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1. INTRODUCTION
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The followingcprobiém;ig of practicél and theoretical importance in

reliability.

Under study is a coherent structure consisting of n independent com-
ponents. The structure is observed continuously until it fails. For com-
ponents failing before or at system failure time, we observe complete life-
lengths; for components still functioning at system failure time we observe
censored lifclengths. For the system we observe system lifelength. From
a sample of m such structures we wish to estimate the system lifelength
distribution.

As far as we know, this problem has not been solved or even treated

in the literature.

In this paper we propose an estimator of the system lifelength distri-
bution. As a by-product, we also obtain estimates of the mean and quan-
tiles of the system lifelength and of all the corresponding quantities for
component lifelengths. 1In Section 2 we give several asymptotic results
concerning the estimators. In Section 3 we present and discuss two boot-
strap schemes that are used in small samples to assess the variability of

/ - — -
our estimates and to construct confidence intervals. '_»€U%u~rx19 ‘ S’K;«ZZC" T )
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NOTATION ‘ -
We assume that the system and each component are in either a function- .
ing state or a failed state. Thus, we can define the lifelengths of the I ;
i !
components and of the system. Let i

]

the lifelength of component j in system i;

X..
1]

T.
1

P —)

the lifelength of system i;

mln(xij, Tx);
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éij = I(Xij s'ri);

Fj be the distribution function of xij' and the component reliability func-
tion be Sj(t) =1- Fj(t);
FS be the distribution function of Ti' and the system reliability function
be Ss(t) =1- Fs(t);
Hj be the distribution function of Zij’ and ﬁj(t) denote 1 -l%(t).
In the definitions above the letter i indexes systems and the letter j
indexes components. Throughout the paper i ranges from 1 to m, and j from
1 to n. The random variables Xij are not observed. We observe only the
Z..'s and &, . 's.
1] 1)

It is helpful to keep in mind a concrete example. Figure 1 below
shows diagrammaticallv a simple structure of 3 components, arranged neither

in series nor in parallel. We carrv this example throughout the paper. In

the example (the subscript i indexing systems has been suppressed) T=

Xl A(XZVX3), where x Ay =min(x, y) and xvy=max(x, y).

X2
7
\F,
Xl
G)
&)
x3

Figure 1 Xi= lifelength of component i, i=1, 2, 3.
We note that FS can be estimated naively by the empirical distribution
function of the Ti's:

(1) By =2

m
s Z I(T, <t) for t20.

However, it is clcar that this estimator does not use all the information
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available in the sample.

THE ESTIMATOR

For any coherent structure of n independent components there corre-

sponds a function h: [0, 1]"-*[0, 1], such that
(2) Ss(t)=h(sl(t)’ SN Sn(t)) for t20.

See Chapter 2 of Barlow and Proschan (1975) for details. In the example

given by Figure 1, we have

S (1) =S, (8)[1- (1-8,(t))(1-S,(t))],
so that

h(ul, u,, u3)=l11[1- (1- uz)(l- u3)] for u,, u,, u,e {0, 1}.

1" 27 3

To construct our estimator, we first estimate the Sj(t)'s by the

Kaplan-Meier estimates

m_i]G(i)j

il for t20.

(3) S.()= 1 [
1 i: Z <
(1)

(L(l)j <... <Z(m)j denote the ordered values of le, ey ij, and G(I)j’

cees G(m)j are the 6's corresponding to z(l)j’ cees z(m)j’ respectively)

and then substitute gj(t) for Sj(t) in (2). The estimator is defined by

) h(S,(2), ..., S (1)) if t<T
(4) § (1) =

(m)
0 ife2T ..

Here, =max T

T(m) ax T;-

We have shown that the estimate ﬁs(= 1 ’és) is the nonparametric mle

of F.- We do not present a formal proof here, but instead offer the
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following heuristic argument. It is well known (Kaplan and Meier, 1958;
Johansen, 1978) that the Kaplan-Meier estimate is the nonparametric mle of
a distribution function when the data is randomly right censored. An
extension of this result is that (§l, ey §n) is the nonparametric mle of
(Sl’ cees Sn); the invariance principle for mle's implies that
h(él..., Qn) is the nonparametric mle of h(Sl, ey Sn)'

Equation (4) provides the basis for the estimation of functionals of
Fs such as quantiles and the mean. For example, we can estimate F;l(p) by
£-'(p), for pe (0, 1). Similarly we can estimate by = [otdF_(t) by u_=

JordF (v).

2. ASYMPTOTIC RESULTS

In this section we describe the limiting behavior of the estimates of
the system and component reliability functions. As an application, we show
how our results can be used to improve the system reliability. The proofs
of the theorems stated below will appear elsewhere.

