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1. INTRODUCTION

In support of the Autonomous Land Vehicle (ALV) project, which is a
part of the Strategic Computing Program developed by DARPA Xij, the Com-
puter Vision Laboratory of the University of Maryland has designed a visual
navigation system which will enable the ALV to perform road following tasks.
Our early efforts on a general framework for visual navigation were presented
in [2,31; it is based on the decomposition of visual navigation tasks into three
levels of resolution, called long, intermediate and short range navigation.
Road following is an example of intermediate range navigation. The task is
to compute a path in an intermediate range environment through a region of
uniform visibility/navigability established first by long range navigation. This
path can be defined as a corridor of free space. A corridor of free space is a
swath of navigable terrain that is not so densely populated with obstacles that
the vehicle could not maneuver among them. Roads are examples of such cor-
ridors of free space.

We have developed a modular system architecture to perform visual
navigation in general, with a flow of control to support t!e "road following
task" (cf. Fig.1). This system is decribed in detail in [4]. .sts primar]
of three Vision Modules which embody image processing tools, geometrical
and model-based constraints, and rule-based reasoning capabilities; it is the
responsibility of these modules to establish a representation of the three-
dimensional structure of the road scene. This system also includes a Planner,
a Navigator and a Pilot. The Planner establishes goals and operating con-
straints for the Navigator, which is responsible for generalized path planning.
The Pilot interprets this path into basic commands understandable by the
ALV's motor controllers. The Vision Executive is the module responsible for
the overall vision process control. It is also the Vision Modules and Executive
which establish a labeling of the scene, consistent with :

the representations derived from the image domain (2-D symbolics),
-the geometrical interpretations,
- the knowledge base

Thus, the Image Processing module converts the imagery to 2-D symbol-
ics in the image domain, the Geometry module tries to place these symbols in
the 3-D world domain, and the rule-based Reasoning module labels these sym-
bols in a consistent fashion in order to create a representation of the road
scene for the navigator. This paper describes in detail the Image Processing
module and the 2-D symbolics which are used to construct a 3-D interpreta-
tion.

Many symbolic representations can be extracted from the image domain
data. Therefore, the Image Processing module is like a toolbox of procedures.
Its objective is to establish a variety of independent, symbolic representations
in the image domain of the TV imagery itself. It attempts to extract
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dominant linear features to provide a boundary-based representation, and seg-
ment the grey-level or color imagery to provide a region-based representation.
A mature system will combine a number of such representations in order to
interpret the scene.

We also distinguish between a bootstrap phase and a feed-forward phase.
Bootstrapping implies no prior visual processing of relevance is available to
lighten the current load of visual processing. It corresponds to the vehicle
suddenly "opening its eyes" and looking for the road in order to orient itself
properly and begin its travel. Feed-forward implies a predictive capability in
which visual processing of a prior road segment, taken together with a dead-
reckoning capability, is used to predict the approximate locations of impor-
tant road features in a subsequent image; that is, a focus of visual attention is
provided.
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2. BOOTSTRAP IMAGE PROCESSING

"" When the ALV begins its road following task, as no information is usu-
ally available about where the vehicle is with respect to the road, it must pro-
cess the entire image in order to construct a model of the visible portion of
road, in the world domain. This is the bootstrapping phase.

2.1. Linear feature extraction
We have developed image processing algorithms which extract the

dominant linear features in the imagery under the assumption that road-
ways generate such features in a scene. We are not interested in all the linear
features in a scene, only the dominant ones. These features are usually corre-
lated with road boundaries, markings and shoulders, all of which are impor-
tant for navigating on roads.

In both modes, bootstrap and feed-forward, the extraction of linear
features is the result of a sequence of image processing steps including
smoothing, gradient, extraction of dominant directions and Hough transforma-
tion in order to find the line segments corresponding to these principal direc-
tions. For the bootstrap mode, we describe these steps in more detail in the
context of the example, "BENDING ROAD", as illustrated in Figures 2.

