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. INTRODUCTION

A means of more fully utilizing the useful life of aircraft engine components is
provided by the Retirement-for-Cause (RFC) life management concept. Under the
RFC philosophy, components are inspected at intervals of operation such that a
crack or other service induced defect just below the level of detectability
cannot grow to a critical size between inspections. Those components with no
observable flaw are returned to service with the assurance that if a fatigue
crack develops, it will not grow to a size that will result in catastrophic
failure of the component while in service. A cost savings results from the fact
that by retiring the components on the condition of an observable flaw, compo-
nents without flaws that would otherwise be retired by the probabalistic scheme

would now be allowed to remain in service until cracking is apparent.

Implementation of the Retirement-for-Cause method requires advances both in
non-destructive evaluation and crack growth life prediction. The primary
requirement with regard to crack growth life prediction is an improvement in the
accuracy of life prediction for the complex loading profile experienced by
engine components. Important to the improvement of the accuracy of life predic-
tion is an accounting of the interaction between the various components of the

loading profile.

The life limiting loading profile experienced by an engine disk consists
basically of a group of low frequency cycles associated with thermal gradients
or centrifugal forces and superimposed high frequency loading associated with
blade passage. The cycle period associated with the low frequency cycle (low
cycle) loading is on the order of seconds to several hundred seconds. A wide
range of loading rates and load levels may also be involved in the low cycle
loading. The high frequency cycle (high cycle) loading would typically involve
frequencies on the order of hundreds to several thousand hertz. Important to
accurate life prediction is establishing the manner in which each of these
features of the engine disk loading profile contribute to crack growth and how
these features interact. The specific aspects of combined cycle loading that

must be addressed are the tollowing:




- Establishment ot the limits of high cycle loading under which the disk
can be safely operated.

~ How cumulative damage rules should be applied when combined high
cycle/low cycle loading contribute to crack growth.

- The degree to which the high cycle and low cycle loading influence each

others contribution to crack growth,

A test system was desipned and constructed specifically for the present study to
provide adequate load levels up to 2000 Hz and minimize the frequency ranges
over which dynamic complications in load application are present. A purely
servo-hydraulic system based on an Akashi voice-coil servo-valve was used for
all of the testing. The load frame and specimen were designed to minimize the
number of system resonances that create undesirable specimen stress patterns and
either complicate or invalidate the representation of stresses around the speci-
men crack. The test syst m constructed for their study is described in Section

2.

The specimen type used for this study was a center crack panel also described in
Section 2. A clevis arrangement with provisions to clamp the specimen ends was
used to grip the specimen. By securely clamping the specimen and providing
additional lateral support, specimen resonances could be avoided at the selected
test frequencies. Both the high frequency and low frequency was sensed by a
load cell. It was recognized that resonances in the load frame and specimen
could disturb the correlation between the load cell measurement and stresses in
the specimen as well as provide significant bending stresses associated with
resonant lateral vibration. Modal analyses of a preliminary specimen were
performed to determine its natural frequencies and mode shapes over a range of
steady load and crack length. These modal analyses indicated the specimen
modifications required to make the specimen suitable for testing in bands of
frequencies up to 2000 Hz. Test frequencies of 200 and 1825 Hz were chosen for
most of this study. The absence of excessive bending stresses and a proper
correlation between load cell measurement and specimen stresses was verified at
these frequencies with strain gage measurement on the specimen. The precision
in the high frequency AK measurement required for this study made these specimen
dynamic evaluations and detailed verification of specimen stress absolutely

essenttial.




The high/low frequency Lloading profile used in this study is described in
Section 2. The low frequency component was a trapezoidal waveform with a rise
time (T)) and fall time (T2) of 0.5 seconds and with a hold time (Ty) of between
2 and 180 seconds. The high frequency loading was applied during the iow
frequency cycle hold period and typically ranged between 220 and 4450 Newtons
(50 to 1000 lbs). The low frequency load levels P} and Py were varied during the
tests such that the low frequency stress intensity factors K] and Ky were main-
tained constant. The high frequency load range (P,) was either increased during
the test or maintained constant which in either case resulted in an increasing
high frequency stress intensity factor range (Kp). The ‘ow cycle R ratio

(P1/P3) was 0.1 for all of the testing. All testing was performed at 649°C.

Section 3 presents the results of a series of crack growth tests that were
performed on Inconel 718 at 649°C (1200°F). The following aspects of the
high/low cycle interaction were investigated in the series of crack growth

tests:

- the effect of high cycle frequency up to 2000 Hz on the low cycle/high
cycle interaction

- the effect of low cycle stress intensity factor range (AKpg)

- variation of crack growth rate as a function of high cycle stress
intensity factor range (AKyc) over a AK[c range of 15 to 40 MPa v'm

- the influence of low cycle hold time between 2 and 180 seconds on the

crack growth rate under combined cycle loading

The results of testing are summarized in curves representing crack growth rate
versus high frequency 8K for constant low frequency cycle AK range and low cycle
hold time. Crack growth rate is reported in terms of growth per unit time at the
upper level of the low cycle trapezoidal loading profile. The low cycle AK
ranges included in the testing were 15, 20, 30 and 40 MPa ¥m. The low cycle hold
times included 2, 5, 10 and 180 seconds. Comparisons are made in Section 3
between the results for a high cycle frequency of 200 and 1825 Hz provided by

this study and those for 10 Hz provided in Reference 1.

Section 4 also explores possible mechanisms associated with the combined cycle

interaction. Correlations are made between the crack growth data and features




Ny o -

of the fracture surface.

are also discussed.

Means of .cdelling combined cycle crack growth rate




il. SYSTEM CONSTRUCTION, EVALUATION OF SYSTEM DYNAMICS, AND SPECIMEN
DESIGN

A. Background on the Selection of Test Equipment

There have been several approaches to providing controllable load levels in the
trequency regime above 100 Hz. One system used for high frequency fatigue test-
ing 1s the electrodynamic shaker. Motion and forces in these systems are gener-
ated by interaction of a solenoid generated field with a moveable armature.
Standard commercial electrodynamic shakers have force ratings up to 9000 lbs.
with up to 100 g's of acceleration available to 3000 Hz.(Z) Magnetrostrictive
devices have also been used to generate forces and displacements of frequencies
up to 1000 Hz. An example of a study of threshold crack growth conducted with

magnetostrictive system is that of Reference 3.

The desire to test materials with a loading profile similar to that of an
aircraft turbine engine has lead to the development of test systems that can
apply low cycle high amplitude loading (on the order of 5000-20,000 lbs.) along
with low amplitude high frequency (100 to 2000 lbs.) loading. A novel example
of the machines developed for the application of combined cycle loading is the
major/minor cycling system constructed by Instron Led. (4) The characteristics
of this system are summarized in Table 1 and a schematic representation of the
system appears in Figure l. The high frequency loading component is applied by
the electrodynamic shaker and the low frequency component by a hydraulic actua-
tor. This 1s made possible by a specially developed isolation unit between the
hydraulic actuator and shaker which allows the simultaneous application of load-

ing by the hydraulic actuator and electrodynamic shaker.

An alternative to a combined servohydraulic/electrodynamic and purely electro-
dynamic system for the application of a combined high cycle/low cycle loading
profile is a puvely servohydraulic system based on a voice coil servo-valve.(S)
The use of electrohydraulic servo-valves for material testing 1s widely prac-
ticed and is usually performed with a tlapper-nozzle valve, which, in spite of
its inherent low-frequency limitation, has been totally adequate for the testing
of such material properties as creep, ultimate strength, yield strength, and

low-frequency cyclic fatigue.




TABLE 1

SPECIFICATION FOR INSTRON COMBINED CYCLE TEST SYSTEM

High Frequency Component:

Waveform:
Frequency Range:
Max. Dynamic Load:

Low Frequency Component:

Waveform:
Minimum rise and fall times:

Dwell times:

Maximum Load Unidirectional tension or compression:

Load Frame:

Number of Columns:

Dynamic Load Rating:
Max. Vertical Daylight: (between load cell & shaker)

Distance between columns:

Load Cell:

Fatigue Rating (Unidirectional):
Excitation:
Load Measurement Accuracy Static:

Dynamic:

Sinusoidal
50 - 600Hz depending upon the specimen stiffness

*5kN

Trapezoidal

0.4 sec.

0.1 - 99.9 secs. or 0.1 - 99.9 min.
50kN

4

+250kN
700mm
661 x 305

50kN max. force

5.6 volt DC
1% of indicated force or #0.2% of full scale, whichever

is the greater
3% of indicated force or 10.2% of full scale, whichever

is the greater

Compensation is provided for changes in dynamic ioad reading caused by the mass of the Grip or Fixture.

NOTE:-

Because of the high operating frequencies, the mass of the moving parts has a significant
effect on the performance of the machine. The actual frequency range over which the
desired dynamic force can be achieved is dependent upon the stiffness of the specimen.
Details of the specimen should be given when ordering.

Patents Pending

Instron Limited reserves the right to change details and specifications without notice

PDS 1219
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An example of a high frequency servo-hydraulic system is that developed by
akashi Ltd.(3) The Akashi vibration system employs a servo-valve and actuator
with high-frequency capability based on a voice-coil-type servo-valve. In this
system, the electrical drive signal directly causes servo-valve spool motion.
The voice-coil valve thereby provides a significant advantage in high frequency
input flow capability to the actuator. Also the Akashi servo-valve is optimized
to reduce the impedance loading associated with high frequency, and its mechan-
ical natural frequency has been established to favor frequencies at the higher
end of its useful spectrum. The two types of servo-valves, the flapper-nozzle
system and Akashi voice-coil system, are shown in Figures 2 and 3 respectively.
Additional high frequency servo-hydraulic systems are manufactured by MTS(b)

and Teem.

