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Abstract

-- There are 257 combinatorially distinct eight-vertex polyhedra, of which 14

are deltahedra. Of the 14 deltahedra only the bisdisphenoid, commonly known

as the D2d or triangular dodecahedron, both lacks tetrahedral chambers and can

be formed by the hybridization of only s, p, and d orbitals. Degenerate single

and symmetrical parallel multiple diamond-square-diamond processes involving

the 14 eight-vertex deltahedra are tabulated. Among the eleven such processes

(six single, two symmetrical double, one fully symmetrical triple, and two fully

symmetrical quadruple) those relating the bisdisphenoid to the 4,4-bicapped trigonal

prism and square antiprism are of current chemical significance. Single, double,

and quadruple dsd rearrangements of the bidisphenoid are depicted as topologically

equivalent cubes with added diagonals so that the pivot faces are faces of the

underlying cube and the dsd processes involve shifting only the positions of selected

diagonals without disturbing the 12 edges of the underlying cube. , \: .
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1. Introduction

Previous papers in this series have discussed new mathematical approaches

for the treatment of stereochemical non-rigidity in MLn coordination complexes

(M = central atom, generally a metal; L = ligands surrounding M) and metal clusters.

Thus Gale transformations2 allow all possible non-planar isomerization processes

to be found for polyhedra having five and six vertices, i.e., corresponding to ML 5

and ML 6 complexes. 3 This Gale transformation approach is no longer effective

* for polyhedra having seven or more vertices, since Gale transforms no longer

reduce the dimensionality of the problem. 4  However, the chemically based

*. assumption4 of minimum pivot face size in intermediate polyhedra coupled with

*the still manageable number of combinatorially distinct seven-vertex polyhedra,

namely 34 (ref. 5), allows an exhaustive study of chemically relevant

diamond-square-diamond (dsd) processes6 in seven-vertex polyhedra. 4

This paper presents a related treatment of polyhedral isomerizations in eight--

coordinate complexes. Here the problem is considerably more complicated since

there are 257 combinatorially distinct eight-vertex polyhedra (Table 1).5 In order

to make the problem tractable, the following two assumptions are used:

(1) Only dsd processes (i.e., 4-pyramidal rather than n-pyramidal (n>5) processes3)

having a quadrilateral pivot face4 will be considered. This assumption is justified

on the energetic basis that polyhedra having one or more faces with five or more

edges (i.e., pentagons, hexagons, heptagons, etc.) are unfavorable relative to poly-

hedra having only triangular and quadrilateral faces. This principle was already

recognized in 1969 in the first paper of this series.7

(2) Only symmetrical parallel multiple dsd processes will be considered. In a

symmetrical multiple dsd process the quadrilateral pivot faces are equivalent

because of the symmetry of the intermediate polyhedron.

*o-I** ~
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In addition the dsd processes in only the 14 combinatorially distinct eight-vertex

, deltahedra (Table 2) are considered. In general, minimum energy coordination

polyhedra are deltahedra or polyhedra derived from deltahedra through low energy

* processes. Furthermore, this paper shows that the two eight-vertex non-deltahedra

of greatest significance as coordination polyhedra, namely the 4,4-bicapped trigonal

prism and the square antiprism,8 ,9, 10,1 1 appear as intermediate polyhedra in single

°,  and double dsd processes of the bisdisphenoid ("D2d-dodecahedron"), the only one

of the 14 eight-vertex deltahedra (Table 2) found in ML 8 coordination complexes

not involving f orbital elements. 8 ,9,1,11

2. Background

Many aspects of the methods used in this paper resemble those used in the

previous paper on seven-coordinate complexes. 4 . Thus we consider sequences

of polyhedral isomerizations PT) Pr P3 in which polyhedra P1 and P3 are combina-

. torically equivalent, i.e., Pl P2 P3 is a degenerate polyhedral isomerization.

*- The intermediate polyhedron P2 has fewer edges then P1 (or P3 ). Since only dsd

polyhedral isomerizations are considered, the polyhedral sequence P1  P2
+ P3

has the following structure at the quadrilateral pivot face of P2 :

P1 ("diamond") P2("square") P3 ("diamond")

Thus P1 and P3 can be generated from P2 by drawing diagonals in two different

ways across the quadrilateral pivot face of P2- In the case of symmetrical multiple

dsd processes, the intermediate polyhedron P2 has two or more quadrilateral pivot
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faces equivalent by symmetry and the multiple diagonals are drawn across these

* faces to preserve the symmetry elements making these faces equivalent.

