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1. INTRODUCTION

The following problemIis of practical and theoretical importance in

*, reliability.

Under study is a coherent structure consisting of n independent com-

ponents. The structure is observed continuously until it fails. For com-

ponents failing before or at system failure time, we observe compZete life-

lengths; for components still functioning at system failurp time we observe

censored lifdlengths. For the system we observe system lifelength. From

"* a sample of m such structures we wish to estimate the system lifelength

distribution.

As far as we know, tnis problem has not been solved or even treated

in the literature.

In this paper we propose an estimator of the system lifelength distri-

bution. As a by-product, we also obtain estimates of the mean and quan-

tiles of the system lifelength and of all the corresponding quantities for

component lifelengths. In Section 2 we give several asymptotic results

concerning the estimators. In Section 3 we present and discuss two boot-

strap schemes that are used in small samples to assess the variability of"-<
*' our estimates and to construct confidence intervals. . 5*' )

NOTATION

We assume that the system and each component are in either a function-

ing state or a failed state. Thus, we can define the lifelengths of the

components and of the system. Let

X..= the lifelength of component j in system i; i
13

T. = the lifelength of system i;

" Z. = min(Xij, T ); ,.:
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1 (Xij

F be the distribution function of X., and the component reliability func-J 1)

tion be S.(t) = - F(t);

Fs be the distribution function of T., and the system reliability function

be S (t) = 1- F (t);5 s

' H. be the distribution function of Zij, and Hj(t) denote l-11.(t).

In the definitions above the letter i indexes systems and the letter j

indexes components. Throughout the paper i ranges from 1 to m, and j from

I to n. The random variables X.. are not observed. We observe only the13

7Z..'s and 6..'s.
13 1)

It is helpful to keep in mind a concrete example. Figure 1 below

shows diagrammatically a simple structure of 3 components, arranged neither

• in series nor in parallel. We carry this example throughout the paper. In

the example (the subscript i indexing systems has been suppressed) T =

.- X1 A(X 2 VX3 ), where xAy=min(x, y) and xvy=max(x, y).

1 1 '2
2

3

x3

Figure 1 X. =lifelength of component i, i =1, 2, 3.
1

We note that F can be estimated naively by the empirical distribution

function of the T.'s:1

1m
(1) femP(t) . I(Ti5t) for taO.

s m i

" lHowever, it is clear that this estimator does not use all the information

- . -..-... * ',*
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available in the sample.

THE ESTIMATOR

For any coherent structure of n independent components there corre-

sponds a function h: [0, 1]n - [O, 11, such that

(2) Ss(t) =h(Sl(t), .... S (t)) for t0.

See Chapter 2 of Barlow and Proschan (1975) for details. In the example

given by Figure 1, we have

S (t) =S (t)[1 - (I-S2(t)) ( -S ct))l,

so that

h(u1 , u2, u 3) U[ (1 u 2 )(1 - u 3)] for u1 , u2 ' u3 E [0, 1].

To construct our estimator, we first estimate the Sj(t)'s by the

*" Kaplan-Meier estimates

(3) St = M Zfor t>O.

-i)j

(Z(1)j < <Z(m) denote the ordered values of Zlj ... . Zmj, and 6(1)j

6 (m)j are the 6's corresponding to Z(1)j .... Z (m)j' respectively)

and then substitute S.(t) for S.(t) in (2). The estimator is defined by

hS1(t),. S n(t)) if t <Tc(M)

(4) M = h m
s 0 if tT "

Here, T max T..
He (M) i

We have shown that the estimate Fs (= - Ss) is the nonparametric mle

of F . We do not present a formal proof here, but instead offer the
S

. . . ..-. . . . ..-'. .:".': :2;.
"  
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following heuristic argument. It is well known (Kaplan and Meier, 1958;

Johansen, 1978) that the Kaplan-Meier estimate is the nonparametric mle of

a distribution function when the data is randomly right censored. An

extension of this result is that (SS .... Sn) is the nonparametric mle of

(sip ..... Sn ); the invariance principle for mle's implies that

h( 1 ... Sn ) is the nonparametric mle of h(S1, .... S n).

Equation (4) provides the basis for the estimation of functionals of

F such as quantiles and the mean. For example, we can estimate F -(p) by
s s

F (p), for pE (0, 1). Similarly we can estimate s  tdF (t) by w

.fctdFs(t).

2. ASYMPTOTIC RESULTS

In this section we describe the limiting behavior of the estimates of

,* the system and component reliability functions. As an application, we show

how our results can be used to improve the system reliability. The proofs

of the theorems stated below will appear elsewhere.