The various processing steps applied over the image are:

(1) The original image is shown in Figure 2a. The image is first blurred to
reduce the noise, by performing a local average in a 5X 5 neighborhood.

(2) The Sobel operator is then applied to obtain the gradient magnitude and
direction at each pixel. The magnitude of the gradient, encoded in grey,
is shown in the upper left quadrant of Figure 2b. The upper right qua-
drant of the same picture shows the distribution of directions of the gra-
dient vector (encoded in grey) wherever the magnitude exceeded a very
low threshold (to remove regions of constant grey level from considera-
tion). Dominant linear features in the original correspond to long
features of constant grey level in this direction picture.

(3) The next step is to enhance the linear features in the image. Our
enhancement method utilizes the gradient orientation as the dominant
measure. The strength of an edge depends upon the edge orientations of
neighboring pixels: this is the notion of "local support". For a measure
of this local support, we first choose a neighborhood around the con-
sidered pixel: it is a rectangular window centered around this pixel,
oriented approximately in the same direction as the center pixel gradient
direction. A count is then calculated, and assigned to the center pixel.
Each pixel within the window contributes either a 0 or I to the count:

If the direction of an outer pixel is within 15 degrees of the value
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corresponding to the center pixel, then the outer pixel con-
tributes a 1

Else, it contributes a 0.

Therefore the percentage of pixels that contributed a 1 represents the
amount of local support for an edge at this pixel. The enhanced image in
the lower left of Figure 2b illustrates small neighborhoods in which the
gradient direction is fairly constant. The support provided in a local
neighborhood is encoded in grey.

(4) Following the remark made in (2), our goal is to extract the long features
of constant direction. In order to do so, we compute a weighted histo-
gram of the direction image. This is essentially a direction distribution,
weighted on the basis of gradient magnitude and local support for linear
features. This weighted histogram is shown in the lower right of Figure
2b. Its range is from 0 to 180 degrees, in 127 bins, with the right and
left ends connected (i.e. the sense of the direction is ignored).

(5) Peaks in this histogram correspond to directions of potentially long,
linear features. After performing a Gaussian smoothing with an effective
spread of 11 bins, the next step is to automatically extract the peaks of
this histogram. This is done by first finding the local maxima and
minima in the smoothed histogram, then a merit value is assigned to
each peak, and the peaks are ordered on that basis. The merit function
takes into account:

The height of the peak, (i.e., the number of "weighted pixels"
which have created this peak)

The "contrast" of that peak compared to the "background" of the
histogram, which compares the local maximum correspond-
ing to a peak to the two closest local minima on each side
of it.

The merit function adopted is: height of maximum-
mean of two minima

The positions of the pixels in the original image which contribute to each
peak are then determined, and stored as binary pictures. These
peak pictures will have, for the strong peaks, a cluster of points that
delineate dominant linear features. The points corresponding to the
strongest four peaks are shown in Figure 2c.

(6) The "peak-pictures" created at the previous step are usually prone to a
'salt and pepper" kind of noise. Therefore, we try to isolate the clusters

by performing a (4-connected) "shrink and expand" procedure on each
peak-picture. This shrinks away the isolated points but leaves clusters
unaffected. The results of this procedure are shown in Figure 2d.

An interesting detail of this processing is the kind of data structure

-4-

. . .. .- . , . ~ J . ° , a .



utilized for this "shrink and expand" procedure. Since the peak picture
for each peak is represented by a binary picture, up to eight peaks can be
stored in a byte picture (eight bits per pixel). The use of this data struc-
ture not only saves an enormous amount of memory, but also
significantly reduces processing time since the "shrink and expand"
operation can now be done in parallel for all peaks:

The shrink operation does not affect image points having value zero.
Using the data structure mentioned above, as the ranges occupied by the
peaks are mutually exclusive, at most a single bit in the byte picture can
have a value of one. Therefore a single pass through the byte picture
will suffice whereas eight separate passes, one for each peak, would bE
needed if each peak picture were stored separately.