The ability of a test system to provide adequate displacement at the test
frequency is the most important consideration for high frequency testing. It is
difficult to accurately estimate the displacement capability of a shaker in
specimen fatigue testing application in view of the complexity of the inter-
action between the actuator and load frame. A means of establishing a rough
estimate is to determine the maximum deflection capability of the shaker with a
test load of 50 lbs. and without the constraint of a load frame. Such a deter-
mination was made for an Akashi test system based on a pilot/slave servo-valve
with a 5 gpm/37gpm flow capability and a 1.2 inch stroke actuator. The esti-
mated deflection of this system is shown in Figure 4. This curve provided an
adequate estimate of deflection for planning fatigue testing in a test system

based on this servo-valve/actuator combination.

Another important consideration for fatigue crack growth testing is ensuring
that the stresses around the growing crack are similar to those under quasistat-
ic conditions. Only if this can be assured can results from one frequency be
compared to another. Resonance in the load frame and specimen often disturb the
patterns of stresses., Investigations of the manner in which specimen stresses
can be distorted at high frequency have been carried out with the aid of modal

(M

analysis. Figure 5 shows the patterns of standing wave resonant vibration
that can occur in a standard center crack panel specimen. Such dynamic compli-
cations to crack growth testing can be minimized by proper selection and design

of the test system along with proper design of the specimen.
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B. System Selection and Construction

The study of the phenomenon of high-frequency/low frequency load interaction 1n
fatigue and creep crack growth required the construction of a test system that
could provide adequate levels of load up to a frequency of 2000 Hz that could
provide low cycle load levels up to 10,000 lbs., and allow precise control of
both low-frequency and high-frequency loading during fatigue crack growth test-

ing. The following options were available.

* A purely electrodynamic system with a maximum force rating on the order
of 10,000 1b.

* A combined high-frequency electrodynamic/low-frequency servo-hydraulic
system with some type of isolation system to remcve large preloads from
the electrodynamic system during high-frequency vibration.

* A purely servo-hydraulic system based on a voice-coil servo-valve.

A preliminary evaluation indicated that the purely electrodynamic and purely
servo-hydraulic options would permit a load frame sufficiently rigid to preclude
dynamic complications at the higher frequencies. It was also determined that a
servo-hydraulic system was less expensive for the load ranges required for this
program. It was feared that the combined servo-hydrualic and electrodynamic
system with its isolation system had such an extended load frame that a large
number of resonances would make testing and verification of loading extremely
difficult particularly at higher frequencies. Therefore, because of compat-
ibility with existing MTI equipment, relatively low cost, and ability to
construct compact frames and fixturing around the specimens and actuator, the

purely servo-hydraulic option was chosen,

The purely servo-hydraulic test system constructed for this program is based on

an Akashi voice-coil servo-valve with a frequency capability that far exceeds
the more conventional flapper-nozzle servo-valve. The Akashi servo-actuator
incorporates all the features of the fatigue-rated actuators currently used
today, as well as several key design improvements. The piston-to-cylinder
clearance 1is manufactured to allow operation without a piston seal, thereby
eliminating a wear item and, more importantly in high-frequency operation,
removing the cause of waveform distortion associated with seal motion during

pressure reversal. Hydrostatic bearings are employed to provide high side load

13
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capability and to eliminate any metal-to-metal contact at the bearings. Piston
rod seals are not used, thus eliminating the largest factor of friction in the
system and also removing an element that must be periodically serviced, i.e.,

replacing the seal and refinishing the piston rod.

The high-frequency servo-hydraulic equipment purchased by MTI for this program

includes the following:

* Akashi Servo-Actuator Model HV 10.0-1.2-37/5 (10,000 lb. maximum status
load

* Akashi Servo-Valve (pilot/slave) Model SV 5/SV 37

* Akashi Servo-Controller Model SC-1

* Akashi Servo-Amplifier Model SA-400

* Akashi Manifold Model HM-40

The Akashi servo-actuator (Model HV 10.0-1.2-37/5) was installed in a load frame
already in operation at MTI. Figure 6 shows the servo-hydraulic testing system
with specimen, induction heating coil, and crack-length-measuring telemicro-
scope in place. Figure 7 shows, in greater detail, the specimen, induction
heating coil and specimen gripping arrangement. A standard clevis was used to
provide loading to the specimen. To reduce unnecessary deflection, the
2-in.-wide center cracked panels are reinforced at the ends gripped by the clev-~

is.

During the high-frequency experiments, noise levels reached 135 db, and it was
necessary to construct a sound-deadening enclosure around the system. The noise
reduction provided by this enclosure was sufficient to reduce the noise to an

acceptable level in surrounding offices and work areas.

The high-frequency servo-valve receives signals from the servo-controller and
servo-amplifier. The command signal applied to the servo-controller is the sum
of a high- and low-frequency signals which are controlled independently by the
PDP-11/04 computer that interfaces the servo-hydraulic system. A schematic
diagram of the control and data acquisition system is shown in Figure 8. The
high~ and lLow-frequency signals must be controlled independently becasue the
system gain (i.e., the load range per unit input signal) is different for the

high- and low-frequency portions of the command signal. Figure 9 schematicalty

14




Figure 6 High Frequency Servohydraulic Test System
with 2" Width Center Crarked Panel Specimen
Tnstalled
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Figure 7

” R

Center-Cracked Panel Specimen in High-Frequency Test
Svstem (The specimen is heated inductively, and the
crack length is monitored by both a 20X telemicro-

scope and an AC direct potential crack-measurement
svstem.)
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PDP-11/04

e Peak-to-Peak Determination of

High-Frequency Component Calculation of
Command Signal
e Determination of Low-Frequency

Signal Range

D/A A/D
Converter Converter

High-Frequency
Command Low~-Frenquency

‘J_______l— Command

Function

Generator Multiplier

WM

Summing
Amplifier
Load Cell/ Servo Actuator Servo Amplifier
Acclerometer

Figure 9 Closed-Loop Control System for High- and Low-Frequency
Components of Loading Profile

18




illustrates the control of the high- and low-frequency signals. The loading
profile resulting from the summation of the high- and low-frequency components
1s shown in Figure 10a which corresponds to the load response of the system with
the 2-in.-wide center-cracked panel and a high-frequency component of 460 Hz.
The high-frequency segment of the load cell signal is shown in greater detail in

Figure 10b.

A servo-hydraulic vibration system test report for the Akashi servo-valve and
servo-actuator is included in Appendix A. The first chart in this report shows
the maximum performance in terms of acceleration for the Akash: servo-actuator
used in this test program. Thig chart provides the acceleration as a function
of frequency for a 60,75 and 108.7 kg payload. The second and third charts in
this report show the acceleration as a function of frequency for a specific
signal level input to the servo-amplifier for a 60.75 kg and 108.7 kg payload
respectively. Such charts are useful in estimating the actuator displacement

capability in a materials testing load frame.

The basic types of specimens used in crack growth terting are the compact
tensile specimen, the edge-cracked-panels, the center-cracked panel and
bend-type specimens, plus many variations on these basic types. For high-fre-
quency testing, several important dynamic considerations have to be addressed if
the desired loading conditions are to be achieved at the crack. The most impor-
tant consideration is the compliance (extension per unit load) for the range of
AK (K = stress intensity factor) to be covered in the test program. The speci-
men has to provide as low a compliance as possible consistent with accurate
measurement of crack length and of crack growth rate. (Minimizing compliance is
important because, as frequency increases, the possible deflection of bath
servo-hydraulic and electrodynamic systems rapidly decrease). Therefore, the
center-cricked-panel type was chosen for use in this program because of it rela-

tively low compliance for a given AK range.

In the planning of the test program, frequency ranges for the high and low-fre-
quency AK were selected. frequencies. A gpecimen and loading system were then
select:d to accomplish testing in these ranges. The dynamic limitations of the
system iiad to be considered. For example, in the frequenc, regime of 1000 Hz and
above, the maximum displacement that a servo-hydraulic system can provide is

critically dependent on the design of the servo-valve and servo-actuator. Simi-
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Figure 10a Combined high/low frequency
loading profile.

L | Po K

(High Frequency
Load. K Range)

i Figure 10b High frequency component
with expanded time scale.
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lar considerations apply to purely electrodynamic and combined servo-hydraul-
ic/electrodynamic systems. The specimen dimensions and starting crack length
(a) were, therefore, chosen based on system displacement limitations and desired

high-trequency AK range.

C. Dynamic Evaluation of Test Specimens

Strain gage measurements on a preliminary center crack specimen (Figure 11 and
12) used in the test program showed that while it was adequate for 200 Hz testing
1t was inadequate ftor frequencies above 500 Hz., A series of system resonances
resulted in substantial bending stresses and a generally poor correlation
between load cell measurements and strain gage measurements of stress in the
crack region. A mudal analysis was performed on this preliminary specimen to
determine how 1t should be modified to reduce the density of resonances in the
frequency regime beyond 500 Hz. The resulting modifications on the specimens
were successful 1n providing several frequency bands above 300 Hz in which unde-

sirable dynamic strasses were eliminated.

An important objective of the present work is to compare the fatigue crack
growth behavicr of the material at several frequencies. It is, therefore,
extremely important to ensure that the loading pattern is the same at these
frequencies. A series of specimen designs were evaluated with strain gages and
a successtul design evolved. The criteria established for the specimen were as

fnllows:

- Bendin: stresses and out of phase components of stress at the specimen
crack ive mest be less than 5% of the high cycle amplitude (this is a
reqarvearnt of ASTM standard E647 extended to cover all dynamic

J torbances of stress uniformity).
Tue icad measurement must have an appropriate relationship to the
strescs s an the crack region throughout the test.