We begin with an important result concerning the simultaneous estima-
tion of the component reliability functions. For T>0, D[0, T] denotes the
space of real valued functions on [0, T] that are right continuous and have
left limits, with the Skorohod metric topology (see Chapter 3 of Billings-

ley, 1968), and Dn[O, T} denotes the product metric space.

THEOREM A. Suppose F . Fn are continuous, and let T be such that

1’
Fj(T) <] for j=1, ..., n. Then as m+w»

L A n
m (Sl- Sl’ Sz- 52, » W)

8 =S )M, Wy i, W

in Dn[O, T], where W, ..., Wn are independent mean 0 Gaussian processes,

1'

with covariance structure given by




rtl dF.(U)

—J for 0st st,sT.

S.(t,)S.(t,)
)t J ﬁj(U)Sj(u) 2

The weak convergence of the Kaplan-Meier estimator to a Gaussian pro-
cess has been well-established in the literature (Breslow and Crowley, 1974;
Gill, 1983) under the assumption that the lifelengths and the censoring
variables are independent. In our situation the component lifelengths are
censored by the system lifelength, and the independence condition is clearly
violated. We can, however, redefine the censoring variables to bypass this
difficulty. This is easiest to explain in terms of the example given by

Figure 1. Consider Component 1. Clearly, X, is censored by Y1 =X, VXS'

1

which s independent of X Similarly, X_ is censored by Y =X1. and Xs by

1’ 2 2
Y3==X1. The construction is general: for an arbitrary system, Xj is cen-
sored by Yj= lifelength of system if Xj is replaced by ». One can check
that

(1) Xj and Yj are independent,

(ii) min(Xj, T) =min(Xj, Yj).

Thus, the known weak convergence results for the Kaplan-Meier estimate
apply to the individual éj‘s.

For fixed m, the éj's are in general dependent. This is easily seen
in the example given by Figure 1, in which Components 2 and 3 are both cen-
sored by Component 1. For complicated systems the dependence may be com-
plex. Thus, the novel results given by Theorem A are first, the joint
asymptotic convergence of the §j's and second, their asymptotic independ-

ence.

The asymptotic independence of the §j's is interesting. Before prov-

ing Theorem A we conjectured this result by considering the two special
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cases of parallel and series systems. These are often viewed as extreme
cases in reliability theory, and an analysis of these cases may shed light
on the dependence structure between the §j's. For parallel systems there
is no censoring at all; the ?j's are the usual empirical cdf's and are
trivially independent for every m. For a series system (say of just two

t: components) we have
(6) m Cov(Fl(t), Fz(t)) =HIEF1(t)F2(t)‘-m EFl(t)EFz(t).

Since ﬁl(t)ﬁz(t) =ﬁ§“‘p(t) (see (1)), the first term on the right side of

(6) is m Fs(t). Consider now the second term on the right side of (6).

3 From Efron (1967) we obtain the bounds

-mﬂj(t)

(7 OSFj(t)-Eﬁj(t)ssj(t)e for j=1, 2.

(Actually, Efron, 1967, has the inequalities reversed. This is because he
uses the version of the Kaplan-Meier estimate that is defined to be 0 past
the last observation, whether or not it is censored.) Combining (6}, (7)

and the fact that Fl(t)Fz(t) =Fs(t), we obtain for series systems that
(8) m Cov(ﬁl(t), ﬁz(t))-+0 exponentially fast as m+o.

This proves that 31(t) and §2(t) are asymptotically uncorrelated and
hence asymptotically independent, assuming that joint asymptotic normality
has been established. Since intuitively the series structures give rise to
maximum possible dependence among the §j's, we were led to conjecture the
asymptotic independence of the §j's for general structures. Our proof of

Theorem A does indeed give the result (8) for arbitrary systems.

To prove Theorem A we show that for each m, the vector of processes

;5( (t) -5, (1) SHOEENG
t S(t) u..-,—'gr']-(—t)—-——; te [0, T]




is approximately (as m+=) a martingale with respect to the o-field gener-
ated by all uncensored component deaths observable bv time t. We then
apply an appropriate martingale central limit theorem, via the Cramer-Wold
device, to deduce the result.

The next theorem gives the asymptotic normality of our estimator of

system reliability.

