

relatively simple n= I case, for which Eq. (33) reads

P (1,0,0) 1 uc(d- exp(-[Ict) duo'I > )(A/A >cow:()

X flOI)explIh(I + i /A . (I AA - Y(l -u o -A ) (34)
I I .. I,-

Since, according to Eqs. (11) and (5a),

10

...
" " - -- " ."". .- "" ° "
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A, = l4oe 0 = UoZ,

then Aj,2= A =u O, and Eq. (32) gives

01 = arccos( -eo * UOeo /l) = arccos( - a) = i.

The condition A, 2/A, >cosq,( is just I >cosq,0 , which is always satisfied. Eq. (34) therefore

simplifies to

P (tOO) c (ct- 2 exp(-flct) du0l(u0 >ct)fln)exp(2P b)u0
26(! -2uo).

Using the rule in Eq. (8), we have

6( -2uo) = 2-1  uo - I/2).

Therefore, the above equation is

P(t,O,O) = 2-lP c(ct) 2 expl-3(ct- 2b)I fla) J du0 (u0 >bNct)uo 26(uo-1/21.

The uo-integration is now trivially performed with the aid of Eq. (3h), giving

Pt t,0,0) = I(ct>2h)2cJ (ct)- 2 expl -fi(ct-2b)lflu). (35)

This result agrees exactly with Eq. (28) of Ref. 1, which was obtained from comparatively simple

physical arguments. This agreement constitutes a reassuring, if somewhat limited, consistency

* check on our calculations thus far.

We now turn to the more interesting and challenging case in which n_>2. As a prelude to

eliminating the remaining delta function in Eq. (33) for that case, we make two more integration

variable transformations. The first of these is the transformation

(un - 1, cos0n- I' I ,? _) -a (A,, cosq', q), (36a)

where q, and q are the polar and azimuthal angles of the vector A,, in the xyz-frame. Since both

sets of integration variables in Eq. (36a) simply integrate the point S,, over all space, we have the

differential relation

2 du dcoJt (1,) = 2 dA dco.., dq. (36b)

Using this relation and the fact that A, = A,, cosq,, Eq. (33) becomes, for n a 2,

11
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In:3

P,(t,O,O) = c(ct)"- exp(-f3ct) du. .. du,, dA

6 2ctt) 1 2J dAr

X _. dcO41 d l I"'" I deosO_ 2  d,_ 21 dcosq, d l

( , I(A > h/ct) I(A Ascos > hct) IRco.p> cosqQop. " t1

"x ( f0,) )expflb(l +,ecqAl cosqpu,-_ I - u- A . (na2) (37)

in which it is understood that the integration variables cos01 and 4L are absent if n = 2.. The

quantities appearing in the integrand are given in terms of the integration variables as follows:

The (n- 1) vectors e 0 , ..., e,, _ are calculated from the recursion relation in Eqs. (A7). The (n - 1)

vectors A . At, are defined through Eq. (11):
t-|

A \ u e. (= .n-I) (38a)

j=O

The vector u,, P and its associated magnitude u,,_ and unit direction vector e,, p are also

defined through Eq. (I1). but now written for i = n in the form

n-2

-.u e U A - u e (38b)

And finally, 0n _ and 0 are given by Isee Eqs. (5), (6) and (32)1

= arccos(e-2 "e,,_). (38c)

Of? = arccos( - e *, AI/A I,). (38d)
'°-I

Our second transformation of integration varial Ies is another scaling transformation,

t - ' t  /, ,  (i=O,...,n-2) (39a)
- which evidently gives

-.. du,, _ dA, = All"- dv0 ... (V,, dA,,. (39h)

This transformation has the effect of making All the "unit of length" for all distance vectors. Thus,

for i=O,..., n-2, we have u =A ,v, where

vi =v,e,. (i= 0.., n-2) (40a)

And using Eq. (38b) we see that we can also write u,, I A,,v p provided we define v,, by

12
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n-2

_e,_--v_ 1 =a- v e (40h)
J

where a is the unit vector in the direction of Al:

a = A, /A, = xsinipcosr/ + y sin, sinrq + z cosip. (411

Finally, we see from Eq. (38a) that we can write A, = A B, for i= I,..., n - 1, where
, I -I

B v - v e (i=1...,n-1) (42)

