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The low-level interpretation-of images' provides constraints on 3D -surface shape at multiple reso-
lutions, but typically only at scattered locations over the visual field. Subsequent visual processing
can be facilitated substantially if the scattered shape constraints are immediately transfor.ned into
visible-surface representations that unambiguously specify surface shape at every inage point. TheSrectircd transformation is shown to lead to an ill-posed surface reconstruction problem. A well-
posed variational principle fornulation is obtained by invoking "controlled continuity," a physically
nonicstrictive (gcneric) assumption about surfaces which is nonetheless strong enough to guarantee
unique solutions. The variational principle, which admits an appealing physical interpretation, is
locally discretized by applying the finite element method to a piecewise, finite element represen-
tation of surfaces. 'his forms the mathematical basis of a unified and general framework for
computing visible-surface representations. The computational framework unifies formal solutions
to the key problems of (i) integrating multiscale constraints on surface depth and orientation from
multiple visual sources, (ii) interpolating these scattered constraints into dense, piecewise smooth
surfaces, (iii) discovering surface depth and orientation discontinuities and allowing them to restrict
interpolation appropriately, and (N,) overcoming the immense comptitational burden of fine resolu-
tion surface recoastruction. An efficient surface reconstruction algorithm is developed. It. exploitsB multire)lation Ihicrarchies of coopern:tive relaxation processes and is suitable for implementation on
massively parallel nctworks of simplo, locally interconnected processors. Ihe algorithm is evaluated
empirically in a diversity of applications.
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formulation is obtained by invoking "controlled continuity," a physically non-restictive

"% (generic) assumption about surfaces which is nonetheless strong enough to guarantee
unique solutions. The variational principle, which admits an appealing physical
interpretation, is locally discretized by applying the finite element method
to a piecewise, finite element representation of surfaces. This forms the mathematical
basis of a unified and general framework for computingvisible-surface representations.
The computational framework unifies formal solutions to the key problems of
(i) intergrating multiscale constraints on surface depth and orientation from
multiple visual sources, (ii) interpolating these scattered constraints into
dense, piecewise smooth surfaces, (iii) discovering surface depth and orientation
discontinuities and allowing them to restrict interpolation appropiately , and
(iv) overcoming the immense computational burden of fine resolution surface
reconstruction. An efficient surface reconstruction algorithm is developed.
It exploits multiresolution hierarchies of cooperative relaxation processes
and is suitable for implementation on massively parallel networks of simple,
locally interconnected processors. The algorithm is evaluated empirically in
a diversity of applications.
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Terzopoulos Computing Visible-Surface Representations

I. Introduction

Over thirty years ago, J.1. Gibson [1950 made the seminal conjecture that natural human pe,'ception
amounts to the perception of visible surfaces. The explicit representation of visible surfaces, an
intermediate goal of computational vision, has since attracted considerable interest.

The computational framework offcred in this paper addresses, in a unified way, certain visual
information processing tasks involved in the representation' of visible surfaces. Particular eiinphasis
is placed on utilizing highly parallel, cooperativc processing to integrate surface shape information
over multiple visual sources, to fuse it across a multiplicity of spatial resolutions, and to mairtain the
global consistency of the resulting distributed shape representations. The issues are first investigated
in term, of a surface reconstruction model rooted in mathematical physics. Ibis. formal aralysis is
augmen :cd by an empirical study of the resulting algorithms, which feature multiresolution iterative
processing within hierarchical surface shape representations. The approach is guided by current
knowlec.ge of how humans perceive visible surfaces, while applications in machine vision provide
a testbe, for the algorithms. ,

Thc remainder of this introd'ctory section examinis the role of surface reprentations in early )
visual processing, outlines the key computational problems that will be of primary concern, and
reviews some relevant prior work.

:)" 1.1. E&rly Visual Processing and Visible-Surface Representations

Farly vision comprises a set of processes which specialize in recovering the physical properties of
visible surfaces in a 3D scene from 2D images of the scene. They apply generic assumptions about
the physical world and the imaging process to infer 3D surface shape constraints by interpreting
specific image cues, such as stereoscopic disparity, motion, texture, contours, and shading. These
conceptually independent shape estimation processes fall into two broad categories.

The first category comprises what are commonly referred to as correspondence processes. They
operate over multiple image frames of a scene taken across space or over time. Paradigm examples
are stereopsis and structure from motion (see, e.g., the review articles [Poggio and Poggio, 1984]

9and [Ulman, 1983]). Stereopsis is driven by computations on typically two image frames taken
simultaneously, but from different spatial positions. The basic structure from motion computation
involves frames taken from the same position, but at different times. If correspondences can be
established across the frames, between image features which originate from the same point on
a visible surface (not a trivial problem), then the depth (i.e., 31) distance) to such points can
be estimated by triangulation, given the disparity (i.e., 2D displacement) between corresponding
features as well as some knowledge of the imaging geometry.

The second category of shape estimation processes involve computations on a single static
frame. Perspective projection of 3D scenes onto images imparts a systematic distortion to imaged
surface properties such as shading, texture, and contours. A major part of this distortior, can be
attributed to the relative orientations of visible surfaces with respect to the viewer. In principle,
it is possible to estimate surface orientation by measuring and interpreting such distortiors in the
image. This is the basis of practical approaches to recovering surface shape from shading, texture,
and contours [Ikeuchi and llorn, 1981: Horn and Brooks, 1985: Kender, 1980; Witkin, 1981; Brady
and Yuillc, 19841.

The combined output of the shape estimation processes is best collected into intewinediate
representations of the 31) shapes and configurations of visible surfaces, which we will refer to
as visibli-surfiae representalions. Notable amiong proposed visible-surface representations are the

'.~%



Terzopoulos Computing Visible-Surface Representations 2

depth and needle maps of Ilorn [19821, the intrinsic images of Barrow and Tcnenbaum [1978], and
the 21-i) sketch of Marr and Nishihara [1978]. For humans, the perception of visible surfaces is

2
generally immediate, involuntary, and seems to precede (object) recognition. 'Fhis strongly suggests
the existence of a visual process that autonomously computes visible-surface representations. Aside
from the perceptual evidence, the availability of explicit visible-surface representations can also
substantially facilitate subsequent surface analysis tasks in machine vision.

Since early visual processing provides relative surface shape estimates with respect to the
viewer, it is most natural to define the basic shape primitives of visible-surface representations in a
viewer-centered coordinate system. Moreover, the primitives should be computationally compatible
with the local depth and orientation measurements (as well as discontinuities) that are provided by
the various shape estimation processes. These criteria are satisfied by a particularly appealing class
of local, piecewise shape primitives known as finite elements.

A crucial realization is that shape estimates can be provided at multiple resolutions. Indeed,
multiresolution spatial frequency channels have been identified psychophysically in the human
visual system (e.g., [Braddick et al., 19781). Their existence has influenced the design of early
visual algorithms (e.g., [Marr, 1982]). In addition, machine vision research has demonstrated that
multiresolution processing effectively bridges fine and coarse image structure, while it simultaneously
increases computational efficiency (e.g., [Rosenfeld, 19841). Hence, a multiresolution organization
of visible-surface representations is most desirable [l'erzopoulos, 1982, 1983a].

1.2. Key Problems of Visible-Surface Reconstruction

The main topic of concern in this paper is the development of a visible-surpice reconstniction process
responsible for generating and dynamically maintaining visible surface representations. Whether
the intention is to model human vision or to design competent artificial vision systems, this process
must solve four key problems rrerzopouilos, 1983b, 1984]: (i) the constraint integration problem,
(ii) the interpolation problem, (iii) the discontinuity problem, and (iv) the computational efficiency
problem. We elaborate on each of these problems next.

(i) The Constmint Integration Problem: ach specialized visual process may be thought of as a
quasi-independent source of information partially constraining the shapes of visible surfaces.
The human visual system is reliable and robust because it integrates the various processes,
enabling them to complement one another. The integration of multiple sources of information
introduces redundancy, which is necessary not only to resolve potential ambiguities, but also
to overcome the detrimental effects of noise and inaccuracies in the initial shape estimates.
The constraint integration problem is fundamentally one of devising an effective means of
integrating all available surface depth and orientation constraints (and discontinuities) within a
cooperative visible-surface reconstruction process.

(ii) The Intcrpolation Problem.: It is widely accepted that initial descriptions of images ought to
make explicit the occurrence and local 2D structure of image fNatures that are correlated to
salient events on physical surfaces (markings, boundaries, etc.). This is the essence, for instance,
of Marr's "primal sketch" representation of significant image irradiance changes (edges) [Mart,
19821. Generally, such salient features do not occur everywhere over the visual field. The
initial representation of images as a sparse set of features implies that surface shape constraints
generated by the specialized processes will also be scattered over a subset of image points. It
is fascinating, however, that the human visual system systematically interprets visual stimuli
such as sparse random dot stereograrns as coherent 31) surfaces [Julcsz, 19711. Indeed, these
stereograms continue to elicit perceptions of dense surfaces, even when the density of dots
carrying disparity information has been reduced until depth is unspecified over 98 percent of
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the visible surface area (see Fig. 1). It therefore appcars that the surface reconstruction ;irocess
is smoothly "filling in the gaps." This phenomenon has been the subject of some psychophysical
investigation (e.g.. [Collett. 1984]). The interpolation problem of visible-surface reconst-uction
challenges us to devise a scheme, consistent with human perception, for propagating shape
information into indeterminate regions (devoid of shape estimates) from places where it is
available.

S. ..... .. ...,

* Figure 1. A sparse random dot stceogramn. Binocular fusion of this stereogramn reveals a planar surface as a
central, opaque. textured square suspended nearer in depth over a simnilarly textured background. Vivid depth
discontinuities separate the dense surfaces.

(iii) The Discontinuity Problem: Visual discon ti nu ities result from significant, spatially-localized
changes in the physical world, particularly abrupt changes in surface Structure. Both depth
and orientation discon tinUi ties are perceptually relevant and provide vital boundary conditions
for surface reconstruction. D~iscontinuities in depth occur at occluding contours, along which
a surface in the scene Occludes itself or another surface. Orientation discontinUities occur at
creases or cuISps of an otherwise continuous surface. In addition to the perception of coherent
surfaces, random dot stercogranis elicit vivid perceptions Of surface discontinuities at abrupt
disparity changes (see Fig. 1). '[he discontinuity problem amiounts to (1) finding both depth
and orientation discontinuities in surfaces, and (2) dealing with their presence during -visible-
surface reconstruction; i.e., allowing discontinUities to limit the otherwise smooth interpolation
of shape constraints.

(iv) The Comiputational bhficicncy P'roblem: Visible-surface reconstruction at the resolution of the
Hifa;!e imposes an1 Immiense computational burden on both biological and artificial vision sys-

-~ teim;. Nevertheless. visihle-surface representations must he computed quickly if they arc to
N be oif ally practical Naloec. It is generally accepted that to achieve the necessary perfornance,

visu dl algorithms and mechanisms must emphasi/e parallelism Iflallard et a., 19831; however,
visiNc-surff.icc rcconstrulction is compute houind to the point %%here the fundamental limitations

- f Irmassivclv p 11iallel mechanisnis, particularly with respect to global interprocessor commti-
nications. ICAi to severe inellicielcies. 1 lie com1putational efficiency problem is to dec elop a

f..../! : -, ..}". . •:



Terzopoulos Computing Visible-Surface Representations 4

visible-surface reconstruction process that not only exploits parallelism, but also overcomes co-

operative communication bottlenecks to compute visible-surface representations quickly, given
suitable architectures. For the reasons outlined in the foregoing section and following our
previous work [Terzopoulos, 1982, 1983a). our solution to this problem hinges on the idea of
multircsolution structuring of visual representations and associatcd cooperative processes.