We begin with an important result concerning the simultaneous estima-

tion of the component reliability functions. For T>0, D[0, T] denotes the

space of real valued functions on [0, T) that are right continuous and have

left limits, with the Skorohod metric topology (see Chapter 3 of Billings-

ley, 1968), and Dn [0, T] denotes the product metric space.

THEOREM A. Suppose F1 , ..., F are continuous, and let T be such that

F (T)<l for j=l, ... , n. Then as m--

m- S S ) W W )

m ~ ' 2' n " n 2, ... n

in Dn [0, T], where W1  ...,P Wn are independent mean 0 Gaussian processes,

with covariance structure given by

:-> .,..i>?-.?...i.>..i..> .-.- -..?.-. ,. , ,. , ..._ _ , ,. h --. .:-"".-.-. -LL:IL-.I-.: , % ;. :?)'i'. .J >.. . ? . .?.,. .-i.>i..-_..".--.--V¢ , -"



Cov(W i(t), IV(t 2)) =

.t
° : (S)dFj(u)( )S .(t )  Sj(t 2 )  

t l d u for O i tl 5t  !5T .
t t2) Jo (u)s C(u) 1 2

The weak convergence of the Kaplan-Meier estimator to a Gaussian pro-

cess has been well-established in the literature (Breslow and Crowley, 1974;

Gill, 1983) under the assumption that the lifelengths and the censoring

. variables are independent. In our situation the component lifelengths are

censored by the system lifelength, and the independence condition is clearly

violated. We can, however, redefine the censoring variables to bypass this

difficulty. This is easiest to explain in terms of the example given by

Figure 1. Consider Component 1. Clearly, X is censored by Yl = X2 vX
',

which is independent of X1 . Similarly, X2 is censored by Y=2 X ' and X.3 by

Y =X The construction is general: for an arbitrary system, X. is cen-

sored by Y. = lifelength of system if X. is replaced by -. One can check3 3

that

(i) X. and Y. are independent,

(ii) min(X., T) =min(X., Y.).

Thus, the known weak convergence results for the Kaplan-Meier estimate

apply to the individual S.'s.
3

For fixed m, the S's are in general dependent. This is easily seen
3

in the example given by Figure 1, in which Components 2 and 3 are both cen-

sored by Component 1. For complicated systems the dependence may be com-

plex. Thus, the novel results given by Theorem A are first, the joint

asymptotic convergence of the 9.'s and second, their asymptotic independ-3

ence.

The asymptotic independence of the 8.'s is interesting. Before prov-
i

ing Theorem A we conjectured this result by considering the two special

. ..--. . '- .',,........'...~." . .. . . . . . . . . ... . . . . . . .. . . - . - . ... ... . . ..
4.
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cases of parallel and series systems. These are often viewed as extreme

cases in reliability theory, and an analysis of these cases may shed light

on the dependence structure between the S.'s. For parallel systems there3

is no censoring at all; the F.'s are the usual empirical cdf's and are3

trivially independent for every m. For a series system (say of just two

components) we have

(6) m Cov(Fl(t), F2 (t)) =m EF1 (t)F2 (t) -m EF1 (t)EF2(t).

Since F1 (t)F2 (t) =FemP(t) (see (1)), the first term on the right side of

(6) is m F (t). Consider now the second term on the right side of (6).

From Efron (1967) we obtain the bounds

(7) OF(t) -EF.(t) !S.(t)e- .j(t) for j = 1, 2.

(Actually, Efron, 1967, has the inequalities reversed. This is because he

uses the version of the Kaplan-Meier estimate that is defined to be 0 past

the last observation, whether or not it is censored.) Combining (6), (7)

and the fact that Fl(t)F2 (t) = Fs(t), we obtain for series systems that

(8) m Cov(F1 (t), F2 (t))-0 exponentially fast as m-.

This proves that Sl(t) and S2 (t) are asymptotically uncorrelated and

hence asymptotically independent, assuming that joint asymptotic normality

has been established. Since intuitively the series structures give rise to

maximum possible dependence among the S.'s, we were led to conjecture the3

asymptotic independence of the S.'s for general structures. Our proof ofJ3
Theorem A does indeed give the result (8) for arbitrary systems.

To prove Theorem A we show that for each m, the vector of processes

fm 1 (t)-S(t) S (t) -S (t) t

S.(t)  .. n Sn(t ) n t [0, T]

e. W ' 1. °%
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is approximately (as m-) a martingale with respect to the a-field gener-

ated by all uncensored component deaths observable by time t. We then

* apply an appropriate martingale central limit theorem, via the Cram~r-Wold

device, to deduce the result.