Using this method the problem of finding all possible degenerate dsd polyhedral

isomerizations of eight-vertex deltahedra can be reduced to the following:

(1) Find all eight-vertex polyhedra having only triangular faces except for a single

quadrilateral face or several symmetrically equivalent quadrilateral faces. These

polyhedra correspond to the intermediate polyhedron P2 of the sequence (1) above.

(2) Draw new polyhedra by adding diagonals in both Ways across the quadrilateral

pivot face of P2 to generate the polyhedra P1 and P3 - If polyhedra P1 and P3

"- are combinatorially equivalent, then a degenerate eight-vertex deltahedral isomer-

ization has been found. In the case of an intermediate polyhedron P2 having two

or more symmetrically equivalent quadrilateral faces, the diagonals to form P1

and P3 must be drawn so as to preserve the element of symmetry making equivalent

*. the two or more quadrilateral faces of P2.

Federico5 has tabulated all combinatorially distinct polyhedra having eight

faces. These are the duals of the desired polyhedra having eight vertices where

* a dual P* of P is obtained as follows 12:

(1) The vertices of P* are located at the midpoints of the faces of P.

(2) Two vertices of P* are connected by an edge if and only if the corresponding

faces of P share an edge.

The Schlegel diagrams 13 in Federico's paper are, of course, for the duals of

the eight-vertex polyhedra of interest but can be used for this work if the dsd

process of the sequence (1) is expressed in dual form, i.e.,

X >(2)

P P2 P 3*

. . . . . . . . . . . .. . . .. .o .. ..
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- In the dual transformation of sequence (1) into sequence (2) the quadrilateral pivot

face of P2 becomes a degree four vertex in P2 * and the two new triangular faces

in P1 and P3 generated by diagonals across this quadrilateral face become pairs

of degree three vertices in PI* and P3*.

3. Properties of the Eight-Vertex Polyhedra

Elementary topological considerations derivable from Euler's theorem 7 show

that eight-vertex polyhedra must have at least six faces but not more than twelve

faces. The 257 combinatorially distinct eight-vertex polyhedra can be divided

into 18 classes (Table 1) so that all members of a given class have the same set

of polygon types for faces, i.e., the same face index. 4 Of these 18 classes those

classes having one or more faces with five or more edges (i.e., the classes C, E,

F, H, I, J, K, M, N, 0, and R in Table 1 containing a total of 74 polyhedra) are

unfavorable energetically and are therefore excluded from further consideration

in this paper. The remaining seven classes (A, B, D, G, L, P, and Q in Figure 1)

correspond to the 183 eight-vertex polyhedra containing only triangular and quadri-

lateral faces. These are the polyhedra potentially involved in the rearrangements

discussed in this paper.

The eight-vertex deltahedra are of particular chemical interest. Table 2 lists

the 14 combinatorially distinct eight-vertex deltahedra according to the size of

the largest cavity or (equivalently in this case) the number of tetrahedral chambers.

Note that there are only two eight-vertex deltahedra without tetrahedral chambers,

the bisdisphenoid ("D2d dodecahedron") frequently occurring as an eight-vertex

coordination polyhedron8 9 ,10,11 and the hexagonal bipyramid which is a "forbidden"

eight-vertex polyhedron since the inversion center in its symmetry point group

prevents it from being formed by the hybridization of only s, p, and d orbitals.1 4

. . *Lt.
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The special role of the bisdis'rhenoid in eight-coordinate metal complexes is already

*. apparent.