- Stresnes .t several locations in the crack stress field must have an

appropriate relationship to each other.,

In view of the tact that resonant frequencies shift as the crack grows, the

tollowing cundition must also be fulfilled by the specimen:

21
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- The above conditions must apply over a range of at least 200 Hz in the
trequency regime of interest over the entire range of loading and crack

length experienced during a test.

The interval of 200 Hz was chosen based on the expected variation in resonant
frequency resulting from specimen material modulus variation as the specimen is
brought to the test temperature. This can be demonstrated by considering the

expression for the ringing frequency of an undamped plate:

. 1/2
=L 2 Elg
Vo T 7m Kn ( YS) (2.1)

where K is determined by the boundary conditions,

and where

S = gpecimen cross-sectional area
Y = density

E = elastic modulus

I = moment of inertia

g = accelerometer of gravity

2 = length of specimen

With the average 10% reduction in elastic modulus over the specimen region
participating in the vibration mode, a 5% change is expected in resonant

frequency or about 100 Hz at a resonant frequency of 2000 Hz.

In Sections C.l and C.2, the results and conclusions of the modal analysis are
presented along with a description of the specimen adopted for testing around
2000 Hz and a summary of the strain gage dynamic evaluation of this specimen at
1825 and 2000 Hz.

C.1 Modal Analysis of the Preliminary Specimen

After the evaluation of the preliminary specimen (shown in Figures 11 and 12)
with strain gages, it was apparent that some modification of the specimen would
be required to make it suitable for testing near 2000 Hz. Comparison of strain
gage response from opposite surfaces indicated that bending stresses well beyond

that permitted by ASTM standard E647 existed over most of the frequency range
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trom 1000 to 2000 Hz. [t was felt that a modal analysis should be performed on
the specimen to determine the resonant frequencies and mode shapes ot these
resonances. The information gained from this modal analysis was subsequently
used to determine modifications that would be necessary to make the specimen

suitable for 2000 Hz testing.

The preliminary specimen with the clamping fixtures extended (Figure 13) was
placed in the load frame in the usual manner and a static load was applied. An
accelerometer was attached to the specimen or load frame at one of 43 locations.
The specimen was then excited with a random signal having the - .ectrum shown in
Figure 14. The signal was provided with a Scientific Atlanta Vibration Control-
ler which has the capability of open loop or closed laop vibration control. The
modal analysis was conducted with open loop excitation. The accelerometer was
moved successively to the locations on the specimen shown in Figure 15 and the
random vibration was applied. Additional locations on the load frame were
included but the levels of vibration were coasiderably less than those on the
specimen. The accelerometer response and shaker excitation were simultaneously

recorded. The data was processed using a Hewlett Packard “451C Fourier Analyzer
System which calculates the transfer function between the input and response at
points on the specimen and load frame. An analytical model was curve fitted to
the transfer function data and modal parameters such as natural frequency, damp-
ing factor, and mode shape were identified. The <vstem software also has the
capability of providing animated representaticons of the mode shapes. Modal
parameters for the following mean load and crack length (’a) cases were evalu-

ated:

- Mean load = 2000 lbs., crack length (2a) = 0.20"
-~ M-an load = 4500 lbs., crack length {2a) = 0.20"
- Mean load = 2000 lbs., crack length (2a) = 0.95"

Table 2 1ists the natural frequencies and damping factors for the resonant modes
tor each ot these cases. The mode shapes for the three cases are shown in Figure

1o through 18,

The mocal analysis on this specimen demonstrated the foll..ing:
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Figure 15 Accelerometer locations used
in the modal analysis
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TABLE 2 NATURAL FREQUENCIES AND DAMPING FACTORS FOR RESONANT MODES

CASE 1: Mean load = 2000 lbs, total crack length (2a) = 0.20"

NAT. FREQ. DaMP. FACT. DAMP. COEFF,
MODE (HZ) (%) (RAD/SEC)
1 765.0115 .8677 41.7039
2 1439.8879 3.0185 273.2087
3 1709.9106 1.4115 151.6672
4 1861.4131 1.5402 180.1682
5 1955.4885 L4472 54.9416

CASE 11: Mean load = 4500 lbs, total crack length = 0.20"

NAT. FREQ. DAMP. FACT. DaMP. COEFF.
MODE (HZ) (%) (RAD/SEC)
1 827.7138 3.6762 191.3148
2 1483.2148 1.0132 94.4276
3 1673.6045 .9470 99.582¢4
4 1806.6233 2.1325 262.1211
5 1953.5444 .3507 43.0522

CASE II11: Mean load = 2000 lbs, total crack leagth = 0.95 "

NAT. FREQ. DAMP. FACT. DAMP. COEFF.
MODE (HZ) (%) (RAD/SEC)
1 646.3500 .3708 15.0568
2 795.7371 2.7693 138.5117
l 1381.772% 3.9457 342.8291
4 1690.2246 1.4620 155.2824
5 1883.5137 1.4233 168.4624
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Figure 16 Mode Shapes for Case I: Mean Load 2000 Lbs,
Crack Total Length (2a) of 0.20"
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Mean Load 4500 Lbs,

Crack Total Length (2a) of 0.20"

Figure 17 Mode Shapes for Case II:
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Figure 18 Mode Shapes for Case III: Mean Load 2000 Lbs,
Crack Total Length of 0.95"
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- The load level and crack length changes expected during a test can
shift resonant frequencies substantially, in some cases as much as 200
Hz.

- While these resonances involve the entire load train and possibly the
frame as well, the most severe lateral deflection is in the specimen.

- There was a cluster of resonances from 1400 to 2000 Hz with an average
of 200 Hz spacing between them.

- There was a rather clear field between 750 Hz to 1200 Hz where no reso-

nances developed for any of the cases.

The behavior shown in the modal analysis corresponds well to that shown by
strain gage response of this preliminary specimen. Strain measurements
confirmed that there is a regime between approximately 800 to 1200 Hz in which
there are no complications from dynamic bending stresses. In the regime between
1200 to 2000 Hz, strain measurements likewise confirmed the series of resonances
that result in significant bending strains that cannot be tolerated in a test.
In several of the mode shapes the greatest deflection is in the thin part of the
specimen. It was felt that if these deflections can be reduced significantly by
lateral support and damping, the specimen may provide a satisfactory stress

distribution at the crack region.

C.2 Strain Gage Evaluation of a Specimen with Lateral Reinforcement and Damping

The strain gage evaluation of the preliminary specimen showed that bending
strains were excessive over most of the frequency between 500 and 2000 Hz with
the possible exception of the range 1000 to 2000 Hz. The ranges of frequency
over which the strains on either side of the specimen are in phase and of equal
magnitude was extremely limited and certainly less than the 200 Hz that is

required due to shifting resonances during a test.

Recognizing that the preliminary specimer with the clamping arrangement
extended as much as possible was still unsuitable for testing above 1200 Hz,
several experiments were performed to determine the effectiveness of various
approaches to spreading out or damping resonant vibrations. The modal analyses
showed that the most extreme deflection is in the unclamped portion of the spec~

imen. It appears that since this region is the most compliant it acts somewhat
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as a hinge between the load train elements above and below it. Three additional

modifications were, therefore, made to the specimen and system:

* the construction of lateral buttressing that would reinforce the speci-
men in the unclamped region with respect to out of plane motion yet have
minimal effect on tensile stress distribution

* removal of elements in the load train which may add to unwanted
deflections

* increasing the size of the clamping fixture to improve stiffness in the

lateral direction

Figure 19 shows the lateral reinforcements applied to the specimen. A schematic
diagram of the central region of the specimen indicating the elements of the
lateral support are shown in Figure 20. Parallel elements were loaded against
the unclamped surfaces of the specimen near the crack. By applying this load
through several layers of glass cloth, the support still had substantial compli-
ance in shear and would not significantly affect the distribution of tensile
stresses in the specimen. The glass cloth was also expected to provide damping
of lateral vibration. Specific dimensions of the lateral support and clamping

fixtures are shown in Figure 21.

A series of experiments were conducted on this specimen to establish its suit-
ability and also to establish a set of procedures for verifying an appropriate
stress distribution on each specimen prior to each experiment, The set of
experiments involved strain gage measurements in the locations shown in Figure

22.

The first group of experiments involved the amplitude measurement of two strain
gages on opposite surfaces when a 2500 lb. preload and a high cycle amplitude
were applied. Figure 23, for example, shows the output of strain gage 1 and 2 as
a function of frequency. Over most of the frequency range the correlation is
acceptable indicating a satisfactorily low level of bending stresses at the
crack line over most of this frequency range. There are, however, several
trequency ranges in which large discrepancies occur. The stress amplitudes as
shown by strain gages 1 and 7 on the same side of the specimen (Figure 24) like-

wise show a good correlation for this uncracked specimen over most of the
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Figure 20 Diagram Showing Location of Damping Blocks

and Glass Insulating Material
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Figure 22 Diagram Showing Location of Strain Gages
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frequency range 1investigated but with significant discrepancies in certain

narrow ranges ot frequency.

The etfect ot reducing the length of the load train by removing the load cell and
compression rings was evaluated. As shown in Figure 25, the effect of eliminat-
ing these objects was to modify the ranges over which differences in amplitude
between strain gages 1 and 2 occurred. While the rorrelation between these
outputs is improved in the frequency range between 1900 and 2200 Hz, in other
ranges the correlation showed little change and in some cases deterioration. It
was found 1n subsequent tests that removing the compression rings alone can
improve the correlation of strain gage measurements in the frequency range

between 1900 and 2200 Hz.