THEOREM B. Suppose F , F,, ...,

that Fj(T) <1 for j=1, 2, ..., n. Then as m=+=

Fn are continuous, and suppose T 1s such

L oA
m’(ss- S.)+W weakly in D[0, T],

where W is a mean 0 Gaussian process with covariance structure given by

n
cOv(W(tl), W(tz)) = 'Z .Eﬂ_(u , » u_)
J=laU 1 n (U U)=
|
(sl(tl), e Sn(tl))
ah
-ar(ul, ,U)
] (ul, T un) N

(8,(ty), «..r S_(t,)))

3 t dF . (u)
S.(tl)S.(tz)[ —J1 _ for OStlst_)sT.
) J 0 ﬁj(u)sj(u) <

1, A
For fixed te [0, T], the asymptotic normality of m’(Ss(t) -5, (1))
follows from Theorem A and an application of the delta method. Thus, the

proof of Theorem B consists of a straightforward generalization of this for

the process {m%(és(t)- Ss(t)); te [0, T1}.

Greenwood's formula can be used to estimate the variance of éj(t).
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Since this estimate is well known to be consistent, it is clear that one
can consistently estimate the asymptotic variance of Ss(t) given by Theorem
B. This enables the construction of asymptotic confidence intervals for
Ss(t).

We close this section with an applicati-n of Theorem A to the joint
estimation of the reliability importance of components. The reliability

importance Ij(t) of component j at time t is defined by

I(t)=-a_ h(ul) e ey un) (ul, ...,un)z
] auJ.

(5,()s ..., S_(1)

Let El’ v En be small numbers. Note that

n
h(S () +e), .., S (t)+e ) -h(S(t), ..., Sn(t));jzlejlj(t).

Thus, the reliability importance of components may be used to evaluate the
effect of an improvement in component reliability on system reliability,
and can therefore be very useful in system analysis in determining those
components on which additional research can be most profitably exnended.
For details, see pp. 26-28 of Barlow and Proschan (1975), and the review by
Natvig (1984).

Notice that

IJ(t) =hJ (sl(t)) ey Sn(t))’

where hj: [o, 1]"-*[0, 1] is some smooth function. Thus, to estimate

Ij(t), a natural choice is

Ij(t) =|1j(Sl(t), ceay Sn(t)).
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THEQREM C. Suppose F oy Fn are continuous and T >0 is such that

1’
max F.(T) <1. Then as m+>=
1<j<n

P -
m (I1 Il’ cees In -In)-+(Yl, RN Yn)

weakly on Dn[O, T], where (Yl’ ey Yn) is a vector of mean 0 Gaussian

processes whose covariance structure is given by
COV(le(tl), sz(tz)) =

n 2 2

2°h 3%k
k=1 % % g, ) T 'S (TR
k=zj., )
1" 32
(5,(t))s -.os S_(£))) (8,(t)), --os S (1))
dF, (u)
t k
S, (t,)S (t)[ -_—,
KR R s, )

for OStlstst and jl’ j2=l, .e., M.
For fixed t, the asymptotic normality of m%(il(t)- Il(t), cy
in(t)- In(t)) follows from Theorem A and an application of the delta

method. The theorem follows from an easy extension of this argument to the

process {m%(il(t)— Il(t)’ N fn(t)- In(t)); te [0, T]}.

3. BOOTSTRAPPING SCHEMES

Although the estimates ﬁs(t), ﬁ;l(p), and ﬁs are easy to describe and
their asymptotic distributions relatively simple, their finite sample dis-
tributions (particularly for ﬁ;l(p)) are completely intractable. In prac-
tice, we will need to supplement any estimate with an estimate of its stan-
dard error, and in fact an estimate of its whole distribution. In this

section we discuss bootstrapping schemes for estimating the distribution

e e T % o e . . . P . LN . - ot et e T
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METHOD 2. 1In this estimate of the model P, component j has lifelength dis-

tribution ﬁj’ for j=1, ..., n; so we construct artificial systems by

resampling component lifelengths from the Kaplan-Meier estimates ﬁj'
A formal description of the algorithm is

1) Generate X’;-—FJ for j=1, 2, ..., n independently. This gives one
artificial system which we denote by Sys*l.

(2) Repeat Step 1 independently m times giving one sample of artificially
constructed systems, denoted Sys*l, ..., Sys*M,

(3) Compute n* base. on the m systems in Step 2.

(4) Repeat Steps 1, 2 and 3 independently B times, obtaining n*l, n*z, AN

n*B. Figure 2 schematically describes this method.

—2) (2)
/| \u/‘
X*_ ~ X*_~F
12772 m 2
X* ~F X* ~F
11771 mi~ 1
-® ®
. I
X135~ F3 Xa3~Fs3
ys as lifelength T* ... Sys as lifelengt
Sys*! has lifel h T3 Sys*™ has lifelength T*

. : * 3 * =
Figure 2. In Method 2, the estimate n* is based on the data Zij
3 * * L] %.J *
mm(XiJ T* ), st i I(xij 51}).
Note that our version of éj given by (3) is strictly positive for

t ZInaxZi. if m:.laxZij corresponds to a censored observation. In this case,
1

-

we view Fj as giving mass to the point «; thus X3 is equal to = with posi-
tive probability.