The 12 remaining eight-vertex deltahedra, i.e., those having one or more tetra-

. hedral chambers, follow the expected pattern. Since all ten (triangular) faces

. of the pentagonal bipyramid are equivalent, there is only one distinct capped penta-

gonal bipyramid (Federico number 56 of its dual). The four eight-vertex deltahedra

* having octahedral cavities can be best considered as their duals, namely cubes

in which two vertices are truncated. The two vertices being truncated can be

at each ends of an edge (ortho: Federico number 51 of its dual), a face-diagonal

• .(meta: Federico number 55 of its dual), or a body diagonal (para: Federico number

57 of its dual).

ortho meta para

The fourth eight-vertex deltahedron having an octahedral cavity (Federico number

* 52' of its dual) has two layers of capping. First, one of the eight equivalent faces

of an octahedron is capped giving three equivalent new triangular faces in place

of the one face that was capped. A second cap is then placed on one of the three

new triangular faces giving a "capped capped octahedron," i.e., a polyhedron with

two levels of capping. Finally Table 2 summarizes the properties of the seven

combinatorially distinct eight-vertex deltahedra formed by fusing five tetrahedra.

One of these, the "tetracapped tetrahedron" (Federico number 49 of its dual), is

- distinctive in having relatively high Td symmetry and only one level of capping

- relative to the central tetrahedron.

%-22

.. . ..
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4. Rearrangements of Eight-Vertex Polyhedra

Table 3 summarizes all possible symmetrical dsd rearrangements of eight-vertex

.deltahedra in terms of the intermediate polyhedra (P2 in sequence 1) containing

the quadrilateral pivot faces. Note that only a small number of these dsd rearrange-

ments are degenerate, i.e., have combinatorially equivalent starting and finishing

deltahedra. The possible number of symmetrical dsd rearrangements becomes

smaller as a larger number of symmetrically equivalent quadrilateral pivot faces

become involved in parallel processes.

Table 3 indicates six possible degenerate single dsd processes for eight-vertex

deltahedra. By far the most interesting such process is the degenerate dsd

rearrangement of the chemically significant bisdisphenoid (Federico number 58

of its dual) through a 4,4-bicapped trigonal prism intermediate (Federico njumber

96 of its dual). The 4,4-bicapped trigonal prism intermediate polyhedron occasion-

ally appears in eight-coordinate structures (e.g., terbium (111) chloride).1 5 The

remaining five degenerate dsd processes involve eight-vertex deltahedra of low

symmetry (C 1, C2 , and Cs ) either consisting of five fused tetrahedra (Federico

numbers 46, 47, and 52 of their duals) or the bilevel capped capped octahedron

(Federico number 53 of its dual). These processes do not appear to be particularly

significant chemically in eight-coordinate derivatives because of the unlikely

polyhedra involved.

Table 3 indicates two possible degenerate symmetrical double dsd rearrange-

ments of eight-vertex deltahedra. The chemically interesting such process involves

the degenerate double dsd rearrangement of the bisdisphenoid through a square

antiprism intermediate. The square antiprism is the eight-vertex non-deltahedron

most frequently found in coordination compounds. 8 ,9,10, 1 1 Also the bisdisphenoid-

square antiprism-bisdisphenoid double dsd rearrangement is included in a topological
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representation of hyperoctahedrally restricted eight-coordinate polyhedral

rearrangements discussed several years ago. 16 -

Symmetrical triple dsd rearrangements are necessarily rare since a C3 axis

must be preserved throughout such processes. The single example of a degenerate

eight-vertex such process (Table 3) involves rearrangement of a bicapped octahedron

(Federico number 57 of its dual) through a 3,3-bicapped trigonal prism intermed-

iate (Federico number 245 of its dual) in a process resembling a Bailar twist 17

but with the two capping vertices not directly participating in the rearrangement.

Symmetrical quadruple dsd processes are more complicated since there are

different symmetry-preserving ways of drawing diagonals across the four

quadrilateral faces of the three eight-vertex polyhedra having four quadrilateral

and four triangular faces and D2d and D2h symmetry (Federico numbers 282, 287,

and 288 of their duals). Two generic degenerate symmetrical quadruple dsd processes

are listed in Table 3. Again one of these processes involves the bisdisphenoid

this time undergoing a degenerate rearrangement through one of the two polyhedral

intermediates having four triangular and four quadrilateral faces (Federico numbers

282 or 288 of their duals).

Figure 1 depicts topologically single (top), double (middle), and quadruple

(bottom) dsd processes of the bidisphenoid representing all of the relevant

eight-vertex polyhedra as topologically equivalent cubes with added diagonals.