1.3. Prior Work

There has been some prior work relating to the computation of visible-surface representations.
Barrow and Tenenbaum 11979] describe an approach to reconstructing smooth surfaces from noisy
visual data. This approach did not apply to general classes of surfaces, however, and the proposed
relaxation algorithms were not supported by a firm mathematical analysis. Nevertheless, Barrow
and lenenbaum's [1978] basic model of intrinsic images and much of the philosophy underlying
their computation seems appropriate, and it has influenced our approach.

The interpolation problem is related to classical spline approximation. A number of well-known
surface approximation methods for scattered data are reviewed by Schumaker [1976]. Grimson
[1983] employed one of these methods for the continuous interpolation of visual surfaces from depth
constraints; a minimization scheme involving a particular functional containing second derivatives
(he referred to it as the "quadratic variation"). Brady and* Horn [1983] observe that this functional
is related to the bending energy of a thin plate (a connection noted by l)uchon [19771), and the
thin plate model was developed further by Terzopoulos [1983a] (see also (Blake, 1984]).

Interestingly, thin plate interpolants have appeared in other areas, including the interpolation
of aircraft wing deflections [Harder and Desmarais, 1972], interpolation of meteorological fields
[Wahba and Wendelberger, 1980], and the interpolation of digital terrain maps [Briggs, 1974;
Bolondi et al., 1976]. In this latter paper there is some concern for the presence of discontinuities

S"(faults).
Following Ullman [19791 and others, Grimson [19831 pursued "biologically feasible," parallel

and iterative algorithms for surface interpolation. A serious drawback of algorithms which satisfy
these criteria is that they often converge excruciatingly slowly for problems of reasonable size.
The idea of multiresoltition surface reconstruction exploiting multigrid relaxation methods was
shown to overcome this problem while adhering to biological feasibility [Terzopoulos, 1982, 1983a].
The multiresolution methodology yields efficient algorithms not only for the surface reconstruction
problem but for other visual problems as well ['erzopoulos, 1984].

In retrospect, although progress has been made, a satisfactory computational theory of visible-
surface representations has been elusive. This is largely a consequence of the significant technical

.:- ., obstacles encountered in devising formal solutions to all four key problems of visible-surface
reconstruction within a unified computational framework. The difficulty of the task appears to have
evoked some skepticism as to the actual computability (hence, even the usefulness) of intrinsic
surface representations [Witkin and 'Tenenbauni, 1983]. Based on the theoretical generality of
our approach and the accompanying empiricalresults, however, we believe such skepticism to be
premature.

2. Mathematical Analysis of Visible-Surface Reconstruction

Let the true distance from the viewer to visible surfaces be given by the function Z(2, y), where
x and y are the image coordinates. Low-level visual processes generate a set of noise corruptcd

,'A

-, v-'.. . .. ... . . . . . . ..



Terzopoulos Computing Visible-Surface Representations 5

surface shape estimates (i.e., constraints) {ci } which can be expressed in the abstract notatin
.,:: = Z( +Y)]+ , (1)

where Li denote measurement functionals of Z(xr. .) and (i denote associated measurement errors.
Stated simply, the visible-surface reconstruction problem is to reconstruct, as faithfully as possible,
the depth function Z(x, y) from the available constraints {ci}.

2.1. The Ill-Posed Nature of the Problem and Regularization

'he problem is made nontrivial by the nature of the constraints. First, constraints are contribi ted not
by one, but by multiple spccializcd early visual processes. Hence, slightly inconsistent measurements
provide i by different processes that happen to coincide will locally overdetermine surfacc shape.
Second. constraints are not dense, but scattered sparsely over the visual field. Thereforc, while
they mz y restrict surface shape locally, they do not determine it uniquely everywhere; there remain
'very mny feasible surfaces that are consistent with the constraints. Third, the measurements are
subject to errors and noise. ligh spatial frequency additive noise, regardless how small its (RMS)
amplitu le, can locally perturb the surface (orientation) radically.

In view of the above three considerations, we cannot conclude in general that the ;olution
will exi;t, nor that it will be unique, nor that it will be stable with respect to measurement
errors. vlathematical problems for which the existence, uniqueness, or stability of solutions cannot
be guaranteed a priori are said to be ill-posed fTikhonov and Arsenin, 1977]. Visible-surface
reconstruction can thus be characterized as a fundamentally ill-posed problem.

Ill-posed reconstruction (or inverse) problems are the rule rather than the exception n early
vision [Poggio and Torre, 1984]. Ill-posed problems cannot be solved in general, without imposing
some additional restrictions on possible solutions. Ihis is the basis of a number of systematic
approaches, notably the regularization methods introduced by Tikhonov and others (see rrikhonov
and Arsenin, 1977] and retrcnces therein). )uda and Hart [1973, Sec. 7.4] mention a basic form
of regularization (essentially spatial smoothing) for combating the effects of noise in images. A
more sophisticated class of regularization methods is discussed in the context of low-level vision by
Poggio and Torre [19841.

Through regularization, ill-posed problems can be solved by reformulating them as variational
principles that are effectively computable. Unlike the original problems, the variational principle

S formulations are well-posed: i.e., it is possible to guarantee the existence, uniqueness, and stability
of their solutions under nonrestrictive conditions. Reformulation proceeds with the introduction of
suitable stabilizing filCtionals, notably the class of stabilizers proposed by Tikhonov and Arsenin
[1977, pp. 69-701. These stabilizers can be interpreted as spline functionals that impose smoathncss
assumptions on the admissible solutions (by restricting them to Sobolev spaces of smooth functions).1

Pragmatically then, this type of regularization is essentially equivalent to optimal approximation by
generali,,d splines [Tcrzopoulos, 1995a]. We pursue the generalized spline approximation point of
view, since splines are familiar and since they suggest helpiul physical interpretations.

2.2. A Variational Principle

The abstract theory of optimal spline approximation is well-developed and a close connecton has
been established with variational principles involving the constrained minimization of (semi-) norms
in (semi-) I lilbCrt function spaces [I aurent, 19721. Let M be a linear space of smooth fulnctions and
let S;(v) be a Iunctional delined on ' which measures the (lack of) smoothness of a function in

" Generic smoothne.s assumptions are generally the weakest (least committal) assumptions that one can make*- alout feasihle olutions and still obtain well-posed formuhitions.

%'I
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,. Furthermore, let P be a functional on N which provides a measure of the discrepancy between
"9, the function and the given constraints. Consider the following variational principle: -:

VP: Find u E k such that
e(u) = inf 6(v), (2)

VieX
.?. where the energy functional

e (v) = S(U) + P(v). (3)
This variational principle will serve as a formal statement of the visible-surface reconstruction
problem: The best reconstruction of the depth finction Z(x, y) from the available constraints will
be given by the solution u(x, y), the smoothest function in the admissible space 1 which is most
compatible with the constraints.

Before proceeding to specify the smoothness functional S(v) and the penalty functional P(v),

it should be noted that, if the solution exists, it satisfies the necessary condition for the minimum
given by the vanishing of the first variation 6,

-= .S(u) 6P(u) 0, (4),
which expresses the so called Euler-Lagrange equations.

2.3. Generalized Spline Functionals

-. For an appropriate smoothness finctional 3(v), we turn to the multidimensional splines studied
'-. -by Duchon [1977] and Meinguet [1979], generalizations of the classical univariate splines (Ahlberg,

et al., 19671. The subclass of (21)) surface splines relevant to our problem can be characterized as
N".- members of a suitable space of admissible functions v(x, y) which minimize the functional

,-:. , n \aa,,- ' d day.()
.,,;;.j=0

The positive integer m dictates the order of the partial derivatives that occur in the functional,
- which in turn determines the order of continuity possessed by the admissible functions. The Euler-

Lagrange equation satisfied by the minimizing function u(Z, y) is an iterated version of Laplace's
equation: (-1)mAmu = 0, where Au = u_ + u.y is the Laplacian of u.

Low order surface splines have interesting physical interpretations involving equilibria of elastic
bodies. Two special cases are of interest. For n = I the functional reduces to

II' =11 (VX I vy) dx dy,()
* .. which is proportional to the small deflection energy of a membrane (e.g., rubber sheet), while for

m = 2,

Iv12 :.f (vX + 2 + v) dxdy, (7)

is proportional to the small deflection bending energy of a thin plate (with zero Poisson ratio)
[Courant and Hilbert, 1953]. l)uchon [1977] refers to the minimizers of IVI2 as thin plate splines.
Since thin plate splines are the natural 21) analogs of cubic splines. I,,, finds frequent usage in
surface interpolation problems [Schumaker, 1976]. In particular, it has been employed for visual
surface interpolation [Grimson. 1983; Terzopoulos, 1983a1.

The physical interpretations make it clear that membrane splines offer a lower order of
- continuity than thin plate splines. Since the physical forces in tie membrane are due primarily

to its surface tension, it generates minimal area surfaces. Although minimal area surfaces are
continuous, they need not have continuous first partial derivatives, i.e., they are Co surfaces. For

a.,.
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instancc a sharp corner would result readily it' an idealized physical membranc wcrc subjcted to
the deflecting fIrce of a knife edge. In contrast the restoring forces in a physical thin patc arc
due primarily to its flcxural rigidity. A thin plate would not crease when deflected by a knilk edge.
Thin plate splines therefore maintain continuity as well as continuous first partial derivatives; i.e.,
they generate C surfaces.

2.4. Controlled Continuity and the 'hin Plate Surface Under Tension

Generic smoothness assumptions are justified in pursuing a regularization approach to the visible-
surface -econstruction problem, inasmuch as the coherence of matter tends to give rise to srmoothly
varying surfaces relative to the viewing distance, over some range of scales: however, smoothness
assumptions clearly do not hold arbitrarily across surface discontinuities, some of which persist
across 11 scales. This introduces significant complications for classical spline approximation or
rCgulari 'ation methods; the continuity of spline functionals (or stabilizers) must be controlled at
discontihuities in order to preserve them.

A ,;tabilizcr providing the necessary local continuity control can be realized as a weighted
combination of generalized spline functionals of more than one order m [T'erzopoulos, 1985a]. We
propose the following smoothness functional:

SPT V) x )J Y) Vx+22+V ,) +[ 7. (X, Y)] (V+ V2)}dxdy, (8)

where fI denotes the image domain, and p(x, y) and r(x, y) are real- 'alued weighting frnctions
whose range is [0, 1]. This controlled-continuity stabilizer is a weighted convex combination of the
thin plate spline functional I and membrane spline functional IV12 integrands. The associated
Fuler-Lagrange equation is

)0 0 0
,,,2 (yuo) + (2pu~y), (9)

where /I(X, y) - p(x, y)r(x, y) and tj(x, y) = p(xc, 11)[1 - r(x, y)], with natural (i.e., free) boundary
conditions. The functional S,,(v) can be thought of as a thin plate surface under tension, where
p(x, y) is a spatially varying "rigidity" and [1 - r(X,, )] is the spatially varying "surface tension."
It generalizes the unidimensional splines under tension of Schwcikert (see [Ahlberg, et al., 19671).