1=0 J=O

With Eqs. (39) - (42), the integral in Eq. (37) takes the form

P,(t,O,O) = fl" c(ct'Z- exp(-#ct) o... jd, ., , ',_

I 2r o A -

X j dco.) 0 d. 4 " Ico. I_ "2 j(1, d -2 4cip dcosj drq
0- I-1

x I(A BI >hNct) I(Acosq,>h/ct)
-2 --

#0c) explflbQ + slI sq, A -it -' I-A,, I + (n 22) (43)

1==0

Now we define
,- I

V = I + V. (44)

=0

, Then the delta function in Eq. (43) can be written

f I-I

" t =0

where the last step follows from the rule in Eq. (8). When Eq. (45) is substituted into Eq. (43), the

A,-integration can he trivially accomplished: the delta function is thereby eliminated, and A is

everywhere replaced by V -

."" Before writing clown the result or the A -integration, we want to do two more things to Eq.
:%

(43). The first is simply to replace dcosq, by -sinq'dq The second is to fix the orientation of the xz-

plant, which thus far has not been specified. Owing to the symmetry ofour )roblem about the z-

13
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axis, which exists because the laser and receiver both lie on that axis, we can choose the

orientation of the xz-plane freely without affecting the integrand. Let us now stipulate that the xz-

plane contains the vector a. This implies, firstly, that q = 0 in Eq. (41), and secondly, that the q-

integration in Eq. (43) can be replaced by a simple factor of 2n.

Performing all the operations described above, Eq. (43) becomes

Pt R 2n dnc(ct) -3 exp(-ct) dv . -dv,- dcoso 2a d4ips...

--I 10-- 21 1 O '
I ('i

X dcos, dd, A BI.z>bc) I(V Isi> wct)

Xexpjfb I +scq)I ( II /,))csq'sinq, V-"-" 2
1 V,-2 (n-2) (46)

in which it is understood that, for n = 2, the integration variables cosO and i, are absent. The

quantities in the integrand of Eq. (46) are related to the integration variables according to the

following specifications: The unit vectors e..., e,z -2 are found from the recursion relation in

Eqs. (A7), while the quantities en|, Vn _0,1 0,,, B1 ,..., B,- |and V are determined from the

formulas:

a = x sinq' + z cosq; (47a)

2 -2

v*z Ient a ve " (471)
J=o

r, - arccs(e,, 2 e_ 1 ): (47c)

0,, = arccos( - e,, a); (47d)

f-|

B = "ve (i=l...,n-I) (47e)t - 11.

I =0

,Z- |

V I +. v (471)

The content of the above relations is summarized geometrically for the cases n -2,3 kind 4 by the

diagrams in Fig. 2.

14
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4. BOUNDING THE INTEGRANI) AND INTEGRATION DOMAIN

In Eq. (46) we have, at last, an expression for P,(,O,O) for n-2 that is free of delta functions.

It is evidently a (3n - 4)-dimensional integral, the complexity of which will usually dictate that it

be evaluated numerically rather than analytically. Ilowever, Eq. (46) is not suitable for numerical

evaluation for two reasons: First, the integration domain is unbounded, since the integration

variables vo..... v-2 have infinite ranges; and second, the integrand is unbounded, since v n can

vanish. ISince secq)-- as q'-p-t/2, the exponential factor involving secip in the integrand might

also seem to present a boundedness problem; however, the last /-function in the integrand imposes

the condition bsecq'<ct/V<ct, where the last inequality follows from the definition of V, so the

exponential is not a problem. I It must be emphasized that these unbounded features of Eq. (46) do

not imply that the expression therein is mathematically ill-defined. But they do imply that, if we

want to evaluate the integral using conventional numerical techniques, we will have to subject it

to some integration variable transfoirmations that render the integrand and the integration

domain bounded.

The key to obtaining a set of integration variables for which the integrand and integration

domain are bounded turns out to be the set of vectors C0 , C!,..., C _p, where C, is defined to he the

vector from point S to point S,, (see Fig. 3):

a, if i=O,

C, -(48)

and1  v e ,ifi 1...,. (-4.
! =0

Notice in particular that
CIOl I and C,,_ -- ,_ e _. (49)

These vectors C will not themselves he our new integration variables, but they will be crucial for

defining those new variables. Essentially what we are going to do now is, first, replace each pair of

integration variables (0j,4),) in Eq. (46) by a new pair of variables (0',,)°,), and second, replace each
length integration variable vI by a new angular variable v.