There are two such presentations of the bisdisphenoid as a cube with an added

diagonal in each of the six square faces: the tetrahedral presentation (e.g., Figure

: 1: top left, center left, and center right) in which the four degree 5 vertices of

the bisdisphenoid (circled in Figure 1) form the vertices of a tetrahedron and the

rectangular presentation (e.g., Figure 1: top right, bottom left, and bottom right)

in which the four degree 5 vertices of the bisdisphenoid are coplanar and form

the vertices of a rectangle. Presentations of the bisdisphenoid are selected for

S. .
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a given dsd process so that the pivot face(s) correspond to faces on the underlying

cube and the dsd process involves shifting only the positions of selected diagonals

without disturbing the 12 edges of the underlying cube.

The top rearrangement in Figure 1 is a single dsd rearrangement of the

bisdisphenoid (Federico number 58 of its dual) through a 4,4-bicapped trigonal

prism (Federico number 96 of its dual) intermediate using the front face of the

underlying cube as the pivot face. This process interchanges the tetrahedral and

rectangular presentations of the bisdisphenoid. The middle rearrangement in

Figure 1 is a double dsd rearrangement of the bisdisphenoid through a square

antiprism (Federico number 172 of its dual) intermediate using the front and back

faces of the underlying cube as the two pivot faces. This process involves the

tetrahedral presentation of the bisdisphenoid. The bottom rearrangement in Figure

1 is a quadruple dsd rearrangement of the bisdisphenoid through a polyhedron

(Federico number 282 of its dual) having four triangular faces, four quadrilateral

faces, four vertices of degree 4, four vertices of degree 3, and D2h symmetry

using the left, top, right, and bottom faces of the underlying cube as the four

pivot faces. This process involves the rectangular presentation of the bisdisphenoid.

The other quadruple dsd rearrangement of the bisdisphenoid through the D2d

gyrobifastigium (Federico number 288 of its dual) listed in Table 3 cannot be

depicted using either the tetrahedral or rectangular presentations of the

bisdisphenoid so that a face of the underlying cube is the pivot face and only

- diagonals are shifted.

The three types of dsd rearrangements of the bisdisphenoid depicted in Figure

1 represent all symmetrical possibilities involving the tetrahedral and rectangulir

-. presentations of the bisdisphenoid. The single dsd rearrangement through the

* 4,4-bicapped trigonal prism (Figure -1: top) interchanges the two presentations.

The double dsd rearrangement through the square antiprism (Figure 1: middle)

* -*.

p•.. * .
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requires the tetrahedral presentation but the quadruple dsd rearrangement (Figure

1: bottom) requires the rectangular presentation for both the starting and finishing

bisdisphenoids in order for the pivot face of the intermediate polyhedron to be

a face of the underlying cube. Thus a factor affecting the relative ease of the

various dsd rearrangements of the bisdisphenoid can be the degree of distortion

of an actual bisdisphenoid to conform to the presentations (i.e., tetrahedral or

rectangular) required for the pivot face of the dsd rearrangement to be a face

of an underlying cube. In this connection the double dsd process involving.a square.

antiprism intermediate (Figure 1: middle) should be the most favorable since

less distortion of an actual bisdisphenoid is required to give the tetrahedral

presentation than the rectangular presentation on a cube because in an actual

* bisdisphenoid the four degree 4 vertices and the four degree 5 vertices are located

at the vertices of subtetrahedra. 8

5. Conclusions

This paper shows how treatment of polyhedral isomerizations in systems having

increasing numbers of vertices requires increasingly restrictive assumptions in

order to keep the number of possibilities tractable. Thus for five- and six-vertex

polyhedra the dimensionality reduction afforded by Gale transformations 3 allows

all non-trivial (i.e., non-planar) rearrangements to be found without any restrictive

assumptions. For seven-vertex polyhedra, the smallest number of vertices for

which Gale transformation does not offer dimensionality reduction, the assumption

of no pentagonal (or hexagonal) faces suggested by energetic considerations (thereby

restricting polyhedral rearrangements to dsd processes) is sufficient to reduce

the possibilities to a manageable number. 4 The eight-vertex polyhedra treated

• =.~

. . . =% • _ *. . .**.. . * •" -. * -. *.. -. • *• - . *-°-oo. ' <.' , -° ." , ." - " , " .~ " 2 . °• . . • i. •"- °**""i
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in this paper require symmetry considerations in addition to energetic considerations

in order to select from the intractable number of possibilities those of greatest

chemical interest. Extension of this work to polyhedra having nine or more vertices

not only goes beyon' the scope of Federico's tables of polyhedra 5 but is also

unattractive because of the intractably large number of possibilities and decreasing

relevance to real chemical systems.