The local continuity properties of the thin plate surface under tension functional can be
controlled at any point (X, Y) C Q2 by specifying the values of the continuity control functions
p(x. y) and T(x. y) at that point. As r approaches I the functional tends to a thin plate spline (a
(1 surface) whereas towards thc other extreme, 0, the functional tends to a membrane spline (a
C) surface) with intermediate values characterizing a hybrid C1 surface that blends tie properties
of both constituent splines. p determines the overall potency of the smoothness functional.

Reconstructed surfaces must be able to faithfully preserve known depth and orientation
discontinuities, while not introducing spurious discontinuities at other locations. This can be
accomplished if (i) away from known depth and orientation discontinuities, the recontructcd
surface possesses (at least) the C1 smoothness of a thin plate, maintaining both continuity and
continuous derivatives, (ii) at known orientation discontinuities, it exhibits just the CO smoothness of
a membrane, maintaining continuity only, and (iii) at known depth discontinuities, the smoothness
functional is deactivated so that the reconstructed surfhce is free to "fracture" locally. IHence,
Spr (1)) Will 1e manipulated as follows: At all non-discontinuity points (X, ?J), p(x, y) and r(:z, y)
should I-c nonieft. At orientation discontinuity points, ri(, y) is set to zero. At depth discontinuity
points. i,(:i, y) is set to zero. Mechanisms for automatically detecting discontinuitics by computing
continuity control Itnctions optimally according to local criteria are considered in a sub,cqucnt
section.
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2.5. Pcnalty Functionals

Assuming independently distributed measurement errors ,i with zero means and variances a?. the
optimal measure of incompatibility is a weighted Euclidean norm of the discrepancy between the
admissible function and the data ci:

P(v)'= j Zt(L [vi - cj) 2, (10)

where the (ti are nonnegative real-valued weights (ideally ac is inversely proportional to a?;
i.e., Qi = 1/Ao2) [Kimcldorf and Wahba, 1970]. 'Ihis penalty functional can also be employed
(suboptimally) when the above assumptions do not hold strictly.

Appropriate measurement functionals Cj for surface reconstruction may be synthesized from
generalized kth-order derivatives:

()k V
i[o!- k. , =0,..,k. (11)

k = 0 yields simple evaluation functionals Li[v(x, y)] v(xi, yi), which will be employed to
model the local depth constraints

ci = v(xi, Yi) + ci = d(2,,,,). (12)
Thc components of the local surface normal n(zi, yi) = [v.(xi, i),t t(xi, Yi), -1], which deter-
mine local surface orientation, can be handled by the first order (k = 1) derivative functionals
" [v(x,y) = v.(zj,y) and £j[v(x,y)] = vy(xj,yi) and yield an.logous expressions for the local
orientation constraints:

ci =vz(xi, yi) + ri q(z,,v,). (13

Other potentially relevant functionals such as directional derivatives can be accommodated straight-
forwardly with the above notation.

It is convenient to separate the various constraints into three sets; the set i E D of image
points at which depth constraints d(,,,,) occur, and the sets i E P and i C Q at which orientation
constraints P(,,,,,) and q(,,o,) ccur respectively. The penalty functional can then be expressed as
a sum of three components1 1212

iED iEP iEQ

(14)
where the ai parameters are now distinguished as adi, api, and aiqi.

2.6. A Physical Model for Visible-Surface Reconstruction

The variational principle formulation of the surface reconstruction problem has an appealing
physical interpretation which is illustrated in Fig. 2. The thin plate surface under tension may
be visualized as an elastic surface, planar in its natural state, whose elastic bending energy Spr(v)
stabilizes surface shape so that it varies smoothly in between constraints (but not at discontinuities).
Constraints deflect the surface according the penalty functional P(v), which can be interpreted as
the totail stretching energy of a set of ideal springs attached to the constraints. The left part of
the figure shows the clastic surface whose deflection u(r,y) at equilibrium is determined by an
infrastructure of scattered depth constraints. l he local depth estimate is encoded as the vertical
height of the constraint and the tightness of each constraint is controlled by associated spring
stiffness o'li. The right part of the figure illustrates an orientation constraint coercing the local -

surface normal. The spring stiffness is determined by the constraint parameters xi and (vqi.

4 4 4 . ... A . . . I I I. .. . . .It
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orientation constraint

Surface normal

Figure 2. The physical model. Thin plate surface under tension and depth constraints (left). Local influence
of an orientation constraint (right).

2.7. Fxistence, Uniqueness, and Stability of the Solution

Existence. Uniqucncss, and suibility of the solution u(x. y) to the variational principle VP are
guarantccd when Ep,(v) Sp S(v) +t P (v) is a normn in the admissiblc space Y. Unfortunately,
gcneraliecd spline functionals 17j1 arc a pri ori .only senii-norrns (of a particular class of Sobolev
spaces). Tile null spaces NA of functions that map to zero under the semni-norms are simply the
('\f (Tr 1) dimensional) spaces of all polynomials over ?JL2 of degree less than or equal to rn -- 1
[Meinguct. 19791. ['he penalty functional P (v) canl force 6p,(v) to be a non-n, however, if it at
leost constrains to at unique polynomial. A possible set of conditions for this to occur is tha the

-t' inlud ealuato untnals at an )1-unisolvcnt set of points (i.e., a set of Mt points which

define ai Unique polynomial inl the null space of (lhe smoothness functional). In particular, since the
*maximum order of generalized slines in thle stabilizer S,,,(v) is m = 2. its null space is the space

of linear poly nom ialIs. 'I hus, the 11olowing proposition can be proven [V'crzopoulos, 19841:
Propoi t ion. The solution it(X, IY) will exist, be un ique, and stable given any one oIf the follo wing

minimal conditions

(i) three nioncolinear depth constraitas

(ii) two depth constraints ais well as a single p or q constraint,

(iii) a single dlepth constraint as well as a sin glep and a single q constraint,

(it,) a single p and a single q constraint with the "center of gravity" of the surface fixed

lb ~se minimal,1 conditions will hold in practice, due to the large number of constraints typically
available from early shape estimation processes (thle fixed center of gravity condition canl be imposed
when nax-essarv). Consequently, the %isible-sti-face reconstruction problem may be considered well-
posed, hence effectively conptitable in, general.

Satifing tlie conditions (br a well-posed problem essentially guarantees that a unique state of
stable equilibrium~ will exiSt IMr the plate/spring systemn (the minimial energy state ().Inl this
COMMet thle con1trol led con1ti iity assumption about Mi rfaces, ats embodied by thle ithin plate surl'.ice

21 ......................................
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.' inder tension model. is physically nonrestrictive but nonetheless powerful enough to guarantee the
existence of unique solutions to the variational principle.

3. Discretization

.1

It is extremely difficult, if not impossible, to obtain an analytic solution to the variational principle
due to the irregular occurrence and geometry of constraints and discontinuities. For our purposes,
the only viable approach is to convert the continuous surface reconstruction problem to an equivalent
discrete problem whose solution can be computed numerically. To this end, finile elements make
ideal local surface shape primitives for use in visible-surface representations [Terzpoulos. 1982,
1983a]. The finite element method [Strang and Fix, 19731 is a general, powerful, and mathematically
rigorous approximation technique which guides the selection of appropriate elements and governs
their interactions according to the nature of the variational principle.

The finite element method offers substantial flexibility in discretizing domains with irregular
shaped boundaries. Although the use of irregularly shaped elements to discretize such domains
may not present a feasibility problem with regard to distributed biological mechanisms, it makes

nontrivial the mapping of elemental computations onto regularly interconnected processing networks
typically provided by VLSI technology. In this paper we restrict ourselves to regular finite elements
in order to facilitate such mappings. Since the goal is to obtain a particularly fine discretization, at
the resolution of the image, the restriction to fine regular elements will not jeopardize our ability
to accommodate the irregular occurrence of constraints or discontinuities.

3.1. The Discrete Equations

The domain 01 is tessellated into square element subdomains with sides of length h. Nodes are
located at element corners and shared by adjacent elements. This results in a planar and uniform

square grid of nodes that is ideally suited to VISI implementation. 'Ihe nodes are naturally
indexed by (i,j) for i = 1,...,N, and j = 1,...,N,, where N. and N, are the number of
nodes along the x and y axis respectively of the (rectangular) domain Q. The total number of nodes
is N = N. x N.. The reconstructed surface is represented by an assembly of (nonconforming)
finite elements, each of which is a six-point (full) quadratic interpolant defined locally within its
particular subdomain. The unknown displacement (surface depth), at node (i, j) is denoted by the
variable v,, = V(ih,jh). Taken together, the displacement variables are denoted by the vector
V h E WN. Once this vector is determined by solving a discrete version of the variational principle,

the local intcrpolants are known exactly and, consequently, they explicitly represent depth and
orientation everywhere over the surface.

'The proposed square, quadratic element leads to the following 0(h 2 ) formulas for the required
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partial derivatives at an arbitrary nodc (i, J) rTerzopoulos. 1983a]:

X'7, h I 2v +..
T h2  

-- i,j+

h= j 1 (t' i+v(h

V 1vhji - i) )(

h h (vp 0

Note that the formulas are finite difference expressions. Their appearance is due to the uniformity
and to% order of the element and their relative simplicity will facilitate the calculations substantially.

Substituting the above expressions with the constant approximations p(x, Y) =! pi,, and
7(X, Y) => h into (8). and noting that the area of each element is h2, we obtain thc discrete

functional

h  h_ I t_

+ j i h 2 (+v~1  + v~,i - + v,)
+ (16)

( ,,+ - 2v1,, + ,, 2]

+ [)2+ (v -+ v,) }
Although by no means a necessity, it is both natural (in view of common image discretization)

and convenient to assume that the constraints coincide with nodes (i,j) of the grid. Hence, to
obtain a discrete expression for P(v). we collect the nodes at which the various constraints occur
into three sets' the set (ij) E D at which depth constraints d',j occur, and the sets (i,j) E P
and (i,j) C Q at which orientation constraints p and ,. occur. Using symmetric dilTerence
approximations for the partial derivatives in (13), the discrete penalty functional may be written in
terms of the nodal variables as

hh h h

2E adt l, - ij
(ij)CD

+1, (17)(ij)cP 2

The energy-minimizing vector of nodal displacements uh satisfies the cquilthrium Onditi'n
vh(uh) S(u h ) _ Vph(Ul) 0 . 118)

where V is the gradient operator. Since the discrete functional el(Uh) s ratic form in tlip,( Iti a quadrai fr the
t.,. the above equation defines a linear system of simultancous equat ions It arc sauid by v.
The discrete problem amounts to solving these nodal equations.
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3.2. Computational Molecules

To progress towards explicit expressions for the nodal equations. we first determine the partial
derivatives of St (uh) and Ph(u') with respect to an arbitrary nodal variable u0S. Letting

§h P,,=h and 7 = , - ), (9)

we obtain
(U { - 2u1 + h

+ (-2u"+I,, + 4uj,, - 2u, _I,) ,,

+ i S_ h hh

S(2u,,, -u,. 1 ,, 2u 1,,- + 2u Ip) AS-Is--

+ (-2u'% ,j + 2 j+ 2u ,j- - 2

+ (-2 j~ + 2u -Ip1 + 2u,,, - 2u0 ,~ 1,j

\+3 1 , +1- ' + 20j ) (0
(2u -- 20 ui+1  , ,I

+(u~', - 2uj- + U~'j. 2) hA~

+ (-2u-'j+1 + 4u-' - 2ui'- 1 ,s-,

+ ( 1,,± - 2u24j4-1 + U1 4  +i

I{ ( I'4 - 1,1) 77-I + (I'j - Ui'+',,) 179

+ U - Ui,..i 1 + (4t,, - O~j+j) 17}.

