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PREFACE 

Relaxation plays an important role in many branches of science, technology and engineering. Connec¬ 
tions can be made between relaxation phenomena that occur in biophys.es, phys.es, chemis*ry;™ter'a¿ “ j 
cnce rheology metallurgy, glass sciences, polymer physics and engineering, fiber optics, and ®lectro" 
is of primary concern in basic physics, such a; statistical mechanics of irreversible processes and spin »lasses, 
as weM as in very practical applications such as injection molding of polymeric systems, composite mate”a * 
Sr aviafion aging of glasses very large scale integration of small devices in electronics, nuclear waste 
management, eu. The wide variety of areas in which relaxation enters into consideration demonstrates 

interdisciplinary nature. 

There is presently an exciting opportunity for development of the physics of relaxation in complex sys¬ 
tems The basic S of early days stîl have a strong influence on the thinking in various disciplines. Since 
the physics involved in these early ideas (for example, distribution of relaxation times) is not very deep and 
Ò Ânl rr.„ meager, rel.xa.iona i. complex ayatem, have been let, on phebomcbOtoFC.I level. 
rnndensed matter physicists who are in a good position to advance the physics of relaxations in complex 
Semat I™ « 53« Ce .«her avorded m neglecled ,hia aubjecl. The .Uiradon » made »0,« by 
the dispersion of workers into different specialized areas of relaxation phenomena in “¡e.r efforts to gain 
improved understanding. The trend has been to focus one s attention on a certain das* of materials or a 
specific relaxation phenomenon. Common features of the problems in different areas are ignored. This 
fragmentation of research efforts has made progress even more difficult and the search for tlj'e causes of h 
underlying commonality in relaxation in complex systems more obscure. The common thread for these 
diverse systems is the time dependence or relaxation which can be expressed as 

*(r)~exp- (í/t,)'-\0 < n < I- 

In our own work we have come to believe in the importance of a siconrf"univers«r relation namely, r 
„ in the expression above are in turn related to a microscopic relaxation time t0 via the relation. 

and 

1 To 
i/<i-n> 

Recognizing this commonality in the behavior of relaxation over a br^ 
th* desirability of discussing it in a broader community, we organized a workshop on Relaxations in uisor 
dered* Systems^witlTthe help of Prof. T.K. Lee at Virginia Polytechnique Institute and Sute Un.versuy 
Blacksburg Virginia in July, 1983. The invited experts were from disciplines as various as mathematical 
physics, condensed matter physics, chemistry, thermod'-n-mics, gl«»» science 
science and engineering In spite of different and sometimes even divergent viewpoints of the participants, 
they share the common conviction that the physics of relaxation is central to 
this workshop some success was apparent in getting these diverse lrouP* of sc.em.sU who no^maUy 
no rapport with each other, to discuss the issues in the physics of relaxations in complex systems. 

We thought it desirable to ask these experts to write articles txqht suycta °f their interest usemble 
them in a single volume, easily accessible to the broader commumty>The resuittn^book presents a su ey 
índ «view of relaxation phenomena in many research field, vBoth “^SaTÍeS 
u/»rr -mmilv emnhasized The reader of this volume can obtain in one place a good idea ot the typica 

research problems in relaxation phenomena. We have imposed no length “y '"o'frSdSî 
-nilhu the contributor to write in any style he wants with a common purpose of conveying to the readers 

r«» AU conlributioni ..r. .n.M. in 1««, .nd /.edved by .bn .duo,, 

in the period April-August, 1984. 

falo), A.I. Schindler, and S. Teitler for encouragement. 

Finally the success of this book is ultimately determined by the contributions contained therein. To 
those of you who invested a great deal of effort in preparing these excellent papers, we are truly grate 

October 1984 K.L. Ngai 
G.B. Wright 
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C. A. Angelí 

Department of Chemistry 

Purdue University 

West Lafayette, Indiana 47907 

Abstract 

Characteristic variations of the fundamental 

structural relaxation time with temperature, 

over 18 orders of magnitude in Ts, are reviewed 

for the case of a simply constituted glass¬ 

forming liquid, and made the basis for compara¬ 

tive examination of a wide variety of liquids 

for which viscosities U are available. On 

scaling temperatures by the value for which h 

has a common high value of 10^ poise, a broad 

pattern with a -ommon high temperature limit is 

obtained. The extremes in the pattern are desig¬ 

nated "strong" and "fragile," the liquids at 

each extreme showing common characteristics in 

the temperature dependence and non-exponential- 

ity of relaxation which can be related to struc¬ 

ture. Chemical manipulations of the structure, 

by bond breaking, coordination number-changing, 

etc. can convert "strong" liquids into inter¬ 

mediate liquids, intermediate into fragile, etc. 

Correlations of configurational thermodynamic 

properties with "fragility" exist, with alcohols 

as frequent exceptions. 

Introduction 

The purpose of these comments is to describe 

some general characteristics, over wide tempera¬ 

ture and viscosity ranges, of liquids whose 

behavior will lead us to classify them, accord¬ 

ing to both thermodynamic and transport cri¬ 

teria, as "strong" at one extreme and as 

"fragile" at the other. Our survey will cover 

a broad range of behavior extending from the 

glass transition at the long relaxation time 

limit to the inverse auasi-lattice vibration 

frequency at the short time limit. 

The classification is as follows. Liquids in 

the "strong" class exhibit very small changes 

in their heat capacity on accessing the liquid 

state at the glass transition temperature due to 

a stability in the short and intermediate range 

order and change their relaxation times with 

temperature between the long and short time 

limits in an almost Arrhenius fashion, exhibit¬ 

ing only a single relaxation time in the whole 

range. "Fragile" liquids, on the other hand, 

have structures which degrade rapidly on 

increase of temperature above the glass transi¬ 

tion as manifested by a very large change in 

heat capacity at the glass transition, while 

their average relaxation time changes between 

the long and short tine limits in a complex 

fashion, exhibiting both high and low tempera¬ 

ture Arrhenius ranges with an intermediate 

region of highly non-Arrhenius character. The 

relaxation time spectrum is also a complex func¬ 

tion of temperature, certain relationships be¬ 

tween the spectrum and the temperature depen¬ 

dence of the average value (to be discussed 

below) being observed. 

Bv way of other preliminary observations we 

might note that several liquids which fall into 

the "strong" liquid category are well known in 

technology as progenitors of glass-forming sys¬ 

tems of a wide range of possible compositions. 

Foremost among these is liquid SÍO2, which 

spawns the broad class of silicate glasses pre¬ 

eminent in both technology and nature. Most 

molecular liquids congregate near the other 

extreme. Interestingly enough, we also find 

there the ionic liquids based on heavy metal 

fluorides which, in their vitreous forms, are 

currently attracting much interest as possible 

improvements on SÍO2 glass currently used in 

low loss fiber optical communications. 

The Average Relaxation Time and 

Its Temperature Dependence 

To set up the basis for this classification we 

will focus attention on the average relaxation 

time with which the liquid structure returns to 

equilibrium following some small perturbation. 

This characteristic is known for many liquids 

at medium relaxation times through ultrasonic 

relaxation studies and at longer times through 

time-dependent fiber elongation or beam bending 

experiments. Relatively little is known in the 

high temperature short relaxation time region 

where such information can only be accessed by 

light scattering techniques, or microwave 

dielectric relaxation measurements in such 

cases where the dielectric and structural relaxa¬ 

tion times are closely related. For a few 

cases, however, the high frequency studies have 

recently been carried out and we will use the 
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findings of one of these to provide an overview 

of the behavior pattern which is classified as 

that of a "fragile" liquid. 

The case of a simple glass-forming ionic liquid 

containing only K*, Ca*+, and NO3 ions has re¬ 
ceived much attention from experimentalists 

over the past decade because of its convenient 

temperature range of liquid behavior (60-400°C) 

and ease of vitrification (1). In a recent 

paper (2) the similarity of its behavior to that 
of supercooled argon studied on the same time 

scale, was demonstrated, ligure 1 shows, for 
the most-studied composition, the behavior of 

the longitudinal relaxation time, T^, and, over 

wider ranges, the (average) shear relaxation 

time Tg obtained from the shear viscosity and 

the high frequency (glass-like) shear modulus 

according to the Maxwell relation 

h " G^Xg . (1) 

The necessary viscosity data are obtained ;3) at 

low temperatures by beam bending techniques (3), 
at intermediate temperatures by spindle Brook¬ 

field viscometry (3), and at high temperature by 

capillary viscometry (4). The value of has 

been best determined by hypersonic measure¬ 

ments (5) which fix the temperature dependence 

of the modulus more accurately than is possible 

with ultrasonics (6). The high temperature 

shear relaxation times are indistinguishable 

from the longitudinal relaxation times obtained 

(7,8) from the half width of the Brillouin scat¬ 

tering spectra in the vicinity of maximum band 

width (which corresponds to the condition 

WbTl - 1 )• 

Figure 1 shows that for long relaxation times 

going into the glass transition, the temperature 

dependence is Arrhenius in form with a very high 

activation energy (approximately 150 kcal per 

mole (2)), at intermediate temperatures a highly 
non-Arrhenius behavior is encountered, while at 

high temperatures a return to Arrhenius behavior 

occurs with an intercept at 1/T - 0 of 

T = sec (8). The latter corresponds 

well with the average period of vibration of the 

liquid quasi-lattice which may be assessed from 

far IR studies of the glassy state, of which a 

characteristic spectrum is shown in the Insert 

to Figure 1. This is, of course, an entirely 

reasonable and probably fairly general result. 

If the latter fixes the short time limit for 

the relaxation time we must ask what determines 

the long time limit if it exists, and the tem¬ 

perature at which it is reached. A partial 

answer to this question is available from the 

thermodynamic studies on stoichiometric com¬ 

pounds, according to the argument of Kauzmann 

(9). Kauzmann pointed out that in those cases 

where the entropy of fusion of a liquid, and the 

heat capacities of the crystalline and liquid 

states (including supercooled states) was avail¬ 

able, it was found quite generally that the dif¬ 

ference in total entropy between supercooled 

liquid and crystalline states was tending to 

vanish at a temperature not too far below that 

TCC) 

Figure 1. Longitudinal and shear relaxation 

times for the glass-forming ionic liquid 

K+-Ca++-NC>3 (K+:Ca+'f ■ 3:2 ), showing high and 

low temperature Arrhenius regions. The dashed 

line shows the corresponding behavior of the 

shear viscosity. The solid triangle is an 

approximate value of the nitrate anion reorien¬ 

tation time obtained from Raman line width 

measurements. 

Insert : Far infrared spectrum of a thin film of 

the glassy solid showing quasi-lattice vibra¬ 

tional mode spectrum. 

of the observed glass transition. This is 

illustrated for the cases of several molecular 

and ionic liquids in Figure 2. 

The Implication was that either the supercooled 

liquid must transform to an Internally equili¬ 

brated glassy state at some very long relaxation 

time (possibly infinite in principle, though 

not necessarily so) or crystallize in the tem¬ 

perature range Tg to (Tg-50°). Oí these, 

Kauzmann preferred the latter, ano the final 

answer is not yet in. For Kauznu’nn's solution, 

the long time limit on Ts is given by the con¬ 

dition Ts - xn , where the latter is the inverse 

of the nucléation rate (per volume unit suffi¬ 

cient for structural relaxation to occur). 

In at least two cases (10,11), it seems from 

available evidence that this condition could 

never be met before the condition Sjiquid - 

¡»crystal “ 0 is reached. 

The Overall Pattern for Liquids 

In Figure 1 we have included a dashed curve and 

a second scale illustrating the variation of 

the shear viscosity with temperature for the 
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Figure 2. Variation of the excess entropy of 

the liquid over that of the most stable ordered 

solid. The diagram indicates that sum of the 

entropy of fusion and the entropy of any solid 

state transition occurring between Tg and the 

melting point, tends to vanish only a short in¬ 

terval of temperature below Tg (Kauzmann para¬ 

dox) . The approaching crisis becomes more obvi¬ 

ous the higher the temperature of the glass 

transition and th< more "fragile" the liquid 

under consideration. 

same Ca++-K+-N03 liquid for which the relaxation 

times have been discussed in order to show how 

little the temperature dependence of the term 

Gœ in Eq. (1) affects the general form of the 

relaxational behavior. With this in mind we can 

hope to obtain a broader picture of the relaxa¬ 

tion time vs. temperature behavior of liquids 

by plotting the more generally available shear 

viscosity as a function of reduced reciprocal 

temperature using the temperature of the glass 

transition, defined for the present purpose as 

the temperatur® at whi,h n ■ 10^^ poise , as a 

normalizing parameter. At this temperature. 

Figure 1 implies T will be about 10^ sec. The 

nattern of behavior which results is shown in 

Figure 3 to which we will give much attention. 

It might be expected that the common point at 

tie high temperature limit would be subject to 

less varation amongst the different liquids in 

the case a reduced viscosity plot than 1^. the 

case of the more fundamental relaxation time 

plot, since these liquids with high lattice 

vibration frequencies (hence short limiting re¬ 

laxation times) will in general also have large 

values of Goo, the two tending to cancel in the 

viscosity representation according to Eq. (1). 

Figure 3 provides the first full temperature 

range representation of this type of T„- 

reduced Arrhenius viscosity plots of which par¬ 

tial and less provocative examples have appeared 

before (12). 

Figure 3 shows a tendency of the inorganic 

tetrahedrally coordinated network liquids of 

relatively open network structure [5102(13,14,) 

Figure 3. Tg-scaled Arrhenius plots for viscosities of glass-forming liquids of various types. 

"Strong" liquids fall at the top of the pattern, "fragile" liquids (see text) fall at the bottom. Tg 

is defined as the temperature at which the viscosity reaches 10^3 poise (see Table 1). 

Insert: Liquid-to-crystal heat capacity ratio through the glass transition temperature, showing 

correlation of ACp with "fragility." Alcohols, which are intermediate in viscosity behavior, are 

exceptions. 
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Table 1 

Values of T (T ■ T _J3 ) used for Figure 1. 
Kg n “ 10iJp ° 

System 

sio2 

Ge02 

Na20*2S102 

As 2^3 

ZnCl2 

glycerol 

ethanol 

69ZnCl2*31Py+Cl" 

CH3Py+01_ 

K+Ca2+N03(K:Ca - 3:2) 

K+B13+C1"(K:B1 - 1:2) 

toluene 

chlorobenzene 

m-fluorotoluene 

o-fluorotoluene , 

o-xylene 

o-terphenyl 

1446 

818 

713 

454 

370.5 

180 

94 

275 

225 

332 

306 

110 

123 

117 

115 

123 

240 

Ge02 (14)] to cluster on the upper side of the 
viscosity curves. At this extreme, the "strong" 

liquid extreme, the viscosity is seen to vary 

between the low and high temperatu/e fixed 

points in an almost Arrhenius fashion. The 

case of BeF2 is discussed separately. 

