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I. Introduction

There has been much recent interest in the development
of highly stable and portable clocks for such diverse
applications as navigation and communications. At present,
cesium beam clocks are the commercia]l} available portable
clocks with the best long term accuracy. In this research
project, we have been investigating the possibility of using
a stimulated resonance Raman interaction to develop more
stable cesium beam clocks that are smaller, lighter and less
expensive than existing commercial cesium clocks.

Preliminary results show that short term fractional
frequency stabilities achievable using a Raman transition in
a sodium atomic beam are comparable to those of commercially
available portable cesium beam clocks when differences in
transition frequency and transit time are taken into
consideration. These preliminary results are very
encouraging and it is anticipated that if the resonance
Raman technique were applied to cesium the goal of
significantly smaller and less expensive portable Cs beam

clocks, with good long term accuracy, could be achieved.
e,

I1. Background

Fig. 1(a) shows schematically a stimulated resonance ——-—E?F—~
Raman interaction between two long lived states, 1 and 3, E%
o S

induced by two laser fields w4 and Wy, The net effect of

this two-photon Raman process is the same as for direct ————
n/
microwave excitation in that population is transferred v ey
;S or
N 1
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between states 1 and 3. In an atomic beam, the Raman
transition linewidth for copropagating laser fields is
determined by the decay rates of states 1 and 3, with a
negligible contribution from state 2, i.e. the linewidth is
limited by laser jitter and transit time since states 1 and
3 are long lived. Moreover, symmetry arguments show that
correlated laser jitter (w1 and wy jittering together) also
does not contribute to the Raman linewidth. Thus, under
appropriate experimental conditions, the Raman linewidth is
transit time limited, just as for microwaves.

To obtain a small transit time linewidth we use
Ramsey's method of separated oscillartory fields, as
il1lustrated in Fig. 1(b), in analogy with conventional
microwave techniques. In separated field excitation, an

atom-field superposition state created in interaction zone A

S interfers with a superposition state created in zone 8. The
!! resulting interference fringes, which can be observed in
ﬁ zone B only when zone A is present, have frequency widths

g; which are characteristic of the transit time between

interaction zones.

III. Experimental Setup

A simplified diagram of our experimental Raman clock
setup is shown in Fig. 2. In these preliminary experiments,
sodium was used, where states 1 and 3 corresponded to the

F=1 and F=2 hyperfine sublevels of the JZS} ground state

. which are separted by 1772 MHz, and state 2 was chosen to be
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the 32P}(F=2) excited state. The sodium atomic beam is

produced by heating sodium to 370°C in an oven equipped with
a 0.5 mm diameter exit pinhole and a second 0.5 mm diameter
colliminating pinhole 30 c¢cm downstream, as illustrated in
the Fig. 2. The laser at frequency wy is obtained from a
single mode dye laser, locked to the 1> 2 transition (Dl)’
near 5896K, using fluorescence from the atomic beam. The
laser field at frequency w, was generated directly from that
at wy using an acousto optic frequancy shifter (A/0), driven
with a quartz stablized microwave oscillator near 1772 MHz.
In this way the frequency jitters of @, and w, were
correlated so as to obtain a highly stable difference
frequency w T Wy After leaving the A/0 the laser beams at
wIand wy are combined, passed through a linear polarizer and
directed into a polarization preserving single mode optical
fiber. At the fiber output the copropagating laser beams
are sent through a second linear polarizer followed by a 50%
beamsplitter, which produces two optical fields, each having
frequencies wy and w,. These two optical fields are then
circularly polarized before exciting the atomic beam at the
two Ramsey interaction zones, as shown in Fig. 2. The
earth's magnetic field is cancelled over the entire
interaction length by a set of three-axis Helmholtz coils,

not shown,

IV. VLineshape Data

Typical Raman lineshapes obtained with this




experimental setup are shown in Fig. 3. These are obtained

by monitoring the fluorescence, induced in zone B8, with a
photomultiplier while w, is scanned over the 3 < 2
transition frequency with wy locked to the 1< 2 transition.
The broad feature in Fig. 3(a) corresponds to the 10 MHz
wide D1 transition in sodium. The Raman lineshape (with
beam A blocked) appears as three dips in the center of this
broad lineshape. There are three dips instead of only one
because we applied a 300 mG magnetic Zeeman field along the
laser propagation direction. The central dip corresponds to
the me = 0, AmF = 0 Raman "clock®™ transition.