:The variables 0, and 4j, were defined to be the polar and azimuthal angles respectively of the

vector e relative to a coordinate frame whose polar axis is z, e, _ We now change integration

variables accordiuiV to

(c4s,x --) - cos0' ,P',), ( 1.... n-2) (50a)

15
.
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where 0', and 0', are the polar and azimuthal angles respectively of e, relative to a coordinate

frame whose polar axis is z'i = C1 IC. The Jacobian of this transformation is such that each

differential solid angle element dcosO do is preserved, so we have the differential relation

.=dcosOI d0,'"dcosO, -2 dOn_ 2  dcosO' d', ...-dcosO' -2 dOn -2

= (sinO' '"sinO'n-2) dO'I dO'l...dO, -2 dO'n -2"

"" (50b)

Since the integration limits on 0, and 0, encompass all possible directions of e,, it follows that O'

and #'i will have the same respective limits. By definition, 0', is the angle between e, and C i for

i = I,..., n - 2, and we can evidently extend that definition to i = 0 by simply defining
,W0

.. ipo  - . (51)

The geometrical relations between the old and new polar angles are illustrated in Fig. 3. The

orientation of the azimuthal plane that defines the zero of 4', is open, but there will he a minimum

ofcomputational work later on if we take this plane to he the one defined by C, and z. Thus, we are

essentially transforming from the xry,z,-frame of Eqs. (5) and (6) to the x'y',z' -rame defined bv

.:-,.i. z' = C,/C}

y' = (zxC,)/IzxCiI } (i=l .., n-2) 52a)

X' = 'IX Z'

relative to which e has the component representation

e = x' Isin' I cos4', + Y', sinO' sintY, + z' cosO'. (i = I,... , n - 21 (52b)

A detailed procedure for calculating the xvz-components of eI from the xyz-components of C, and

the angles 0'i and 0', is developed in the Appendix Isee Eqs. (A8)1.

P (t,O,O) = 2al" rirt)' -'Pxp(-li rl ) , th,f I) dO'° , it o ddo o (to',
1 -1 I I 5

0 -)

-1.

*x Ifl(J,) cos.4' 11  I O , 2 'j V -( -1. (n 2) (53)

16
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wherein it is understood that the product in braces is to be omitted in the case n = 2.

Next we make the integration variable transformation

V -v -artan C. sino' , i=,...,n-2) (54)
I I

The nature of this transformation can be best appreciated in terms of the geometry of the triangle

formed by the three points S,, St + Iand S,, as shown in Fig. 4: If the line through S, perpendicular

to the line through S and S intersects the latter in the point T,, then v is just the angle between

ST and SnS + It can be seen from Fig. 4, and it can also be shown from Eq. (54), that as v, runs

from 0 to -, the angle v, runs from - (W/2 - 0') to a/2. Therefore, this transformation renders the

integration domain bounded; we shall see shortly that it also renders the integrand bounded.

To calculate the Jacobian of the transformation defined in Eq. (54), we begin by solving that

equation for v:

Vi  C, sinO', tanv, + Ci cosO'. (55)

From this it follows that

•~ 2- C sinO' se (56)
(V

We also note from Fig. 4 that

C, 1 I cosv TS,, =C sinO',

from which it follows that

C, +I = C, sinO'1 secv. (57)

Now, a moment's inspection of Eqs. (55) and (57) will show that vi depends on v and CO while C in

turn depends on C, _ I and v,_ ' etc., and hence that v, depends on v1 v, _ I .... v0 , but not on v, + P

V, +2 .... .-2. This implies that the Jacohian determinant O(v 1)/a(v1 has zero entries everywhere

on one side of the main diagonal, and therefore that the determinant is simply equal to the product

of its diagonal elements:

6 (Vol ... , 2 2 )v

•.~- H (58).'- (V o ..., , V,1 0 N

Taken together, Eqs. (56)- (58) imply that

a d(V .... IV / n-2 o
%' t{V~l "'Vt-2) /=in=1 O0' I MIn' sinO'

o (Vol...Iva - 2) Cl 0 / 0

17
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- iC, sin2o', sec2vI/ .tL - i s e v/

1=0

n-2 2

.-- - ci 111=0  L t

"'C 2 ,n-2

%"C 1"0 I=0

But Eq. (49) implies that C,_ I =U_ and C0  I, so we conclude that

. .(ol,...I, 2  -2

S. = 0(59)

Eq. (59) tells us that the transformation (v 0 ,.... V, - 2 )-(vo ..... vn, ,) defined in Eq. (54)

brings the integral in Eq. (53) into the form

'I' r (2l -2 1 t/ r,.,,.I[, II.,I
.- ,0,0) 23"c(co" - 3 exp(- ol 0 - dO' 11 d2V ',

n-I

X iI(B z >Vdct)) I(co.Bo)>Vhct)expl[3tdl + ecO0o1

,( IX rio) cosO( C, ) V'"V-, (n 2) (60)
° 0

wherein it is understood that the product in braces is to be omitted in the case = 2.