In the intermediate region we find a collection 

of chemically dissimilar liquid types behaving 

in a similar manner. Firstly, there is the 

single component inorganic substance ZnCl2 (17) 

which is known to be a tetrahedrally coordinated 

network-type liquid (18,19) but one in which 

the Zn-Cl-Zn angles are so bent that the struc¬ 

ture is also well described as a close packed 

array of chloride ions with Zn2+ ions filling 

the tetrahedral holes (18). Secondly there are 

the cases of strong network liquids whose struc¬ 

tures have been degraded by addition of modify¬ 

ing components which chemically break the 

bridge bonds (20). Thirdly, there are the 

multilaterally hydrogen bonded liquids contain¬ 

ing two or more alcohol groups per molecule (21), 
and fourthly, there are covalently bonded non¬ 

network liquids like AS2S3 (22). These sub¬ 

stances are all characterized by systematically 

curvilinear Arrhenius plots whose curvature can 

be described over the whole temperature range 

by the three parameter Vogel-Tamman-Fulcher 
equation 

n - A exp [B/(T-T0)] (2) 

(in which A, B and T0 are constants) with 
little change in parameters over the 13 orders 

of magnitude of observable relaxation time 

change (20,21). 

Just as the "strong" network liquids can be con¬ 

verted into intermediate cases by chemically 

breaking a fraction of the bridging bonds, so 

can the intermediate case ZnCl2 be converted 
into a "fragile" liquid by chemically breaking 

Zn-Cl bridging bonds, e.g. by adding 30% of a 

basic ionic chloride such as KCL, or pyridinium 

chloride (17,23) see also Fig. 4. In each case 

what is being accomplished is the removal of 

restrictions on the configurational states which 

the system can adopt. The question of liquid 

topology and fragility is examine more closely 

in a final section. 

The "fragile" liquids, grouped at the bottom of 

the Figure 3 family, form the largest class, 

and Indeed this would seem to be the "normal" 

liquid behavior. We find in this group simple 

unpolymerized ionic liquids like the K+-Ca++-N03 
mixture of Figure 1, the depolymerized chloro- 

zlncates and other ionic chloride glass-forming 

mixtures (24) and phenyl ring-based van der 

Waals liquids like toluene (25) and ortho- 

terphenyl (26). In fact, available data for 

the latter place it at the outer limit of the 

"fragile class," (except perhaps for water 

which is so exceptional (27) that it eludes 

classification by the present criteria.) There 

are, unfortunately relatively few data for 

glass-forming van der Waals liquids of this type 

over wide viscosity ranges, though data at low 

viscosities for a number of familiar cases such 

as chlorobenzene and the xylenes can be added 

now that their glass transition temperatures 

can be determined using emulsion techniques 

(28). They tend to group in the narrow region 

between the fragile ionic liquids and o-ter¬ 

phenyl, hence to provide a rational baslt' for 

extrapolating each of the latter to the high 

temperature limit. Data on the metal-metalloid 

system PdCuSi are avlalable in the viscosity 

region IOH-IO33 poise (29). They fall between 

o-terphenyl and glycerol implying quasi-fragile 

character . 

Before we leave this section we should make 

reference to two cases, one a "strong" and one 

a "fragile" liquid, which seem exceptional to 

this pattern. Both are liquid fluorides. They 

have been omitted from Figure 3 which is al¬ 

ready congested, and are shown instead in 

Figure 4. The anomalous strong liquid is BeF2, 
whose viscosity is strictly Arrhenius over 13 

orders of magnitude in viscosity (30) (as ex¬ 

pected from its well-defined tetrahedral net¬ 

work structure), but which does not extrapolate 

to the common intercept. Rather it slopes more 

steeply, cutting across the Na20*2SiO2 plot at 
T„/T » 0.55 , a behavior presumably to be 

associated with its peculiar, continuously in¬ 

creasing heat capacity behavior (see Figure 4). 

The anomalous fragile liquid is actually a 

group of heavy metal fluorides containing ZrF^ 

which behave just as expected at high Tg/T (31), 

but in the fluid region deviate in the opposite 

sense from BeF2 in that they become too weakly 
dependent on temperature. This is perhaps due 
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Figure 4. Effect of addition of bridge-bond 

breaking additives on "strength" of network 

liquids (a) AC at Tg (b) temperature depen¬ 

dence of viscosity, TTg-reduced scale). Part (b) 

also displays anomalous behavior of heavy metal 

fluoride melts at higher temperatures, and of 

BeF2 over the whole observed range. The latter 

(too-steep reduced Arrhenius slope) can be 

associated with steadily increasing value of Cp 

in the liquid range. [ZBLA H 57ZF¿,36BaF23LaF3 

4A1F3(61)]. 

to a tendency to generate non-cohesive molecular 

sub-units, consistent with the high vapor pres¬ 

sure of ZrF^. 

The Structural Relaxation Function 

Associated with the above pattern of viscosity 

(or average shear relaxation time behavior) is 

apparently a pattern of behavior for the de¬ 

tailed relaxation kinetics. 

For the strong liquids it seems that the equili¬ 

brium state following some perturbation, is 

approached exponentially, ¢(1) * e-t'T , over 

almost the whole temperature range available for 

study. For liquid Ge02, for instance, volume 

relaxation studies by Napolitano et al. (32) 

imply that the bulk viscosity relaxes with a 

single relaxation time at and above the tempera¬ 

ture 545°C at which n - 1013p , since a rapid 

broadening in the relaxation time distribution 

was only setting in at considerably lower tem¬ 

peratures, T < 519°C . A small departure from 

Arrhenius behavior In the viscosity was just 

commencing in the range 10^-10^ poise. 

The same sort of behavior was found for the dis¬ 

rupted silica network (intermediate) cases, 

though the nonexponentiality commenced further 

from Tg in association with the loss of Arrhenius 

behavior (30). On the other hand, it has long 

been known from time domain creep studies (31, 

32) (= very low frequency measurements) near, 

and particularly below, Tg that structural re¬ 

laxation is non-exponential. Typically, glass 

rheologists have (for decades) described the 

observed behavior using the current 1' popular 

fractional exponential function 

where ß is typically C.3-0.5. 

In the temperature range above its melting point 

a single relaxation time behavior was found for 

ZnCl2 (intermediate strength liquid) by Gruber 
and Litovitz in the ultrasonic range (33) and 

this finding has recently been extended into 

the hypersonic frequency (high temperature) 

range by Knape (34). Near Tg, however, the 

single relaxation time has been lost, according 

to volume relaxation time measurements by 

Goldstein and Nakoneczny (35), though it is 

still relatively close to exponential. In this 

regime the apparent activation energy (35) is 

also much larger, as implied by Figure 3 data 

near Tg/T - 1 . Thus the pattern for interme¬ 

diate strength liquids of inorganic character 

is one of exponential relaxation over much of 

the accessible liquid range, with departures be¬ 

coming increasingly evident as the (normal) 

transformation range is approached. 

For the polyalcohols, which overlap ZnCl2 in 

Figure 2, a different behavior is found, and 

this is probably to be associated with their 

distinctive thermodynamic properties to be dis¬ 

cussed below. In these cases, typified by 

glycerol, non-exponential relaxation behavior is 

always found (36-39), the simplest description 

of which may be made using the relaxation func¬ 

tion Eq. (3) in which 0<6<1 varies almost con¬ 

tinuously between 0.8 and 0.5 as temperature 

falls from the highest temperatures of measure¬ 

ment to Tg (36-39). For the more fluid (lower 

Tg) cases where data are available over a wider 

temperature range (e.g. ethanol) it seems a 

single relaxation time may be required at the 

highest temperatures though the data interpre¬ 

tation is not unambiguous. 

For the fragile liquids, on the other hand, a 

defirite pattern seems to have emerged and may 

be correlated with the characteristic changes 

in temperature dependence of the average relaxa¬ 

tion time. Referring to Figure 1, the work of 

Torell (3,7,8,24) has shown that at least for 

the ionic examples of fragile liquids (which 

are the most straightforward to study because 

of the absence of internal modes which can 

otherwise couple with the structurally relaxing 

modes and complicate the phenomenology) the 

high temperature Arrhenius region is associated 

with simple exponential relaxation, which is 

then lost in the same temperature range 
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T = 1.5-2.0 Tg where the Arrhenius temperature 

dependence is lost. After a region of rapid 

change in both the apparent activation energy, 

and the fractional exponent 6 [Eq. (3)], 

Arrhenius behavior is regained in association 

with the stabilisation of ß at some value in the 

range 0.3-0.5 depending on the particular sub¬ 

stance. 

A connection between departure from Arrhenius 

behavior and exponential relaxation was inter¬ 

preted by Tweer et al. (40) in terms of the 

characteristic distance r0 over which coupling 

between elements of the structure could occur. 

It is also the expectation of the current quan¬ 

tum mechanical coupling model of Ngai (41,42). 

An investigation of the occurrence or otherwise 

of these phenomena in computer simulated systems 

(which are classical systems) should help re¬ 

solve the origin of these effects. 

Thermodynamic Properties and Changes 

at the Glass Transition 

The liquids we have classed as fragile systemat¬ 

ically exhibit large changes in heat capacity at 

Tg. In those cases where the liquids are con¬ 

stituted of relatively heavy ions, the heat 

capacity change, ACp, seems (24) to be consis¬ 

tently of the order of 3.5-4.0 cal g_^K“l [or 

0.6 Cp (glass) per g atom where the glass Cp 

is already classical at Tg). The strong liquids 

on the other hand, exhibit systematically small 

changes in heat capacity at their glass transi¬ 

tions. These trends are displayed in the insert 

to Figure 3, (Figure 4 for BeF2). As noted by 

this author some time ago (23) the magnitude of 

ACp increases when we make chemical changes 

which, by bond-breaking, convert strong liquids 

into intermediate liquids, or intermediate 

liquids into fragile liquids. This is best 

seen in a separate plot Figure 4 documenting 

the two cases, S102 (strong) -*■ Na20*2Si02 (i.itei- 

mediate) , BeF2 (strong) ■* 3LiF*7BeF2 (inter¬ 

mediate) and ZnCl2 (intermediate) -*■ pyridium 
chlorozincate (fragile). 

These correlations are fully consistent with the 

theory for relaxation processes developed by 

Adam and Gibbs (43) in which the relaxation 

time is exponentially related to the inverse of 

the total configurational entropy, Sc. The 

latter depends for its magnitude on the value of 

ACp integrated over the temperature range Tg 

(see Figure 2) to T. In fact, a hyperbolic 

relation between ACp and T, 

ACp - D/T (3) 

which is the simplest general description of the 

observed behavior, is all that is needed (23) 

to convert the Adam-Gibbs equation 

T = At exp (C/TSc) (4) 

into the VTF equation [Eq. (2)], in which 

T0 = Tg , and the constant B is now seen to con¬ 

tain T0 itself, B * DT0 . This equation de¬ 

scribes the viscosity of intermediate liquids 

like polyalcohols very well (44). It also 

describes that of fragile liquids well in the 

range (1.2-1.7) Tg though in these cases yields 

T0 values which are higher than determined from 

thermodynamic data and in some cases, e.g., 

o-terphenyl (45), even exceed Tg —which is of 

course unphysical and serves to predict the 

return to Arrhenius behavior which occurs at 

lower temperatures. 

The alcohols as a class are exceptional to the 

pattern we have described. In Figure 3 the 

viscosity temperature dependence of glycerol 

and ethanol wouldlead to the expectation of 

small values of ACp, as for ZnCl2, whereas the 
relative ACp values are exceptionally high, see 

Figure 3 inset. Since the non-Arrhenius tem¬ 

perature dependence itself is correctly accoun¬ 

ted for by the entropy model in these cases 

(¿1) (i.e. ACp plays its expected role, and 

T0 » Tg) and since the non-exponential relaxa¬ 

tion observed in these cases (36) is also more 

haracteristic of liquids with large entropy 

effects in the temperature dependence, it seems 

probable that the source of the anomalous be¬ 

havior should lie in the non-thermodynamic 

factor C in Eq. (4). This is determined by the 

height of the energy barrier which must be sur¬ 

mounted during the cooperative rearrangement 

(43). This would imply that the isothermal 

(constant Sc) relaxation or viscosity would 

have an exceptionally large temperature depen¬ 

dence. Such measurements, which have been made 

for metallic (45) and oxide (46) glasses, have 

not yet been made for the polyalcohols as far 

as this author is aware. Should the isostruc¬ 

tural relaxation in fact prove unexceptional, 

then an anomalous configurational heat capacity 

will be indicated, associated presumably with 

the peculiarities of the hydrogen bond. It is 

noteworthy in this connection that the config¬ 

urational expansion coefficient for alcohols is 

not abnormally large. (This has the very prac¬ 

tical result that the variation of the relaxa¬ 

tion time with increasing pressure is particu¬ 

larly small 

dT dT 

= —7— = 0.005 K kbar (5) 
dp dp x ' 

making 1:1 CH3OH + CH3CH2OH the medium of 
choice as an ultrahigh pressure transmitting 

fluid, serving to 100 kbar at R.T.) For the 

general case, that of the fragile liquids, it 

seems that Aa and Tg are related by (47) 

Tg Aa * 0.112 ± 0.02 . (6) 

The Kauzmann paradox, i.e. the approach to the 

supercooled liquid-crystal entropy crossover, 

Figure 2, is more dramatic the larger the ACp. 

Except for the alcoh' Is all the liquids for 

which the problem is Illustrated in Figure 2 

fall into the "fragile" classification. For 

strong liquids the problem does not exist, as 

is shown in Figure 5 where the case of Ge02 (48) 

is contrasted with that of H2S04*3H20 , (12(b), 

49) seen earlier in Figure 2. In the latter 
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Figure 5. Comparison of the rate at which the 

total entropy of supercooling liquid approaches 

that of the corresponding crystal (at T0) for 

a moderately "fragile" liquid (H2S04*31^0) 
and a "strong" liquid (Ce02). In the latter case 

a T0 value cannot be properly assigned because 
of the variety of ways the entropy excess at 

can be imagined to disappear during hypothet¬ 

ical metastable equilibrium cooling processes. 