This series of experiments, involving the measurement of stresses at various
locations on the specimen, demonstrated that there are frequency ranges above
1000 Hz in which dynamic stresses do not dist rb the stress pattern associated
with tensile loading. Satisfied that the specimen with lateral damping could
provide satisfactory test results in some frequency band near 2000 Hz experimen-
tation was carried further to identify frequency bands in which testing could be
carried out and also establish procedures that could be used to verify the
appropriateness of the stress distribution prior to each test. The verification
on each specimen is necessary because there is a possibility that the effective-

ness of the lateral support may depend on the procedures of assembly.

The veriftication procedures adopted involved the measurement and comparison of
both phase and amplitude on opposite surfaces of the specimen., An initial
experiment was carried out over a range of frequencies near 2000 Hz to determine
how the relative magnitude and phase vary with changing load and crack length,.
The strain measurements were along the crack line at locations 1 and 2 of Figure
22. Measurement of the output of strain gages 1 and 2 were made and displayed on
an oscilloscope as 1 versus 2. In the absence of bending stresses the resultant
would be a line at 45° from the x or y axis, i.e. the stresses would be in phase
and of equal magnitude. Resonant vibrations are apparent as a deviation from
this pattern. An appropriate stress distribution would have a maximum peak to
peak deviation of 5% from the ideal 45° trace. This condition would alsc be
required over a 200 Hz interval around the chosen test frequency in order to

L3

ensure that resonances are not 'swept in" by increasing the specimen temper-
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e 7 v al o required over the load range and crack length experienced in a
"vipova. experiment. Figures 26 chrough 28 show the results of measurements over

’

trequency, crack lengrh and mean load. These measurements were made

severdl specimens Lo ensure that bending stresses were consistently below the
yocepable level trom specimen to specimen.
Prior .. vach crack growih, test strain gage measurements were made in this
manner over a 200 Hz frequency interval to ensure that the specimen was properly
issembled,  This procedure was adopted to ensure that errors in assembly that
might reduce the eftectiveness of the lateral support had not occurred.
'he (~at wensing tor the high frequency load range was performed with the remote
load «+! . For trequencies near 2000 Hz it was required to apply a correction
ta tv- - . 't measured load in order to properly represent the stresses in the

“in:tty it rthe specimen crack. Load cell output for a given crack length and
1o 1ea Toad was measured as a function of strain gage output at 20 and 200 Hz.
“te proportionality at these two frequencies was consistently the same. The
proport o2’ ry between load cell output and strain gage output was then meas~-
ar»d ar 1825 and 2000 Hz. The correction factor that must be applied to load
cell meaiurement in order to provide the same proportionality as at the lower
trequencies was established for the range of load and crack length measurement
exper onced in a typical experiment. The correction factor variation was 12%

nver a typical range of test conditions.

Semsiny Ioad directly on the specimen at locations 7 or 8 shown in Figure 22 was
“onsids red. However, in view of the fact that elevated temperature strain gages
would he required and that strain gages on the specimen are frequently destroyed

near 2000 Hz, 1t was decided to perform tests with remote load sensing. With

remete sensi ey a much higher testing productivity was achieved with perhaps a
smal! sacrat:ce of absolute high frequency load measurement accuracy.
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ll. EXPERIMENTAL TEST PROGRAM

The test program objective was the establishment of the relationship between
crack growth rate in an aircraft engine disk material and those parameters asso-
crated with the high- and low-frequency loading experienced in the engine first-
and second-stage disks. The intormation provided by this testing program was to
be applicable to life prediction ot tlawed engine components and provide guid-
ance to the implementation of the retirement~for-cause engine maintenance and
design concept. Consequently, the test parameters selected for this program

were based on the loading conditions experienced by aircraft engine disks.

Considering the nature of the loading and the requirements of aircraft engine

design, the following were included in the experimental program:

Determination of the nature of the transition from low cycle to high
cycle dominated behavior over ranges of both low cycle and high cycle
stress intensity factor range (AK).

Establishment of the high-cycle transition AK over as wide a frequency
range as possible.

Major cycle (low cycle) hold times in the regimes in which both fatigue
and creep crack growth dominate. Cycle times from a few seconds to
several hundred seconds were included.

A temperature typical of those experienced by the aircraft engine disk.
For the Inconel 718 specimens used in this study, 1200°F was chosen.

A sufficient level of replication to eliminate the influence of material
variability on the test results and indicate the level of consistency of
the experimental system.

The influence (if any) of the high-cycle loading on crack growth below

the high-cycle transition.

The test program summarized in Table 3 was designed to address these aspects of
high- and low-trequency interaction in crack growth. The low cycle waveform
used throughout the testing program wag a trapezoidal loading profile with ramp
times of 0.5 seconds and hold times ranging from a second to essentially infin-
ity (steady mean load). The high-frequency loading was applied during the hold

period only.
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TABLE 3
TEST PROGRAM QUTLINE
{ALL TESTING AT 1200°F)

Objective

Conditions of Test

Evaiuate high-cycle thrashold
AKX and crack growth rate
versus high frequency AK in
the creep crack growth regime.

Evaluate high-cycie threshold
AK and crack growth rate
versus high-frequency AK in
the fatigue crack growth
regime.

Evaiuate the effect of high~
frequency losding on |ow-
cycle crack growth in the re-
gime of transition between
creep and fatigue-dominated
crack propagation.

Evaiuate the effect of high-
frequency loading at seversl
low=frequency cyclie R ratios
in the creep snd fatigue
crsck growth regimes.

Evaluate the effact of temp-
erature on the high-cycle
transition.

Selected low~frequency AK
values with iong hold times (60
seconds or greater) maintained
throughout the test and with
varying high=-frequencyAak values.

Selected low-frequency AK
values with the shortest prac~
ticsl hol!d times (probably on
the order of 1 to 10 seconds)
maintained throughout the test
and with varying high-frequency
AK velues.

Selected low-frequency hold
times with specific low~
frequency AK leveis maintained
throughout the test and with
varying high=frequency &K
levelis.

varying high=frequency aK
values emphasizing the high-
cyclie transition regime with
specific tow cycle hoid times
maintsined throughout the test.

varying high=-frequency AK vaiues
emphasizing the transition high~
cycle regime with specific low-
frequency AK and hold times and
selected temperatures,
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A. Fatigue Crack Growth Studies Conducted at 200 Hz

Combined cycle tests with a high cycle trequency of 200 Hz were conducted for
low cycle parameters in a test matrix. All testing in this matrix was carried
out with a low cycle R ratio of 0.1 and a test temperature of 1200°F. This
matrix included low cycle maximum K values ranging from 15 to 40 ksi /in (corre~
sponds to a 4K of 15 to 40 MPa /m since the R ratio was 0.1) and low cycle hold
times ranging from 2 to 180 seconds. Table 4 shows the conditions of tests
completed and the number identifying the test. All conditions in the test
matrix were applied in at least one test. In several cases replicated tests
were conducted. Data plots for all of these tests may be found in Appendix A,

with corresponding listings in Appendix B.

The low cycle 8K ranges included in the testing were 15, 20, 30 and 40 MPa v/m.
The low cycle hold times that included 2, 5, 10 and 180 seconds were expected to
cover the regimes in low frequency loading in which the low cycle crack growth
is time dominated (creep crack growth) and the regime in which the number of low
frequency cycle influences crack growth rate (combination of creep and fatigue
crack growth). The lower end of the low cycle hold period range (i.e., 2 and 5
seconds) was expected to show the effect of accumulated low frequency cycles on
the low cycle crack growth rate. The series of data plots representing crack
growth rates versus high cycle AK for constant low cycle AK and low cycle hold

time obtained in this study show several interesting trends.

In the curves of crack growth versus high frequency AK distinct regimes can be
seen., As shown in Figure 29, three types of behavior were observed over the
range of low frequency AK and hold times investigated. In type 1, the crack
growth rate versus high cycle AK remained relatively constant in the low cycle
dominated regime prior to the rapid increase in crack growth rate in the high
cycle dominated regime. Type 2 behavior was characterized by retardation of
crack growth rate by the high frequency cycle in the low cycle dominated regime.
Type 3 behavior was typical of the lowest low cycle AK studied, in which the low
cycle AK was below the crack growth threshold and no crack growth could be meas-
ured in the low cycle dominated regime. In all these cases distinct low cycle
and high cycle dominated regimes could be observed. However, the transition

between these two regimes was not always distinct due to the retardation effect.
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TABLE 4: COMBINED CYCLE TEST INCLUDING A 200 HZ HIGH CYCLE FREQUENCY

(All testing was conducted at 649°C (1200°F) and with a low
cycle R ratio of 0.1)

LOW CYCLE HOLD TIME

(sec)
2 5 10 180
TEST #'s
15 24, 25 21, 23 20 42, 43
20 35, 37 30, 28 26, 27 39, 40
Low Cycle
Maximum
K
(MPa 4 m) 10 46 31, 32 47 41
40 36, 38 33, 34 48 INA
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FIGURE 29 Characteristics of the High/Low Frequency Interaction Showing the
Three Types of Behavior Observed in This Study. The Points Corres-
pond to testing with a Low Frequency AK of 20 MPa vm, a Low Cycle
Time of 10 Seconds and a High Cycle Freauency of 200 Hz.
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Figure 30 shows a curve corresponding to a low cycle AK of 15 MPa Vm and a hold
time of 5 seconds. The data in this representation corresponds to a test with
increasing high frequency AK. Prior ro data acquisition in the increasing high
cycle AK mode, the crack was allowed to grow with a systematically decreasing AK
until a crack growth rate on the order of 5 x 10 %mm/sec (2 x 107® inches/sec)
was achieved. This precaution was taken to eliminate the effects on crack
growth of the prior precycling. The data presented in Figure 30 is character~
istic of threshold fatigue crack growth data which generally exhibits increasing
growth rate and decreasing slope with increasing AK when crack growth versus AK
is plotted on log-log axes. The lower level of this curve corresponds to a
growth rate of 1.3 x 1078 inches per high frequency cycle (3.30 x 1077 mm/cycle)

which would definitely be in the threshold regime for Inconel 718.