For n = 2 the last two factors in Eq. (60) are both unity (recall that CO = 1), so the integrand

is clearly bounded for n = 2. IThe exponential involving sec' 0 in the integrand causes no

boundedness problems, because the last [-function in Eq. (60) imposes the condition

bsecO' 0 <ctV<ct. I For n-3 the integrand of Eq. (60) contains factors ofC .... ,,_ 2, any of which

can be arbitrarily large. However, the contribution of these factors to the integrand is moderated

by the quantity V according to

( 'z.,-2 ,z-2

,2 I c, )v-,,,- 2, _- 1 1 (,/v). ,,, 3)

18
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* The definition of V in Eq. (47f) shows that V isjist the perimeter of the figure OS, -SO [see

* Fig. 31, and it is obvious that this perimeter cannot be less than twice the length of any cord C,;

therefore, CIVs 1/2 for all i, whence

n- 2( 1 C) V-I  s(1/2)' 2 . (nz-3) (61)

We conclude that the integrand in Eq. (60) is bounded for n 3.

We collect below, in Eqs. (62), the formulas through which the various quantities in the

integrand of Eq. (60) may be calculated in terms of the integration variables. Eq. (62a) follows

from Eqs. (48), (47a) and (51); Eq. (62b) follows from Eqs. (55) and (49); Eq. (62c) is Eq. (5a). Eq.

(62d) follows from Eqs. (48); Eq. (62e) follows from Eq. (55); the components ei.,, e,,, and ej, in Eq.

(621) are to be calculated from C, 0, and P', according to the formulas in Eqs. (A8; Eq. (62g)

follows from Eqs. (48); Eqs. (62h) and (62i) both follow from the second of Eqs. (49); Eqs. (62j) and

(62k) both follow from Eq. (47e); Eq. (621) is Eq. (471); and finally, Eqs. (62m) and (62n) follow from

the definition of 0, as the angle between el - , and e,, together with the fact that e,, = - a = - C0.

The geometric content of the formulas below is summarized in Figs. 3 and 4.

Co = x sinO', + z cosW' o  (62a)

oo = sin6O' tanvo + cosO' 0  (62b)

e o = z (62c)

C =C - V e- 1  (62d)

v, = CsinO'itanv + C cosO'i (n-3; i= I-., n-2) (62e

e = xe + yey + ze (62f)

C-I = C?-2 - 2 (62g)

, =C eel I(62h)

e, = C /C (62i)

RI = V() e 0  (62j)

B = B, + V, e, (n-->3:i1 .n-l) (62k)

I - I
V = I ( \ V (621)

t=0)

f = arccos(e e G "e- (.62m

0 = arccos( - e _C() (62n)

19
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b

Notice that Eqs. (62d,e,f) and Eq. (62k) are not used if n = 2. The interrelated, recursive structure

of the formulas for C,, V, and e, in Eqs. (62a - i) would make the derivation ofexplicit formulas for

those quantities quite complicated, especially if n -3; fortunately, explicit formulas are not needed

for computational methods that utilize a digital computer.

-- Eqs. (60), (62) and (A8) are quoted in Ref. I as Eqs. (44), (45) and (46), respectively.

5. CUBING THE INTEGRATION DOMAIN

The integral expression in Eq. (60) is free of delta functions and has a bounded integrand

and a bounded integration domain. It is therefore amenable to direct evaluation by standard

numerical methods. However, many numerical methods are easier to implement if the integration

domain is the unit cube. In this section we shall make a final change of integration variables to

bring Eq. (60) into the form of an integral over the (3n - 4)-dimensional unit cube.