Precise data for H2S04*3H20 are from J. E. 
Kunzler and W. F. Claque, J. Am. Chem. Soc. 74, 

797 (1952). The data for Ge02 are from ref. 12(b). 

The value of T0(A) noted in Figure 1 comes from 
an Eq. (2) fit of precise equivalent electrical 

conductivity data. 

case there is little choice in the possible 

sub-TB extrapolation of Cp before the excess 

entropy is exhausted whereas for GeC>2 many can 
be chosen which are consistent with the data. 

All the foregoing thermodynamic characteristics 

and the concomitant relaxation behavior pre¬ 

sumably find their origin in the characteristic 

changes in the liquid structure. Relatively 

little is known about such changes but some 

broad features may be discerned, and we consider 

these in the next section. 

Structural Relationships 

The structural requirement for "strong liquid 

behavior is, clearly, that the size and charge 

or bonding relationship between particles be 

such that at normal pressures each particle has 

a single accessible small coordination number 

and that this is achieved within a three dimen¬ 

sionally extensive network. The consequence of 

these relationships is that both the short 

(nearest neighbor) and the intermediate (second 

nearest neighbor) order is well specified, and 

therefore resistant to thermal degradation. The 

degeneracy associated with thermal excitation 

or rupture of a bond is relatively small in 

such materials so the configurational heat 

capacity is very small (49), Cp(liq)/Cp(glass) 

~ 1 and ACp at TB may be small or undetectable 

as a "transition" in the case of BeF2 (50). 

Flow in such a material is rather solid-like in 

nature proceeding through a sort of defect mi¬ 

gration mechanism as indicated by simulation 

studies of liquid Si02 (51) and BeF2 (52). 
Brawer (52,53) in particular has emphasized the 

importance of the five-coordinated network 

center as a defect. 

That the strong liquid behavior is associated 

with small coordination number network stability 

can be shown in principle by changing the pres¬ 

sure in such a way as to force alternative co¬ 

ordination numbers to become competitive. 

Increases in diffusivity and fluidity with in¬ 

creasing pressure have been known from simula¬ 

tion studies on Si02 (51) and experiments on 
GeC>2 (54) for some time, although it has not 
been clear whether the characteristics distin¬ 

guishing strong from fragile liquids in Figure 

3 were being changed. Current computer studies 

on Si02 (55) show that the temperature depen¬ 
dence of diffusivity in liquid SÍO2 is changed 
dramatically by increases in pressure,^in the 

direction appropriate to more "fragile behav¬ 

ior. Laboratory experiments to establish this 

relationship should be feasible for both BeF2 

and ZnCl2. 

The effect on "strength" of reducing intermedi¬ 

ate range order stability by chemical bond 

breaking, shown by Figures 3 and 4 is so clear 

as to need no further comment. At the dis'.li- 

cate composition (see Figure 3) the fraction of 

bridges broken is such that two dimensional 

sheets may form [as in LÍ4S12O1O or the common 
micas in which 1/4 of the Si are replaced by A1 

to give (A1SÍ301o)5_ sheets) and this structure 
is preserved in the glass (56). It is perhaps 

not too surprising that the reduced viscosity 

behavior is similar to that of liquid AS2S3 
whose "raft-like" structure has been discussed 

by several authors recently (57-59). 

The reason that ZnCl2 is intermediate in charac¬ 
ter is presumably because the radius ratio of 

Zn^i and Cl- is less favorable to four coordina¬ 

tion and directionality of the Zn-Cl tetra¬ 

hedral bonding is insufficient to compensate. 

The result is a network less open in character, 

closer 5th ligands, and easier coordination 
exchanges. It would be interesting to study 

the dependence of "strength" characteristics 

with composition in mixed bridge systems such 

as ZnCl2-ZnBr2 and GeS2-GeSe2. 

Finally in the salt mixtures, even when some 
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specificity in intermediate range order in the 

form of chain catenation remains (as in chloro- 

zincate and fluorozirconate liquids) the full 

14 J g. atonT^K-! of configurational heat capac¬ 

ity can be excited, and typical "fragile" behav¬ 

ior is found. The configurational degeneracy 

is then comparable with that for van der Waals 

liquids, and a common pattern with minor varia¬ 

tions is found. Factors distinguishing liquids 

like o-terphenyl and the fluorotoluenes from 

toluene chlorobenzene, etc., remain to be 

decided . 

Concluding Remarks 

The relationships developed here have useful 

aspects but are very incomplete at this time. 

Many data on covalently bound semi-conducting 

glasses, (the chalcogenides glasses)exist, and 

have not yet been incorporated. Many studies, 

and in particular those at high pressure, remain 

to be carried out. Additional relevant studies 

will be discussed elsewhere (60). 
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THE SIGNATURE OF THE GLASS TRANSITION 

Martin Goldstein 
Division of Natural and Mathematical Sciences 

Yeshiva University 
New York. Nmw York 10033 

When a macroscopic sample of a liquid 
'other than helium) is cooled without 
crystalizing. the viscosity increases rapidly 
until at some temperature Tg it becomes so 
large it is no longer feasible to measure it. 
When x-ray diffraction shows the sample to have 
the characteristic structures of an amorphous 
liquid, we know the liquid must have undergone 
a glass transition. There is no ambiguity 
here. 

But there are other systems and other 
processes which mimic in one way or another the 
behavior of cooled but uncrystalized liquids. 
When is the term "glass transition" appropriate 
and when is it not? Are some of us using the 
term too broadly, to cover cases which really 
have very little in common with the physical 
reality of the "true" glass transition? Or are 
others of us using the term too narrowly, and 
shutting our eyes to possible insights that 
could come from systems we prefer not to 
recognize? 

As I am a "strict" constructionist", 
preferring a narrow difimtion of the glass 
transition. I will begin with a "«nin« 
taking my ideas too seriously. I am defending 
the sort of thinking that probably led some of 
the first scientists who studied criticai 
phenomena in gases to fail to see that studies 
of phase separation in alloys or magnetic could 
transitions have any relevance to ttuj.r fieia. 

Let us consider some specific examples 
of transition phenomena to wtiich the term 
"glass transition" has been, or could be. 
applied. 

When amorphous metals were first 
prepared by extremely fast quenching, there was 
some dispute about wheter they were true 

microcrystalline materials, 
methods confirmed their 
but there is always the 

explaining the patterns obtained 
¡s arising from very, very small crystals. The 
question was definitively resolved by Chen and 
Turnbull (1), who reheated the amorphous metals 

glasses or 
Diffraction 
amorphousness 
possibility of 

carefully, and found the characteistic specific 
heat behavior of the glass transition region. 
Ever since, amorphous metals have undergone 
glass transitions, and no one objects. 

Let us briefly state what the 
"characteristic specific heat behavior" is. 
The glass transition as it occurs in liquids 
being cooled is first of all a kinetic 
phenomenon. The rapid fall of specific heat is 
a rate-sensitive rather than an equilibrium 
effect. This is easily shown by all sorts of 
hysteresos effects, but more specifically, by 
the fact that slower cooling rates produce the 
falling specific heat at a lower temperature. 
The explanation of this behavior is quite 
straightforward, and goes back to F. Simon (2). 
At higher temperatures the liquid is in a 
(metastable) equilibrium state. At Tg. 
molecular mobility is so slowed down that the 
usual molecular measurements that keep the 
liquid structure in equilibrium do not take 
place on the experimental time scale, and 
degrees of freedom of the system appear to be 
lost. is this the signature of the giass 
transition? A little thought will show that 
behavior resembling this will be observed when 
the rate of any physical or chemical process 
that shifts its equilibrium with temperature 
slows down to the point of unobservability. 
Not every such kinetic freezing-out process can 
properly be called a glass transition. One 
observes the freezing out of degrees of freedom 
contributing to the specific heat when sound 
waves of varying frequency are sent through a 
gas. There is a critical frequency too high 
for equilibration of vibrational degrees of 
freedom in the gas moleculesand one observes a 
"transition" in the dependence of sound 
velocity on frequency (3). but I am not 
comfortable with the idea of a gaseous glass. 

Many polymer physicists and physical 
chemists have confused matters by describing 
some of the relaxational transitions, observed 
below Tg in polymers by such techniques as 
dielectric and mechanical relaxation and nmr 
14), as additional sub-Tg "glas* transitions". 
These transitions are certainly as-ociated with 
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the kinetic freezing-out of degrees of freedom, 
but their status as "glass transitions" is 
dubious. 

When then are the defining 
characteristics of a "true" glass transition? 
Let us look again at the indubitable case of a 
cooling liquid. 

We find a number of characteristics of 
liquid behavior, which on the one hand do not 
seem to be specific to certain chemical 
categories of liquids but are general, but on 
the other hand are not invariably observed in 
every single case. 

undergoes a transition. In addition, as 
noted, the metallic glasses as a class have 
not so far been shown to undergo such a 
transition. 

Angelí has put forwai 1 at this 
conference the concept of "strong" vs. "weak" 
liquids HO). The strong liquids which include 
that quintessential glass-farmer fused quartz, 
show large activation energies but temperature- 
independent ones, for a considerable range 
above Tg. Such liquids also show barely 
detectable changes in specific heat at Tg, and 
since a detectablt difference between glass and 
liquid is required for the Kauzmann paradox to 

1. A high apparent activation energy 
for molecular mobility at Tg (arbitrarily 
defined as the temperature where the molecular 
relaxation time is of the order of an hour). 

2. A temperature dependent activation 
energy for an appreciable range above Tg; a 
good empirical description of the dependence of 
relaxation time '(' on temperature is an equation 
given originally by Vogel, equation (S) 

T = To exp E/R (T-T o ) 

with E, and To adjustable parameters. 

3. 
relaxational 
properties as 
H (studied by 
Tg, including 
expansion or 
Tg. 

Characteristic non-linear 
behavior for such thermodynamic 
V (studied by dilatometry) and 
DTA or DSC) in the region around 

a rate-dependent fall in thermal 
specific heat on cooling through 

4. A second kinetic transition 
occurring (for measuring frequencies of 1 KHz) 
at a temperature about 3/4 of Tg, with a broad 
spectrum of retardation times and a low and 
temperature independent activation energy. This 
transition is termed the "B" transition, and 
has been observed in about 3/4 of polymeric, 
molecular, and fused-salt glasses, but not 
clearly in metallic glasses (6) . 

5. Specific heat and other anomalies 
at temperatures IK and below, explainable in 
terms of tunneling effects in 2-level systens 
(7,8) . 

6. Last and not least, the tendency of 
the liquid entropy to fall so much more rapidly 
than that of the crystal, that if its course 
continued a short range below Tg (where human 
time-scales prevent us from measuring it), the 
entropy of liquid and crystal phases would 
become equal - the Kauzmann paradox (9). 

Now I have already conceded that not 
all liquids undergoing their glass transitions 
show each and every one of the above criteria. 
While Í-relaxations for example occur 
in the majority of glasses, there is no one 
chenacal type of which every individual member 
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reveal itself, they may fail 
feature as well. 

to have this 

Can we require some specified fraction 
of the 6 criteria given above, say any 4 of 
them, as a distinguishing condition? This 
Chinese restaurant menu system seems arbitrary 
and unsatisfying. 

Let me suggest an alternative: suppose 
we make the distinction not substance by 
substance, but phenomenor by phenomenon. Let 
us for example consider the spin glasses, and 
ask, not if each and every spin glass shows 
each and every one of the above criteria, but 
rather, for each of the criteria in turn, 
whether it is shown by the majority of spin 
glasses. Let us do the same with the "glassy 
plastic crystals" discovered by Suga and 
associates, (11) and similarly for any 
phenomenon claimed to be a glass-like 
trav ition. 

The results of such a test are 
interesting. The spin glasses do not pass it, 
but the plastic crystals do. 

Plastic crystals are crystaline 
substances beyond any doubt. In the phase 
stable just below the melting point they show 
rotational disorder, with orientational 
molecular rearrangements taking place by 
transitions over potential barriers. At lower 
temperatures they undergo a first-order 
transition to a non-rotationally disordered 
phase. Rapid cooling of the rotationally 
disordered phase will lead to supercooling of 
this phase and a kinetic freezing out of the 
orientational rearrangements There is a 
specific heat drop and hysteresis of the 
enthalpy. The rate of rotational hopping obeys 
a Vogel equation, f-relaxations have been 
observed. There is a Kauzmann paradox of the 
excess entropy of the rotationally disordered 
phase (11). There is recent evidence that they 
show the low temperature specific heat 
anomalies of two-level systems (12) . 

The conclusion is that if we could 
understand the transition behavior in the 
plastic crystal transition we would also 
understand the glass transition itself. As the 
problem of orientational disorder in a crystal 
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is a aore tr®ct®bli problem then the problem of 
the liquid state itself, this offers 
considerable hope for a solution to the problem 
of the glass transition. Theories, anyone? 
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PHENOMENOLOGICAL ASPECTS OF GLASS TRANSITION AND MOLECULAR MOTIONS IN GLASSES 

G. P. Joh?ri 
Department of Metallurgy and Materials Science, 

McMaster University, Hamilton, Ont. L8S 4L7, Canada 

This article is a review of our current experimental and theoretical 
understanding of the thermodynamic and kinetic aspects of molecular 
me. ions that lead to the formation of a glass and of those that occur in 
the glassy state. The limitations of our theoretical approaches have 
been critically assessed, mainly in the light of similarities of glass 
transitions observed in orientationally-disordered and liquid crystals 
with those i. isotropic liquids. In almost its entirety, this article is 
taken from one which appeared in "Plastic deformation of amorphous and 
semicrystalline materials". Les Mouches Lectures 1982, (Les Editions de 
Physique, France, 1982), p. 109. _ 

Hetastable Amorphous Solids and Glasses 

A glass can first be described as a 
special case amongst metastable amorphous 
solids, quite distinct from others, and then 
second as a liquid which takes an 
inconveniently long time to flow. The 
behaviour of such metastable solids depends 
upon the mechanism of the disorder Itself, and 
while the ultimate source of randomness in the 
distribution of positions and/or orientations 
of atoms or molecules in most cases is 
thermal, and the state is defined as being 
metastable with respect to some ground state 
of ordered structure, the metastability can be 
produced in several ways. For example, the 
exces free energy over the ordered arrangement 
of a crystal, which is necessary to form a 
metastable amorphous solid, can be froren into 
a stable phase by sudden changes of a 
thermodynamic intensive variable such as 
temperature or pressure, as in a glass, or as 
chemical potential, as in desiccated gels. In 
some amorphized solids it can be "pumped in" 
by the process Involved. The structure of a 
crystal can be destroyed to produce a 
noncrystalline solid by (a) the high shearing 
stresses produced during grinding, (b) 
electron, neutron or a-partide irradiation, 
(c) oxidation at a low temperature and (d) by 
application of a high pressure at a low 
temperature. Certain liquids change their 
composition and produce a gel which in turn 
can be heated to form « different type of 
amorphous solid. Vapours when slowly 
deposited on a cold sutstrate also produce 

thin noncrystalline films, with structures 
that depend in some cases upon the temperature 
of the substrate. It is noteworthy that 
although each of the amorphous solids is 
obtained by adding free energy to a stable 
state, and that in some cases a thermodynamic 
path between the various amorphous states 
exists via this stable phase, there is no 
direct thermodynamic path between them. The 
various amorphous solids of the same material 
are generally not directly Interconvertible. 