Figure 31 shows the results of a test conducted with a low frequency AK of 20 MPa
/m and a hold time of 5 seconds. It was carried out with a sequence of loads
intended to illustrate an important aspect of the retardation effect that is
very pronounced at a low frequency AK of 20 MPa ¥m. The line drawn through the
experimental points has arrows drawn to show the sequence of points as they
occurred during the test. The initial loading up to point A seems to give rise
to a measurable retardation, and changing the high frequency load range to that
at point B rapidly accelerates the retardation. This results in a more severe
retardation in the 0.762mm (0.030) inches of growth beyond point B than was
accomplished in the 2.79mm (0.110 inches) of growth with the high cycle AK range
around point A. (Each point represents 0.010 inches, 0.254mm, of crack growth).
Beyond point B the crack growth rate decreases rapidly, reaches a minimum value
and then starts to increase. At point C just beyond the minimum value of crack
growth, a lower high frequency load range was applied (the new level of high
cycle AK is represented by point D). The crack growth rate increases from point
D to E showing a gradual elimination of the retardation effect. At point E the
load range was again increased to point F and crack growth continued in the high

cycle don nated regime.

As the low frequency 4K increases, the retardation effect gererally becomes less
pronounc2d. The data for a low cycle AK of 30 MPa vm and a low cycle hold time
of 5 seconds appears in Figure 32. While the high frequency load results in a
factor of four reduction in crack growth rate for a low cycle AK of 20 MPa vm, at

a low cycle BK of 30 MPa /m the reduction in crack growth rate is only a factor
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FIGURE 30 Results of Combined High/Low Frequency
Test With a Low Cycle AK of 15 MPa vm
and a Low Cycle Hold Time of 5 seconds.
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of 2. As shown in Figure 33, a low cycle AK of 40 MPa /m shows no measurable

retardation associated with high frequency loading.

Figure 34 shows the effect of varying cycle time on the crack growth behavior
with a low cycle AK of 15 MPa /m. No distinct trend is apparent and there is
little deviation between these curves. Figure 35 shows the effect of cycle time
ranging from 2 seconds to 180 seconds on the crack growth behavior with a low
cycle AK of 20 MPa /m. The only significant feature in this group of tests is

that with a 180 seconds hold time there appears to be a more severe retardation.

A comparison of crack growth rate versus high cycle AK for a hold time of 5
seconds and several values of low cycle AK appears in Figure 36. As expected
the crack growth rate in the low cycle dominated regime increases as AK
increases. A similar comparison is made in Figure 37 but with a low cycle hold

time of 180 seconds and roughly the same behavior can be observed.

B. Results of Combined Cycle Tests with an 1800 to 2000 Hz High Cycle Component

and Comparison with Lower Frequency Results

The parameters covered by the 1800 to 2000 Hz combined cycle testing are indi-
cated in Table 5. Tests 60 through 66 were performed on specimens from a second
heat of material. The crack growth rate in the low cycle dominated regime was
quite different from the previous batch of material. The newer material has
crack growth rates lower by a factor of 6 to 8 at some low cycle AK levels.
Since, it is desirable to evaluate the effect of frequency without the compli-
cation of lot to lot material variation, fatigue crack growth testing near 2000
Hz was also performed on material from the older lot of material. Tests 67
through 75 represent tests from the same lot used for the 200 Hz tests. The
complete set of data plots and listings for the 1800 to 2000 Hz combined cycle

tests may be found in Appendices B and C respectively.
The dynamic tests performed on the laterally supported and damped specimen indi-

cated that there is greater consistency in dynamic behavior at 1825 Hz than at

2000 Hz. There is also a greater high frequency load capability at 1825 Hz.
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TABLE 5: COMBINED CYCLE TEST INCLUDING AN 1800 to

2000 Hz HIGH FREQUENCY LOAD COMPLETED TO DATE

LOW CYCLE HOLD TIME

(sec)
2 5 10 180
TEST #'s

20 67 60
25 63

Low Cycle

Maximum

K
(ksi in)
sty 30 64, 68 61, 62

40 66, 65
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Tests 60 through 66 in this higher frequency series were conducted with several
high cycle frequencies in the range of 1800 to 2000 Hz. The advantages of test-
ing at 1825 Hz became apparent and, therefore, beyond test 66, 1825 Hz was used
as the high cycle frequency. Comparison of results for 200 Hz and 1825 Hz tests
may be found in Figures 38 and 39 which present data for a 5 second hold time and
for a AK of 30 MPa vm and 20 MPa ¥m respectively. A feature that the 1825 Hz
tests show in these figures is a less pronounced retardation than at 200 Hz.
Other tests performed near 2000 Hz show similar results. In Figure 39 for a low
cycle AK of 20 MPa /m, on the onset of high cycle activity appears to occur at a
lower high frequency AK at 1825 Hz than at 200 Hz. A distinct low cycle domi-

nated range of high frequency AK is apparent at both frequencies.

A comparison between combined cycle loading with a high frequency component of
200 Hz and 10 Hz is presented in Figure 40. The 10 Hz data is from Reference 1.
The apparent onset of high cycle behavior is about the same. The initial slopes
f the high cycle dominated regime are significantly different with the 200 Hz
data having a larger slope. This behavior would be expected in the high cycle
dominated regime in which the number of high frequency cycles determines the

rate of crack growth.
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IV _EVALUATION OF MECHANISMS AND MODELLING ASSOCIATED WITH FREQUENCY
EFFECTS AND COMBINED HIGH/LOW CYCLE INTERACTION

There have been several studies of frequency effects in nickel base and other
alloys up to frequencies of 20,000 Hz. Investigation of combined high and low
frequency interactions in fatigue have also been performed. In this section the
important observations and conclusions from these studies will be summarized.
The test results from this program will then be discussed in the context of

these previous studies.

A. Background

References 8-11 praovide a review of mechanisms that apply to fatigue crack
growth of nickel base alloys at elevated temperatures. These papers deal with
both the initiation and propagation of fatigue cracks and the influence of
frequency on these processes. Frequency effects are evaluated in terms of the
effect of frequency on "slip character', which is the degree to which dislo-
cations disperse during plastic deformation. The two extremes in slip character
that nickel base alloys have exhibited are planar slip and wavy or homogeneous
slip. Planar slip 1is characterised by the concentration of dislocations in
planar arrays with planar shear offsets produced on polished surfaces transverse
to the crack plane and parallel to the direction of propagation. This type of
slip and its associated deformation 1s favored by low stacking fault energy,
ordering, the presence of coherent precipitates, low temperatures, and small
strains. Austenitic stainless steel and nickel base alloys both exhibit planar
slip at ambient temperatures. Wavy or homogeneous slip on the other hand, is
characterized by uniformly distributed, nonplanar dislocation arrangements with
an associated rumpling of the surface transverse to the crack plane and parallel
to the growth direction. Wavy slip is favored by high stacking fault energies,
incoherent precipitates or particles, large strains, and elevated temperatures.
Most metals including stainless including stainless steels and nickel base
alloys exhibit wavy slip at temperatures greater than 0.4Ty (TM = melting
temperature) because a thermally activated process allows dislocations to cross
stip and ciimb out of their original slip planes. Wavy slip can occur in both
transgranular and intergranular fracture modes. The fact that wavy slip occurs
by a time dependent, thermally activated process in iron and nickel base alloys

at elevated temperatures has significant impact on the frequency dependence of
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tatigue. As the frequency or strain rate increases the degree of slip dispersal
decreases, 1i.e., when the characteristic time constant associated with slip
dispersal becomes larger in relation to the cycle time associated with deforma-
tion, slip becomes more concentrated on certain planes. It has in fact been
observed that as cycling frequency increases, slip becomes similar to that
observed at ambient temperatures in nickel base alloys. At higher frequencies

as with lower temperatures, planar slip tends to dominate.

Fatigue life over the broad range of frequency from .033 Hz to 1000 Hz for Udimet
700 at 1400°F (760°C) is presented in References 8 and 9 and shown in Figure 41,
From .03} Hz to 1C Hz, fatigue life at the given strain range increases by a
factor of 100. Over this frequency range there are changes in the site of crack
initiation. At the lowest frequency initiation occurs at surface connected
grain boundaries and the initial mode of fracture in intergranular. As frequen-
cy increases in this range of frequency, intergranular cracking generally asso-
ciated with creep and oxidation become less dominant giving way to transgranular
tracture. At a frequency of 3 Hz, the fracture is almost entirely transgranu-
lar, With an increase in frequency from 10 to 1000 Hz, fatigue life is reduced
by a factor of seven because of the concentration of deformation in fewer slip
bands and the resulting accelerated crack initiation and propagation. Reference
9 suggests that the main reason for the reduced fatigue life beyond a frequency
of 10 Hz may be associated primarily with the number of cycles required for

crack initiation,

The nature of crack initiation has been shown to change with changing frequency.
Stage 1 and Stage Il are two classifications of fatigue crack initiation. Stage
I crack initiation is favored by low temperatures and high frequencies, i.e.,
the same conditions that lead to planar slip. Low frequencies and high temper-
ature on the other hand, favor Stage Il crack initiation. Additional observa-
tions regarding the influence of frequency on crack initiation in nickel base
alloys is given in Reference 10. Fatigue cracks in Udimet 700 at 1400°F (760°C)
are shown to iniilate in an intergranular mode from a surface intitation site at
frequencies of 0.033 to 0.33 Hz. The crack then extends intergranularly along
the surface to a depth of 1 to 3 grain ‘iameters below the surface and then
changes Lo a transgranular Stage II mode. At frequencies in the range 3 to 1000
Hz, crack propagation began in the Stage I transgranular mode and changed to a

Stage [[ mode. [t was also observed over the many specimens examined that low
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trequencies tavor surtace intergranular crack tinitiation and intergranular
crack propagation. High trequencies on the other hand favor subsurface initi-
ation at grain boundaries or twin boundary intersections and transgranular crack

propagation.