Each of the integration variables 0',, v, and ', in Eq. (60) measures an angle that has a

clear physical interpretation in terms of the geometry of the path of an n-scattered photon I see

Figs. 3 and 41. We are now going to change from these integration variables to a new set of

variables, pi, % and w,, whose physical interpretations are quite obscure but whose lower and

upper integration limits are all 0 and I, respectively. The particular transformation that we shall

use for this purpose also has the convenient property that its Jacobian is a constant: this means

that, apart from a different factor in front of the integral, the integrand in Eq. (60) will be

unchanged by the transformation. The actual derivation of our transformation equations uses a

special analytical technique in Monte Carlo theory called the 'generalized inversion generating

method." This analytical technique is discussed in detail in Secs. 2-5, 2-6 and 4-6 of Ref. 3 The

derivation, although not particularly difficult, is moderately lengthy: therefore, we shall he

content here simply to state the result and then verify that the transformation indeed has the

special properties claimed.

With 0 defined by

?0 (21t - (/' Ir

we define the variables Po and q0 so that

, /2
f),o 

=  
U1Il - (I - K. )1/ 1, (63h)

vo = id11/2 - q1)(I- 1121p (63c)

20
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We also define the variables p,, q and w, for i = 1...,n - 2 so that

0', rz(1 -p,1/2), 1(63d)
v =(l/2 - qtp /2) 2n 3; i1 ... , n-2) (63e)

,2aw .  (630

Consider Eqs. (63b-c). The first of these two equations shows that, as po runs from 0 to 1, 0')

runs monotonically from 0 to

f d - (1- KO)l/21 Y,

where the equality follows upon substituting for Ko its definition in Eq. (63a). Eq. (63c) shows that

for po and hence also 0'0 fixed, as qo runs from 0 to 1, vo runs monotonically from n/2 to

itl 1/2 - (I - cOPO)1/21 0'o - a/2,

where the equality follows upon substituting for (I - c0 p0 )1/2 from Eq. (63b). We conclude that

Eqs. (63b-c) map the unit square in p0qo-space onto the two-dimensional region in 0'o0 vo-space

defined by the integration limits on 0'0 and vo in Eq. (60(. Since 0'0 is independent ofqo, then the

corresponding Jacohian of this subspace transformation is

0 0 0 = I (1 /2) (l -ic 120c I M n (I - c 1p/)l IC 12/2.

(POqo) dpo I qo

Turning next to Eqs. (63d-f), the first of these equations shows that, as p, runs from 0 to |.

0', runs nonotonically from n to 0. Eq. (63e) shows that for p, and hence also 0' fixed, as q, runs

from 0 to 1, v runs monotonically from n/2 to
a(l/2 - p11/2 ) 

= W - n/2,

where the equality follows upon substituting for p,1
1 2 from Eq. (63d). And finally, Eq. (630 shows

that, as w runs from 0 to 1, p', runs monotonically from 0 to 2n. We conclude that Eqs. (63d-f)

map the unit cube in pqt,-space onto the three-dimensional region in 0 ,v,4Y ,-space defined by

the integration limits on ',, v, and 4', in Eq. (60) This mapping is one-to-one everywhere except

on the plane defined by p, =0, which is mapped onto the line defined by (', 0 t andv ,t/2. But

since that plane and line have zero vtl'dm'e, this lack of strict (nc-to-oneness has no ellhct on the

three-dimensional integrals of interest to us here

% For i >0 we note frorn Eqs. t63d-e) that 0', is independent ol'both q, and v,, while v, is

independent of w,. It follows that the Jacohian ofthe transformation between 0',' ,4" ,-space

21
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and piqiwi-space defined by Eqs. (63d-f) has zero entries everywhere on one side of the main

diagonal. Therefore,

=i i = [fr(l/2lp - 1/lbl1p"l2 ,t2 l a;'z.
C)(Pq,,w) C)I dq wi.. (p ,q.,w) 3 p, Oqi ?w

Finally, since there is no cross-coupling between integration variables with different index

values, the Jacobian of the full transformation is just the product of the subspace Jacobians.

Therefore,
2

"(O''VOl 'Vt'i'l .'.- 2 v 2 ' 'n-2) '¢O(l3)f-23= -,4 (64)

i(po,qop 1,q 
1 w 1 ... P 2,qn -2' wn - 2) 2 2 0

We conclude, then, that the integral in Eq. (60) transforms under Eqs. (63) to

Pn~~t,0,0) ~ 3( )K pNn (jnexp(-flc1) 10dpo t dq 0 { [ () Jdp, dql , div,
P"°-.) 1I =.1- I I - !