But it is also Important to realize that 
the various amorphous solid forms of the same 
material have different physical properties. 
This means that, although the molecular 
arrangement in all of them lacks a long range 
order of positions, differences in their short 
range order are quite considerable. One such 
difference is found f,rom an analysis which, 
based on the argument that, on supercooling, a 
liquid cannot lose more than its entropy of 
fusion, suggests a paradox, namely that the 
structural state of supercooled water cannot 
approach the structural state of amorphous 
solid water without violating the third law of 
tnermodynamics (1,2). Differences in the 
density of an amorphous materia! obtained by 
various methods have been found also in 
germanium (3), and such obsetvatlons must 
raise the possibility of the existence of a 
type of polymorphism in the amorphous state. 
This, of course, is less easily 
characterizable than the polymorphism of 
crystals. 

17 
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Glass Formation 

It Is common knowledge that materials ’n 
the glassy state Inherit their structure from 
the liquid from which they are formed by 
cooling sufficiently below their freezing 
point, and this Is held to be part of the 
definition of the glassy state. But It Is 
less commonly known that compression of 
certain materials, as for example of glycerol 
or selenium, above their freezing pressure can 
also lead to the formation of a glass. The 
classical explanation for the formation of a 
glass Is that when a liquid Is cooled, or 
compressed, Its fluidity (» viscosity^) 
decreases and at a certain temperature below, 
or pressure above, the freezing point It 
reduces to a sufficiently low value such that 
the liquid does not flow In the duration 
(generally 103s or 20 min) of an 
experiment. At this temperature the liquid Is 
said to have become a glass, and the glass 
formation Is regarded as a kinetic process. 

Several thermodynamic changes occur at 
this temperature. Although the first 
derivatives of the free energy of the liquid 
with respect to temperature and pressure, 
namely, the enthalpy H, entropy S, and volume 
V, do not change at this temperature, the 
second derivatives, namely, the heat capacity 
Cp, expansivity a, and compressibility 
B, rapidly decrease to a magnitude 
comparable to that In the corresponding 
completely ordered crystalline state. Thus a 
glass at Its formation temperature maintains 
the energy, the volume and the structure of 
the liquid, but the changes In the energy and 
volume with temperature and pressure In It are 
similar In magnitude to those of the 
crystalline solid. The nature of the observed 
changes In the thermodynamic properties thus 
make It seem that the liquid has undergone a 
second-order thermodynamic transition, though 
the cause of the change Is the cessation of 
the molecular, or atomic mobility, on the time 
scale of 103s. The relative change In the 
expansivity at glass transition Is usually 
greater In magnitude than the change In the 
heat capacity. This Is due to the fact that 
expansivity Is determined only by the 
anharmonlc components of the low frequency 
modes of atomic motions, while the heat 
capacity Is determined by both the harmonic 
component, approximately according to the 
Oebye-Elnsteln theory, and the anharmonlc 
component, according to the Grunelsen constant. 

It Is now widely recognized that the 
occurrence of a glass transition 1s an almost 
universal property of the matter In the 
tsotroplcllquld state. Glasses are formed by 
pure or mixed substances of quite diverse 
molecular structures and of varying strenghts 
of molecular Interactions In them. For 
example, the Ionic salts, with their strong 
electrostatic Interactions, organic polymers, 

SlOo. AS2S3, and selenium with covalent 
bonds, alcohols with hydrogen bonds, mixtures 
of pyridine with other rigid molecules with 
possible charge transfer Interactions and 
simple organic liquids such as decalln with 
weak Van der Maals Interactions and mixtures 
of metals al supercool to form a glass. For 
our discussion, therefore, a distinction based 
upon their structural features, resulting from 
variations In the strength and directionality 
of Interactions, Is not worth maintaining. In 
view of the aforementioned features, several 
commonly accepted attributes of glasses should 
now be abandoned. These are: the structural 
Isotropy, optical transparency, brittleness 
and poor electrical conductivity. Glasses 
made from nematic, cholesteric and smectic 
liquids are anisotropic, and those made from 
mixtures of metals are quite opaque for 
visible light, have a strength approaching the 
ultimate attainable and are excellent 
conductors of electricity. It also now needs 
to be recognized that no particular feature of 
Inter- or Intramolecular bonding Is 
necessarily required for the formation of a 
glass, although the ease with which 
crystallization can be prevented seems to 
depend to some degree on the molecular 
complexity. 

The Nature of the Glassy State 

The glassy state of a material Is 
thermodynamically unstable for two reasons, 
(1) the excess free energy of the supercooled, 
or "superpressed" liquid over the crystalline 
solid and (11) th.* free energy barriers which 
resist changes In the position of the 
molecules and make the state metastable with 
respect to an already metastable but 
Internally equilibrated state of the 
supercooled liquid. Thus a glass Is 
thermodynamically unstable In a sense which 
differs from that In which the metastable 
supercooled liquid Is unstable and other 
amorphous states are unstable. This 
Instability causes the state of a glass to 
ultimately move Into a series of states which 
are continuous with the states of the 
metastable supercooled liquid aboe Tg. 

In the glass transition range an extensive 
thermodynamic variable such as V, S or H of a 
material varies with temperature In a manner 
Illustrated In Fig. 1. The curve 
corresponding to the equilibrium liquid Is 
labelled AGn. According to the rate of 
cooling employed, the material departs from 
Its equilibrium behaviour at, say a point G, 
at Its glass transition temperature, Tg, and 
proceeds along GG). However, the material can 
be cooled at a higher rate, so that It departs 
from an equilibrium at T > Tg at a point F' 
and proceeds along F'F'i, or cooled at a 
lower rate so that It departs at a T < Tg at 
a point F and proceeds along FF]. The ’ 
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Fig. 1: The variation of thermodynamic 
properties of a liquid and a glass with 
temperature and with time. 

configurational state of the glass at any 
point on these three lines will correspond to 
one of the configurational states of the 
equilibrium liquid at point G.f or F, 
respectively. If the temperature of the glass 
is held constant at the value of the 
property in question will move along a 
vertical line towards the value of the 
equilibirum liquid at a rate which depends 
mainly on Tj. If the glass is now heated at 
a certain rate the properties will not retrace 
the original path but follow a curve OD'C 
which would lie below the equillbirum line 
AGq. Thus even when the cooling and the 
heating rates are the same, and the 
thermodynamic variables decrease monotonically 
on cooling, on reheating they tend to fall 
below the cooling curve as the transition 
temperature is approached, and Increase more 
rapidly at a higher temperature in the 
transition region as if to "catch up" with the 
properties of the equilibrium liquid. The 
heat capacity and thermal expansion show a 
hump at the highest temperature as a simple 
consequence of the relaxation during the 
course of heating. 

By using ideas drawn from statistical 
mechanics, Simon (4), gave a qualitative 
explanation for the glass formation and the 
zem point entropy of a glass. He suggested 
that, as a liquid is cooled through its 
transformation temperature, the molecular 

motions which are necessary to affect the 
appropriate change in configurations are 
increasingly inhibited and finally become 
practically impossible in the duration of 
one's experiment. Thus an order parameter z, 
whose variation with temperature describes the 
energy added to or taken from the liquid on 
account of changes in potential energy due to 
changing configurations, is frozen in at this 
temperaure. Part of the heat capacity 
corresponding to changes in potential energy 
is thus eliminated; the configurational 
contribution to any other property similarly 
disappears and the liquid ceases to be in a 
true (metastable) thermodynamic equilibrium. 
If one waits longer the structure irreversibly 
moves to its equilibrium state of lower volume 
with a different value of z, with evolution of 
heat. This draws attention to the possibility 
of variation in the structure of glasses which 
have been obtained by cooling at different 
rates. 

Several analyses of the glass transition 
have been made from relationships (5) between 
the changes in Cp, V, a and G at Tg. 
By extending the ideas of Simon ana the 
theoretical treatments of Ehrenfest (6) and 
Prigogine and Oefay (7), Davies and Jones (5) 
have shown that at equilibrium at Tg the 
Gibbs' free energy with respect to ! is 
minimum and, 

Af)/Aa » TVAa/ACp, or ADACp/TVAa2 . 1 

If more than one order parameter is required, 
the Prigogine-Defay ratio, A|JACp/TVAaz > 1. 
The measured ratio is generally > 1, therefore 
more than one :arameter is needed to describe 
the state of a glass. 

The basic supposition of Simon's picture 
that the configuration of a glass remains 
frozen-in between OK and Tg - is difficult 
to Investigate directly by x-ray or other 
methods, but indirect methods of investigation 
of molecular motions in a glass, utilized many 
years after Simon's suggestion, ndicate that 
the configurational state of a glass may not 
remain unchanged between Tg and OK, for 
certain degress of molecular freedom remain 
available at temperatures well below Tg. 
This, of course, also makes it difficult to 
assign a single parameter z to a glass. 

Nature of Disorder in Some Unusual Glasses 

It has recently been observed that changes 
in the thermodynamic properties and dielectric 
relaxation in a manner phenomenologically 
similar to the glass transition also occur 
when orientationally disordered, or plastic, 
crystals (8,9) and the mesomorphic states of 
liquid crystals (10-12) are supercooled below 
their transformation temperatures to an 
ordered cyrstal. Although disordered, the 
glass-like or glassy states in such cases have 
certain characteristics of the completely 
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ordered cyrstalllne state, that Is their 
structures have a long range order for 
molecular positions or for molecular 
orientations. In orlentatlonilly disordered, 
or plastic crystals, the situation Is 
reminiscent of spin glasses, vnereln the 
centre of mass of the molecule has a 
translational Invariance but the orientations 
of molecules are random. The transformation 
temperature from a disordered to a completely 
ordered structure of the crystal Is analogous 
to the freezing point of a liquid. In the 
case of mesomorphic states of certain liquids, 
the long rigid molecules cannot pack together 
without Inducing correlations In their 
relative orientations, and although their 
molecules do not lie on a regular lattice, the 
situation 1$ akin to magnetic ordering wherein 
the structure of the glass obtained by 
supercooling the liquid crystal has long range 
order for molecular orientations. 
Cyclohexanol Is an example of the first type 
of glass (13) and the nematic phase of 
o-hydroxy-p-methoxybenzylidlne p-butylanllIne 
(10, 11) of the second type of glass. 

It Is also noteworthy that the glass-Hke 
transition In an orlentatlonally disordered 
crystal occurs at about the same temperature 
as the glass transition In the liquid phase of 
the same substance, for example, glass 
transition In liquid cyclohexene and the 

glass-like transition In Its orlentatlonally 
disordered cyrstalllne state both occur at 81K 
(8,14) and both the glass transition In liquid 
ethanol and glass-like transition In Its 
disordered crystal occur at about 97K (15). 
In such cases It Is possible to determine the 
contribution to heat capacity that arises 
entirely from positional disorder In their 
glassy state. The change In the heat capacity 
of ethanol (~40 JK-^ mole*') Is 50X 
higher for a glass than (~28 JK-' mole~l) 
for the glass-like transition of Its 
orlentatlonally disordered crystal. 

All three types of disorder, namely, (1) 
orientational and positional, as In ordinary 
glasses, (11) positional, as In glassy liquid 
crystals, and (111) orientational, as In 
glassy crystals, are observed In an Ice 
dathrate, whose crystal structure Is shown In 
Fig. 2. Its lattice Is formed by water 
molecules hydrogen bonded In a framework of 
closest packing of polyhedral cage-like 
structures, which are occupied by molecules of 
a suitable size known as guests. The centre 
of mass of the guest molecules does not lie at 
the centre of symmetry of the cage they 
occupy, and they are randomly oriented. Thus 
there Is no long-range order for either their 
positions or their orientations. Certain 
guest molecules Inside the dathrate cages 
become ferroelectrlcally ordered at low 

IIXl 

Fig. 2: The crystal structure of ice dathrate of type II in space group Fd3m. 
The unit cell is marked by the border and is redrawn from Johari (J. Chem. Phys. 
74, 1326 (1981)), and its size a given. Circles represent oxygen atoms. The 
arrangement of hydrogen atoms is disordered, but they lie close to an oxygen atom 
along the line joining the two oxygen atoms. Molecules that occupy the cages are 
not shown. To the right is a drawing wherein most of the symmetry of the dathrate 
crystal is retained. The unit cell (drawing) can be produced by rotation, trans¬ 
lation inversion (rotation by 180°) and/or reflection of a structural unit 
(motif), cube (square), whose edge (side) is equal to à(a/sin 45°) . The 
unit (motif) lies with its corner at the center of the unit cell (drawing) and 
whose edge (side) coincides with either of the two diagonals. The change from 
a three- to a two-dimensional representation reduces the dimensions of the unit 
cell in the drawing toia/sin45°, such as to contain only four complete motifs. 
The space groups of drawing is pmm (No. 6 on p. 61 in International Tables for 
x-ray crystallography, Kynoch Press, Birm.ngham, 1965) but in a square system, 
instead of rectangular given in the International Tables. The drawing is in Esther's style. 
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temperatures. At such temperatures there Is a 
long-range order for the orientations of the 
guest molecules but no long-range order for 
their positions. Water molecules that form 
the framework of cage-like structures have no 
long-rang? order nf their orientations, but 
their centre of mass Is translatlonally 
Invariant. The structure also bears a certain 
resemblance to a glass for the reason that It 
has a relatively large unit cell (a glass has 
an infinitely large unit cell, and a crystal a 
very small unit cell). 