A study of the intluence of cyclic frequency on the fatigue properties of single
crystal MAR-M—ZOO(II) showed results similar to those for Udimet 700. Testing
was performed on MAR-M-200 at frequencies from 0.033 Hz to 1030 Hz over the
temperature range 1400°F (760°C) to 1800°F (982°C). The number of cycles to
tailure at 1400°F (760°C) and 1550°F (787°C) reached a peak in the range of 1 to
10 Hz. Stage [ crack initiation was favored at the lower temperatures and high-
er trequencies and Stage Il crack initiation at the higher temperatures and
lower trequencies. At 1030 Hz crack initiation and propagation occurred entire-
ly in the Stage [ mode with facets corresponding to 110 slip planes. Generally,
the amount of Stage [ fracture varied according to temperature and frequency as
shown in Figure 42. The nature of the fracture was attributed to degree of slip
homogeneity., Stape [ is favored by inhomegeous planar slip and Stage II 1is
tavored by homugeneous slip. In almost all specimens of MAR-M~200 cracks initi-
ated at subsurtface micropores.

Clavel and Pineau(lz)

studied the effects of frequency and wave form on the
tatigue crack growth of Alloy 718 (a nickel base superalloy) in the frequency
range bhetween 5x1073 Hz and 20 Hz at 298°K and 823°K. The variation in fatigue
crack growth rate with frequency that they observed at 823°K is summarized in
Figure 43. Consistent with the observations on Udimet 700, Nimonic 90, and
MAR-M-200 single crystals, the fatigue crack growth rate decreases with increas-
ing frequency in the regime in which environmental and time dependent material
deformation processes creep effects can operate. Fractography revealed that
this decrease in fatigue crack growth rate (FCGR) is accompanied by a change in
fracture mode from intergranular to transgranular. Suprisingly, they observed
through TEM examination of the substructure that higher strain rates promoted
more homogeneous plastic deformation while low strain rates favor inhomogeneous
deformation and the tormation of twins., The crystallographic aspects of the
tracture surface observed at room temperature in the threshold regime is attri-

buted to the decohesion along the twin deformation bands.
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A paper by Sullivan et. al.(l3) discusses the effect of cycling frequency in the
very low trequency regime for the nickel base superalloys Udimet 700 and MAR-M-
200. Creep tests were performed on these materials at 955°C in air with period-
ic unloading. The time intervals between unloadings were on the order of 15
minutes to 5 hours. The main observation made regarding the effects of unload-
1ng 1s that 1t produced accelerated creep rate in both Udimet 700 and direc-
tionally solitied MAR-M=200.

(18) 4150 studied the effect of frequency in the range 1074 to 102 Hz on

Scarlan
the ftatigue crack growth of two nickel base superalloys: Nimonic 105 at 750°C
and IN 738 LC at 850°C. The results show the expected decreasing crack growth

rate with increasing frequency.

The intluence of environment on the frequency dependence of fatigue has also
been investigated. For example, 1n the lower frequency regime (up to 1.7 Hz)

Solomon and Coffin(ls)

studied the effect of frequency on the fatigue crack
growth of A286 at 1100°F in both air and vacuum. They observed generally that
ihe crack growth mode and frequency dependence of crack growth rate varied with
frequency in the manner shown in Figure 44. This representation of the crack
growth data shows that specimens tested in air and vacuum both have frequency
regimes of intergranular and transgranular fracture but with different behavior
in the lower cycle regime. Likewise, both air and vacuum tested specimens have
a frequency above which the crack growth rate is independent of frequency. This
study also shows that 1he dependence of crack growth rate (in growth per cycle)

may be represented as follows.

d4C

= ¢c(he )kl (1)
dN P

where AEO 1s the plastic strain range for the specimen used in their exper-
iments, C is the measured crack length, dC/dN is the crack growth rate and ¢, &,
and k are cons.ants, Fach regime shown in Figure 44 is characterized by a

difterent value ot k; the pure cycle dependent regime has a k value of 1.0.

The tests pertormed in vacuum generally have a lower growth rate than in air.
The difference in fatigue crack growth rate, however, decreases with increasing

trequency and the results converge at high frequency. These results suggest
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that as trequency 'ncrease the effect of environment reduces, or in eftfect the
crack at higher trequencies out runs the processes of oxidation that degrade the

tatipgue crack growth properties,

Apother study demonstrating the intluence of environment on frequency effects in
the tatigue crack growth involves 200 Maraging steel in a salt water environment
and 1s reported in Reference 16. A significant frequency effect on the crack
growrh of this alloy in salt water in the frequency range 0.17 Hz and 3.3 Hz. At
3.3 Hz, 1t was found that the salt water solution had little effect on the crack
growth rate as compared to the results in air. There was a factor of ten
increase in crack growth rate when the frequency was reduced to 0.017 Hz. This
along with the comparisons for different gaseous environments demonstrates that

environment may be responsible for much of the frequency effect.

An important aspect of frequency effects in component life prediction is the
~tfect of freqaency on the threshold stress intensity factor range (AK¢p).
There are reports on the aspect for several materials. Mautz and Wweiss(17)
reported the effects of frequency on AKp for Déac steel at room temperature for
both air and argon environments. No frequency effects on threshold behavior
were observed for an air environment between frequencies of 100 and 375 Hz., In
dry argon, however, the results for 100 Hz were slightly higher than those at
375 Hz.

A very extensive study of fatigue crack growth properties of titanium alloys
used 1n aircraft engine compressors was performed by Beyer, Sims and Wallace(3).
Frequency effects up to 1000 Hz on the fatigue crack growth properties of
T1~6A1-2Sn-4Zr-6Mo, Ti-8A%-1Mo-lv, and Ti- 6Al1-2Sn-4Zr-2Mo were investigated at
room, 600°F, 800°F, 900°F and 1000°F for several R ratios for crack growth rates
down to the threshold regime. Fur the higher R ratios such as 0.5 and 0.7 there
13 a considerable reduction for all three alloys when the frequency is increased
to 1000 Hz trom 0.17 Hz at elevated temperatures. The threshold stress intensi-
ty tactor likewise reduced on increasing the frequency to 1000 Hz. The vari-
Athion in crack growth in the frequency range 0.017 Hz to 30 Hz was much less than

that between 30 and 1000 Hu.

The highest test frequency in fatigue testing that we were able to find in the

literature was that used by St, Stanzl and Mitsche(lS) who performed crack




growth tests on 0.04%C steel, chromium steel 20A13 (0.29.C, 13%a), and pure
molybdenum at 20 kHz. They conclude that their results in terms of crack growth

rate versus AK are similar to those for 10 Hz provided by another investigation.

Combined high cycle/low cycle loading has been investigated for several materi-
als. The frequencies for the high cycle and low cycle components represented in
these studies cover a very broad range in both loading components. At the
lowest extreme in low cycle loading there is the low cycle frequency of zero
with the high cycle frequency in the range that will with sufficient amplitude
cause fatigue crack growth., This combined cycle interaction is often referred

to as creep-fatigue interaction.(lg-za) Another group of papers and reports 1,

25-28) deal with high cycle/low cycle interaction where the high and low cycle
components correspond to those that are encountered in rotating machinery. The
low cycle component has a cycle period on the order of seconds to several
hundred seconds and the high cycle frequency ranges from 10 Hz to several thou-

sand Hz.

Several studies have shown that load cycling can have an effect on the creep
rate. Both increases and decrease. in creep rate have been observed when cycl-
ing is applied. The softening has been attributed to and increased mobility of
piled up dislocations as a result of the fatigue cycling assisting the dislo-
cations to overcome obstacles and "friction" stress fields in the slip plane.
The hardening effect has been explained in terms of migration of solute atoms or
dispersed point defects towards free dislocations. Venkiteswaran et. a.(19)
who studied the precipitation hardened alloy Inconel Alloy X-750 attributed the
reduction in creep rate due to an applied fatigue cycle to the formation of
complex dislocation tangles and vacancy condensation along dislocation lines. A
change in fracture mode from intergranular to transgranular was also observed
with the application of the 555 to 910 Hz fatigue loading.

Atanmo and HcEvily(ZA)

reported on the creep-fatigue interaction during crack
growth of aluminum alloy 5052 at 400°F. Conducting tests with ramped loading
and hold times ranging from 30 to 65 seconds, as well as with steady load, they-
observed that cyclic-creep lifetimes can exceed creep lifetimes, perhaps as a
result of the reversal of the creep process at the crack tip during the off-load

period of the test.
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There are several investigations of high cycle/low cycle interaction motivated
by design considerations in rotating machinery such as generating plants, gas
turbines and compressors. These studies all involve a low cycle loading compo-
nent consisting of a trapezoidal waveform with a high frequency component
applied during the upper level hold time as shown in Figure 45. Included in
these studies are those performed at Portsmouth Polytechnic Institute on
T1-6A1—4V.(25"27) The dwell period for this test was 6.8 seconds. Testing was
performed at room temperature with a high cycle frequency of 150 Hz. Fatigue
crack propagation experiments with increasing load and high cycle load levels
were undertaken using minor to major amplitude ratios (Q) of 0, 0.1, 0.2 and
0.3. Figure 46 shows the effect of amplitude ratio (Q) on the measured FCG

rates.