These three dips appear with an expanded frequency
scale in Fig. 3(b), (beam A unblocked). The narrow feature
in the middle of the central dip are Ramsey fringes obtained
using an L=15 cm Ramsey interaction zone separation., An
expanded scan of these fringes appears in Fig. 3(c). The
dotted curve superimposed on the data corresponds to the
theoretical Ramsey fringe lineshape predicted for a thermal
atomic beam velocity distribution. This theoretical
lineshape is identical to that predicted for direct
microwave excitation.

Optimized fringes for L = 15 cm appear in Fig. 4(a).

To maximize fringe amplitude, circular polarization was made
better than 95% and both laser fields (at w and wz) were
adjusted to have 40 uW of power each with 2mm (FWHM) beam

diameters at each of the two interaction zones. At these

power levels, the Raman transition saturates and no large
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increase in fringe amplitude results for increased laser
power. The fringes in Fig. 4(a) have a signal to shot noise
ratio of about 1200 for t = 1 sec.

To stabilize a microwave oscillator to the central
fringe of Fig. 4(a), a discriminant is needed. This
discriminant, which is shown in Fig. 4(b), is obtained by
frequency modulating the microwave source at a rate fm =
610 Hz and demodulating the zone B fluorescence signal with
a lock=-in amplifier. The output of the lock-in amplifier is
then used in a feedback loop to hold the microwave
oscillator frequency at the central zero of the
discriminant. The stability of this oscillator is then

measured by comparing it with a commercial cesium clock, as

shown in Fig. 2.

V. Allan Variance

Fig. S shows a plot of the measured fractional
frequency stability vs. averaging time for the stabilized
microwave oscillator. For v = 100 sec, the stability is

about 3 x 10°1!

. The dashed line superimposed on the data
has a slope of -~} which is the predicted slope for shot
noise limited stability. The data in this plot are close to
the shot noise limit. To obtain this data, a Ramsey fringe
having a signal to shot noise ratio of 4800 was used. This
higher signal to shot noise ratio was obtained by enlarging

both the oven and collimating apertures in the atomic beam

'''''''''''''''
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apparatus from 0.5 mm to 1.0 mm diameter, thereby increasing
the sodium throughput in the atomic beam.

To compare the stability data of Fig. 5 with
conventional cesium clocks, it is necessary to include a
factor 16 to account for the higher transition frequency and
longer typical transit time of cesium. The lower dashed
line in Fig. 5 is the projected stability if cesium were
used in place of sodium in our setup with everything else
being equal, It is the upper dashed line divided by 16.

The triangles are the specifications of a commercial H-P

-*

cesium clock (L = 7 ¢cm) and are included for comparison. As

I T B A

can be seen, the projected sodium results compare favorably

with commerical cesium clocks.

) g

VI. Frequency Error Sources

For averaging times greater than about 100 sec., the
fractional frequency stability, ng. 5, no longer decreases
as «-}, indicating the presence of long term frequency
drifts.

Preliminary investigations have been made of some of
the more important frequency error sources and experimental
techniques have been developed to reduce their influence.
These error sources include:

(i) Relative Misalignment of Laser Beams

One source of frequency error arises from relative
misalignments of the shifted (wz) and unshifted

(“1) laser beams aﬁay from copropagating the

l. l. ’ I. "
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interaction regions. In a single interaction
region, such errors can be explained in terms of
different Doppler shifts for the two laser
frequencies. To greatly reduce the effects of
relative misalingments the laser beams at both
frequencies were made exactly copropagating by
directing them into the same single mode optical
fiber.

Optical Phase Shifts

Frequency error can also be produced by any effect
that alters the relative phases of the shifted and
unshifted laser beams at the interaction regions.
Such phase shifts can occur, for example, if there
are birefringent optics présent and the shifted
and unshifted laser beams have different
polarizations. 7To reduce such optical phase shift
effects, the polarizations of the shifted and
unshifted laser beams are made identical by
directing them through a common linear polarizer,
as shown in Fig. 2.