The next theorem gives the asymptotic normality of our estimator of

*- system reliability.

THEOREM B. Suppose F1, F2 .... , Fn are continuous, and suppose T is such

that F.(T) < 1 for j= 1, 2, .... n. Then as m

m (Ss -S )- W weakly in D[O, T],
5 5

where W is a mean 0 Gaussian process with covariance structure given by

n
Cov(W(t)I W(t2 )) = I . 11 2, (u . . un )

ju 1aun

(uI, .... U =n

S (t S (t)

3h (udF.-I)

.3 n• j (u1) . ... Un =

~(S1(t2 .. S (t21

-S (t )s (t 2 )  for 0!5t5 t !5T ."" J Rj (u)sj (u)

lFor fixed t 4 [0, T] ,the asymptotic normality of m2(S (t) - Sst))

Sfollows from Theorem A and an application of the delta method. Thus, the

proof of Theorem B consists of a straightforward generalization of this for

the process {m (s(t) -S (t)); tE [0. T])i's s "

Greenwood's formula can be used to estimate the variance of S (t).% • .
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* Since this estimate is well known to be consistent, it is clear that one

can consistently estimate the asymptotic variance of 9 (t) given by Theorems

B. This enables the construction of asymptotic confidence intervals for

S (t).5

We close this section with an applicati-n of Theorem A to the joint

estimation of the reliability importance of components. The reliability

importance I.(t) of component j at time t is defined by
J

,.Ij Mt = .... U n) 1u ... Un)

Let E.1 ... E n be small numbers. Note that

n
h(Sl(t) Cl, .. , S (t) + )-h(S,(t), ... , S (t))= t

1n n n j~l-

Thus, the reliability importance of components may be used to evaluate the

. effect of an improvement in component reliability on system reliability,

. and can therefore be very useful in system analysis in determining those

components on which additional research can be most profitably expended.

For details, see pp. 26-28 of Barlow and Proschan (1975), and the review by

Natvig (1984).

Notice that

I.(t)= h(Sl(t), Sn(t)),

nn

where h.: [0, 1] n[o, 1] is some smooth function. Thus, to estimateJ

l(t), a natural choice is

I' I (t)= =h (S (t). ., S n(t))"".J

J
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THEOREM C. Suppose F1, .... Fn are continuous and T> 0 is such that

max F (T)<1. Then as m--
1jn n n

: " - ' " n( Y I . . . . Y )

weakly on Dn [O, TI, where (Y11 ..., Y ) is a vector of mean 0 Gaussian

processes whose covariance structure is given by

Cov(Yj (t1), Yj2 (t2))
:

n2 2
a h a h

au a u. au
k = lk (u, ... un) = 2 k (u . un =

2 KSl1(t 1  . . . Sn(tl) (Sl1(t 2 ) . .. Sn(t 2)),

Sk(tl)Sk(t2) 1t dFkju)kk (u) Sk (u)

for ot :5t2 _!T and j' J21 .... n.