The analysis in this paper also underscores the special role of the bisdisphenoid

(popularl/ known as the "D2d dodecahedron") in eight-coordinate structures. The

bisdisphenoid is the only eight-vertex deltahedron which has no tetrahedral chambers

*. and which can be formed from sp3 d4 hybrid orbitals. In addition, the bisdisphenoid

*is unique among eight-vertex deltahedra in undergoing single, symmetrical double,

and symmetrical quadruple dsd processes as depicted in Figure 1. Furthermore,

the intermediate (non-deltahedral) polyhedra in the single and symmetrical double

dsd processes of the bisdisphenoid, namely the 4,4-bicapped trigonal prism and

square antiprism, respectively, also occur in eight-coordinate complexes. 8 ,9, 10 , 1 1

For these reasons the bisdisphenoid has as fundamental a role in the chemistry

of eight-coordinate complexes as the octahedron has in the chemistry of

six-coordinate complexes. However, the bisdisphenoid is highly fluxional whereas

the octahedron is relatively rigid.18

Acknowledgment: I am indebted to the Office of Naval Research for partial support

of this work.

. .. . . . - . . . .*•• • - - - •.* . . . . - " . . " o .. " °•" ' . . " *. ., - . -"



LITERATURE REFERENCES

* (1) For part 19 of this series see King, R. B.; Rouvray, D. H. Theor. Chim. Acta

in press.

- ~ (2) Grdnbaum, B. "Convex Polytopes." Interscience, New York, 1967: Chapter

6.

(3) King, R. B. Theor. Chim. Acta 1984, 64, 439.

(4) King, R. B. Inorg. Chem. 1985, 24, 1716.

*(5) Federico, P. J. Geometriae Dedicata 1975, 3, 469.

*(6) Lipscomb, W. N. Science 1966, 153, 373.

(7) King, R. B. J. Am. Chem. Soc. 1969, 91, 7211.

* (8) Hoard, J. L.; Silverton, J. V. Inorg. Chem. 1963, 2, 235.

* (9) Muetterties, E. L.; Wright, C. M. Quart. Revs. 1967, 21, 109.

(10) Lippard, S. J. Prog. Inorg. Chem. 1967, 8, 109.

(11) Kepert, D. L. Prog. lnorg. Chem. 1978, 24, 179.

*(12) Reference 2, pp. 46-48.

*(13) Reference 2, pp. 42-46.

-(14) King, R. B. Theor. Chim. Acta 1984, 64, 453.

*(15) Forrester, J. D.; Zalkin, A.; Templeton, D. H.; Wallmann, J. C. Inorg. Chem.

1964, 3, 185.

*(16) King, R. B. Theor. Chim. Acta 1981, 59, 25.

*(17) Bailar, J. C., Jr. J. Inorg. Nuci. Chem. 1958, 8, 165.

-(18) King, R. B. Inorg. Chim. Acta 1981, 49, 237.

-... 7. %



TABLE 1

THE 257 COMBINATORICALLY DISTINCT

EIGHT-VERTEX POLYHEDRA DIVIDED INTO 18 CLASSESa

Face Types Number of
v e f f7 f 6  _5 f4(= ) =) Polyhedra Class

8 18 12 0 0 0 0 12 14 A

8 17 11 0 0 0 1 10 38 B

8 16 10 0 0 1 0 9 12 C

8 '16 10 0 0 0 2 8 64 D

8 15 9 0 1 0 0 8 3 E

8 15 9 0 0 1 1 7 24 F

8 15 9 0 0 0 3 6 47 G

8 14 8 1 0 0 0 7 1 H

S8 14 8 0 1 0 1 6 2 I

8 14 8 0 0 1 2 5 20 J

8 14 8 0 0 2 0 6 2 K

8 14 8 0 0 0 4 4 17 L

8 13 7 0 1 0 2 4 2 M

8 13 7 0 0 1 3 3 5 N

S8 13 7 0 0 2 1 4 2 0

8 13 7 0 0 0 5 2 2 P

8 12 6 0 0 0 6 0 1 Q

8 12 6 0 0 2 2 2 1 R

. a) v=number of vertices; e=number of edges; f=number of faces; fn=number of faces

having n edges; f 3 =t (triangle) and f 4 =q (quadrilateral) for clarity.