Path Length Phase Shifts

Just as in microwave excitation, changes in
optical path tength can produce frequency errors
in the Raman scheme. We reduced these phase
shifts by using standing wave excitation. This is
analogous to the use of a cavity in the case of

microwaves. For the Raman scheme, however, there

12
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is a possibility of obtaining a higher quality
standing wave than is possible using microwaves.
For example, microwave cavities have Q's of about
100, while optical cavities can have Q's in excess

of 10,000.

(iv) Laser Detuning Shifts

3 Frequency errors can also occur if the laser, at
? . frequency, wy is not exactly on resonance with
the 1++ 2 transition., It was found that such

errors could be greatly reduced by using optical

pumping techniques. However, laser detuning
effects are still under investigation and it is
possible that additional techniques will be

developed for reducing their influence.

(v) Laser Beam Pointing Stability
In order to achieve good long term stability it is
i necessary to have constant laser beam intensity

. and alignment at the interaction regions. In the

past, such long term intensity and alignment
stability was limited by the mechanical stability
and temperature sensitivity of the fiber mounts.
To reduce such effects, more rigid fiber mounts
having less temperature sensitivity were
constructed and a fiber with a larger core
diameter was used. Still greater stability was

achieved by installing a servo to stabilize the

laser power transmitted by the fiber. With these
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improvements, a long term laser beam alignment
stability of § urad/104 sec and a laser intensity

stability of 1%/10°

sec at the interaction regions
have been achieved. This leads to expected .
frequency drifts, related to pointing
instabilities, of smaller than 10°1%/10% sec, for
L =15 cm.

(vi) Magnetic Field Effects
Changes jn the direction or magnitude of stray
magnetic fields (including earth's field) present
in the laboratory can also cause long term
frequency drift. To reduce such drifts, u-metal
shielding was used. In addition, the magnetic
holding field (generated by Helmholtz coils inside
the shielded region) was also stabilized by using
a very low drift current source. With these
improvements, the long term frequency drifts due
to changes in the magnetic field were reduced to
better than 10-12/10*% sec.

(vif) Other Frequency Error Sources
Additional frequency error sources not yet studied
in detail include: (a) atomic beam misalignments,
(b) single region slope effects, (c) effects of
nearby atomic levels, (d) fluorescence propagating
along the atomic beam, (e) optical atomic

recoil, (f) second order Doppler shift, etc.

14




VII. Summary and Suggestions for Future Work

The stimulated resonance Raman effect has been
demonstrated in a sodium atomic beam. Ramsey fringes as
narrow as 1.3 kHz (FWHM), corresponding to an L = 30 cm
interaction region separation, have been observed in the
second region fluorescence signal. Moreover, the amplitude
of these narrow fringes has been observed to be the same as
for fringes corresponding to smaller interaction region
separations, indicating that transit time is the primary
broadening mechanism, just as for microwaves.

A microwave oscillator has been stabilized using
Raman/Ramsey fringes corresponding to L = 15 cm and
fractional frequency stabilities as good as 3 «x 10'11. for
vt = 100 second averaging fine, have been achieved. These
stabilities, which are near the shot noise 1imit, compare
favorably with commercial cesium clock stabilities when
differences in transit time and transition frequency are

taken into consideration.

Sources of long term frequency drift were partially
studied. The major frequency error sources have been
identified and experimental techniques have been found to
reduce them. It is highly recommended that the study of
frequency error sources be continued so that the remaining
frequency error sources can also be identified and reduced
until the long term stability of the Raman clock becomes

comparable to conventional microwave clocks,
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It is also recommended that the stimulated resonance
Raman technique be used with a cesium atomic beam. Aside
from an expected factor of 16 better stability over sodium,
there is the possibility developing a much smaller and
lighter atomic beam clock by replacing the dye laser with a
semiconductor laser. ®"0ff the shelf" GaAs lasers can be
obtained, which operate at the 852 nm cesium D1 transition
frequency. Moreover, using the Raman technique, there would
be no need for state selection magnets, microwave cavities
or hot wire detectors. This would result in less expansive,
smaller, lighter and more reliable cesium beam clocks with
equal or better stability than commercially available

portable clocks.

16
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