"- the discrete version of (9). Next, for (i, j) E D flPfQ,
aoph (u h) --

+ 1, i-j ______ -,

W~ (S, S u. 2h &___

(h
S. 4h2  2h S

/ h h
+ u huj - LI hj.0+12)j+

ibe above expressions specify the nodal equations implicitly. FEach constituent term in (round)
parentheses can be represented graphically as a basic coinpuiational molecul. Computational
molecuiles will be interpreted both as spatial representations of tie nonzero coefficients in the nodal

*1 j

-l,•. 

*''

(7o
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equations, and as local computations inolving multiplications and additions of specific proximal
-.. *.nodal variables. The forncr interpretation will facilitate the construction of individual nodal
-. .equations given some local structure of constraints and discontinuities, while the latter will lead

directly to local itcrative algorithms for solving the resulting simultaneous linear system.

. 3.2.1. Basic Molecules

A

0-0-00-0® &Q0

0 -21

-2 4-2

1-2

'I,
•B

% 0-0 00

Figure 3. Plate niolcculs (a) and membrane molecules (b).

I
"p'
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1 '~' Eq. (20) is a convex combination of two components, he first stemming from the thin plate
energy functional, the second, from the membrane energy functional. Fach constituent term yields

: a basic computational molecule (see Fig. 3). a set of linked atoms indicated by circles. The central
node (i, j) is indicated by a double circle in each molecule. Fig. 3(a) illustrates the ten plate
molecules obtained from the terms of the first component, while Fig. 3(b) shows the four membrane
molecules obtained from the terms of the second component. ach atom contains the coefficient of

the associated nodal variable (aside from the and j factors)

A

"p."

O ; W I P + s -

2h 2hts " t

i a - ¢1

2h j- 1

d

' , Figure 4. Dpth constraint molecule (a) and orientation constraint molecules (b).

"": Similarly, die depth const,aint term in (21) can be represented by the depth Constraint molecule

- 2h hqah

shown in Fig. 4(a). Associated with it is the factor ,(i... which is indicated underneath the
molecule. The remaining orientation constraint terms of (21) are represented by the orientation
constraint molecules and associated factors shown in Fig. 4(b).

?'p
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3.2.2. Molecular Summation within Smooth Regions

--' The formation of nodal equations within continuous regions can be visualized as a prtcess of
molecular sumination. During molecular summation, the basic molecules combine at the central
node, coincident atoms summing together.

When (i,j) is an interior node, away from constraints and discontinuities, p i*". = 1, and
only the plate component of (20) contributes to the expression for the partial derivative. Hence,
the equilibrium condition (18) reduces to the nodal equation

20 u h 8 ( h' + uh J + h
0,= Suii. - i+2,j + i,j - +,

+ ( + + u ± 'h hh (22)

+ W2 (ut 2,h  + u 2,j + U 2+ +

This equation can be represented by the composite nodal molecule illustrated in Fig. 5(a), which
results from the summation of the plate molecules in Fig. 3.

20 
-8.+

III

|.10"i

- pt .

%'. A

Figure 5. Interior node molecules. (a) Away from disconUnuiies. (b) At interior orientation discontinuites.

Note that the computational molecule for the center of the region is a factor of h2 (due to the
elemental area) times an order 0(h2) finite difference approximation for the biharmonic operator
I [Abinowitz and Stegun, 1965, p. 8851, the luler-Lagrange equation associated with the thin plate
spline. This is an expected consequence of the particular element employed which yielded finite
difference approximations for the second partial derivatives of vh.

If node (i, j) is a depth constraint, the first term in (21) takes, part in the nodal equation. The
effect can he represented as a summation of the depth constraint molecule and associated constraint
factor with the nodal molecule for (ij) shown in Fig. 5(a).

Similarly, if (i - 1,j) or (i + Ij) are p constraints, or (i,j - 1) or (i.j i- 1) are q constraints,
the other terms in (21) participate in the nodal equation. Again this can be represcuted as the

" : : .. : .. ., .,- ,--, ~.................:... ......... ..... ..... , . ...... . i,;,
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summation of computat ional molecules. Specifically. the tipper left molecule in Fig. 4(b) sums with
%:' the nodal molecule if (i - 1,j) E P. the upper right only if (i + 1,j) E P, the lower left only if

(i,j - 1) E Q, and the lower right only if (i,j + 1) E Q.

3.2.3. Molecular Inhibition at Discontinuities

If (i. j) is a discontinuity, either or rj- or both may be zero, thus nullifying the summation
of specific molecules. This crucial influence of the discrete continuity control functions near known
discontinuities will be referred to as molecular inhibition. It was convenient for expressing (20) and

* "-'\ (21) to discretize u(x, y), p(, y), and r(x, yj) over the same set of nodes. Although orientation
discontinuities can be situated at these nodes (since u',• is defined at an orientation discontinuity),

* .it is better to position depth discontinuities on the links half way between nodes (since uij is
undefined at a depth discontinuity). Discretizing r(x, yj) on links does not present a problem in
practice. As a general rule, a discontinuity may inhibit a molecule only if it coincides with a
constituent atom or link.

First consider orientation discontinuities. At an orientation discontinuity, r. - 0 and only

the second component of (20) contributes to the nodal equation. In effect, the plate molecules are
inhibited and replaced by the membrane molecules of Fig. 3. At an interior orientation discontinuity
(i. j), away from depth discontinuities, all four membrane molecules superpose to yield the nodal

"-.- molecule shown in Fig. 5(b), which represents the nodal equation
4u - 1,j - 1 - u,,3- 0= 0. (23)• "- - i+L t, -1 u2',j -1

'lhe equation will be recognized as -h 2 times a standard finite difference equation for the Laplacian
[Abramowitz and Stegun, 1965, p. 885]. It too appears as a consequence of the Euler-Lagrange
equation associated with the membrane spline.

Since an orientation constrain cannot meaningfully coincide with an orientation discontinuity,
orientation discontinuity nodes inhibit orientation constraint molecules. On the other hand, depth
constraint molecules are not inhibited by orientation discontinuities since it is perfectly reasonable
to locally constrain a membrane spline in depth.

Because smoothness constraints are unsuitable at a depth discontinuity node (i,j) (i.e., Pidj
0), a nodal equation cannot involve nodal variables separated by or coinciding with a depth
discontinuity. Consequently, depth discontinuities inhibit all of the basic computational molecule.
Fig. 6(a) illustrates examples (disregarding constraints) of nodal molecules for boundary nodes
(marked as double circles) which are near depth discontinuity nodes (marked by X's). Examples of
nodal molecules at boundary orientation discontinuities (double circles) next to depth discontinuities
(X's) are shown in Fig. 6(b).

4. Detection and Localization of Surface Discontinuities

An important feature of our framework for computing visible-surface representations is the uni-
form treatment of constraints and discontinuities, essentially as localized and independent surface

- shape primitives. This facilitates the parallel integration of discontinuity infornation, along with
shape constraints, over the various early shape estimation processes. It is convenient to think of
discontinuity information as being collected into a discolitinuily map which is in registration with

1 ['"~:~ .:z.:~:.K~: 'c- :~..K K2 7 *c~:. -:KK'~*~.:s-
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the reconstructed surface. Technically. the map comprises the nodal variables {phj} and {r 1',}
representing the discrete continuity control functions.

Any early visual process can participate in initializing the discontinuity map according to its
own local hypotheses about the occurrence of discontinuities. In general, this prior discontinuity
information will be partly incomplete and inconsistent, since it derives from narrowly specialized 21)
image analysis. In evolving a globally consistent surface, the visible-surface reconstruction process
performs a crucial task: it brings the prior discontinuity information into consonance with the 31)
shape constraints collected from all the early processes. This raises the problem of detecting and
localizing both depth and orientation discontinuities during reconstruction. The current section
investigates this problem for the (impoverished) case in which no prior discontinuity information
is available. We first propose a straightforward scheme which exploits the regularizing properties
of the surface model, then a more sophisticated approach that extends the variational principle to
optimally estimate discontinuities according to generic expectations about their local structure.

4.1. Regularization Based Discontinuity Detection

From one perspective, surface discontinuity detection shares much in common with traditional
approaches to image intensity edge detection. In particular, it is possible to detect discontinuities
by applying thresholded local differencing operations to the reconstructed surface which, like the
image, is a regularly sampled function. Because they are easily corrupted by image noise, however,
local edge operators such as Laplacians perform poorly [Rosenfeld and Kak, 1982] without a
smoothing prefilter, say a Gaussian [Marr and Hildreth, 1980]. Interestingly, the thin plate surface
under tension performs the necessary smoothing on the sparse and noisy shape constraints (standard
low-pass filters such as Gaussians are inapplicable to sparse data). This regularizing effect permits
the reliable computation of numerical derivatives for detecting discontinuities [Bakhvalov, 1977,
Sec. 5.4: Poggio and Torre, 1984; Terzopoulos, 1985a]. In addition to exploiting the regularizing
effect of the thin plate surface under tension, the discontinuity detection scheme described next
is easily accommodated within the distributed computational structure of our framework, and it

permits relevant criteria such as psychophysically measured limits on stereofusion to impact on
discontinuity detection.

Consider the random dot stereogram in Fig. 7 which depicts a set of planar surfaces stacked in
depth. Fig. 8 shows a single continuous surface generated by the surface reconstruction algorithm
from sparse stereoscopic disparities provided the Marr-Poggio-Grimson (MPG) stereo algorithm
[Grimson, 19851. Fig. 9 dramatizes a portion of the reconstructed surface in cross section as it passes
across a depth discontinuity. The C1 surface overshoots constraints near the discontinuity because

-. its smoothness conflicts with the sudden change in depth. The surface is clearly inappropriate as a
2 final solution near depth discontinuities, but the local incompatibility can signal the occurrence of

these discontinuities.

ifl Opposing bending moments are imparted to the surface by the constraints on either side of

the disLontinuity. The surface inflection (see Fig. 9), where the bending moment undergoes a sign
change. localizes the depth discontinuity. For a thin plate spline u(x, y), the bending moment per
unit length parallel to the x-z plane is proportional to -u, while its counterpart parallel to the
y-z plane is proportional to -uy. [Szilard, 1974]. The sun of orthogonal bending moments gives
the total moment M =--(uX. + u.,) -- Au. the negative ILaplacian of the deflection function. It
can be computed readily at a node (i, j) of the discrete surface using the standard approximation:

- .- ,! (u. , + h.. .' • ,,.- _ . ... (24)
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.4

Figure 7. Synthesized random dot stereogram. When fused, the stereogram depicts four planar surfaces
stacked one atop the other in depth.

'hie zero crossings of Al for the reconstructed surface in Fig. 8 are shown on the left in
Fig. 10 as black contours. Most of these correspond to weak inflections due to slight ripples in the
• econstructed surface. A measure of significance is therefore needed to detect true discontinuities

while weeding out spurious, weak inflections. The magnitude of the local depth gradient (surface
tilt) is a suitable significance measure for depth discontinuities. Hence, an inflection point will

be considered significant if ( IVuI = /- + i exceeds a limit td (it is more efficient to

use the square of this expression u2 + u2 or even lu.i + !uyI). Employing the usual discrete
approximations, we obtain

C U -u, (25)i+' 1=,j) + .Uj~ ( 2s)'']

The right half of Fig. 10 shows the significant inflection points where GiJ > td with td = 1.
Adding these significant points to the discontinuity map (by setting the associated to zero)
fractures the continuous surface to yield as a solution the reconstructed stack of surfaces -dhown in
Fig. 11.