- . . . . . . . . . -.~ . .
. . . . . . . . ..° , W
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TABLE 3

SYMMETRICAL DSD-PROCESSES OF EIGHT-VERTEX

DELTAHEDRA

Intermediate Deltahedra Formed by
Polyhedrona Diagonal izationa Remarks

A) Single dsd Processes

# #59 (11033-C 1 ) #45 (20042-C2v) and #46 (11213-C 1 )

#60 (11033-C 1 ) #45 (20042-C2v) and #47 (11132-C 1 )

#61 (10304-C s ) #46 (11213-C 1 ) degenerate

#62 (10223-C1) #47(11132-C 1 ) and #48 (10322-C s )

' #63 (10223-C1 ) #46 (11213-C1 ) and #47 (11132-C 1 )

/64 (10223-C s ) #46 (11213-C 1 ) degenerate

" #65 (10142-C1 ) #47 (11132-C1 ) and #48 (10322-C s )

- #66 (02204-C1 ) #46 (11213-C 1 ) and #50 (03113-C s )

#67 (02204-C2v) #49 (0400 4-Td) and #51 (02222-C 2v)

. #68 (02123-C1 ) #46 (11213-C 1 ) and #51 (02222-C2v)

. #69 (02123-C1 ) #46 (11213-C 1 ) and #53 (02141-C s )

# #70 (02123-C1 ) #47 (11132-C 1 ) and #50 (03113-Cs)

o #71 (02123-C s) #47 (11132-Cl) degenerate

- #72 (02123-C 1 ) #47 (11132-C1 ) and #52 (02222-C 2 )

#73 (02123-C s ) #50 (03113-C s ) and #53 (02141-C s )

. #74 (02042-C2v) #45 (20042-C 2 v) and #54 (02060-D6h)

* #75 (02042-C1 ) #47 (11132-C 1 ) and #53 (02141-C s )

#76 (01313-C 1 ) #46 (11213-C 1 ) and #56 (01331-C s )

# #77 (01313-C1 ) #48 (10322-C s ) and #52 (02222-C 2 )

2.2%N~sI-



TABLE 3 (Continued)

* Intermediate Deltahedra Formed by
* Polyhedrona Diagonal izationa Remarks

*#78 (01313-C1 ) #50 (03113-CS) and #55 (01412-C2v)

#79 (01313-C 2) #50 (03113-C5) and #52 (02222-C 2)

ff0 013-C 1 ) 47(13-C1) and #56 (013 3 l1C2v)

* #81 (01232-C 2) #48 (10322-C 5) and #55 (01412-C2v)

#82 (01232-C1 ) #48 (10322-C5 ) and #53 (02141-C 5 )

#83 (Ol232 -CS) #53 (02141-C5 ) degenerate

#84 (01232-C1 ) #5 1 (02222-C2.) and #56 (0133 1-Cs)

#85 (01232-C5 ) #55 (Ol4l2-C2v) and #56 (0133 1-C5 )

#86 (01232-Cs) #52 (02222-C 2) degenerate

#87 (01232-C1 ) #52 (02222-C 2) and #53 (02141-C5 )

*#88 (01151-C5 ) #54 (O2060-D6h) and #56 (01331 -CS)

-#89 (01151-C 1 ) #53 (02141-C5 ) and #56 (01331-C 5 )

* #90 (00422-C2v) #5l(O2222-C2v) and #58 (00440-D2d)

* #91 (00422-C 1) #55 (01412-C2v) and #56 (Ol33l-CS)

*#92 (00422-Cs) #56 (01331-C5 ) and #57 (00602-D3d)

#93 (00422-C 2) #52 (02222-C 2) and #57 (OO6 O2-D3d)

#94 (00341-Cs) #53 (02141-C5 ) and #58 (0O44 0-D2d)

* #95 (00341-Cs) #56 (01331-C 5) and #58 (OO44O-D2d)

* #96 (0026O-C2v) #58 (OO440-D2d) degenerateb



TABLE 3 (Continued)