An expand procedure, on the other hand, leaves all image points with
value one unaffected. The peak pictures, after having been "shrunk and
expanded", will be combined by a "logical OR" to form a binary picture
which will be used to create a new direction image, as explained later.
Therefore, as soon as the expand operation on a pixel representing any
one peak results in its value getting changed from zero to one, processing
can cease for that pixel.

(7) We repeat the histogramming procedure using only points from the first
set of peaks which survived the shrink and expand procedure. A new
direction image is created by taking the product of the old direction
image with the result of the logical OR after shrinking and expanding.
The upper and lower left quadrants of Figure 2e again show the direction
picture and histogram before the shrink and expand procedure. The
upper and lower right quadrants show them after this process. Note how
much sharper the new direction histogram is.

(8) A new set of peaks is now selected from this histogram by the method
described previously. The points corresponding to the new strongest four
peaks are shown in Figure 2f.

(9) In each peak picture, we now try to locate lines of a specified orientation
(according to the direction associated with that peak) plus or minus a
small amount (according to the width of the peak). We employ a Hough
voting procedure. Thus, we have decomposed the two-dimensional
Hough problem into two one-dimensional problems: the first one is to
find the approximate orientation of the line, then knowing approximately
this direction we use a Hough voting procedure to find the intercept of
the line. This last step is done by looking for the largest number of
points which fall on the line, then the next largest, and so on until the
number of points falls below some percentage of the strongest line. The
lines found are shown superposed on the points for each peak in Figure
2f.
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(10) Finally, we locate the clusters of points on the lines found, by histogram-
ming the density of points along and near the lines. Clusters are easily
detected since the density histogram typically consists of a few peaks
with sharp cutoffs between them. Thus the lines are broken into line seg-
ments. Figure 2g shows all the line segments that are found superposed
on the original picture.

Similar results obtained for other images are shown in Figures 3. 4 and 5,
including a "simulator picture" taken from a 96:1 scale model comprised of a
road network and a robot arm carrying a camera (cf. [4]).

This bootstrap processing requires about 90 CPU seconds on a VAX
11/785 and is principally spent in the enhancement step and the Hough step;
however, the linear enhancement step which requires about a third of this
time is often unnecessary. This estimate includes time spent in creating files
that will not be needed to actually run the ALV. Besides, during most of the
traverse, the ALV will be guided by the feed-forward stage, which requires
far less processing time.

We expect to reduce the entire process of bootstrapping to several
seconds by utilizing pipelined image processing hardware. If this can be
achieved, the ALV should be operable at 10 km/hr.

2.2. Segmentation
Methods for region-based segmentation of grey scale and color images

were developed. The methods combine edge-preserving smoothing with a con-
nected components (CC) algorithm. Good performance is primarily a result of
the efficient smoothing algorithms used, the Symmetric Nearest Neighbor
filter (SNN) and its color version (color-SNN). The grey scale filter was intro-
duced by Harwood et al. in [5]. It uses both spatial and nearest-neighbor con-
straints on image pixels to smooth an image.

For color images, a multiband version was developed. The color-SNN as
well as the multiband version of the CC algorithm make use of a new measure
of edge information in color images based on histograms of absolute color
differences. A difference histogram is generated in one pass through the image
by considering absolute differences between a given pixel and its four neigh-
bors. Instead of using the original histogram, a cumulative histogram of
differences may be used. A more detailed description of the color image pro-
cessing methods is given in 16].

As the first step in segmentation, the image is smoothed by the SNN or
color-SNN filter. Normally two or three iterations of 3X3 filtering are needed
to sharpen edges and smooth homogeneous areas. As an option, the images
can be blurred prior to smoothing in order to get a smaller number of
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connected regions (i.e., to reduce the effects of background texture and minor
variations on the surface of the road). A better way, however, would be to
reduce the size of the image if possible. In our experiments, very good seg-
mentations were obtained for road images with 128X128 pixels. To make
edges even sharper and to avoid mismerging of regions at some critical points,
grey scale images or color bands can be edge-enhanced with a grey-scale filter
MINRANGE as described in [6].