A series of tests were conducted to determine the value of high frequency AK
under major-minor cycling corresponding to measureable influence of the high
cycle component on crack growth., A step down procedure was used to determine
the threshold for high cycle activity. Table 6 lists the conditions for the
onset of minor cycle damage and onset of fast fracture. The authors also evalu-
ated the appropriate manner of predicting crack growth rate under combined cycle
loading. The two approaches to crack growth prediction evaluated by the authors
are the linear summation of the major and minor cycle crack growth rates meas-
ured individually and the representation of the complex loading in terms of its
RMS value. A comparison of the experimental results with the predicted results
are shown in Figures 47 and 48, In these cases, the crack growth is dominated by
the high cycle (minor cycle) loading and the prediction of both the linear

summation and RMS representation are satisfactory.

Goodman ard Brown(l) report on several combined cycle tests on alloy 718 at
649°C with a high cycld frequency of 10 Hz and the same loading profile as used
in the studies ot References 25 and the present study. Features similar to
those found in the present study at 200 and 1825 Hz were observed including
retardation in the low cycle dominated regime and the existence distinct high
and low cycle dominated regimes. Also included in the program conducted by

Goodman and Brown, tests with a high cycle frequency of 100 and 200 Hz.

77




FIGURE 45 a - Major Cycles Only; b - Major and Minor
Cycles (Minor/Major Amplitude Ratio

Q= AKminor/AKmajor)
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TABLE 6 Conditions for the Onset of Minor Cycle
Damage and Onset of Past Fracture ( 4K
Values in MPa vm).

Onset of minor cycle

Onset of fast

Ampli- activity fracture

tude

ratic R AKminor Dinaor AKigm  Aminor AKiowi

002 0982 15 750 75.8 1.3 63.1

004 0965 1.8 400 408 25 63.1

0.1 0914 1.7 170 179 6.0 63.3

0.2 0.835 2.1 10.5 116 11.6 63.6

03 0762 23 7.7 8.8 16.7 63.9
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B. Evaluation of Fatigue Crack Growth Mechanisms Under Combined Cycle Loading

(19) reports the results of creep testing

The study of Venkiteswaran et. al.,
with a superimposed small vibratory stress on the axial creep behavior of a high
temperature nickel base alloy, Inconel X-790. This work demonstrated that the
creep rate was lower and rupture life higher by an order of magnitude when a 500
to 900 Hz vibratory stress was applied transverse to the axial creep load. This
effect was attributed to the formation of complex dislocation tangles, vacancy
condensation along dislocation lines and crack tips and also a change in frac-
ture mode from purely intergranular fracture to a mixture of intergranular,
fatigue and cleavage :.iodes. It was suggested that the application of the high
frequency loading, therefore, made creep crack propagation more difficult along
the matrix containing Y' precipitates. Since the heat treated Inconel 718 used
in this study likewise contains y' (Ni3 A%-Ti) as well as Y"(Ni3Cb) precipi-
tates, this mechanism could apply in the present study. The changing mode of
fracture observed by them is consistent with the fractographic features of the

combined cycle crack growth specimen that we investigated.

Fractographic examination was performed on specimens subjected to 200 Hz cyclic
load in order to obtain information regarding fracture mechanisms. Areas on a
200 Hz specimen were examined by Scanning Electron Microscopy (SEM) and Scanning
Transmission Electron Microscopy (STEM). All of these photographs correspond to
specimen 28. The fracture surface includes areas corresponding to creep crack
growth with no high frequency loading and areas corresponding to combined
high/low cycle loading with crack growth both in the low and high cycle domi-
nated regimes. The fracture surfaces of these regions show distinct differ-
ences. Figures 49 and 50 show SEM photomicrographs of the purely low cycle and
combined cycle regions respectively. The purely low cycle region shows inter-
granular fracture typical of creep crack growth. With the application of a high
frequency load range at a level that maintained the low cycle dominated behav-
ior, the fracture becomes predominantly transgranular with the appearance of

fatigue striations.

Replicas were taken of the fracture surface and subsequently shadowed with chro-
mium and coated with a film of carbon. These replicas were then examined in an
SEM with a transmitted beam. The resulting photomicrographs for a region of low

cycle loading only, are shown in Figure 51. The intergranular nature of the
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1000x E5631

FIGURE 49: Scanning Electron Microscope (SEM) photo-
micrograph of a region in which only low
cycle loading was applied. (Specimen #28)

1000x E5636

FIGURE 50: Scanning Electron Microscope (SEM) ,hoto-
micrograph of a region in which combined
cycle loading (with 200 Hz high cycle load)
was applied.
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fracture is clearly shown in these photomicrographs. In Figure 52 are shown the
STEM photomicrographs for a region which had experienced combined cycle loading.
The striation pattern is this predominantly transgranular fracture seems to show
grouping of striations. At the higher magnification of 10,000x the pattern

appears to be obscured, probably by oxidation at the test temperature of 649°C.

Additional STEM photomicrographs were made on a specimen tested with a high
cycle frequency of 1825 Hz (specimen 67). Without high frequency cycles
applied, the fracture surface showed the expected intergranular fracture.
Figure 53 shows the fracture surface in the low cycle dominated regime where the
high cycle AK is large enough to cause retardation. A striation pattern is
apparent. Figure 54 shows the fracture surface well into the high cycle domi-
nated regime. The striation pattern in this region is more pronounced and shows

a greater spacing corresponding to the increased crack growth.

The relationship between fatigue crack growth and high cycle AK for constant low
cycle AK show three regimes. At the lower limit of AKyc the low cycle loading
dominates the rate of fatigue crack growth. In an intermediate range of AKyc,
the high cycle loading causes a retardation of the crack growth rate. At the
highest values of AKyc, crack growth rate is dominated by the high cycle loading
with crack growth determined by the number of high frequency cycles. The low
and high cycle dominated regimes are distinct but the transition between the two
regimes 1s obscured by the retardation effect. The behavior of alloy 718 at
649°C revealed by this study is similar to that shown by Goodman and Brown(l)
who studied the interactive effect of this alloy at 649°C with a high cycle
frequency 9f 10 Hz. In their investigation, distinct low and high cycle domi-
nated regimes as well as a regime of AKyg where retardation occurred were also

apparent. The investigation of Powell et. al.,(25)

on Ti-6-4 showed regimes of
AKyc where the high cycle loading was either active or inactive, but a retarda-

tion effect was not apparent.

The retardation effect was unexpected and an experiment was carried to gain
insight into its origin and characteristics. The experiment summarized in
Figure 31 shows the rate (with respect to crack length) at which the retardation
effect develops and also the rate at which it relaxes. There seems to be a crack

growth interval of about Imm (0.0394 inches) required for the retardation effect
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1000x A E5665

3000x B E5663

FIGURE 51: Scanning Transmission Electron Microscope
(STEM) photomicrographs of a region in
which only low cycle loading was applied.
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6000x
Figure 51 (Cont'd)

c E5664

Scanning Transmission Electron Micro-
scope (STEM) photomicrographs of a
region in which only low cycle loading
was applied.
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1000x

A E5662

2000x
FIGURE 52:

B E5651

Scanning Transmission Electron Microscope
(STEM) photomicrographs of a region in
which combined cycle loading (with 200 Hz
high cycle load) was applied.
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6000x C E5648

10. J00x D E5654

Figure 52 (Cont'd) Scanning Transmission Electron Microscope
(STEM) photomicrographs of a region in
combined cycle loading (with 200 Hz high
cycle load) was applied.
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E5894

E5893

Figure 53

x3000

x10, 000

STEM Photomicrographs of a Region on the
Fracture Surface of Specimen #67 Corresponding

to the Low Cycle Dominated Regime where the

High Cycle K is Large Enough to Cause Retardation

89




y
A. .

E5785 %3000
B. l‘|"‘|""""""‘|""|""|‘|“““|‘|“‘|““|“
E5786 x10,000

Figure 54 STEM Photomicrograph of a Region on the Specimen
#67 Fracture Surface Where the High Cycle Component
Dominates Crack Growth.
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to subside. The plastic zone size associated with the crack, however, 1s a

small function of this length.

The size of the plastically deformed region (R) ahead of the crack as given by

1(28)

the Dugdale mode neglecting the effects of creep is:

R = {sec[l/Zﬂ(O/Oy)]-l} a

where 0 is the applied stress, Oy is the yield

strength and a is the half crack length.

As calculated using this expression at the crack length corresponding to the
retardation relaxation in Figure 31 and assuming a yield strength 980 MN/m? (140
ksi) the plastic zone size is 0.20mm (0.008 inches). A possible explanation of
the fact that the affected region is considerably larger than the calculated
plastic zone length is that creep stress relaxation results in a larger charac-
teristic zone where structural changes important to retardation effects occur.
Reference 29 demonstrates that crack tip stresses can be modified significantly
by creep. The most significant influence of creep relaxation as shown by Refer-
ence 29 is the reduction of the stress gradient beyond the crack tip, i.e., the
development of a more uniform distribution of stress in a region that includes
the above calculated "plastic zone" and an area further from the crack tip.
However, it is unlikely that creep can have such a pronounced influence on the

crack stress distribution.

An alternative explanation of the long relaxation interval is suggested by the

study of Venkiteswaran(lg)

that showed that the high frequency loading affects
the creep rate versus stress constitutive properties. The modification of the
creep rupture processes may in turn modify the residual plastic deformation
remaining in the wake of the advancing crack (crack closure).(30) Such a
concept would allow the possibility of the effect persisting well beyond the
above calculated plastic zone without postulating a significant modification in
the crack tip stresses due to creep relaxation effects. The crack growth inter-
val of tour or five times the plastic zone size is in fact characteristic of the

development of closure effects.
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cycle frequency is applied. However, when the retardation effect occurs with
this lower high cycle frequency, a longer time period is required to reach the
minimum crack growth rate. This would be expected if the retardation effect is

related to the accumulated number of high frequency cycles.