X [(B >Vb/ct)) f(cosO'o> Vhrtlexplfib(I +secO') I

l( fio

t=IO

In this our final expression for P(t,0,0), it is understood that the product in braces is to he omitted

in the case n= 2, and also that the integrand is to be evaluated in terms of the integration

variables through the formulas listed in Eqs. (62) and (63) [see also Figs. 3 and 41.

Eqs. (63), (64) and (65) are quoted in Ref. I as Eqs. (47), (48) and (49), respectively.

22
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FIGURE . Trajectory of an n-Scattered Photon. The photon leaves the origin 0 along the

sitve 
-axis, scatters 

exactly 
n times in the cloud, and then returns 

to 0 at an angle 
W with the z-

.- 
axis. The ith scattering, 

through 
polar angle 0 and azim uthal angle 

0,, occurs at point S,. The

Svector 
from S to S 1is denoted by u, e 

u , where e, is a vector of unit length and SO  
Sn  

0

0 +

-23



NWC TP 6605

..

SI'2

02 02 03

(a) n (b) n=3 () n 4

FIGURE 2. Geometric Interpretation of the Relations Among the Principle Variables in Eqs. (46)

and (47) for (a) n =2, (b) n =3, and (c) n =4. The vector v,, with magnitude v, and unit direction e,,

represents the scaled path of the photon between the ith and (i + l)th scatterings. The angles 0, and

0. are the polar and azimuthal angles of e, relative to the polar direction e 1 _. The vector 0 for

i=1 .... n- I is designated B,; the vector OS is designated a, and has unit length and polar angle

q). The xyz-frame is defined so that e 0 = z with a lying in the xz-plane. Notice that the quantity V

defined in Eq. (471) is the perimeter of the (generally non-planar) figure OS 1 S, 1 O.
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v2 1 =C1 C

000

(a) n=2 Mb n=3 (c) 'a=4

* FIGURE 3. Geometric Interpretation of the Relations Among the Principle Variables in Eqs.

(53), (60) and (62) for (a) n =2, (b) n =3 and (c) n =4. The angles 0L and 0,' are the polar and

azimuthal angles of vi=Verelative to the polar direction CL =SS (i =l,...,n - 2); the other
I~ nf

quantities are as specified in Fig. 2. (The vectors BOare still present, but they are not shown

here in order to avoid complicating the diagrams.) Note that a and Tp in Fig. 2 have here been

renamed C0 and 00', respectively.
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Si+1

,- Ci+ t

i T 5S,

C9 i

iS

FIGURE 4. Geometric Interpretation of the Vuriable v, Defined in Eq. (54). Together, Figs. 3 and

4 show geometrically the relations that obtain among the principle variables in Eq. (60) and (62).
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APPENDIX: COMPONENTS OF THE VECTORS e i IN THE xyz-FRAME

Let C be a vector with components C., C and C. relative to some coordinate frame F with
!"' 

y' z

basis vectors x, y and z. Define frame F' as that frame whose basis vectors x', y'and z'satisfy

z'rC and y'-z x C [see Fig. Al I. Finally, let e be a unit vector having polar angle 0' and

azimuthal angle 0' relative to frame F'. We want to calculate the components ex, e v and e of e

relative to frame F in terms of the quantities C ,Cy C 0' and '.

We begin by defining the auxiliary quantities c. , cy, cz and cXY by

-" " = IC 2 +C 2 )12 /C. (Al)ex = C x C. V --- C,- C z C , C. CXY x y

Then the polar angle p and azimuthal angle 4 of C in the F-frame are given by

cosp = cz, sinp = cx (A2a)
cos4= c /c.,, sin4= c lc y . (A2b)

Fig. A I shows how the angles p and 4 determine the orientation of frame F' relative to frame F.

From the geometry of that figure, we can see that the projections of the primed unit vectors onto

the unprimed unit vectors are as follows:

X'" x = cosy COS4 = CC /C ,

x'-y = cosp sin = cc c ,  (A3a)Zy xy'

x'.z = -sinp cxy;

y'.x = -sin= -cy/cxy,

y'.y = cos4 = cxicry, (A3b)

y'-z = 0;

z'-x = sinp cos = cx,

z'. y = sinp sin4 = cy, (A3c)

Z"z = cosp = C,.