In applying either method, the n*P's are used in the usual way to make
inference about G. Let Gr equal the empirical cdf of the n*P's. The stan-

dard deviation of G is estimated by

s |
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B
(9) a={§_}_f Z (n*b_nt.)z}!i
b=1
; B
where n*° =g ] n*b. The standard deviation is not a particularly mean-
b=1

ingful quantity if G is asymmetric or far from normal, which may occur when
the sample size is small. In that case the intervals nl zaé, where z, is
the 100 - o percentile point of a standard normal variate and o is given by
(9) are essentially useless. As alternatives, we can use the percentile

intervals of level a (ae (0, 1)) given by
| -1 “1(1-a)1
(10) (G*-%(a), Gx-1(1-a)],

and the more elaborate bias corrected and BCa intervals (see Efron 1984a,
b), all based on G;.

In comparing the two methods of bootstrapping, it is helpful to make
an analogv with the regression model in which we observe random pairs

(Y., X.), i=1, ..., m, where
i i
(11) \i=Xi6*ei,

X.1 is a p dimensional vector of covariates, B is a p dimensional vector of
unknown coefficients, to be estimated, and e, are iid from an unknown dis-
tribution F on Rl, centered at 0 in some sense. Let 8 be an estimate of 8,
whose variability we wish to assess.

One way of bootstrapping is to resample the pairs (Yi’ Xi), and con-
struct an artificial value 8* based on the resampled pairs. This corre-
sponds to our Method 1.

Another way to bootstrap is to resample the residuals
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Let F_be the empirical cdf of & , €, and let e}, ..., e be iid~F .

1* e m 1

We construct Y;:=X£é-ke;, i=1, ..., m, from which we can obtain an artifi-

cial value B*. This corresponds to our Method 2.

Method 2 makes more use of the structure in our model, in particular
the assumption of independence of the component lifelengths. We view this
both as a strength and a weakness.

We expect Method 2 to be "preferable', but we have not carried out any
studies to assess the two methods. We hope to pursue this problem and
report the results in a future paper.

Efron (1981) has discussed use of the bootstrap on censored data. He
considered the standard setup for randomly right censored data. which cor-
responds to two components arranged in series in our model. He showed that
for this case, the two methods of bootstrapping are identical. The two
methods are not always the same in our situation, as can easily be seen by
considering a parallel structure of two components.

It would be of interest to study the asymptotic behavior of the boot-
strap in our problem. This would determine whether confidence intervals
based on the bootstrap are asymptotically valid. To carry out such a
study, it would be necessary to select some relatively simple estimates;
?s(t) where t is fixed is a prime choice. Let ﬁ;(t) denote a bootstrap
replication of ?s(t), obtained by one of the two methods. Suppose we can
show that for almost every sample sequence {(zij’ Gij); j=1, ..., n,

i=1, 2, 3, N
mi(Er(t) - (t)) and mi(E (t) - F(t))
S S S

(12)
have the same asymptotic distribution.

It would then follow that the simple percentile intervals (10} are asymp-
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totically correct to the first order, in the terminology of Efron (1984b).
Hjort (1985) has shown that in the standard setup for randomly right

censored data, the bootstrap approximation is asymptotically correct to the

first order. More specifically, suppose that X.1 are iid~F, Y.1 are iid~G,

independently of the X's, and that the data is (xi.AYi' I(XiS‘Yi)),

i=1, ..., m. Let F be the Kaplan-Meier estimator, and let F* be the

empirical cdf of a random sample of size m from F. Hjort (1985) showed that

under certain regularity conditions, for fixed t, with probability one,

mi(F*(t) - F(t)) and mE(F(t) - E(1))

have the same asymptotic distribution.
This result offers hope that (12) is true under some reasonable set of

assumptions.
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Suppose that we have a sample of iid systems each consisting of independent

components. Let F denote the distribution of system lifelength. Each system
is continuously observed until it fails. For every component in each system,
either a failure time or a censoring time is recorded. A failure time is
recorded if the component fails before or at the time of system failure; other-
wise a censoring time is recorded.. We introduce a method for finding estimates

of F(t) based on the mutual censorship of the component lifelengths inherent

in this model. We present limit theorems that enable the construction of
confidence intervals in large samples. For small samples, we describe and dis-

cuss bootstrap schemes that can be used to implement the method.
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