A feature of the high cycle loading revealed by this and other studies is that
there is a sharply defined value of transition AK (AK.;.) associated with the
dominance of AKyc for crack growth under combined cycle loading. For the range
of conditions investigated, the influence of high cycle loading on crack growth
below AK¢, can essentially be ignored. This is consistent with the observations
of Powell et. al.(25) uho performed combined cycle crack growth experiments on
Titanium - 6 - 4 at ambient temperatures with a high cycle frequency of 150 Hz
and with all of the combined cycle testing results of Goodman and Brown(l)
performed on Inconel 718 at 649°C for a high cycle frequency of 10 Hz. Further-
more, there is little variation of this transition AK with frequency distin-

guishable beyond the AKy, variation intrinsic to the material.

Considering the various features of the crack growth rate beyond AKy,, i.e.,
that growth rate depends on number of cycles, that it is sharply defined by a
threshold value, and that is shows a relationship between growth rate and 8Kyg
similar to that for stage I crack growth leads to the conclusion that it could be

represented by a relationship of the form:

da m
an = C (BKye - BK¢ )

where C is a constant and da/dN is crack growth rate in terms of crack extension
per high frequency cycle. This relationship has been used to describe crack

growth in the threshold regime (stage I) with a constant R ratio (Kmin/Kmax).

The R ratio in the high cycle dominated regimes in the experiment conducted in
this study, varies a small amount since they correspond to increasing AKyc and
constant AKpc tests., The AKy., is the above expression is expected to vary with
low cycle 8K and perhaps hold time but as shown by the present investigation it
is esgentially invariant with respect to frequency. This feature is helpful to
the design since an acceptable level of high cycle loading can be established

without concern for the frequency of the superimposed high frequency load.
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1s essentially invariant with respect to frequency. This feature is helpful to
the design since an acceptable level of high cycle loading can be established
without concern for the frequency of the superimposed high frequency load.

(8)

The investigation of Gell and Leverant showed a pronounced influence of
frequency on fatigue life of nickel base alloys in the frquency range of 10 to
1000 Hz. In this range they observed that fatigue life decreases with increas—
ing frequency. Comparing the results of the present investigation with those of

(1)

GCoodman and Brown, there is little variation in AK., over the frequency range
to 2000 Hz. This fact and the fact that the crack growth rate per cycle versus
AKyc beyond AKy, does not increase with increasing frequency leads to the
conclusion that the decreasing fatigue life with increasing frequency observed

(8)

by Gell and Leverant is associated primarily with crack initiation.

C. Consideration of High/Low Cycle Interactions in Crack Growth Life Prediction

of Engine Systems

Attention has been devoted recently to the effects of gas turbine engine load
spectra on crack propagation. This is a result of increased performance
requirements for U.S. Air Force gas turbines and the resulting high operating
stresses and severe service environments experienced by gas turbine components.
Many of the investigations are associated with the development of the advanced

life management concept and focus on engine disks.

An important aspect of life prediction under engine loading spectra is the
interaction of the low and high cycle components in crack growth of turbine
disks. The cycle period associated with the low frequency cycle (low cycle)
loading is on the order of seconds to several hundred seconds. A wide range of
loading rates and load levels may also be involved in the low cycle loading. The
high frequency cycle (high cycle) loading would typically involve frequencies on
the order of hundreds to several thousand hertz. Important to accurate life
prediction is establishing the manner in which each of these features of the
engine disk loading profile contribute to crack growth and how these features
interact. The specific aspects of combined cycle loading that must be addressed

are the following:
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- Establishment of the limits of high cycle loading under which the disk
can be safely operated.

- How cumulative damage rules should be applied when combined high
cycle/low cycle loading contribute to crack growth.

~ The degree to which the high cycle and low cycle loading influence each

others contribution to crack growth.

There are previous studies of load spectrum interaction in crack growth of
aircraft engine components that deal with periodic overloads, over-
load/underload combinations and periods of sustained load interspersed with
relatively constant amplitude loading. An example of such a study in that of

al.(31) which considered these effects on IN-100 and evaluates the

Macha et.
applicability of crack growth rate models for engine complex loading spectra.
Another study that addresses the effects of flight loading in military gas
turbine operation on the fatiuge crack growth of IN-100 and Waspaloy is summa-
rized in References 32 and 33. This study addresses the effect of overload

ratio and the effect of the number of cycles between overloads.

The simplest approach to crack growth prediction is a linear summation of crack
growth on a cycle by cycle basis for the given loading profile., However, this
approach has been shown to be inadequate for many situations of variable ampli-
tude loading where retardation or acceleration can result from certain sequences
of loading. Various approaches have been established to account for these

(34)

effects including models based on crack closure and the interactions in the

(35)

crack yield zone

In the present study, the applicability of a linear summation of high and low
cycle crack growth contribution in predicting combined high/low cycle crack
growth was investigated for Alloy 718 with a high cycle component of 200 and
1825 Hz. Figures 55 and 56 show a comparison between a combined cycle test
result and a linear summation of crack growth rate calculated from crack growth
data for the low and high cycle contributions measured individually. The manner
of summing the individual high and low cycle components is shown schematically
in these figures. The individual contributions were measured in an experiment
with increasing AKyc superimposed on steady (not cycled) AKyc and in an exper-

iment wit' pure low cycle loading with a triangular waveform and an R ratio of
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0.l. For a high cycle trequency of 200 Hz, a low cycle AK of 30 MPa vm and a
hold time of 180 seconds, Figure 55 shows a reasonable correspondence between
actual results and those predicted from a linear summation in the high cycle
dominated regime only. For the case of a high cycle frequency of 1825 Hz on the
other hand there appears to be deviation in the high cycle dominated regime
associated with a difference in 8Ky, and a fair correspondence of crack growth
rate in the low cycle dominated regime. These trends, however, are not neces-
sarily representative. In this study, as well as that of Goodman and and

(»

Brown a substantial variation in low cycle crack growth rate was apparent for
tests carried out under identical conditions. Likewise, for given values of
AKyc hold time and frequency, a variation in AK¢, of 20% was apparent. The
results of linear summation show a deviation from the combined cycle data that
is in the range of variation in crack growth rate behavior for a given set of

combined cycle parameters.

With some qualifications, a linear summation provides an adequate represen-
tation of combined cycle crack growth rate. In applying the linear summation
approach to design, one must be aware of the fact that the low cycle crack growth
rate, the retardation behavior and AKy, can vary. An appropriate design curve
to account for combined crack growth rate is the dashed line construction of
Figure 55. The upper bound on low cycle crack growth is the horizontal dashed
line. The upper bound on high cycle dominated crack growth is represented by
the dashed liue on the right side of the diagram. Together, the two curves
define an upper bound on crack growth rate in the low cycle dominated, the
retardation, and the high cycle dominated regimes. The crack growth rate
predicted in the retardation regime would be a significant over estimate.
However, this is necessary because the extent of retardation is not easily
predicted and its benefit should, therefore, be ignored. Another important
factor that must be kept in mind in applying a linear summation rule is that the
relationship between crack growth rate and high cycle loading with a high level
of mean load (i.e., large enough to cause creep crack growth) is not necessarily
unique. For nickel base alloys, crack growth resulting from steady loads has
been shown to exhibit non equilibrium behavior. In the present study, this
effect was apparent when a small high cycle component was superimposed on a

large steady load.
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V CONCLUSIONS

The crack growth rate for Alloy 718 at 649°C was measured for combined cycle
loading over ranges of low cycle AK, high cycle AK, low cycle hold time, and
high cycle frequency. Several interesting trends in combined cycle crack growth
were revealed. Generally, at lower values of high cycle AK, crack growth is
dominated by the low cycle components of the load spectrum and with a sufficient
level of high cycle loading, crack growth is determined predominantly by the
accumulated number of high frequency cycles. These two features of combined
loading crack growth behavior were consistent and straight forward. The nature
of the transition from the low cycle to high cycle regime, however, depends
significantly on the value of low cycle AK and to a lesser extent on high cycle
frequency and low cycle hold time. The transition from low to high cycle domi-

nated crack growth is obscured by a retardation effect,

This interactive effect 1s apparent under combined cycle loading generally at
low values of AK and values of AKyc in a range between the purely low and high
cycle dominated regimes. Fractographic examination reveals that it is associ-
ated with a change in crack growth mechanism from ane characterized by inter-
granular fracture tor pure low cycle loading to transgranular fracture for
combined cycle loading. The degree of crack growth retardation appears to
decrease with increasing low cycle AK and also decreases with increasing high
cycle trequency. Another interesting featrue associated with the retardation
effect is that a crack growth interval of several plastic zone sizes is required
for 1ts development or relaxation. Considering this fact and the fact that it
becumes increasingly less pronounced with increasing AKpc, leads to the conclu-
s1on that the retardation effect is associated with a change in the extent of
plasticaily deformed material left in the wake of the advancing crack when high

cycle loading is applied.

The slope of the log (crack growth rate per unit time) versus log AKyc curve
beyond AK(, increases with increasing frequency as one would expect for a situ-
ation where crack growth rate in the high cycle regime is dependent on the
number of cycles. The shape of the curve in the high cycle dominated regime is
similar to that experienced for near threshold behavior (Stage 1) observed in
constant R ratio tests. (The R ratio of the high cycle loading in these studies

varivs with AKyg).
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A crack growth rate prediction based on the linearly summed contributions for
the high and low cycle components of loading correlate well in the case of a high
cycle frequency of 200 Hz with some deviation in the low cycle dominated regime.
! For the case of 1825 Hz some deviation was observed for the high cycle dominated

regime. This may be associated with the intrinsic variation in AKg,.
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APPENDIX A

PERFORMANCE OF HIGH FREQUENCY SERVO-HYDRAULIC SYSTEM
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APPENDIX B

DATA PLOTS FOR ALL TESTS
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