For fixed t, the asymptotic normality of m (11 (t)-Ii(t),

I (t) - I (t)) follows from Theorem A and an application of the deltan n

method. The theorem follows from an easy extension of this argument to the

process {m (I (t) - I ... , - I (t))" t E [0, T]}.
1 n

3. BOOTSTRAPPING SCHEMES

Although the estimates F (t), F (p), and 0 are easy to describe and
S s S

their asymptotic distributions relatively simple, their finite sample dis-

tributions (particularly for F-(p)) are completely intractable. In prac-

tice, we will need to supplement any estimate with an estimate of its stan-

dard error, and in fact an estimate of its whole distribution. In this

section we discuss bootstrapping schemes for estimating the distribution

~~~~~~~~~~. . . .......... _ .. .. . ...... .. , •.,.,,••. :,..:'., ... .-.-......-.-



METHOD 2. In this estimate of the model P, component j has lifelength dis-

tribution F., for j =1, ... , n; so we construct artificial systems by

,.*' resampling component lifelengths from the Kaplan-Heier estimates F..

A formal description of the algorithm is

-'l) Generate X! -F. for j = 1, 2, ..., n independently. This gives one
3 3

artificial system which we denote by Sys*l.

" (2) Repeat Step 1 independently m times giving one sample of artificially

constructed systems, denoted Sys*l, .... Sys*M .

(3) Compute n* base. on the m systems in Step 2.

(4) Repeat Steps 1, 2 and 3 independently B times, obtaining n*1 , n*2,

n*B . Figure 2 schematically describes this method.

X* -F X*'-
""* X- F

Sys*l has lifelength T* . Sys*m has lifelength T*
1." m

Figure 2. In Method 2, the estimate n* is based on the data Z*. =
i

min(X*., T!), 6. = I(X. <T!).

Note that our version of S. given by (3) is strictly positive for3

t- max-.. if maxZ., corresponds to a censored observation. In this case,i 13 i 1j

we view F. as giving mass to the point -; thus X is equal to - with posi-3 J

tive probability.

In applying either method, the n*bs are used in the usual way to make

*inference about G. Let G* equal the empirical cdf of the n*b's. The stan-m

dard deviation of G is estimated by

9.
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B 2
( 9 ) G = { _ 1 ( *  b  - nT *

Bib=l

B
where vI' I n*b. The standard deviation is not a particularly mean-

b=l

ingful quantity if G is asymmetric or far from normal, which may occur when

the sample size is small. In that case the intervals n!z + L where z isa

the 100 -a percentile point of a standard normal variate and a is given by

(9) are essentially useless. As alternatives, we can use the percentile

intervals of level a (aE (0, 1)) given by

(10) [G-I(a), G*-I( - a)],m m

and the more elaborate bias corrected and BC intervals (see Efron 1984a,
a

b), all based on G*.
m

In comparing the two methods of bootstrapping, it is helpful to make

an analogy with the regression model in which we observe random pairs

(Yi' X.), i=1, ... , m, where

1 1

(11) Y 6+E

X. is a p dimensional vector of covariates, 6 is a p dimensional vector of
1

~unknown coefficients, to be estimated, and E. are iid from an unknown dis-

tribution F on R 1, centered at 0 in some sense. Let i be an estimate of 6,

whose variability we wish to assess.

One way of bootstrapping is to resample the pairs (Yi, Xi), and con-

struct an artificial value 8* based on the resampled pairs. This corre-

sponds to our Method 1.

Another way to bootstrap is to resample the residuals

C. =Y. - .
1 1 1
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13

Let F be the empirical cdf of 1 ""' and let c*, ... E c* be iid-F

m ' " m m

We construct Y!'=X1+ F_, i= ...=I , m, from which we can obtain an artifi-1 1 1'

cial value 8*. This corresponds to our Method 2.

Method 2 makes more use of the structure in our model, in particular

the assumption of independence of the component lifelengths. We view this

both as a strength and a weakness.

We expect Method 2 to be "preferable", but we have not carried out an),

studies to assess the two methods. We hope to pursue this problem and

report the results in a future paper.

Efron (1981) has discussed use of the bootstrap on censored data. He

considered the standard setup for randomly right censored data. which cor-

responds to two components arranged in series in our model. He showed that

for this case, the two methods of bootstrapping are identical. The two

methods are not always the same in our situation, as can easily be seen by

considering a parallel structure of two components.

It would be of interest to study the asymptotic behavior of the boot-

strap in our problem. This would determine whether confidence intervals

based on the bootstrap are asymptotically valid. To carry out such a

study, it would be necessary to select some relatively simple estimates;

*s(t) where t is fixed is a prime choice. Let F*(t) denote a bootstrap
s

replication of Fs (t), obtained by one of the two methods. Suppose we can

show that for almost every sample sequence {(Zij, 6ij); j = 1, ... n,

i=l, 2, 3, ...,

m(F(t) - (t)) and m (P (t) - F(t))

(12)

have the same asymptotic distribution.

It would then follow that the simple percentile intervals (10) are asymp-

.o-.o. . . . . ..*
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totically correct to the first order, in the terminology of Efron (1984b).

Hjort (1985) has shown that in the standard setup for randomly right

censored data, the bootstrap approximation is asymptotically correct to the

first order. More specifically, suppose that X. are iid-F, Y. are iid-G,1 1

independently of the X's, and that the data is (Xi AY i, I(Xi 5Y
- i)),

i = 1 ... , m. Let F be the Kaplan-?Ieier estimator, and let F* be the

empirical cdf of a random sample of size m from F. Hjort (1985) showed that

under certain regularity conditions, for fixed t, with probability one,

m;(F*(t)-- (t)) and m (F(t) - F(t))
" (13)

have the same asymptotic distribution.

This result offers hope that (12) is true under some reasonable set of

assumptions.
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