An Entropy Paradox 

The explanation givey by Simon (4) for the 
behaviour of a liquid near Tg, while 
essentially correct, raises an Important 
question regarding the thermodynamic state of 
the equilibrium supercooled liquid at 
temperatures below Tg. In principle, but 
not In practice. It is possible to follow the 
equilibrium liquid below Tg along AGn in 
Fig. 1, by waiting for a long time, to a 
temperature where the liquid may have the same 
entropy, enthalapy and volume as the 
corresponding ordered crystalline state. If 
so what order parameter or structure can be 
envisaged for a liquid whose entropy is equal 
to that of the crystal? Kauzmann (16) pointed 
out that the situation becomes paradoxical, 
for an extrapolation of S, H and V of the 
liquid towards absolute zero along AGq 
suggests that the supercooled liquid could 
reach an entropy lower than the cry-tal. By 
considering the variation with tempi ature In 
the structure of the liquid below Tg, which 
was suggested by the model of Nott and Gurney 
(17), Kauzmann deduced that the probability of 
relaxation of a liquid Into a crystalline 
state becomes much higher than the probability 
of relaxation Into an amorphous state of lower 
energy. The liquid state, therefore, cannot 
be maintained below a certain temperture, 
because crystallization would occur first and 
the situation becomes moMphysIcal rather than 
physical. Any attempt to resolve the paradox 
Is operationally meaningless. But It seems 
necessary to resolve It, for the behaviour Is 
associated with the cause of the rapid fall of 
entropy with temperature near Tg. Several 
theories (18), have attempted to do so by 
arguing that the molecular shapes of certain 
atactic vinyl polymers cannot pack In a 
regular array when in their lowest energy 
configuration and their crystalline forms do 
not exist. Thus a disordered state near Gq 
Is possible. Kauzmann's view Is however 
supported by the observation of rapid 
crystallization of glycerol at T < Tg (19) 
and by the presence of crystal-1 ike short 
range order In vitreous silica observed from 
refined x-ray studies (20, 21), but the 
question regarding a thermodynamic transition 
remains in this poorly understood problem of- 
phase transition. 

Glass Transition In a Stable Phase? 

The glass formation as a rule occurs at 
temperatures where the liquid, or the plastic 
crystalline phase. Is metastable with respect 
to a completely ordered crystalline state, and 
this Is part of the reason for the entropy 
paradox. But one of our most abundant 
orlentatlonally disordered crystals, hexagonal 
Ice, seems to be an exception to this rule, 
for It shows a decrease In the heat capacity 
and a relaxation of enthalpy In the 
temperature range 90-110K for HoO Ice (22) 
and 110-123K for 020 Ice (23), In a manner 
similar to that observed at the glass 
transition. Yet Ice does not undergo a 
disorder -» order transformation above 100K. 
The dielectric relaxation time for the two 
ices in their respective temperature range is 
103-104s (24) which, being comparable to 
the time scale of a thermodynamic experiment, 
suggests that the dielectric and enthalpy 
relaxations Involve similar types of physical 
processes. Near 100K, Ice has relaxatlonal 
characteristics slmlla'- to those seen In 
liquids near Tg (25), ^hlch means tiat 
molecular configurations In Ice at this 
temperature may differ In energy by an amount 
comparable to kT, but a disorder -» order 
transformation does not occur. The decrease 
In the heat capacity at the glass-like 
transition temperature of Ice 1s 0.12 JK'1 
mole"1 (22), which Is too small to allow a 
detailed analysis of the enthalpy relaxation, 
but It Is clear that the paradoxlal situation 
pointed out by Kauzmann cannot exist for Ice, 
for it has no corresponding ordered state 
above Tg. Thus hexagonal Ice appears to be 
a material In which a glass-like transition 
occurs In a stable phase. 

This brings us to a further point of 
Interest, which Is that, contrary to the 
generally held view, and based upon our 
practical experience on the glass transition 
phenomenon, it seems that there Is no 
thermodynamic reason for a glass transition to 
occur 1n the supercooled metastable state of a 
liquid or of a crystal. In an analysis of the 
relationship between the relaxation rate, 
temperature, and pressure, It has been 
Inferred that the melting curve of glycerol 
would cross the glass transition curve In a 
temperature pressure plane at negative 
25 kbar, and that below this pressure the 
glass transition In glycerol would occur above 
Hs melting point (26). Such a high negative 
pressure Is certainly well above the tensile 
strength of glycerol and Is not attainable. 
The argument, however, does suggest that for 
substances In which the entropy of fusion Is 
small or the volume of fusion Is large, It may 
be possible to achieve a pressure, temperature 
condition at which the glass transition would 
occur In a stable phase above the freezing 
point of the liquid. Thus while a resolution 
of Kauzmann's paradox Is experimentally 
Impossible because of the near-infinite time 
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needed to reach an equilibrium state below 
Tfl, It Is possible to find conditions In 
which the paradox cannot exist. Negative 
pressures of ~1 kbar can at present be 
produced and glass transition of certain 
liquids under such pressures can be studied. 

Phenomenological Theories of Glass Transition 

In view of the variety of molecular 
Interactions In the liquids which are known to 
form glasses, one Is faced with the choice of 
either rejecting the various ad hoc structural 
theories and developing a phenomenological 
theory of glass formation, or developing a 
different theory for each type of glass. 
Since glass transition Is a phenomenon of 
almost universal occurrence, several theories 
assign to It a thermodynamic character, but It 
Is generally agreed that the progressively 
rapid Increase In the viscosity, or decrease 
In the molecular mobility, on cooling Is a 
correct explanation for the experimentally 
observed glass transition (27). It seems that 
this view Is also subject to revision, for 
plastic crystals do not show a Newtonian flow 
and It Is difficult to assign to a mesomorphic 
liquid a certain viscosity the Increase In 
which on cooling causes the liquid ultimately 
to behave as a glass. Nevertheless, the 
basically relaxatlonal characteristic of the 
glass transition In Isotrpolc liquids Implies 
a shear modulus G for â liquid, a relaxation 
time T, and a shear viscosity n(-îG), 
properties which can be studied from acoustic 
or other measurements. Therefore, the theory 

of glass transition Is closely related to the 
theory of viscosity. The problem Is that we 
do not, as yet, have a theory of viscosity of 
liquids, based on principles of molecular 
dynamics. The present theories for the 
viscous flow of liquids which form glasses 
are, therefore, necessarily crude depending 
more upon physical Intuition than mathematical 
or physical rigour. But In general all 
theories of glass formation attempt In some 
way to explain a temperature dependence of 
viscosity near Tg according to an empirical 
equation proposed Independently by Vogel (28), 
Fulcher (29) and Tamman and Hesse (30), 

In n • In n0 ♦ [B/(T - T0)] (1) 

Here B, nn and Tq are experimentally 
determined parameters. Tg represents an 
experimentally Inaccessible state point of 
Infinite viscosity, which can be obtained by 
extrapolation. If T0 • OK, Eq. (1) becomes 
an Arrhenius equation but nu variation of 
no or B with T In an Arrhenius equation 
can give Eq. (1). Considerable significance 
has been attached to this quantity for one 
Infers It to be the point representing a 
singularity (31) (as, for example, the 
Curle-Welss temperature) In the behaviour of 
the eqjlllbrlum liquid. 

Several measurements of n (32,33) at 
temperatures close to Tg Indicate an 
approach towards Tq ■ 0Ü. But It Is not 
certain whether It Is an artifact of an 
experimental method or whether It Indicates 

Fig.3: The approach toward Tg of the dielectric relaxation rates of 
several types of substances, me temperature at which th* curves 
Intersect the baseline is Tg. The source of data are: 1(11),2(35) 
3(78) and 4(36). 
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the dominance of another process (such as of 
hydrogen bond breaking and reforming In 
alcohols). However, It should be remebered 
that the magnitude of In for the same 
material may vary according to the accuracy of 
the data or the length of extrapolation used 
In obtaining It, but the fact that In most 
cases Tq > OK Is significant, for the 
viscosity (34), and relaxation times measured 
from dielectric (Fig. 3 (35,36)) enthalpy, 
volume, shear or nmr experiments, and the 
molecular diffusion rates, all admit to a 
variation with temperature according to the 
Vogel-Fulcher-Tamman equation, 

Td1el* Tshear* Tvolume> 0 ^. ^ * 

A exp [B/(T - T0)] (2) 

and therefore to a common physical mechanism. 
The temperature at which the glass transition 
occurs Is defined as one at which n = 
10'3P or i « 103s, and the theories for 
It are based upon our conceptual models of the 
free volume and entropy. These can be grouped 
as follows: 

The Free Volume Theories 

The concept that some sort of extra or 
free volume In a liquid Is responsible for Its 
transport property has been employed In 
several statistical thermodynamical theories 
of the liquid state (37-41), as It has 
generally been considered that, through the 
cooperation of several degrees of freedom, the 
random accumulation of free volume, as a 
result of Its redistribution In a liquid, 
forms a void or a hole of molecular dlamater. 
Molecular transport occurs when a molecule 
moves Into this void. The probability of 
formation of voids decreases with the 
macroscopic volume and at low temperatures 
when the total volume Is small, this 
probability becomes small and the Inability of 
the molecules to diffuse causes the glass 
transition. Thus the motions of molecules 
below T„ are no longer translational within 
a free volume, but rather vibrational as In a 
crystal. The heat capacity and expansivity at 
Tq therefore decrease to values similar to 
those of the crystal. Fox and Flory (42) were 
first to consider the glass transition In 
polymers as being due to a decrease In the 
free volume to some small value. But the 
development of a theory based on this concept 
began after Doillttle (43, 44) showed that the 
viscosity of hydrocarbons at T » Tq can be 
represented by an empirical equation. 

n = A exp (bv0/vf) (3) 

where A and b are empirical constants, vq Is 
the Van der Waal's volume of the molecule at OK 
and vf Is the free volume given by, Vf » v 
- vq, wherr* v Is the average volume per 
molecule In the liquid. Williams, Landel and 
Ferry (45)have also shown that the viscosity 
and d\electr1c and shear relaxation times of 

amorphous polymers can be given by an 
empirical but "Universally" applicable 
equation, 

C?(T 

<T - V 109 aT * 109i(?) “ 109^) * -ql 
q 9 

where Ci and C¿ are "Universal" 
constants for polymers. If the fractional 
free volume f(=Vf/vQ) Increases above Tg 
according to. 

f(T) = f(Tg) ♦ Of(T - Tg) (5) 

where of has the dimensions of thermal 
expansion coefficient, Eqs. (3) and (5) can be 
combined to obtain Eq. (4), and the empirical 
constants can be written as, 

C9 = b/2.303f(Tg), C9 = f(Tg)/of. 

of = 480 MK and f(Tg) 0.025 

These values In Eq. (4) Imply that glass 
transition In polymers occurs at a temperature 
when the free volume Is equal to 2.5X of the 
molecular volume. 

The formulation of the approximate 
molecular theories of glass transition Is 
based on the Stokes -Einstein relation, that 
the self diffusion coefficient, 0, of nearly 
spherical molecules Is Inversely related to 
the viscosity, by. 

0 . (kT/3*a0)/n (6) 

where k Is the Boltzmann constant and ag Is 
the diameter of the sphere corresponding to 
the volume of the molecule. Bueche (46) has 
given a theory for the glass transition In 
polymers by assuming that movement of a 
segment of a chain Is possible only when the 
local fractional free volume exceeds a certain 
value. From considerations of random 
fluctuations In local free volume, he showed 
that Eq. (2) can be obtained at low 
temperatures, but at high temperatures the 
relaxation rates vary according to an 
Arrhenius equation. Thus Bueche's theory for 
glass transition In polymers seems consistent 
with the experimental data. 

A theory of molecular transport based on a 
model of molecules or atoms as hard spheres 
was given by Cohen and Turnbull (47) almost 
concurrently with the other developments of 
similar types (48). Their treatment 1s based 
upon the following three assumptions: 

(1) on a molecular scale, an average local 
volume v Is associated with each atom or 
molecule and the excess of v over a 
certain critical value vc (of 
molecular volume) Is the free volume, 
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Vf(»v - VC), 
(11) the free volume Is continuously 

redistributed with time and no local 
free energy Is required for the 
redistribution; thus Its distribution Is 
entirely random, and, 

(111) molecular transport occurs by the 
movement of atoms or molecules Into a 
void of approximately atomic or 
molecular size which Is formed as a 
result of the redistribution of the free 
volume. 

Although diffusion In Eq. (6) Implies 
that, when a molecule moves. Its surroudlng 
molecules forming the 'cage' move 
simultaneously, Cohen and Turnbull assumed the 
cage to be stationary so that a translational 
Jump of the molecule across the void within 
Its cage Is possible. Now the probability 
that n Increments of free volume of the 
average size Vf would accumulate Is directly 
proportional to ~(l/e)n where n = 
vc/vf, or to exp[-yvc/vf]. Thus the 
diffusion coefficient, 

0 = D0exp[-Yvc/vf ] (?) 

where Og Is proportional to the molecular 
diameter and the gas kinetic velocity and y 
Is a constant with a value between 0.5 and 1. 
This Is similar to Eq. (3) If D Is Inversely 
proportional to n. The difference between 
the two equations Is that In Eq. (7), the Vf 
Is Introduced at a certain temperature Tg, 
(Vf = 0 at T * Tg) while In Eq. (3), Vf 
Is Introduced at OK (vf = 0 at T = 0). That 
Is the total volume v = vg + Avc ♦ vt, 
where Avc(.v(Tg) - vg) can be thought 
of as that excess volume, which, In contrast 
to Vf, requires a local free energy for 
distribution. The shift factor Avc seems 
Justified on the basis of Lennard-Jones pair 
potential function of a molecule Inside a 
"cage" as a function of the cage radius. For 
small cage radius, at T < Tg, a large energy 
would be required for the redistribution of 
vf, while for a sufficiently large radius, 
corresponding to the nearly linear region of 
the potential energy curve, the free volume Is 
redistributed with no energy change. Thus If 
a Is the average expansivity and vra the 
average molecular volume In the temperature 
range Tg and T, 

Vf « av^T - Tg) at T > Tg, (8) 

and, 

Vf = 0 at T < Tg 

Combining Eqs. (6), (7) and (8) gives the 
Vogel-Flucher-Tamman equation, and yvc of 
Eq. (7) Is numerically close to vg In the 
Doolittle equation (3). 

The Entropy Theory 

Gibbs (49) has asserted that a 
thermodynamic consideration for glass 
transition Is necessary, by sayl ig In effect 
that the mere explanation of a phenomenon 
being a rate process does not explain the 
phenomenon; It merely shifts the point of 
emphasis. It Is Intuitively obvious that 
molecular relaxation rates must have an 
explanation In the ground state and the 
lower-lying excited states of a system and, 
therefore, must admit to a thermodynamic 
origin. This has been Ignored In the concept 
of the free volume theory. 