Akfter the image is smoothed it is segmented by a two-pass connected
components (CC) algorithm, in which two adjacent pixels are said to be con-
nected if the likelihood or frequency of their absolute grey scale or color
difference is sufficiently large. The only parameter is a threshold, expressed as
a centile of frequencies, which is supplied by the user. First the histogram of
absolute grey scale or color differences is computed, and then used to find the
desired threshold value.

The two passes of the CC algorithm are the same as those of the stan-
dard one. Row by row, pixels are assigned labels by comparing each pixel

a with the four adjacent pixels above or to the left, which have already been
labeled as the image is scanned from top to bottom, left to right. Then, in
the second pass, the pixels with component-equivalent labels are relabeled
uniquely. For each connected region, different types of information may be
collected during the labeling process, such as area, surrounding window and
average grey value or color in each band.

Figure 6 shows the results of grey level segmentation for the "INTER-
SECTION" image as well as superposition of the linear features on the seg-
mented image. Figure 7 shows the red and blue bands of the "STRAIGHT
ROAD" image and the results of color segmentation using these bands. Fig-
ure 8 shows color segmentation results for the green and blue bands of
"INTERSECTION". Figure 9 illustrates grey level segmentation results on a
simulator image, "THE HILL", and superposition of linear features on the
segmentation.

Our experiments indicate that color segmentation is more reliable and
less sensitive to changes in parameter values than the grey scale method. even
though the grey scale method performs almost equally well for most of the
road images. Good color segmentations were obtained for a set of eight unre-
lated 128X128 pixel road images using the same set of parameter values for
these different images.

Region-based segmentation can be used in different ways in the bootstrap
phase. By fitting line segments to the boundaries of those regions which are
large enough. and by selecting those line segments which are long enough, a
representation compatible with the linear features can be obtained. The selec-
tion of the line segments may be constrained in vaious ways using pre-
knowledge about the scene being analyzed. The sizes, shapes, positions and



colors of segmented regions can also be used to aid the interpretation of the
dominant linear features obtained by the method presented in Section 2.1.

A two-band color segmentation of a 128X 128 image with three iterations
of color-SNN smoothing and one iteration of sharpening requires about 60
CPU seconds on a VAX 11/785, when using non-optimized code. A real-time
implementation in hardware should be quite straightforward.
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3. FEED-FORWARD IMqAGE PROCESSING

Once bootstrapping is complete and the ALV begins to move down the
road, one can significantly reduce the image processing load by essentially
predicting the approximate location of important features in the scene. This
requires that the ALV have a dead-reckoning capability so that it knows how
far it has traveled through the world model (created from the last image) by
the time the next image is ready to be processed. While the image processing
is going on, the ALV is essentially "traveling blind". During this blind travel.
the vehicle navigates (conventionally) through a static world model. When it
is ready to process the next frame, its perspective of the world has changed
though the world itself hasn't. If the ALV knows approximately where it is in
relation to the world model, it can predict (i.e., focus visual attention) where
in the imagery the important features are, place windows on small portions of
the image and locate features with much less effort than was required in the
bootstrap mode. Then, imposing road continuity in the world allows road
tracking through the image and model updating at much higher rates. This,
in turn, allows the ALV to attain higher speeds of travel. If the system finds
that it is having trouble in the feed-forward mode of operation, it can slow
down (or stop) and resort to bootstrapping once again.

The more accurate the predictions that can be made, the smaller the
windows need be in which processing must occur, and thus the faster the
vehicle can move. Making accurate predictions requires knowing the location
and orientation of the vehicle (and the camera) with respect to its previous
position when imagery was taken. This puts constraints on the accuracy of
the dead-reckoning system aboard the ALV, as well as the pointing accuracy
of the pan and tilt mechanism carrying the camera (no stereo vision is being
utilized for this task). Some simple error studies were carried out in order to
ascertain the accuracies required and are described in [3,4]. A prediction
amounts to placing windows at the bottom of the image (i.e. close to the vehi-
cle) in which the road boundaries are to be found. The complete boundaries
are then tracked from the bottom to the top of the image.