Intermediate Deltahedra Formed by
Polyhedrona Diagonal izationa Remarks

B) Symmetrical Double dsd Processes

#99 (10124-C 5) #45 (20042-C2v) and #48 (10322-C 5 )

*#103 (02024-C2 ) #45 (20042-C2v) and #51 (02222-C2v)

*#105 (02024-C2) #45 (20042-C2v) and #52 (02222-C 2)

#117 (01214-C5 ) #49 (04004-Td) and #56 (01331-C 5 )

#136 (O1052-C2v) #54 (02060-D6h) and #55 (Ol412-C2v)

*#137 (01052-C5) #51 (02222-C2v) and #54 (02060-D6h)

#139 (00404-C2v) #52 (02222-C 2) degenerate

*#140 (00404-D2d) #49 (O4004-Td) and #58 (00440-D2d)

* #151 (00323-C5) #50 (03113-C5) and #56 (01331-C5 )

* #152 (00323-Ce) #51 (02222-C2v) and #57 (00602-D3d)

*#159 (00242-C 2) #5l(O2222-C2v) and #58 (00440-D2d)

#11(04-2 5 000Dh n 5 040Dd

#161 (00242-C2 ) #54 (02060-D6h) and #58 (00410-D2d)

* #162 (00242-C5 ) #54 (02060-D6h) and #55 (0l6l2-C~d)

-#165 (00242-C5 ) #53 (02141-C5) and #55 (0l4l2-C2v)

*#167 (00242-C2) #52 (02222-C 2) and #57 (O06O2-D3d)

*#168 (00242-C 2) #57 (00602-D3d) and #58 (0O440-D2d)

-#171 (00161-C5 ) #56 (01331-C 5) and #58 (00440-D2d)

*#172 (00080-D~d) #58 (OO44O-D2d) degeneratec



TABLE 3 (continued)

Intermediate Deltahedra Formed by
Polyhedrona Diagonal izationa Remarks

C) Symmetrical Triple dsd Processes

#191 (010 3 4 -C3v) #49 (04004-Td) and #54 (02 060-D6h)

. #194 (00305-C3v) #49 (04004-T d ) and #57 (O060 2 -D3d)

#245 (000 62-D3h) #57 (00602 -D3d) degenerate

D) Symmetrical Quadruple dsd Processesd

#282 (0004 4 -D2h) #51 (02 2 2 2 -C2v) or #58 (O04 40-D2d) degenerate (for #51 or #58

#287 (0 0 0 4 4 -D2d) #49(04004-Td) and #58 (O04 4 0-D2d)

#288 (0004 4 -D2d) #58 (00440-D2d) or #51 (02222-C2v) degenerate (for #51 or #58

(gyrobifastigium)

a) The numbers of the polyhedra correspond to the numbers of their dual polyhedra given in

Table 1 of Federico, P.J. Geometriae Dedicata 1975, 3, 469. The vertex index v7 v6v5 v4 v3

and the symmetry point group are given in parentheses after the polyhedron dual number.

b) This corresponds to the bisdisphenoid-4,4-bicapped trigonal prism-bisdisphenoid single dsd

S.degenerate rearrangement.

" c) This corresponds to the bisdisphenoid-square antiprism-bisdisphenoid symmetrical double

dsd degenerate rearrangement.

d) Symmetrical quadruple dsd processes are more complicated since there are different

.' symmetry-preserving ways of drawing diagonals across the four quadrilateral faces of

polyhedra #282, #287, and #288.
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Figure 1: Single (top), double (middle), and quadruple (bottom) dsd processes of the bisdisphenoid

* ,depicted as topologically equivalent cubes with added diagonals so that the the pivot face(s)

are faces of the underlying cube and the dsd processes involve shifting only the positions of

selected diagonals without disturbing the 12 edges of the underlying cube. Degree 5 vertices

are circled and degree 3 vertices are starred.
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#58 #96 #58
Bisdisphenoid 4,A-Brcapped Bisdlisphenoid

(tetrahedral presentation) Trigonal Prism (rectangular presentation)

-#58 #172 #58
Bisdlisphenoid Square Antiprism Bisdisphenoid

* (tetrahedral presentation) (tetrahedral presentation)

-- -- -- ---

#58 #282 #58
Bisdlisphenoid Bisdlisphenoid

* (rectangular presentation) (rectangular presentation)
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