Gibbs and DIMarzIo (50) have developed a 
thermodynamic theory of glass transition which 
Is applicable to specifically polymer 
molecules. In polymer molecules, single 
carbon-carbon bond allows rotational freedom, 
but there are potential barriers that resist 
the rotation. Above Tg, enough thermal 
energy is available, the barriers are crossed 
frequently, and each polymer molecule has 
available to It a distinct number of possible 
spatial conformations. Associated with each 
of the spatial conformations, there are a set 
of vibrational states for the whole molecule 
corresponding to the bond stretching, or 
libration, within the potential well but these 
states do not Interact with the external 
translational and rotational states of the 
molecule. The rotation about any one bond of 
a molecule depends on the state of the 
neighbouring bonds of the same molecule and on 
the distances and Interactions between the 
non-bonded groups. Thus they Introduced the 
need for cooperative Interaction between the 
restrictions to the rotation about the C-C 
bonds by Indicating that characterization of 
the hindrance, or restriction, to the rotation 
about any Individual bond may not In general 
be Independent of the conformation of the rest 
of the molecule. Therefore, It Is necessary 
to consider the energy of conformation of each 
molecule as a whole. There are several minima 
In the potential as rotation about the ?* 
angle associated with a C-C bond occurs but 
Gibbs and DIHarzIo assumed that all minima 
except the lowest have approximately the same 
depth. The polymer chains are flexible and 
since their conformational state changes with 
time, they have a high entropy. The 
statistical thermodynamics of such states In a 
polymer liquid Is described by the 
quasl-lattlce model of Meyer (51), Flory (52) 
and Huggins (53), which was also used by Gibbs 
and DIMarzIo. The special usefulness of the 
model here Is that approximations In It have a 
less serious consequence for polymers than for 
simple molecules, for one can Justifiably 
treat less rigorously the external rotational 
and translational degrees of freedom of 
molecules than one can the Intramolecular or 
Internal degrees of freedom. The mathematical 
formulation of the partition function Is given 
In an article by Gibbs (49), but qualitatively 



U follows that, on cooling, the polymer chain 
would assume a conformation for which each 
rotational coordinate occupies the minima of 
lowest energy. Thus the flexibility of the 
chain of molecules, or their ability to choose 
among many different configurations decreases 
with temperature. This decrease causes a 
corresponding decrease In the number of ways 
In which molecules can be packed together on a 
lattice. The number of ways of packing, which 
Is directly related to the entropy, rapidly 
decreases with temperature such that at a 
finite temperature It becomes unity and the 
configurational entropy becomes zero. The 
theory therefore suggests a thermodynamic 
phase transformation of Ehrenfest type at a 
temperature. To, at which the 
configurational entropy Is zero. This 
temperature Is represented by point Gq In 
Mg. 1. Since the glass transition Is a 
kinetic rather than thermodynamic process, 
caused by the progressively Increasing 
viscosity or some other kinetic property, 
Gibbs and DIMarzIo proposed that the 
difficulty In packing together of the polymer 
molecule, or the Increase In the stiffening of 
the chain, Is reflected In the difficulty of 
producing a configurational change and hence 
an Increasing viscosity. The thermodynamic 
and kinetic behaviour are thus Interrelated. 
The suggestion Is that the kinetic behaviour 
observed at Tg 1s In a sense a reflection of 
the second order thermodynamic transition one 
would observe at T2 If the metastable liquid 
In the equilibrium state could be studied 
below Tg. The plausibility of this unique 
suggestion, of course, cannot be 
experimentally tested, but the value of To 
can be obtained by extrapolation. In a plot 
of heat capacity against logarithmic 
temperature, T2 Is the temperature at which 
the area enclosed by this curve, and by the 
curve of heat capacity of the crystal Is 
exactly equal to the entropy of fusion of the 
liquid. The vaue of T2 thus obtained Is 
usually 15-20% lower than the calorimetric 
Tg. The theory, therefore, seems to resolve 
tne entropy paradox, by suggesting that at a 
point Gq In Fig. 1. the liquid settles down 
Into Its ground state(s) of amorphous packing 
and appears to have undergone a second order 
thermodynamic transition. The dearth of 
available configurations at temperatures far 
above T2 causes the glass transition and 
thus a kinetic phenomenon Intervenes In the 
approach of a liquid towards Its second order 
thermodynamic transition; the singularity at 
T2 Is the basis of glass transition. 

Adam and Gibbs (54) have extended these 
Ideas by finding a minimum size of molecular 
group capable of rearranging at a given 
temperature. They showed that this size, 
hence the rearrangement probability, Is a 
function of configurational entropy, 
sconf(=s(T> - s(t2>> according to. 

W(T) » Aexp(-C/TSconf) 

and 

T = TQ exp(-C/TSconf) (9) 

where C Is a constant. 

T 
Glnce, Sconf = I ACpdlnT, and ACp = Cp(11qu1d) 

^2 
- Cp(cyrstal) «T-', Eq. (9) can be 
written In the form of the 
Vogel-Fulcher-Tamman equation (2), with T2 = 

To- 

Extension of the Free Volume Theory 

The treatment of glass transition within 
the concepts of free volume has been carried 
further (55,56) to Include the decrease In 
entropy on cooling and here support has been 
sought from experiments of a quite different 
nature. In recent years studies of molecular 
dynamics of hard spehres (57) have suggested 
the existence for a relatively long time of 
cellular or cage structures In dense liquids. 
Cohen and Grest assert that this Justifies the 
assumption that In liquids the movement of 
each molecule Is restricted to within Its 
cell, or cage, which Is defined by Its nearest 
neighbours. Kirkwood (58) had envisaged the 
existence of such cells In liquids and by 
assuming that all cells are Identical, had 
defined a communal entropy, Sc, which arises 
from the diffusion o# molecules throughout the 
entire volume of the liquid. This Is given by 

F = $ h - TSC, (10) 

where F Is the free energy and f^ Is the 
free energy of the atom or molecule moving 
within Its own cell In the mean potential of 
Its neighbours. (This Is Implicit In 
delocalizing of the atoms as we go from a 
crystal to a disordered fluid. In a crystal 
each lattice cell contains no more than one 
atom; In the limit of an Ideal gas the number 
of atoms In any small test volume fluctuates 
over a Poisson distribution, and In the 
In-between range of density Sr Is some 
function of the volume.) In the extended 
treatment all postulates regarding the free 
volume remain the same as In the original 
Cohen-Turnbull's description (47). The local 
free energy f^ of a cell depends only upon 
Its volume v1t f = f(v) and Eq. (10) becomes 

F = N J P(v)[f(v) + kTlnP(v)]dv - TSC (11) 

where additional entropy term P(v) Is the 
probability that a cell has a volume v. Cohen 
and Grest consider that the local 
free-energy-function f(v) represents two 
conditions (1) the negative of the work needed 
to remove the molecule from the Interior of a 
cage of volume v, fn(v) and (11) the work to 
expand the cage to the volume v from Its 
average value, f'j(v). The contribution from 
(1) Is assumed to vary with cage volume In the 
same manner as the Intermolecular pair 
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potential with pair separation, but that from 
(11) Is complicated, for It depends upon the 
state of neighbour of the particular cage. 
The total local free energy f(v) » fo(v) ♦ 
fl(v) Is, however, an approximately 
quadratic function of v, when the cage volume 
Is less than a certain critical volume, vc, 
but has an additional linear term when v > 
vc. Thus when v < vc the cells are 
solid-like and when v > vc they are 
llquid-llke. Only I1qu!d-llke cells have a 
free volume. vf » v - v,.. Part of the 
local free energy depends only upon the 
average Vf and remains unchanged by any 
redistribution of Vf among the Uquld-Hke 
cells. Such an exchange occurs only within 
the llquid-llke cells which are nearest 
neighbours and which have a sufficiently large 
(but temperature-dependent) number of other 
llquid-llke cells as neighbours. During the 
exchanges, the volumes of any neighbouring 
sol1d-lIke cells are unaffected. Thus a 
minimum size of the cluster Is defined within 
which an exchange In free volume without 
restrictions by the neighbouring solld-llke 
cells can occur. This notion leads directly 
to the Introduction of percolation theory, 
which Is used to describe the generation of 
communal entropy. When the fraction of 
llquid-llke cells Is above a critical value, 
there Is an Infinite connected llquid-llke 
cluster and the material Is liquid. But when 
It Is below this value, only finite 
llquid-llke clusters are present and a glass 
phase exists. 

A discussion of the entire derivation Is 
beyond our scope but In essence atoms diffuse 
when a cell volume of v,,, or greater occurs 
as a result of redistribution of the free 
volume within a cluster. For diffusion to 
occur, the total free volume within a cluster 
of size v must be greater than Such a 
cluster Is a liquid cluster and each molecule 
or atom In It moves through the entire 
cluster. The configurational space of each 
molecule Is available to any other within the 
cluster and this generates the conmunal 
entropy, Sc, which only enters the free 
energy as TSC. Thus the size of the liquid 
cluster v > vm/vf where Vf Is the 
average free volume. Clusters of this size 
are frozen-1n at temperatures below Tg. 

The theory Is capajle of describing the 
changes In the thermodynamic variables usually 
associated with the freezing out of diffusion 
near Tg, but It also predicts a first order 
phase transformation (with latent heat and a 
discontinuity of macroscopic volume) at a 
temperature Tp. which Is not very far below 
Tg, from a liquid to glass r ase, l.e. from 
a state of an Infinite connected cluster of 
llquid-llke cells to the state of finite 
clusters. The viscosity of the liquid 
according to the theory does not follow the 
Vogel-Flueher-Tamman equation, rather It 
predicts a temperature t'0, which Is 

substantially above Tg and at which the log 
n Increases approximately as T'l/2 
according to the equation. 

log10n » A ♦ 2B/(T - t’0 ♦ [(1 . j’0)2 * 

constant x T]1/2} 

The prediction Is tnat near t'0, there Is a 
gradual change In the behaviour of viscosity 
with temperature, but there Is no single 
temperature (except OK) at which n 

A Critique. Other Views and Conclusions 

it , ine '■wu types or 
theories lies In their qualitatively correct 
exp i?ítíons of 9lass transition using the 
equilibrium thermodynamic properties. One Is 
based on the model of hard spheres, or the 
Inert gas type of glasses, and the second 
applies only to flexible macromolecules, or 
polymers. Neither can be expected to explain 
the behaviour of a wide variety of supercooled 
1'quids near Tg. but, while some of the 
Incompatibility of the free volume theories 
with the observed pressure dependence of 
viscosity has been removed by allowing vn to 
depend both upon T and P (59), several 
objections (of a fundamental nature) to 
accepting this theory remain. As Anderson 
(31) has pointed out, one Is the physically 
Implausible assumption of a constant value of 
expansivity from T * Tg (where Vf « 0) to 
T > Tg, and the second Is of a constant 
Avc between absolute zero and T0, which 
Is necessary In order to avoid a conflict with 
Van der Waal's equation (which requires T0 » 
OK). I think the fact that the expansivity Is 
not constant within any range of T Is Implied 
In Doolittle's (44) analysis, but apparently 
has been ignored by Cohen and Turnbull (47) 
His preference for the variation of n with 
free volume by Eq. (3) was based on his 
finding that viscosity could not be fitted to 
the Andrade or Arrhenius equations. If, as 
Cohen and Turnbull assume, the expansivity 
remained constant with T, Eq. (3) would be 
equivalent to the Andrade or Arrhenius 
equations. It Is difficult to see how the 
Introduction of a temperature-dependent 
expansivity In Eq. (8) could be reconciled 
with the documented success of Doolittle's 
Eq. (3). 

strictly a theory for self diffusion. The 
diffusion coefflcent, D. In Eq. (7) Is related 
to n by Eq. (6). But I think the 
assumptions Inherent In the two equations make 
them mutually exclusive, not complementary 
In the derivation of Eq. (6) It Is assumed 
that the cage surroudlng the molecule moves 
with the molecule, but In that of Eq. (7) the 
cage remains stationary so that the 
translational jump across a void within Its 
cage Is possible. It seems that the 
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consequences of some of these approximations 
become apparent In Cohen and Grest's (55, 56) 
calculations of the effect of annealing on the 
position of the heat capacity anomaly In a 
temperature plane. The theory shows, contrary 
to the experiments (Fig. 1), that annealing of 
a glass shifts the temperature of Its heat 
capacity anomaly downwards and that the lower 
the annealing temperature, the larger the 
shift. 

Neither of the theories explains the 
distribution of dielectric or volume 
relaxation times or the retarded elastic 
deformation characteristic of liquids near 
T_. They also do not provide a satisfactory 
explanation of the state of a liquid below 
Tg along the path GGq (Fig. 1). In the 
extended free volume theory, the arlval at a 
percolation threshold with decreasing volume 
on cooling below T„ Is suggested to cause a 
first order transition to an amorphous ground 
state of fixed configuration (55), and the 
entropy paradox thus seems to have been 
resolved. But It Is possible to supercool 
through a first order transition and be led 
Into a more complicated situation (In which 
the equilibrium liquid Is metastable with 
respect to the amorphous ground state as well 
as to the ordered crystalline state), without 
resolving the paradox. The entropy theory 
suggests that the configurational state of a 
liquid Is frozen-1n at T < Tg and there Is 
no further decrease In the configurational 
entropy from Tg to OK. The presence of 
secondary relaxations and configurational 
degrees of freedom In a glass Indicate that 
this suggestion Is oversimplified, therefore, 
making a resolution of the entropy paradox 
difficult. Furthermore, the weakness of the 
entropy theory In resolving this paradox Is 
Inherent In Flory-Hugglns (52,53) 
approximations of a lattice model and Gujarati 
and Goldstein (60) have suggested that the 
explanation of the paradox Is an artifact of 
the model. 

There Is also a difficulty In 
understanding how the communal entropy of 
Klrkwod's equation and of Cohen and Grest's 
theory can be generated In orlentatlonally 
disordered crystals, where the molecules are 
confined to the sites of a periodic lattice. 
As mentioned here earlier, these crystals show 
a loss of entropy and a decrease In the 
relaxation rate on cooling In the same way as 
ordinary liquids; and In some cases the loss 
Is more In the glass-like state than In the 
glassy state of the same substance. One would 
therefore consider that the similarity of the 
entropy loss In "true" glasses to that In the 
orlentatlonally disordered glass-like states 
of crystals Is evidence for the Important role 
of factors other than communal entropy In the 
glass transition. 