"iThe limit 1,1 must be large enough so that weak inflection points are rejected as possible
discontinuitics, while not so large as to miss many true depth discontinuities. A possible criterion
for choosing td in applications to stereopsis of opaque surfaces is suggested by Panum's limiting
case: i.e., when a surface is tilted so much from the viewer that it begins to occlude itself from one
eye, causing stereopsis to fail. Human stereofusion limits have been measured psychophysically.
Using pairs of points at diflerent orientations, Burt and Jules/ [1980] measured a roughly isotropic
disparity gradient limit of approximately 1 between fusion and diplopia. Interestingly, this is only
half the Panum limiL

It is not inconsistent with these findings to use the disparity gradient limit tj to detect
significant depth discontinuiiies in conjunction with the isotropic bending moments M,,j to ocalize
these discontinuities. The required local support computations can be performed in parallel at each

. 5 . . . .. ... . . . . . . . . . . . .... .. ,-
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Figure 8. Single surface reconstructed from the stereogram of Fig. 7.

grid point over the surface. Analogously, significant orientaition discontinuities may be detected
when dhc malgnitude of thle beiiding moment M, j of the surface exceeds a limit t,, (points of
high curxvaturc), and they may be localijed at relative extrema of the bending moment (positions
oIf locally highest curvature). The sign of a bending momlent extremuin indicates tie sense of the
orientation discontinuity, negative signals a concave LIeaSe, and positi~c, a convex crease. Curvature
peaks were also employed in a scheme for detecting surface orientation discontinuities proposed by
Langridge [19841.

4.2. D~iscontinuity Dectection by Variational ('ontinuily Conitrol

On thle one hand, experi mentatLion on natural data with the rcgulariized approach to discontinuity
detection demronstraites the feasibility of discmsering many of' the more significant discontinuities
during surface reconstruction (results are presented Lti). Onl thle other hand, certain inherent
inadequacies o1' this simple schemI-e ca ottcnl lead to poor surfitce rco~nmtrUCtion1S. [hei shortcoming
are due to a basic contlict cdused by smioothing. While regularization eliminates noise, making
reasonable estimation or' surface dcrivatil~es possible in continluous regions, it tends to obscure
disocontinuities [Ilerzopoub s. 1 985a]. It can result in poor detectability and localiiation of time more
subtle discontinuities, a common problem with smoothing edge operators in gencral [Le.clerc and
Z~ucker, 19841.
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-significant inflection

V insignificant inflections

V ininfcnV nlcin

,.. • V

Figue 9.Cros-section of a reconstructed surface across a depth discontinuity. The significant and insi:-nificant
inflectioi s of the surface are indicated.

Ilhc problem can bc resolved by exploiting more fully the controlled continuity model to
prcserv( surface discontinuities and, moreover, to incorporate a priori expectations ab.ut dis-
continuity structure into the variational principlc for surface reconstruction. So augmented, the
variational principlc establishes a bcncficial cooperation between the interpolation process. which
smoothly propagates shape information across region,,, and the comiplementary discontinuity pro-
c,.ss, which delimits these regions. Thus it optimally reconstructs thc piecewise continuous urfaces
and disontinuities simultancously to achieve the best possible surface shape.

As was mentioncd in the previous section, the smoothness of the thin plate surface under
tension is incompatible with any Sudden transitions imposed by the scattered shape constraints.
This implies that its potential energy of deformation is generally greater at what Ought to be
interpreted as surface discontinuities. Any local reduction in the continuity of the surface 'educes
the incomnpatibility and locally reduces potential energy. This can be seen from (8); Sp,(v)
considered as a function of (v, p. T), decreases as eithier p(x.. y) or -r(x, y) are made zero over more
of Ql. 'I his suggeqts that discontinuities can be discovered in the course of solving the variational
principlk!x by ailo"l ing the surface to crease and fracture as needed to reducc the total encrgy
below tie minimumi obtainable with a single smooth surface. The insertion of discontinuitics must,
howcvei, incur some energy increase, otherwise p(x. y) -0 everywhere would trivially minimize
the energy.

iJJ-
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Figure 10. Bending moment zero crossings (left) and detected depth disconintues; (night) for the reconstructed
surtice in Fig. 8.

T[he variational continuity control approach to detecting discontinuities in volvcs augmenting
dic original energy functional 7,, s(v) i(v P (v) with dic discontinuity functional D (p,i-)
(explained shortly) to obtain the new variational principle

F-ind u, p, and r such that
6(, ii f e (v, p,r), (26)

VI P,,"

where the encrgy, functional

f(IHP,T) =S(V,pj-) + P(V) +P(P,r). (27)

The Solutions U (. y), T)Y, y), and T(x- y), satisfy the three Coupled FUler-Lagrange equations,

whlich express die vanishing of the first variation with respect to each independent function

aa 1y a a
bSu~ iJ E 0 L- (r ± 2v + v- + (2in~q)v+ - vTI") t u U

b" E(11, 0 +v2 2v ±v~~) +-1 F(v 2 +) VI 0,(

(28)
No te that the first equation is identical to (9).

'flie functional 9 (p. 7-) rmps the depthi and orientation discontinuity Configurations p(x,, Y)
and r(.r.y!) imo positive energies (this is analogous to the role of S,,(v) with respect to u). In its
simplest form, the functionil c~ii increase monotonically with the total number of discontinuities;
e.g.. V(p. T) -- f fi, !4i I p(fr )1 - 3,I - r(-r. y)] dx dy. where 0, and 0,, are positive energy

slding parameters lor the depth and orientation discontinuity contr-ibutions, respectively.

More interestingly, significaint aldvantages acRcru in the detection of weak or Subtle disconti-
nuities if the fut mnida can hc designed so as to Wias the solution according to generic constraints
iihotit the lical t rucmtre of' disu intii ities. Useflul constraintis can, for example, be based oil
Gestalt principles of' good cilutilluation - discoutiuities tend to be arranged along contours, these
contours tend to he continuons. etc. 'Ihis may be accomplished readily by assigning potential
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Figure 11. Rconsitocted irwc nd discontinuities.

energies to \aiiiius local disci )ilIf1lJit\ COnfieuli'1i) Oiil oi t (1i.j) god C nodes for the discrete
problem. hi codings of local cd,,c configniatiols that favoWr -00d Con1ilnuation1 have1\ heen1 emIployed,
for instance, inl relaxation) 1.icn( hcliurve ciubucernent IprCCeScs [/LICk r C1 0., 19771 and inl Markov
random h'cl maice fOtil models [Gcenian qnd Gcmanli. 19851.

[1n ouir currenit fimllpcinel iiin. thc discrete discontinuity functional is a weighted iiodit suim
of potential erIe gy quaIlI, 01a id o)h j Ver, depth and orien tation liSCO1It i1ty con figu rations

respectively:

h b ) jj , h(29)

* ~~~We enrl lo, a i Ais ici iowhich fai\rs the formnation of con inuouIs and smoothly curving
COMOtmu rb\ locldl\ x;iiri hn i ~her energies to isolated discontinuities, terminations, sharp bends,
junctions, a ml reuJons. h I? lz2Illustrates sonic of the con figo rations, and the (numeric) c'Iergies
associjt(cd 6t i (Ilical and thiiir rotaitiorill lv symmetric coouterparts. Just as for compu tational

- mo~aleculles, 0he1C denote nodes (.j) li'the X's dcnote diSCon)tiJ)uitieS (Positions where ph
or Tare 0). I cqat iii.l()cn i tj 1 6n depth disconinuities, wkhichi oc.cur on

* liks h~eci noc~ a exline pr~ous I h -r eqiialcnt to the configurations ford in

[jermin ri'. t (eIi1,1. 19S5j. I w.INN dcpicts ",fle( (of the or ieition dikcontiity configurations
en1coded h% 0' (iitin!'itIniik Oi'l~d itlc wthodes.
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Figurc 12 Sonic local configurations and associated energy quanta for depth disconfinuities (a) and orientation
discontinuities (b).

.,.o

'The disucte variational principle simultaneously governs the values of the displacement nodal
variables of the surface as well as the nodal variables in the discontinuity map. Although the energy " "
functional 6,,(v) has a unique mininmum (given the conditions of Sec. 2.7) for fixed p and r, this -

is no longer tie case for e (i), p, r) which allows variation Of the continuity control functions in the
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. minimnization. The nonconvcxity of the energy landscape makes this a much more difficult problem
2 ~.to solve numerically. In the discontinuity detection experiments to be presented in Sec. 6.5, we

propose a strategy for cfficiently obtaining good. though not necessarily optimal solutions.

5. Overview of the Multiresolution Surface Reconstruction Algorithm

Application of the finite element yields the discrete problem of solving a linear system of simul-
taneous equations. 'T'his system has computationally desirable properties; i.e., its matrix is sparse,
banded, symmetric, as well as positive definite (for fixed p(x, y) and tau(x, y)) when the available
constraints satisfy the conditions for a well-posed problem. The sparseness of the matrix, a direct
consequence of the local support of the finite element, is evident from the nodal equation of an
interior node: rows associated with interior nodes have only 13 nonzero entries, while nodes at and
near discontinuities have even fewer. The N x N matrix however, tends to be extremely large in
practice. since the number of pixels N in a typical image can range from 104 to 106 or greater.
This combination of properties suggests the application of iterative techniques such as (parallel)
Jacobi or (sequential) Gauss-Seidel relaxation methods [Hageman and Young, 1981]. Relaxation
methods lead to distributed algorithms, and the parallel variants may be implemented concurrently
on networks of many simple, locally-interconnected processors.

" 5.1. Nodal Relaxation Computations

A local-support nodal relaxation computation can be obtained at node (i, j) by expressing uh

in terms of the remaining vat.ables in the nodal equation determined by the local structure of
constraints and discontinuities. The nodal relaxation computation may be constructed automatically
by applying our simple rules governing the summation of basic computational molecules:

(i) Plate, depth constraint, and orientation constraint molecules sum at interior (non-discontinuity)
nodes.

(ii) Membrane and depth constraint molecules sum at orientatka discontinuity nodes.

(iii) Orientation discontinuities inhibit plate and orientation constraint molecules.

(iv) Depth discontinuities inhibit all basic molecules.

For instance, at a depth constraint node away from discontinuities, the Gauss-Seidel relaxation
computation becomes

- '. .(.,-)1 [8 {u(n4-l1) -- (n), + U(n,-l) . n)

u," i- - + u ,+ . +u i
j h--o + adi,3

. +(( ) (n+l) + () + (n) ' (30)
, 2, U_, +,2+,> +,: ,h 2 i f-I ,j - 1 i- l ,j + l i 4 1~ ~ l

1_ 1(n 1 ,(+ n) + I(n ,) .(, UN

where we have suppressed the discretiz tion superscript h and instead introduced the bracketed
iteration indices. At an unconstrained depth discontinuity, we obtain

(nil) 1 I fni) u(n) (un ) +(n) (31)
ui. = j (ut 1 ,3t + I,j t - 1 + u1,13 1)(

Note that the nodal relaxation computations do not change from one iteration to the next, so long
as the influencing constraints or discontinuities remain unperturbed.

* -* ?
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5.2. Multiresolution Relaxation

A serious problem with iterative techniques, in general, is their slow convergencc rates for large
problems. This inherent inefficiency is due to the fact that information must propagate incrementally
across large representations from nodes to their near neighbors in accordance with the nodal
relaxation formulas.2 We have developed highly efficient iterative algorithms that overcome this
problem for surface reconstruction [l'erzopoulos, 1982, 1983a] as well as for certain other visual
problems [ler7opoulos, 19841. These algorithms achieve efficiency by exploiting multiresolution
relaxation methods [Fedorenko. 1961; Brandt, 1977, Hackbusch and Trottenberg, 19821.

Briefly, the multiresolution surface reconstruction algorithm features (i) multiple representations
of surface shape over a range of spatial resolutions. (ii) local, iterative (relaxation) processes
that propagate smoothness constraints within each representational level, (iii) local coarse-to-fine
(prolongation) processes that allow coarser representations to constrain finer ones, (iv) fine-to-coarse
(restriction) processes that allow finer representations to constrain and improve the accuracy coarser
ones, and (v) a multilevel coordination strategy that enables the hierarchy of representations and
component processes to cooperate towards increasing the computational efficiency, usually by orders
of magnitude.

Fig. 13 depicts the structure of the algorithm schematically. In this particular case, only three
levels are shown. Note the 2:1 resolution reduction between adjacent levels. Not only does this
ratio simplify the component processes considerably, but it is also nearly optimal with regard to
total computation to convergence (this is conveniently measured in machine independent work
units, where a work unit is the amount of computation required for a relaxation iteration on the
finest level) [Brandt, 19771. l'he diagram illustrates the intralevcl relaxation processes, as well as the
fine-to-coarse restriction and coarse-to-fine prolongation processes that communicate between levels.
The figure shows synthetically generated scattered orientation and depth constraints consistent with
a hemispherical surface. 'he algorithm reconstructs a dense representation of surface at three
resolutions. The sparse information at any particular scale can be thought of as a set of constraints
which defines a discrete surface approximation problem at that level. It is natural then to view the
multiresolution surface reconstruction algorithm as iteratively solving a coupled hierarchy of discrete
surface reconstruction problems.3  For a detailed description of the algorithm see fTerzopoulos,
1982, 1983a].

6. Experimental Analysis of the Algorithm

The multiresolution visible-surface reconstruction algorithm was tested on a variety of data sets
including synthetic data, structured light (laser) range data, automated stereopsis and photometric
stereo data from natural images, and digital terrain model data. Some results are presented
in this section (for further details and examples, see [fl'erzopoulos, 19841). In all the examples

2 It is possible to accelerate the basic relaxation methods so that fewer iterations are required. However, prac-
tical accelerated methods such as the conjugate gradient method, successive overrelaxation, and Chebyshev
semi-iteration use global procedures to determine the acceleration parameters. In parallel implementation,
the greater complexity of the globally accelerated methods and, even more importantly, the communications
costs of performing the global operations nullifies any potential gains.

3 A recursive multilevel coordination strategy was employed in the experiments described next. The recursive
strategy activates only a single level at any one time. We have recently developed a concurrent strategy
based on a multilevel variational principle I rerzopoulos, 1985b]. Concurrent coordination maintains all
levels active simultaneously, thus achieving full parallelism.
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orientation and depth consirainis input to the algorithm arc shown at the top. Ihic dense multiscaic surface
% ~representation is output at the bottom.
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presented, the intralevel process was Gauss-Scidel relaxation and the algorithm was started from
zero initial approximations on all the levels. The border nodes on each grid were preset as depth
discontinuity nodes to introduce natural boundary conditions which free the reconstructed surface
on the boundary of f0.

6.1. Synthetic Data

The first two examples involve randomly placed depth constraints. The left half of Fig. 14
shows 15%-density constraints at three resolutions. 'Iliese constraints were obtained by sampling
a hemisphere whose z values were multiplied by a radial sinusoid. 'lie nodes outside the circular
region occupied by the constraints were specified as depth discontinuities. 'lhe reconstructed surface
representation is shown on the right half of Fig. 14. In Fig. 15, the 15%-density depth constraints
shown on the left are samples of a stacked set of planar surfaces at three resolutions. In this
example, depth discontinuities were placed along the circular arcs bounding the planes, and along
the outer edges of the grids. 'l'he reconstructed surface representation is shown on the right half of
Fig. 15. This example indicates that discontinuities can be placed along arbitrary contours within 01
to prevent surface shape from being degraded by unwanted smoothing over sharp depth changes.

The next examples involve reconstructions from orientation constraints. The left half of Fig. 16
shows in perspective a set of orientation constraints over a square region. On each of three scales.
the region is divided into four quadrants each containing constant orientation constraints, and the
nodes along their boundaries are preset as orientation discontinuities. The surfaces reconstructed
by the three-level algorithm are shown on the right half of the figure. Since absolute depth cannot
be determined solely from orientation constraints, a relative depth reconstruction results, with the
center of gravity of the resulting pyramidal surface resting near the x-j plane.

The left half of Fig. 17 shows 30%-density scattered orientation constraints consistent with a
hemispherical surface at three resolutions. The reconstructed surface representation is shown on
the right. All nodes outside the hemispherical surface patch were specified as depth discontinuities.
Again, the center of gravity of the surface rests near the z-y plane.

The next examples demonstrate the integration of both depth and orientation constraints. The
left half of Fig. 18 shows 15%-density depth constraints consistent with a hemispherical surface at
three resolutions. On the right are 15%-density orientation constraints consistent with the same
surface. Nodes outside the surface have been specified as depth discontinuities. The reconstructed
surface is shown in Fig. 19. Whereas in the previous example (Fig. 17) only relative depth can be
determined for lack of any depth constraints, in the present example the additional depth constraints
enable the absolute depth of the surface to be determined at all points, hence the surface is "raised"
to the correct height above the base plane. In addition, note that (10%) uniformly distributed
noise has been added to the constraint values. With the given constraint parameters, the surface is
slightly bumpy on the finest level. This can be reduced by decreasing the constraint parameters, in
effect, loosening the springs of the physical model.

6.2. Structured light I)ata

lle multircsolution algorithm was applied to the reconstruction of several objects from raw

range data supplied by a laser rangefinder constructed by P. llrou at MIT. The scan resolution
in the y direction is half that in the x direction. A four-level surface reconstruction algorithm
was employed in the examples. "ilie data was introduced as depth constraints at the finest level
and transferred to the coarser levels by successive 2 x 2 averaging between levels. To expediently
segment the objects from the background, values smaller than a threshold were treated as depth

.,, ,,5 x -: :.: ,' 2 
'_
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Figure 14. Reconstruction of a surface from depth constraints. (Grid dimensions: N.' Nh. 17,

N33, N,", =3N"-' 65. Grid spacings: h, 0.4. h2  0.2. h3 =0. 1. C~onstraint

- paramncers: ag 2.0/hj. Computation: 24.25 work units.)
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Figure 16. Reconstruction of a pyramidal surface with oricntation discontinuitics fiom orientation constraints.
(,i .N = Nh = 33. N", = 65. Grid spacings: h1 = 0.4.

h 0.2. h3 0.1. Constraint parameters: at = -1 4.0/h. Computation: 19.5 work unis.)
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Figure 17. Reconstruction of a hemispherical surface from sattered oricntation constraints. (Grid dimensions:
N zh , = N h' = 1 7 , N x' = N vh 2 = 3 3 . N .-h = N h," , 6 5 . G r i d s p a c i n g s : h , 0 .4 , h 2 0 .2 h 3 0 .1 . -: :

~h

,'; Constraint parameters: ap= l 4.01h.. CornpuUt.1: 22.125 work units.)
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"" r .-L- utions.

,',

-" a'" 1 " , ,#,", " ., ., , " , "' . .. " " . ' .. " . ,\ ''' ' . " b " - . '''' ' "



7erzopoulos Computing Visible-Surface Representations 34

9.

I <

Figure 19. Reconstruction fmin depth ad orientaion constraints in Fig. 18. (Grid dimensions: Nh' -

.17. N N' N-z -65. Grid spacings: h, = 0.4. h2 = 0.2, h4 = 0.1.

Consuraint paramelrs Ith, 2.0/hi, = ,,A 4.0/hi. ('omputadon: 17.75 work units.)

4.
'41



Terzopoulos Computing Visible-Surface Representations 35

Figure 20. Reconstruction of a lightbulb from range data. (Finest grid dimensions: N h' x jV'= 257 x 281.
Grid spacings: h, = 0.8. h2 = 0.4, h3 = 0.2. and h4 = 0.1. Constraint parameters: adh = 0.2/hi.
Computation: 9.78 work units.)

discontinuities. Fig. 20 shows the reconstructed surface of a lightbulb. The algorithm smoothes the
noise in the data and reconstructs the missing points.

-i~i 6.3. Natural iage Data

In this section. we apply the multiresolution surface reconstnction algorithm to depth data orig-
inating from natural inm.es. The examples involve photometric stereo, and two binocular stereo
algorithms applied to tei rain stereopairs.

6.3.1. Photometric Stereo )ata

Photometric stereo is a techniquc that uses multiple (usually 3) images of a scene from the same
viewpoint, but with differing illumination [Woodhanm, 19811. Assuming that the surface material