3.1. Linear feature extraction
Once bootstrapping is complete, the locations of dominant linear features

can be predicted near the bottom of the next image.

The set of image processing steps required to extract the dominant linear
features in the feed -forward mode is a subset of those required in the
bootatrapping mode. In particular, no enhancement of linear features is
necessary prior to histogramming. As we are looking for a feature that is a
line segment of width one pixel, the signal to noise ratio inside the area of the
image where we are looking is inversely proportional to the feature length.

-9-
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This implies that for the small windows used in the feed-forward mode, linear
feature enhancement is unnecessary. Other differences between the two
modes also exist in the detection of the peaks after histogramming and in the
Hough transform application.

The various processings steps applied within a window are:
(1) The original picture is artificially blurred to reduce the noise.
(2) The Sobel operator is then applied to obtain the gradient magnitude and

direction.
(3) A histogram of the directions is then constructed, weighted by the square

of the gradient magnitude. As previously, this histogram is smoothed by
a Gaussian filter and the peaks are automatically selected. Then, if the
window under consideration is at the bottom of the picture (i.e. placed
by the Predictor), the strongest peak is chosen. Otherwise, the single
peak chosen is that with direction closest to the line found in the previ-
ous window. From this chosen peak, we can then create the correspond-
ing "peak picture".

(4) We now try to locate a line in the peak picture, having a specified orien-
tation plus or minus a small amount. If this is the first window then the
lines are found by the same Hough voting procedure that was described
for the bootstrapping mode. Processing differs for subsequent windows
because of the introduction of an additional constraint; lines found in
these windows must be connected to the ones found in the previous win-
dows. This constraint follows naturally from the constraint in the real
world of road continuity. Finding the line in this case becomes much
easier because the intercept of the line is known at one point called the
pivot (this point is the end of the line found in the previous window).
The Hough accumulator contains only the votes for each line direction
within the width of the selected peak.

(5) We then retain as road boundary one-half of the line found. This
prevents the line from overshooting beyond the actual road boundary.
Figures 10, 11, 12 and 13 illustrate this sequence of operations on four

different images. The method is quite able to follow around bending roads.
but is currently unable to deal with intersections. Extensions to the method
will solve this problem.

Once a window is processed, the next window is chosen in such a way
that the length of the line segment found in this extrapolated window is max-
imized. The window size should also be dynamically adjustable during the
feed-forward stage.

The success of feed-forward image processing depends heavily upon the
accuracy with w'Lich the first window is positioned by the Predictor on the
lower part of the image. We can make this initial window placement less

-1-
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critical by making it larger than the ones that follow it (which track the road
out to greater distances). However, larger starting windows imply longer com-
puting times. Processing is automatically stopped when the window is within
20% of the top of the image or when the window leaves the image.

It takes about 9 seconds of CPU time to detect road boundaries in a
255 X 185 image in the feed-forward mode, which is an improvement by a fac-
tor of 10 over the time required for bootstrapping. This algorithm has also
been modified to run on a VICOM image processing system, requiring an aver-
age of 4 seconds of CPU time per image. Further details on the VICOM
implementation are found in [7].

3.2. Segmentation

The segmentation procedure for the feed-forward mode is basically the
same as in the bootstrap mode. However, here we can use knowledge about
the predicted location of the road to collect statistics of grey scale or color
differences on the surface of the road and to use this information to derive a
proper threshold for segmentation. Next we describe a simple procedure that
was developed for non-patchy roads, i.e., for roads that are segmented into
one major region (with many small embedded patches possible).

(1) The original image is smoothed as in the bootstrap mode.
(2) A window is positioned at the lower middle part of the road.

(3) A histogram of grey scale or color differences in the window is computed.
A threshold is determined that would connect a given percentage of all
8-connected pixel pairs in the window.

(4) The entire image is segmented using that threshold value.