Also, since 0' and tf' are defined as the polar and azimuthal angles of the unit vector e relative to

frame F', then the projections ofe on the primed unit vectors are

x'. e = sin cos4',

y'. e = sin)' sino', (A4)

z'. e = cosO'.
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C

ziC

I'*my

F'IGURE Al. Relative Orientation of the xyz-Frame and the x'y'z'-Frame. The latter frame is

defined by z'exC and y'-z x C. The angles us and 4 are the polar and azimuthal angles of the

vector C relative to the xyz-frame.
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Now we observe that the x-component ofe can be calculated as

e. = x- e = x'(x'- x) + y'(y', x) + z'(z'- x). lx'(x'. e) + y'(y', e) + z'(z'- e)1,
or

. (x'- x)(x'- e) + (y'. x)(y'- e) + (z'. x)(z', e). (A5a)

Similarly, the y- and z-components ofe can be calculated as

e= (x'- y)(x'- e) + (y'. y)(y', e) + (z'- y)(z'- e), (A5b)

e= (x'- z)(x', e) + (y'. z)(y'- e) + (z'. z)(z', e). (A5c)

If we now substitute Eqs. (A3) and (A4) into Eqs. (A5), we find that the resulting equations for eV

e and e, can be written in matrix form asr i [cZC1 /c13  -C~ Y /C 1Y [sinO'coso~

ei = L xy7  c, csino' (A6)

Together, Eqs. (A6) and (A I)give the F-frame components of e in terms of the F-frame

components of C and the angles 0' and 0'. But notice that, if C should happen to coincide with z,

then c1 = c = Cy = 0, and the four quotient elements in the above 3 ) 3 matrix become

indeterminate. Since in that special case we will have z' = z, then we may as well take x' = x and

y'= y. Therefore, if cxy = 0 then we shall simply take the 3 x 3 matrix in Eq. (A6) to be the unit

matrix (with l's along the main diagonal and O's elsewhere).

The foregoing result is actually used in two different ways in the text to calculate the xyz-

frame components of the unit vectors et. The first way is in connection with Eqs. (5) and (6).

There, e t (i = I...,n) is stipulated to have polar angle 0 and azimuthal angle P in the coordinate

frame whose z-axis points along e, 1and whose y-axis points along z x e, Therefore, ifeL, ey
and e are the components of e in the xyz-frame, and if e =(e,.2 + e 2 ) 1/2, then above result

implies the recursion relation

•. , e _l~ze _ .. / _ , - _ ,y/e _ I ,y e,_ X l sxinO 4 coso,[y eteletlay e, /etI.XY el ,Y [sinOsino ,(i=l....n) (A7a)

e: -e 0 e cosO,

where, from Eq. (5a),

CO 310 , eo., 0. = 1, (A7b)
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and where it is understood that, if ei ,Xy= 0, then the 3 X 3 matrix in Eq. (Ala) is to be taken to be

the unit matrix.

'Eqs. (A7) show how the xyz-frame components of ei may be calculated from the xyz-frame

components of ei - 1 and the angular variables 0, and 0,. These relations are required for a

* complete interpretation of the "early" formulas in our analysis [specifically, Eqs. (1) through (46) 1.

However, our final formulas for Pn(t,O,0) for n 3 [Eqs. (60) and (65)] have as their integration

variables, not the angles 0, and 0,, but the angles O' and 4P' (i = 1,...,n - 2). These primed angles

are defined [cf. Eqs. (52)] as the polar and azimuthal angles of in the frame whose z-axis points

along Ci and whose y-axis points along z x Ci, where C is the vector defined in Eq. (48). It follows

from the foregoing analysis that, in Eqs. (62), the xyz-frame components of the vectors eI ... e. -2

are to be calculated according to the following formula:[t ci Ic.X ~c1 l r Cxsini o 1i

]e CtIciY Cla c'1 /csXY ciy -inJL sin" (i= 1,...,n -2) (A8a)

- L ig -c. 0 ct. L cosOe I
where

CiX M C/, cC/ mC C ci. =S CIC, c. (C. 2 +C 2)1/2/Ci, (A8b)

£.yi i ' i.Z £2Y ix Iz . .y

and where it is understood that if c., = 0 then the 3 X 3 matrix in Eq. (A8a) is to be taken to be the

unit matrix.

Eqs. (A) are quoted in Ref. I as Eqs. (46).
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