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Figure 21. Image of a matte white torus.

is known and that the viewer and lightSOuirccs arc far from the object, thc method determines
thc surface orientation from the image irradiancc. Our surfacc reconstruction algorithm provides
a noise resistant techniquc for computing depth from the surface orientation data provided by
photometric stereo. We demonstrate this with tie image of torus in Fig. 21. The photometric sterco
data (generatcd by a system implemecnted at MIT by K. Ikeuchi) was introduced as orientation
constraints on a two-level algorithm. Aside from sporadic missing data, the constraints on the
coarse level are dense, whereas only every other node on the fine level is a constraint. Fig. 22
shows the orientation data and the reconstructed torus.

Our method for reconstructing surfaces from scattered orientation constraints can be compared
to a variational scheme for obtaining relative depth from dense surface gradient information reported
by Horn and Brooks [19851. T[heir proposed least squares integral f f (Vx - p)2 + (vy - q)' dx dy
will be recognized as being a continuous version of the orientation constraint penalty functional. By
virtue of the additional Smooth ness functional S, (v), however, our Surface reconstruction algorithm,
can deal with orientation constraints that arc scattered. It also can integrate depth constraints from
other sources to arrive at absolute surface depth.

6.3.2. Correlation Rased Stereo Data

At the top of Fig. 23 is a stereopair on which Kass's [1983] correlation based stereo algorithm
was run. frhe Output of the stereo algorithm is shown on the lower left, with brightness proportional
to disparity. T[he algorithm has failed to ?roduce a mnatch in the neutral grey patches, so disparity
is unknown in these areas. To apply the multiresolUtionl algorithm, the disparity data on the finest
level were reduced by factors of two, through averaging, to ihrce coarser levels. Relatively small
constraint parameter values were chosen in order to counteract the potentially detrimental effects
of false matches and noise in the disparity datta. TIhe reconstructions on the three coarsest levels
are shown as 31) plots in Fig. 24 (tie finest level was too dense to represent this way). Fig. 25
shows isoelevation contour mnaps of the solution on all levels.

.................. I . . .



Terzopoulos Computing Visible-Surface Representations 37

:..... ......

x IIt #l rt I
"-' s't t o I, 

" 
I I I I I I

I I s I II I I I * 
t

Figure 22. Reconstruction of the torus (right) fromn the orientation constraints provided by photometric stereo
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(left). (Grid dimensions N." = N", - 51 'md N~ Nh - 101. Constraint paramneters: al'i = 4.0/hi.
Computation: 52.0 work units.)

6.3.3. Feature Based Stereo Data

The next examplc involves disparity constraints generated by the MPG stereo algorithm

[Grimson. 1985]. A thc-hnncl version of the stereo algorithm was run on the stei
thc top of Fig. 26. IThe output of die sterco nleorithun is shown on the lower part of thc figure.
I isparity information is provided only along zero crossing contours at the three finest scalcs. In

tdc fiture. the darkness along contour, is proportional to dIsparity. This disparity data was input to
a tibor-leveI surfaice reconstruction algorithm. The constraints on the coarsest level were derived by
averaging the constraints from the next finer level. [he reconstructions on the three coarsest levels
arc shown as 31) plots in 'ig. 27. Fig. 28 shows isoelevation contour maps of the solution on all
levels.
6

,-.. \ /
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Figure 23. Natural terrain stercopir (top) and omtt of Kass' Stereo algorithm (bottom). The images were
256 x 256 piXelS. qt.Iuanti~cd to 256 lc'.ck (provided by the I)S Decfentse Mapping Agecyc).
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Figure 24. Reconstruction of terrain in Fig. 23. (Grid dimensions: N~h, N= 33. N,2 - - 65,
=ci- Nh-,-- 129. N,' - Nh 257. Grid spacings: h, 0.8. h2  0.4, h3  0.2. h& 0.1.

Constrdini paranlctem: a,,", 0.01 /0. Cornpulit ion: 29.0 work unhLu.)
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Figure 25. Isoelevation contour maps of the reconstructed terrain in Fig. 24.

A four-level surface. reconstruction algorithm was applied to contoured terrain elevation data.
A contour map of die Black River Gorges (published by the UK Ministry of Defense) was
digitized manually on a digitizing tablet by J. Mahoney. The 256 x 256 digital contour array is
shown at the top of Fig. 29. The constraints input to the algorithm are shown at the bottom
of the figure. The elevation of the contours is proportional to brightness. Local averaging was
used to derive the constraints on the coarser grids from those on the finest grid. The terrain
reconstructions on the three coarsest levels are shown as 31) plots in Fig. 30 (the finest level is too
dense to represent this way). Fig. 31 shows isoelevation contour plots of he reconstructed terrain
on all levels. The reconstructed contours on the finest level can be compared subjectively with
the digitized contours in Fig. 29. but note the reconstructed contours depict elevations half way
between the original constraint contours for an unbiased comparison. The reconstructed contours
are somnchat smoother than the (predigitized) contours in the original map -. the jaggedness
introduced by manual digitization has been reduced. The extent of t' . oothing can be regulated
by adjusting the constraint parameters. Shaded image renditions of the reconstructed terrain using
reflectance map techniques for hill shading [tlorn, 19811 arc shown -it the bottom of Fig. 31. Terrain
reconstructions using the thin plate surface tinder tension model were compared to reconstructions
using the simpler membrane spline model (L.aplacian smoothing). '[he former gives good results,
whereas the latter generally suffers frint insufficient smoothness and produces flat spots across
terrain peaks [lcrzopoulos, 19841 (see also Illolondi ei al., 1976]).

"+-" -" "."- " "- " '" " "'--'" '-.' " '. "- "" -""- "" -' " -"". " "." • .' ' " -""" "" ' -" " -" ." .% ,' . ," " " ";'- "''"." ." ."+,"



Terzopoulos Computing Visible-Surface Representations 41

* ,* .-. Figure 26. Naturald terrain stereopair (top) and output of the MPG stereo algorithm (bottom). Thfe images
were 512 x 512 pixels, quantized to 256 levels (provided by the US Army Engineer Topographic Labs).
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Figure 27. Reconstruction of data in Fig. 26 on the three coarsest levels. (Grid dimensions: N,',  N " 33,

Nh- = Nh = 65, N,'" = Nv"' = 129. N ,', = Nlh, = 257. Grid spacings: hi = 0.8, h2  0.4, h3 = 0.2.
h4= 0.1. Constraint parameters: a,16) 0.01/h. Comnputation: 31.0 work units.)
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Figure 28. lsoelevatdon contour maps of the reconstructed terrain in Fig. 27.

6.5. Discontinuity Detection Experiments

The fo~regoing examples have shown that the surface reconstruction algorithm can handle disconti-
nuities that are prcspecificd. In the next two sections, we present examples involving die automatic
detection of discontinuities.

6.5.1. "Ine Rcgularization Approach

. , The aerial view stereopair of Fig. 32 was input to the MPG stereo algorithm which generated
",. the sparse disparity map shown on the top of Fig. 33. The finest level dense disparity map gene rated
!iii by a four-level surface reconstruction algorithm is shown at the iower left of the figure. IDarkness

is proportional to disparity. Thie discontinuities found fi'om this disparity map, using a disparity
limit Gii >? td = 1 are shown at the lower right as white contours After the detected points are
added to the discontinuity map, the surface reconstruction algorithm continues iterating from the
tentative approximation on die left. The amount of additional computation required is relatively
small, since die tentative surface is a fhirly good approxim ation in most places. At convergence, the
reconstructed surface has fractured along the contours to give die solution on the right. Portions
of the main discontinuities around die buildings have been found, but contours are broken and
shifted.

,,-"The next example involves die synthesized random dot stecogram in Fig. 7. The depth
constraints generated by a three-channel version of the MPG stereo algorithm are shown in Fig. 34
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Figure 29. Digiti.ed contour data (top) and onstrints (bottom). The patch to the lower right represents a
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Figure 31. Isoelcvauion contour map (top) of the dat in Fig. 30 and shaded representations of the reconstructed
terrain (bottom).

0, .U*...
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1

Figure 32. Aerial view of a hospital complex. The stereopair was provided by the UBC Faculty of Forestry.
Images are 320 x 320 pixels.

-(the finest level dimensions are 320 x 320). The constraints on the coarsest level were obtained by
V averaging those on the next finer level. Fig. 35 shows the smooth disparity maps initially computed

by a four-level surface reconstruction algorithm. Fig. 36 shows the discontinuities detected from
these maps with td = 1. Ihe discontinuities have been superimposed onto the final disparity maps
in Fig. 37. Better performance is observed in this case due to the simpler surface structure, but the
contours, while mostly intact, are quite ragged.

In general, not detecting true discontinuities affects surface shape more adversely over larger
regions than introducing some spurious ones within a continuous surface. Discontinuity points
are missed by the thresholding operation, and no adjustment of the global limit can be expected
to produce perfect results. Note, however, that the surface reconstruction algorithm does not
break down. Rather, the reconstructed surface degrades as it "leaks" through the gaps. The
discontinuity detection procedure may be improved by allowing the disparity limit to vary spatially,
or by modifying it during multiple passes. On the first pass, surface shape is poorest, so a fairly
conservative limit should be set to reduce the number of false detections. Conservative limits fail
to detect many discontinuities, but as more discontinuities are identified, surface shape improves
and limits can be lowered in subsequent passes to find the less prominent discontinuities.

6.5.2. The Variational Continuity Control Approach

A multipass scheme is also employed in the variational continuity control approach to efficiently
obtain good solutions. An example will be used to explain the strategy. Fig. 38 shows depth
constraints randomly sampled from a set of sloping planes that form discontinuities along their

r . ; V,.*--.. ..
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Figure 33. Discontinuities in the aerial stereogram. Disparity contours generated by stereo algorithm (top),
full disparity map generated by the surface reconstruction algorithm at the finest level (lower left), and detected
discontinuities superimposed on the disparity map (lower right).
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Figure 34. Depth constraints for dhe randomn dot stereograrn.

extremities. A singlc continuous surface can be reconstructed from these constraints as shown, but
it smnooths over the dcpth discontinuities and rounds out the orientation discontinuities.

Thie algorithm finds both kinds of discontinuitics and rcconstnicts a surface which preserves
them. When the surface smooths through a depth discontinuity, two spurious regions, of high
curvature border the discontinuity. These spurious regions can easily be mistaken for orientation
discontinuities. To avoid this unwanted interaction which can substantially slow down the optimiza-
tion process, the algorithm postpones the orientation discontinuity detection phase until all depth
discontinuities have been found. T[he su 'rface evolves in several steps over which the paramcters

- - f3~and ~3'in (29) are modified. E~ach step consists of fir-st flipping the value of the continuity
control parameter (p,,, or Tjfrom 0 to I or c onversely, if this lowers the energy (27), and then

* running the ieconstruction algorithm to convergence (which always results in equilibrium, since the
variational principle is convex for fixed p,.and TPk).

For depth discontinuities, / is initially set to a high valuc that heavily penalizes their inscrtion,
then lowered in steps. Trhis strategy o~f least commitment finds the prominent d iscontinui tics earliest,
improving the stirface as it does so, and leaves the more subtle ones for later. It results in the

* flipping of relatively few variables in each stage, hence the soIlution is obtained efficiently. Bieginning
withtheconinuois urfce ig. 39(a), Fig. 39(b-d) illustrates the steps of the evolving discontinuity

detection process. during which discontinuities are determined with increasing accuracy as Od, is

-. 7
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'I

Figure 35. Full disparity maps without discontinuities.

lowered. The energy can be lowered firther still if /3d is then increased slightly to eliminate
spurious discontinuities in Fig. 39(d). Note that since the surfaces have now separated, a very large
increase wAould he needcd to flip a true discontinuity point (a hysteresis effect). [he improved
surface in 1ig. 39(c) results. Next, the orientation discontinuity detection phase is activated and it
runs in th~e same way, but modifies /h. In this example, the orientation discontinuities arc found
in only one step.

Fig. 3() shows the final solution. The depth and orientation discontinuities have been made
explicit and are preserxed by the reconstructed surface. Incidentally, the global optitim of the
\,iationtl principle has been found in this example: however, this procedure can generally be
expected to ,icld good. though not necessarily optimal approximations. Its main attractions are
tha it is deterministic and efficient.

7. Discussion and Research Directions
U

Se'ceral itics cotcc.rninm, the frarnework for corputing , isible-surface representations are discussed
in this section. and dircctions for future research arc suggested. I he discussion focuses on

.-1
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%,

Figure 36. Detected discontinuities.

discontinuity detection, choosing constraint parameters, handling rivalres in constraints, grouping
constraints, invariance properties of the surface reconstruction model, and visible-surface analysis.
[reropouilos, 1984, Ch. III contains a more extensive treatment of these and other issues, including
multiresolution relativc depth representations of surfaces, and the possibility of computing visible-
surface representations "instantaneously" by analog networks.

7.1. On Discontinuity Detection

Some recent work in image restoration is of relevance to the problem of piccewise continuous
surface reconstruction. A piecewise constant image model employed by lake 11983] for image