(5) The major road segment is found by counting the number of different
region labels in the same window that was used for threshold selection.

(6) Line segments are fit to the border of the chosen segment.

If the surface of the road is patchy due to significant color differences on
the surface of the road or due to shadows, the road can be segmented into
several regions. In this case a more general approach should be used, e.g., in
which line segments are fit to the borders of the major regions and only those
line segments are chosen that satisfy given length and direction criteria. Fig-
ures 14 and 15 show some results of grey segmentation in the feed-forward
mode.
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4. CONCLUDING REMARKS

We have presented several image processing qlgorithms that were
developed for use by an autonomous land vehicle in order to navigate road-
ways. Dominant linear features or regions can be extracted in two different
modes, a bootstrap mode where no prior visual information is available, and a
feed-forward mode used when results of a prior road image combined with
dead-reckoning allow prediction of the approximate location of important
road features in subsequent images. These algorithms have been implemented
and tested on a variety of road images including "simulator images" obtained
from a scale model road network. Our current efforts consist of speeding up
these algorithms, and making them more flexible. In particular, it would be
useful to have a greater degree of "top-down" control over the Image Process-
ing Module by the Reasoning Module.

The next "generation" of the system should be able to combine these
different kinds of representations, linear features and grey-level or color
regions, to give a more complete interpretation of the scene (cf. [3,4,8]). In
addition, the system should be able to switch between the global processing of
the bootstrap mode, and the local processing of the feed-forward mode, in
order to overcome problems that may be encountered in such cases as inter-
sections, sharp bends and shadows cast across a road.

We thank Mark Westling and David Harwood for making available to us their
novel segmentation algorithm.
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FIGURE 2a.

FIGURE 2b. FIGURE 2c.

FIGURE 2.
Bootstrap Image Processing steps

for linear feature extraction

Figure 2a. Original image
2b. Upper left : Sobel gradient magnitude

Upper right: Sobel gradient direction
Lower left : results of linear enhancement
Lower right: weighted histogram of the direction image

2c. The points in the original image corresponding
to the strongest four peaks
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F U 2d. F U 2e.

FIGURE 2d. FIGURE 2e.

•FIGURE 2f. FIGURE 2g.

FIGURE 2. (CONTINUED)

Figure 2d. The points which survived the shrinking and expanding
* 2e. Upper left Direction image before shrinking and expanding

Lower left : Corresponding weighted histogram
Upper right: Direction image after shrinking and expanding
Lower right: Corresponding weighted histogram

2f. Lines superposed on peaks obtained from the new
histogram

2g. Lines superposed on the original picture
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FIGURE 3. FIGURE 4.

FIGURE 5.

Other examples of bootstrap processing for linear feature extraction

Figure 3. Intersection
4. Straight road
5. Simulator image: the till
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FIGURE 6. FIGURE 7.

FIGURE 8. FIGURE 9.

Results of Bootstrap Segmentation

Figure 6. Grey level segmentation of "Intersection"
Upper image "original
Lower left : grey segmentation
Lower right: superposition of linear features on grey segmentation

7. Color segmentation of "Straight road"
Upper left and right : red and blue band images
Lower image : color segmentat.:)n

8. Color segmentation of "Intersection"
Upper left and right : green and blue band images
Lower image : color segmentation

9. Grey level segmentation of a simulator image: "the Hill"
Upper image : original
Lower left : grey segmentation
Lower right: superposition of linear features on grey segmentation
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FIGURE 10. FIGURE 11.

FIGURE 12. FIGURE 13.

FEED-FORWARD IMAGE PROCESSING.
Successive steps of linear feature extraction

* in the feed-forward mode on four different examples

Figure 10. Bending road
11. Intersection
12. Straight road
13. Simulator image: the Curve
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FIGURE 14

FIGURE 15

FEED-FORWARD IMAGE PROCESSING (CONTINUED)
Successive steps of grey level segmentation

in the feed-forward mode on two different examples

Figure 14. Bending road
15. Simulator image: the Curve
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