A theory of glass transition should not 
merely be a theory of self diffusion related 
to viscosity by Elnsteln-Stokes' or some other 

/ 
V 

J 

empirical relation. It should also explain, 
as Goldstein (61) has emphasized, how the 
external stress biases a local molecular 
rearrangement, and how this rearrangement 
produces an Irreversible racroscoplc 
deformation of a liquid. Goldstein himself 
provides a tentative explanation by 
considering a potential energy barrier picture 
for viscous flow In which the configurational 
state of a liquid can be specified as being In 
any one of the minima 1n a (3N +1) 
dimensional potential energy surface for an N 
particle system. The state point of the 
liquid may be considered to drift In a random 
walk fashion among the many possible minima of 
varying depths. (This feature alone 
distinguishes a liquid from an ordered 
crystal.) The deep minima are less numerous 
and are separated by larger potential 
barriers. Thus a temperature dependent 
activation energy Is associated generally with 
a decreasing configurational entropy. At a 
low temperature, therefore, a glass, like a 
crystal, Is at or near a potential energy 
minima. The clarity and physical Insight of 
Goldstein's description Is difficult to 
Improve upon, and his picture leads to an 
understanding of how an Initial reversible 
strain becomes Irrecoverable after a period of 
time in leras of the erasure, through a series 
of local rearrangements, of the memory of the 
original potential energy surface and the 
concommltant generation of a thermodynamically 
equivalent new surface. The picture, whose 
thermodynamic formulation has been possible 
(61), thus Incorporates the essentially 
coooeratlve character of the relaxation 
process with a consequence that retarded 
elastic deformation Is a phenomenon associated 
with viscous flow, and the relaxation process 
Involved In shear has a distribution of 
relaxation times. The cooperative character 
here means that molecular motions cannot be 
treated In terms of a smoothed out 
quasicontinuum, or In terms of binary 
encounters, but rather as a gradual dying-out 
of the encounters with distance In a certain 
local region. It also suggests the 
possibility of some molecular motions at T < 
Tg of the same type that are Involved In the 
viscous flow. 

The e are several other suggestions that 
focus attention on an extra volume as "holes" 
or "defects* of uniform size, randomly 
distributed In a liquid. Molecular relaxation 
occurs when a defect diffuses to a molecular 
site. The original treatment of the defect 
diffusion due to Glarum (62) has been extended 
by Phillips si si. (63) to explain the 
viscoelastic behaviour and the extended 
treatment predicts a viscosity according to 
the Vogel-Fulcher-Tamman equation. Another 
sophisticated treatment of the “hole model" 
has been given by Nose (64). However, there 
Is a difficulty In reconciling these and the 
other free volume type treatments as a 
description of an occasionally found glass 
transition, which occurs with a negative 
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change In expansivity (65). There Is a 
further difficulty, for,In their simplest form, 
such models are two-state, one-order- 
parameter descriptions and do not agree with 
the observation that Prlgoglne-Defay ratio 
generally exceeds unity. The entropy theory 
has two parameters: (1) the fraction of the 
flexible bonds motions about which contribute 
to Cp and (11) the number of holes which 
contribute to a and 0. If both parameters 
freeze at T„ then the Prlgoglne-Defay ratio 
Is >1. Taken together these findings seem to 
give strong reasons for preferring an entropy 
or energy as a basis for discussion of glass 
transition. 

Molecular Mobility In Glasses - 
Secondary Relaxations 

It Is Important to realize at this point 
that not all molecular mobility ceases to 
occur In a glass at temperatures below T„. 
In addition to the llbratlona!, rotational, 
and stretching vibrations of atoms or 
molecules, there are small scale atomic or 
molecular rearrangements that continue to 
occur In glasses to temperatures of several 
Kelvins. (These should not be confused with 
the molecular motions associated with the 
Irreversible change In the physical properties 
on annealing of a glass (66) or to those 
Involved In tunneling between the 
configurations corresponding to the asymmetric 
double-well potentials (67).) The evidence 
for these Is generally from dielectric and 
mechanical relaxation (68) and from nuclear 
magnetic resonance (69) studies which reveal 
them as secondary relaxations. Their average 
time scale Is usually several orders of 
magnitude lower than the time scale of the 
motions responsible for the main relaxation, 
or viscous flow. The latter, though 
Imperceptably, also of course continues to 
occur In glasses. 

relaxation below T„ (35) for which this p 
explanation Is not valid. In silicate i*1 
glasses, wherein the assumed network structure 
Is Inconsistent with the existence of r. 
Individual molecules, two types of 'r 
explanations have been offered: relaxation of r 
the network Itself Involving hindered motions C 
about silicon-oxygen bonds, or diffusion of 
mobile species from site to site within a 
rigid network (71). ^ 

It Is now considered that the presence 
of some molecular mobility Is an Intrinsic • 
property of the amorphous packing and does not 
require the aforementioned ad hoc 
explanations. Convincing evidence for It Is p 
the presence of secondary relaxations In 
glasses obtained from rigid-molecular \ 
substances (72, 73). The prediction that this 
would be the case for glasses of all types was 
made by Goldstein (61), and was one of the 
consequences of the considerations Implicit In ¡J 
his energy barrier picture for glass 
transition. ^ 

In this picture, one envisages a 
situation where a macroscopic sample of a 
liquid has been cooled Into a rigid condition 
even though certain local regions In It have 
potential minima still accessible to them at 
low temperatures. Argon (74) was led to a 
similar conjecture on the basis of a 
description of delayed elasticity and viscous 
flow In organic glasses, but this possibility 
was originally suggested by Orowan (75), whose 
Ideas were also used In the development of the 
potential energy barrier picture. The 
consideration of this picture has become even 
more Interesting, for Haylor and Goldstein 
(73) have found that the probability 
distribution of the average relaxation times 
for these molecular motions Is such that In 
rigid molecular glasses not one but several 
relaxation peaks appear between 10K and Tg. 

Until some years ago, explanations for 
these types of molecular motions were based on 
ad hoc hypotheses, one for each substance, or 
for a class of substances. They were 
attributed to an Internal degree of freedom of 
the molecule which fortuitously remained 
active even when the molecule as a whole was 
frozen In place In a glassy matrix, although 
It was also known that the same degrees of 
freedom were Inactive when the molecule was In 
Its fully ordered cyrstalllne state. In 
amorphous polymers, the presence of such 
relaxations are often explained by the 
hindered rotation of the molecular group 
attached to the main chain, when the rotation 
about the C-C bond of the chain Itself Is 
imperceptably slow below Tg. Relaxations of 
a similar type when observed In polymers 
without a side group, as In poly (vinyl 
chloride), have been explained by the 
possibility of a special type (crank-shaft) of 
motion of the main polymer chain (70). But 
poly (propylene oxide) also shows such a 

Dielectric and Mechanical Relaxations 

In a glass, the molecular motions of an 
unspecified nature are, of course, occurring 
all the time In the absence of an externa! 
stress; the external stress, by biasing them, 
reveals their existence, although they can be 
studied In the absence of a stress by other 
means. In most experiments the stress applied 
Is either the electric field as In a 
dielectric measurement, or a mechanical 
stress, as In a mechanical measurement, and 
use Is made of the fact that the polarization 
or strain response of a glass to a sinusoidal 
field of a suitable frequency lags behind the 
applied electric field, or the mechanical 
stress. This phase lag results from the time 
necessary for molecular rearrangement, and Is 
analogous to the time lag observed In the 
step-function experiments. If e' and e“ 
are the real and Imaginary components of the 
complex dielectric permittivity and J1 and J" 
that of complex shear compliance, the loss 
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tangent tan4e » (t*/e'), and tanij 
> (JVJ1), and. In most cases, the angular 
frequency at which tan4e or 
tan4i Is maximum Is equal to the average 
relaxation rate of the molecular motions 
Involved. In a mechanical relaxation It Is 
more convenient to measure tan4i at a 
fixed frequency as a function or temperature. 
Since the rate of molecular relaxation given 
by <i>m decreases with temperature according 
to an Arrhenius equation, the average 
relaxation rate Is equal to the frequency of 
measurement at a temperature Tm where 
tan4j or tan4t Is maximum. The 
variation of tan4j with T for the case of 
single relaxation time Is given by, 

tan4j 
(J< - 3«> M/Mm 

and 

• wo exp (-E/RT) 

where Js and J. are the limiting low and 
high frequency values of the shear compliance, 
which are analogous to es and c. of 
the dielectric response. Measurement of 

tan4c at a fixed frequency as a function 
of temperature Is Just as convenient as Its 
measurement with frequency at a fixed 
temperature, but the two measurements, as vie 
now know (73,11) do not give the same value of 
ui, at the same temperature. 

Most mechanical measurements are made at 
frequencies of a few Hz and the value of 
u^, or T, obtained often agrees with the 
corresponding extrapolated value from 
dielectric (60) and mmr studies (69), although 
the shape of the tan4-temperature plots In 
the mechanical and dielectric measurements 
differs. Examples of these types of 
measurements (76,77) for poly (vinyl chloride) 
are given In Fig. 4. 

Though mechanical measurements on rigid 
molecular glasses have not so far been carried 
out, their dielectric studies show an 
essential similarity In the relaxation 
characteristics with amorphous polymers. 
Furthermore, the secondary relaxations In the 
glass-like states of orlentatlonally 
disordered crystals (9,78) and In glasses 
obtained from liquid crystals (11,12) are 
remarkably similar to those In amorphous 
polymers. This suggests that the processes 
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Involved In the secondary relaxation admit to 
the same physical mechanism, despite the 
differences In the complexity of molecules or 
state of their aggregation In the amorphous 
solid. 

Thermodynamic Changes 

If certain localized configurational 
states In the otherwise rigid matrix of a 
glass were to exist, as the relaxation data 
Indicate, then the thermodynamic properties of 
a glass would have contributions from two 
sources: first, the lattice vibrations and 
second, the configurational states. Slmha and 
others (79) have shown that the latter 
contribution to the expansivity of polymers Is 
substantial and Goldstein (80) and Joharl 
(81,82) found that such configurational states 
also make a significant contribution to the 
heat capacity and entropy of a glass. 

The analysis which led to this 
conclusion was uone In terms of the excess 
entropy, Sexc, which Is the difference 
between the calorimetric entropy of the 
dis i dered phase and of the corresponding 
crystalline phase, viz., the residual 
(zero-point) entropy of the two phases has 
been substracted from the entropy Itself. The 
^exc 's evaluated from the difference 
between the area of their respective (CD/T) 
against temperature plots. The value of 
Sexc Increases with temperature In a manner 
seen In Fig. 5 which Is remarkably similar among 
the various types of disordered solids, 

despite the differences In the states of their 
molecular aggregation. As the temperature Is 
raised, there Is a slow Increase In Sej(C 
followed by an apparent tendency towards a 
constant value and then a progressively higher 
Increase beginning at a temperature of 0.8 
Tg, or lower. A discussion In quantitative 
terms of this Increase In Sexc has been 
difficult because It Is not yet possible to 
formulate the potential energy surface of a 
dlsorderd matrix, with small potential energy 
minima, which may account for the secondary 
relaxations observed below Tg. There are 
further complications because the 
configurational and vibrational partition 
functions of a condensed state are not quite 
Independent of each other, as the 
configurational states of lower energy also 
have a higher frequency of vibrations. It has 
been possible, however, to discuss In the most 
general terms what physical changes the 
observed Increase of Sexc with temperature 
Indicates. 

For two phases of a material having the 
same anharmonlc vibrational contributions and 
configurational entropy, the plot of Sexc 
against temperature would resemble the Debye 
heat capacity curve; that Is, with Increasing 
temperature It would hav« an Initial rise 
followed by an approach towards an asymptotic 
value at a characteristic temperature given 
by, 6 = (hv/k) per degree of freedom, of 
the frequencies that differ between the two 
phases. This would be the case also If the 
contribution to Sexc In both phases were 

Fig. 5: The excess entropy of several types of glasses plotted against 
temperature(82). The curves are terminated at Tg. Sexc= 0 at 0 K for 
all glasses. 



entirely vibrational In origin and the 
vibrations were harmonic. If this 
simplification Is accepted then the 
progressively higher Increase In Sexc with 
temperature Is due largely to the 
configurational changes Involving small-scale 
molecular rearrangement and/or Internal 
molecular degrees of freedom. A small 
contribution to Sexc from the difference 
between the anharmonlc effects In the 
disordered and the ordered form Is also 
anticipated, but whether this contribution 
would raise or lower the Sexc Is not known. 
The contribution from anharmonlc effects 
depends upon the changes In the force 
constant, and In the density of states of the 
low-frequency lattice modes with temperature 
and volume, and neither of these changes are 
known for either the disordered or the 
crystalline form. We might expect that the 
magnitude of such changes In an 
orlentatlonally disordered crystal and Its 
ordered form would be similar and therefore, 
the anharmonlc effects would make a much 
smaller contribution to the Sexc of a 
disordered crystal below Tg than to that of 
a glass. The fact that thé two classes of 
solids have a similar Increase In Sexc 
beginning at about 20-00* below their 
respective TgS, suggests that the 
configurational contribution must be 
significant In glasses. But the convincing 
evidence for It comes from measurements of the 
Isopropyl benzene glass wherein a decrease In 
the excess heat capacity occurs near a 
temperature (83) at which the extrapolated 
rate of the secondary relaxation Is ~10" s 
(72). 

The thermodynamic parameters of several 
types of glasses and disordered solids have 
been given earlier (82). These are useful for 
a further discussion of the configurational 
state of a glass. More data of similar type 
for several organic and Inorganic glasses, 
ortho-terphenyl, selenium, poly (vinyl 
chloride) and other polymers have been given 
by Goldstein (84) and Goldstein and Gujarati 
(85). 

Several points of Interest can be 
ceduced from these parameters. One Is related 
to the residual entroy of a disordered solid. 
It Is generally assumed that a glass Is In one 
of the configurational states associated with 
a certain potential minimum of the liquid at a 
temperature Tg. Thus the residual entropy 
of the glass corresponds to the 
configurational entropy of the liquid at 
Ta. The analysis (80-85) shows that 
AS(Tg) Is considerably higher than 
AS(OK). The fraction of the entropy 
difference at Tg and OK ranges from 0.2 to 
0.7 for a variety of disordered solids, l.e. 
2C-70X decrease In the entropy of these 
materials occurs on cooling from Tg to OK. 
It Is apparent that a significant Fraction of 
the configurational heat capacity above Tg, 
comes from small-scale configurational changes 
that also occur In the disordered solid, and 

therefore the thermodynamic properties of a 
disordered solid are not determined solely by 
the vibrations of a rigid lattice In which 
every atom Is bound to a fixed site. 