reconstruction is interesting in that it incorporates "weak constraints" which can be broken at a cost.
The resulting optimization problem is related to our variational continuity control approach, but
more restricted. Blake used an adaptive method, which he referred to as "graduated nonconvexity,"
to obtain good soluti(us to the nonconxex problem. It has not been established however whether
this interesting method applies to the sparsc data case as well.

Geman and Geman 11985] used Markov random field models with associated Gibbs distributions
,.'. to restore piecewise constant images corrupted by additive Gaussian noise. The restoration seeks

a maximum a postrriori estimate of the original image, given the degraded image, and includes
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Figure 37. Discontihiuities and final disparity maps.

an explicit "line process" that estimates the locations of step edges in intensity. This work was
restricted to dense image data. The Gemans' approach was adopted with encouraging results to
surface reconstruction from sparse depth constraints by Marroquin [1984]. His markov random field
model, while less restrictive than the Gemans' piecewise constant one, in tct models a membrane
spline whose smoothness is insullicient for computing visible-surface representations. A line process
essentially equivalent to the Gemins' was incorporated to estimate depth discontinuities. Tlhe
numerical solution strategy in both of the above studies was stochastic optimization using the
Metropolis algorithm and simulated annealing to optimize the nonconvex functional [Kirkpatrick
et al., 1983]. This strategy can find optimal solutions, but for such large rcconstruction problems it
has been observed to converge notoriously slowly. Based on our experience, we believe that it can
be accelerated, perhaps enough to make it practical, through the use of multiresolution processing.

Obviously, the line processes used in the above work as well as our own encoding of disconti-
nuity contour configurations is unpleasingly heuristic and in need of refinement. The discontinuity
map can be augmented by nodal variables to encode the local orientations of the curvilinear cle-
ments to a higher degree of accuracy. Such an encoding is employed by Zucker and Parent [19841
in an optimization (relaxation labeling) approach to finding contours in images. It appears that
ideas from their work can also be applied to finding surface discontinuities within our framework.

A promising possibility is to employ 11) controlled-continuity stabilizers as formal models
of smoothness constraints along surface discontinuity contours in the x-y plane. A functional
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Figure 38. Scattered depth constraints consistent- with sloping planes meeting discontinuously (top) and the
smooth reconstructed surface (bottom).

that naturally comes to mind is the curvilinear analog of the thin plate surface tinder tension:
fO ({)/s) -) } ds where s denotes arc length along discontinuity
contours c C C. H-lere, fib allows breaks, while #,a allows angles (tanjent discontinuities) to form
in the discontinuity contours. Again, additional energy penalties must be associated wiill these
occurrences. Given our finite element representation of surfaces, curvilinear finite elements are
the natural local representztion for discontinuity contours. The combined variational principle has
both a surfacc component and an analogous contour component. Although technically nontrivial,
a formulation of surface reconstruction generalized along these lines has very strong appeal.

7.2. On Constraints - Parameters, Rivalries, and Grouping

The constraint (spring) parameters offer the flexibility to individually tune the coerciveness of each
constraint on the reconstructed surface. In the special case of Gaussian error distributions, the
parameters should be inversely proportional to the expected variances (ni = 1/Aa?). It ought to be
possible for the low-level visual processes to associate a variance estimate or confidence with each
constraint that they provide. In general, however, it's not obvious how to choose the cc.nstraint
parameters optimally.

The constant of proportionality A can also be used to tune the overall smoothness of
the reconstrtIcted surface. Cross validation techniques may be used to set A optimaly (e.g.,
[Wahba and Wendelberger. 19801). The basic criterion is to choose A so as to minimize over all
constraints the (weighted) discrepancy between each constraint and its value as estimated f,'om the
surface reconstructed using the remaining constraints. Unfortunately, this involves computationally
expensive sequential algorilhms. Interestingly, the continuous tuning of surface smoothness is
analogous to the scale space filtering technique proposed by Witkin [19831 with the added attraction
that it can be applied to scattcred data.

Although the variational principle was designed to account for measurement errors in the
constraints, the possibility of massive rivalries between constraints from different sources, such as
stereopsis and analysis of motion processes, was disregarded. Massive rivalries are unnaturd1 visual
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Figure 39. Evolution of the discontinuity detection process

phenomena that can nevertheless occur, especially under contrived conditions, and they oftcn lead
to multistable percepts lAttncave, 19711. *Fhc framnework can potentially accommodate rivalries with
a mechanism that inhibits individual or entire sets of constraints by nullifying selected constraint
parametcrs. This mcchanism can be activated by a global arbitrator which monitors the contents
of visible-surfa-ce reprcsentations to detect rivalries may also have access to higher level knowledge

16
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about the scene. The arbitrator's influence can account for multistability.

A particular type of rivalry arises from transparent surfaces. For instance, a surface s;uch as a
dirty window in front of a background scene would lead to two well defined populations of depth
(and orientation) constraints over the same visual angle, one from the window, the other from the
background. A transparency interpretation can be arrived at by an arbitrator which monitors the
surface reconstruction process looking for high approximation error between surface and constraints
over a significant area. Under the c conditions the arbitrator can trigger a constraint grouping
process which clusters the constraints into two populations, based on depth values, say. Multiple
surfaces can then be reconstructed over the same visual area for each resulting constraint pc(pulation.
This scheme has been applied on a transparent surface random dot stereogram [Terzopoulos, 1984,
Ch. 111.

7.3. (in lnvariance Properties of the Surface Model

As a transformation from sparse constraints to dense surfaces, the thin plate under tension model
can be shown to be invariant under (i.e. tommutes with) certain image plane transformations
applied to the constraints, namely, translations, rotations, and similarity transformations. This
implies that surface shapes will be preserved through rigid motions of the scene or viewpoint
parallc to the image plane or along the view direction. These are essential invariance properties
for visible-surface reconstruction [Terzopoulos, 19821.

Note, however, that the thin plate spline, characterized by the small deflection approximation
ff2 + 2v ~ -i- v dx dy to the bending energy density of a thin plate, is not invariant under

arbitrary 3D tansformations of the constraints. Thus, surface interpolation using this expression is
not invariant under changes in the view direction, as Blake [1984] points out. Ile shows that rotating
the view direction induces the 11) analog of the thin plate spline to "wobble," and he demonstrates
that this effect is most pronounced as the (continuous) spline is inclined sharply with respect to the
viewer or is forced to bend sharply. Blake views this as a problem that should be eliminated by
employing the large deflection bending energy of the thin plate, a convex combination of the mean
and Gaussian curvatures of the surface v(x, y), which is view direction invariant.

Although e,,.(v) can also be made view direction invariant by employing the large deflection
counterparts for the thin plate and membrane bending energics, this approach has a serious
technical drawback [Terzopoulos, 19841: The large deflection formulas lead to an extremely difficult
nonlinear problem (e.g., the large deflection equations for the thin plate are two coupled nonlinear
fourth-order partial differential equations known as Von Karmann's equations [Szilard, 19741).

Fortunately, the surtce reconstruction model, as it stands, is not hampered by die lack of
view direction invariancc because the available constraints are usually sufficiently dense in practice
to tightly determine surface shape; as the view direction is varied, tile reconstructed surface would
vary negligibly (note that Blake's experiments reveal a significant wobble effect just in the case
of extremely sparse constraints). Furthennore. the explicit introduction of depth and orientation
discontinuities alleviates much of the wobble precisely at those places where Blake's experiments
show it to be most pronounced on a globally continuous surface. An interesting psychophysical
experiment would be to determine whether there might be some slight variance in the surfaces
perceived by huInAns viewing sparse random dot stereograms while tie dots undergo simulated
rigid 31) transfinations and, if' so, whether the variations are consistent with the reconstruction
model (J. Mayhew, personal communication).

J€_. .. , . .
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7.4. On Visible-Surface Analysis

The visible-surface representation is an intermediate and volatile description of the 31) surfaces
in scenes. It drives ensuing processes which generate stable higher-level representations of shape
that are better tuned to object recognition. The processing begins with visible-surface analysis
whose goal is to abstract from the numeric, viewer-centered representation a rich set of more
symbolic, object-centered features that are stable through viewpoint changes. The extraction of
geometric surface features is facilitated by the dense shape information provided by visible-surface
representations.

A promising approach to visible-surface analysis is to apply concepts from differential geometry
[do Carmo, 1976). For instance, a surface's intrinsic geometry (including Gaussian curvature,
geodesics, etc.) is determined completely by the first fundamental form, which defines arc length
over tie surface. It's extrinsic geometry (including normal curvature, principal curvatures, etc.) are
determined by the second fundamental form, which describes the deviation of the surface from the
local tangent plane. The fundamental theorem of the local theory of surfaces (usually attributed
to Bonnet) states that the analytic study of surface properties consists of the study of the two
fundamental forms; i.e., the six fundamental tensor coefficients (which are not all independent) as
functions of the two independent parameters of the surface. The fundamental fors are invariant
under changes in the parameterization, and together they determine surface shape up to rigid body
transformations. These properties make them ideal foundations for object centered symbolic surface
representations.

The visible-surface representation makes it possible to estimate the first and second funda-
mental forms on a point-by-point basis over the entire visible surface. li'he finite element shape
representation reduces the computation of crucial local surface features such as the Gaussian curva-
ture, principal curvatures, and principal directions to the evaluation of simple algebraic expressions
of neighboring nodal variables (see fTerzopoulos, 1984, Ch. II] for derivations). It is then a simple
step to determine the elliptic, hyperbolic, parabolic, umbilic, and planar points, as well as geodesics,
asymptotes, and lines of curvature.

For example, Fig. 39 shows the reconstructed surface of a lightbulb. Fig. 40 shows the Gaussian
curvature K(X, y) computed for the reconstructed lightbulb surface of Fig. 20. The elliptic points
(K > 0) are shown in white, the hyperbolic points (K < 0) arc shown in black, and the parabolic
(K = 0) points separate the two regions. Note the alternation in the sigui of curvature at the
screw mount. Fig. 41 plots the computed field of principal directions for the lightbulb at the
two coarsest scales. These demonstrations illustrate the feasibility of reliably computing fromr these
representations higher-order intrinsic and extrinsic properties of surface shape. The reliability can
be attributed to the regularizing properties of the thin plate surface under tension which overcomes
the potentially detrimental effects of noise in the data, while preserving discontinuities. For further
analysis of the kinds of features that can be computed from dense, nuleric, representations of
surfaces see, e.g., [Brady et al, 19851 or [Medioni and Nevatia, 19841.

8. Conclusion

Constraints on surface shape, contributed by multiple low-level visual processes, can be computed
reliably at multiple resolutions, but only at scattered locations in the field of view. Subsequent
visual processing can be facilitated substantially if the scattered constraints are transtormed into

visible-surface representations that make surface shape explicit everywhere. To accomplish this
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_ WFigure 40. Elliptic (white) and hyperbolic (black) points of the reconstructed iightbulb at four scales.

effectively, information must be integrated over multiple visual modalities and fused across multiple
scales of resolution.

In this paper, we have developed a computational theory of visible-surface representations.
Within a unificd computational framework, formal solutions were offered to fundamental problems
of reconstructing visible surfaces: (i) integrating constraints on the depth and orientation of surfaces
across various modalities and scales, (ii) interpolating surface shape information into (piecewise)
smooth surfaces, (iii) discovering discontinuities in surface depth and orientation and enabling them
to restrict interpolation, and (iv) efficiently maintaining consistency in distributed, multiresolution
visible-surface representations.

A visible-surface reconstruction algorithm implements the framework. Extensive testing has
shown it to be viable. The algorithm coordinates cooperative processes within a multiresolution
hierarchy of surface representations to dramatically increase computational efficiency. It is well
suited to implementation on massively parallel networks of simple, locally interconnected processors.
Such computational networks are suggestive of biological mechanisms and arc also well suited to
VISI technology.
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