The vibrational contribution to the 
excess entropy Is of some significance 1r. the 
discussion of the glass transition. As 
discussed here earlier, Kauzmann (16) pointed 
out that. If the curves of entropy, volume and 
enthalpy of the liquid phase were extrapolated 
toward absolute zero, the liquid phase would 
have, paradoxically, a smaller entropy and 
vol.me than the crystal at absolute zero. The 
point raised by Kauzmann, and Its further 
consideration by Gibbs and OIMarzlo, are based 
on the assumption that the vibrational Cp of 
the liquid Is equal to that of the crystal. 
In the treatment of Gibbs and OIMarzlo (50), 
the excess configurational entropy of an 
Internally equilibrated liquid may become zero 
at a certain temperature, but It Is difficult 
to envisage why the excess vibrational entropy 
should also be tending to zero at this 
temperature. Rather, It Is anticipated that 
the entropy of the "liquid phase", having a 
near-zero configurational contribution at 
T, would be higher than that of the crystal 
by an amount related to the difference between 
their Debye temperatures. This difference In 
the vibrational entropy would decrease to 
zero. In most cases, at OK. Unfortunately, 
the Debye temperature has not been determined 
as a function of annealing, or fictive 
temperature, of the glass, but It Is 
reasonable to expect that the excess 
vibrational entropy of the glass, which Is 
substantial according to Fig. 5 (82), would 
not greatly decrease on annealing to an 
Internally equilibrated state of a liquid. 
This view conflicts with the prediction of the 
second-order thermodynamic transition of 
Ehrenfest type In the experimentally 

rann» nf tomnerature below T„. 

Kinetics of Molecular Motion 

The average rate of the secondary 
relaxation In glasses, seen In Fig. 6 
(11,35,36,78) varies with temperature, 
according to the Arrhenius equation with an 
activation energy between 18 - 40 kJ mole- 
for different materials. Since this value Is 
much lower than the "activation energy" for 
the rate of the main relaxation or of the 
viscous flow near Tg, It follows that at a 
certain temperature above Tg, where the 
liquid Is less viscous, the rates of the main 
and secondary relaxations should be equal. 
Therefore, the two curves of the rates of the 
respective molecular processes In a T 
plane should merge above Tg. This 
conclusion was In fact reached from results on 
rigid molecular glasses (72), an example of 
which Is shown In Fig. 7 (36). Experimental 
difficulties have prevented the observation of 
the merger of the two curves and, therefore, 
the viscosity or the molecular diffusion rate 
of the liquid at which this Is Inferred to 
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occur U not known. But the situation can be 
qualitatively understood In terms of the 
potential energy barrier picture of glass 
transition (61, 9). In this view, the 
configurational state of a glass Is trapped In 
one deep minimum In a multidimensional 
potential energy surface. This deep minimum, 
which Is associated with a configuration 
representing the barriers for the main 
relaxation, has In It multiple 'locar minima 
of varying depths separated by potential 
barriers smaller than those that separate the 
deep minima. The main configuration can be 
graphically represented as a deep well ln tue 
configurational space with £ "rough and 
corrugated" bottom rather than a round one. 
The configurational changes Involving the deep 
minima determine the rate of the main 
relaxation. An Interpretation of the results 
according to this view means that, as a glass 
Is heated from OK, the lower energy barriers 
become surmountable to Its confIguiatlonal 
point, while the deep minima In which a given 
configurational state Is trapped remain 
largely unaltered. If this continued to occur 
on heating then at a certain temperature above 
Ta, there would no longer be a distinction 
between the respective minima Involved In the 
molecular rearrangements that give rise to the 
main and secondary relaxations. This 
temperature would be the one at which the 
processes apparently merge. Above this 
temperature the configurational points are 
likely to involve the many minima separated by 
small potential energy barriers and changes 
between these states would be observed only as 
what appears to be the secondary relaxation. 

The kinetics of these molecular motions 
has two more distinct features. One Is that 
they apparently Involve a wide distribution of 
relaxation times (9, 12). The half width of 
their relaxation spectrum Is 4-6 decades of 
frequency - In constrast to 1.14 decades, 
which Is characteristic of a Oebye-type single 
relaxation time - and It Increases further on 
cooling. No distribution function has been 
able to account for the width of the spectrum 
and It has generally been considered that the 
spectrum represents a sum of several single 
relaxation processes, each being Debye-type. 
The second feature Is that the total 
polarization associated with the secondary 
relaxation rapidly decreases with temperature 
(9,86). While this obviously Indicates a 
gradual decrease on cooling In the number of 
molecular groups that contribute to the 
polarization. It also suggests that the excess 
entropy of a glass arising from these 
molecular motions should decrease with 
temperature, as discussed earlier. 

Relation with the Equilibrium Liquid 

The inference that the rate of the 
secondary relaxation In a glass becomes equal 
to the rate of the main relaxation at a 
temperature above Tq, raises the question 

whether the secondary relaxation and the 
molecular motions responsible for It continue 
to occur at T > Tg or whether Its existence 
Is associated with the thermodynamically 
non-equilibrium and, as In some cases 
mechanically strained, state of a glass. In 
effect, we are asking, will the secondary 
relaxation In a glass persist If It Is allowed 
enough time to become an equilibrium liquid? 
To answer this question measurements have been 
made at temperatures above the calorimetric 
T„ and these have shown the presence of 
secondary relaxations In several molecular 
glasses (36). Similar results have been found 
also In he rubber region (above Tg) of poly 
(ethyl methacrylate) (87,88). Thus the 
molecular m^nns In a glass are a 
property of the equilibrium liquid state above 
T Calculations of the dipole moment from 
the magnitude of polarization suggest that 
nearly 20-50% of the total polarization at T > 
Ta Is due to the secondary relaxations (9). 
This percentage Is comparable with the 
magnitude deduced from an entropy analysis 
(82), suggesting that nearly 30-70% of the 
configurational heat capacity or entropy of 
the liquid arises from molecular motions 
»   T .. _ J (a. FO 1 A Y/lt \ OH . 

These results have an Immediate 
consequence for our understanding of disorder 
In liquids, for It seems to be required that 
secondary relaxations have their origin In the 
configurational states of the liquid which 
remain essentially unaltered during the glass 
formation. If one accepts the existence of 
the two types of molecular motions In the 
liquid, a theory of glass formation should 
account for: (1) the bifurcation of the curve 
of the relaxation rate at T > Ta In a manner 
seen In Fig. 7, (11) the progressive 
separation on cooling of the main from the 
secondary relaxation and (111) the rapid 
Increase In the magnitude of the main and a 
decrease In that of the secondary relaxation 
at T < V The existence of two relaxation 
regions in a liquid and glass merely reflects 
the difference between the average time scales 
of the molecular motions Involved. 

Relation with the Non-equilibrium In Glasses 

One of the characteristics of the glassy 
state Is that Its thermodynamic properties 
change on annealing or on changing Its fictive 
temperature, thus the lower the fictive 
temperature of a glass,the lower Its residual 
(zero point) entropy. But annealing seems 
also to cause a decrease In the number of 
molecules which contribute to secondary 
relaxations (72). This conclusion was based 
upon the finding that the height of the 
secondary relaxation peak decreased on 
annealing. This conclusion has been subject 
to doubt, for mechanical measurements on 
several polymers (89) seem to show that 
annealing has no effect on the secondary 
relaxations, but causes the high temperature 



"tall* of the broad spectrum of the main 
relaxation to shift to a lower temperature, 
thus carrying with It a fraction of Its 
contribution to tanf at temperatures where a 
secondary relaxation Is observed. 

Hadoad and Goldstein (90) have given a 
new turn to this problem by suggesting that 
the analysis of the results of annealing Is 
considerably more complicated by the presence 
of a frequency-Independent background 
dielectric, or mechanical, loss on which the 
secondary relaxation peak Is superposed. This 
loss, being an order of mangltude (or more) 
higher In the amorphous solid than In the 
corresponding crystal, also has a Tn 
dependence, and the decrease In the height of 
the secondary relaxation peak on annealing may 
be partially due to a decrease In the 
background loss Itself. Though they did find 
evidence for a decrease In the mangltude of 
the secondary relaxation In two cases, the 
resolution of this problem Is not difficult. 
During the course of Isothermal annealing. If 
tañí In the spectrum decreases more at low 
than at high frequencies, the decrease In the 
height of the secondary relaxation peak Is due 
predominantly to a shift toward lower 
frequencies of the main relaxation. If tañí 
decreases by nearly the same amount at all 
frequencies, the observed effect Is due 
predominantly to a decrease In the background 
loss. But If tañí decreases more at higher 
than at lower frequencies, or the decrease 
Itself Is maximum at some frequency, the 
effect Is due predominantly to a decrease In 
the number of molecules contributing to the 
secondary relaxation. Using these as 
criteria, dielectric measurements made on a 
rigid-molecular glass, on polymers (35) and on 
nematic (11) and cholesteric (12) glasses and 
mechanical measurements on a chalcogenlde 
(AspSe^g) show direct evidence for the 
decrease In the magnitude of the secondary 
relaxation on Isothermal annealing. Thus the 
Irreversible thermodynamic changes on 
annealing, or a decrease of fictive 
temperature, of a glass decreases the number 
of molecules Involved In Its secondary 
relaxation. The excess entropy of the 
quenched glass over an annealed one (80,84) 
must arise partially from this effect. 

The above discussion leads to a 
different type ol question, namely. Is there 
an equilibrium magnitude of the secondary 
relaxation at a certain temperature at a point 
along the line AG0 In Fig. 1? The answer Is 
that there must be, for It has been shown 
earlier that the magnitude of the secondary 
relaxation has a certain fixed value In the 
equilibrium liquid above Tg. But, If so, 
would there be a secondary relaxation at the 
hypothetical temperature Tq or To at point 
Gq In Fig. 1? it seems a definite physical 
possibility that the magnitude of the 
secondary relaxation would be very small, If 
any, at this temperature. There Is no 
experiment to test this assumption directly, 

but, on the other hand, no existing result 
contradicts It. Some Idea as to whether this 
could be the case may be gained from 
measurement of the effect of volume on the 
magnitude of the secondary relaxation and 
extrapolating to a volume corresponding to the 
point Gq In Fig. 1. 

Possible Molecular Orloln 

It Is generally agreed that both the 
main and secondary relaxation processes should 
Involve major rearrangements In the position 
and/or orientation of several molecules In a 
certain local region and that these motions 
probably Involve a distribution In the heights 
of energy barriers. But a distribution In the 
heights of potential energy barriers resisting 
the molecular Jumps, though responsible for 
the presence of some molecular mobility In a 
glass, would not produce two separate maxima. 
Instead, It would suggest a spreading out of 
the dielectric or mechanical relaxation 
spectrum over a wide frequency range. It 
would seem necessary to assume a form of 
density of states *5 energy relationship, 
different from that Inferred from 
thermodynamics. If secondary and main 
relaxations are to be thought of as two 
different processes. 

It Is conceivable, after Williams and 
others (91,92) suggestion, that molecular 
dipoles may exist In a variety of different 
environments, and may be partially relaxed by 
local motions In their particular 
environments; and this local motion may appear 
as a high-frequency, or secondary relaxation. 
The rest of the p2 that Is not relaxed by 
local motions may relax slowly by the grosser 
process of the co-operative mlcro-Brownlan 
motion of the environment Itself, and this may 
appear as main relaxation, with Increasing 
temperature the rate of mlcro-Brownlan motion 
increases much more rapidly than that of local 
motions, and therefore at T > Tg the curves 
of the two relaxations (Fig. 7) merge. Thus 
the correlation function for a dipolar 
reorientation Involves both the main and 
secondary relaxations. Reid and Evans (93) 
have considered a similar picture but have 
extended It by showing that the main, and 
secondary relaxations, and the absorption at 
Infrared frequencies are continuous and 
represent the evolution with time of a single 
ergodlc process whose long time behaviour Is 
given by the main relaxation. While this Is a 
reasonable picture of dielectric relaxation of 
a polar molecule Interacting with a smoothed 
out quasi continuum. It falls to account for 
the very broad spectrum of relaxation times, 
the non-Arrhenius behaviour of Eq. (1), and In 
particular, the variation In the magnitude of 
the two relaxations with temperature. 

A second possibility Is that a glass Is 
structurally nor-unlform and that a number of 
statistically distributed regions of low 
density, In which a molecule or molecules can 
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slt with non-equivalent probabilities In many 
possible orientation sites, exist In Its 
structure. The secondary relaxation nay then 
be envisaged as arising from hindered rotation 
of some molecules In these local regions, 
which are encaged by a larger region wherein 
the requirement for a concerted, or a 
cooperative, motion has made relatively 
Immobile the arrangement of the majority of 
molecules. The motion of the molecules In the 
local regions Is analogous with the motion of 
guest molecules In a dathrate structure (94, 
95), where the orientations of the molecules 
forming the cage lattice are relatively 
fixed. With this analogy In mind It Is easy 
to envisage how nearly all the characteristics 
of secondary relaxation can be anticipated. 

At any point Inside a cage of 
Ill-defined geometry the electrostatic field E 
determines the distribution of barrier heights 
through contributions of the form it-E. Thus 
the presence of a broad distribution of 
electrostatic fields and field directions 
Imposed by the molecules surrounding a given 
local region would lead to a highly variable 
perturbation of the potential energy function 
that describes the short range Interaction 
between the molecule at any of the several 
points In the local region and Its fixed 
neighbours. As no symmetry of the field Is 
Imposed Inside the local region by the 
surrounding "rigid" molecular matrix, the 
orientation of the molecule In question would 
become distinguishable from an Isotropic 
reorientation, and thus the secondary 
relaxation would depart from a single 
relaxation time. Furthermore, the potential 
energy contours In the different local regions 
would be far from Identical, thus further 
causing a wide distribution of the relaxation 
times. The asymmetry of the loss spectrum Is, 
therefore, mainly attributable to the effect 
of E from the surrounding molecules In 
lowering the barrier to rotation of the 
molecules within the local regions. (For 
example, E would tend to lower the barrier 
between two orientations most favoured by the 
field direction and to raise the barrier 
between those less favoured. The net effect 
Is that the absorption Is more at low 
frequencies than at high and the loss spectrum 
becomes asymmetric.) 

It also follows that the magnitude of 
the secondary relaxation would Increase with 
temperature, and the loss spectrum would 
become narrow, for the orientations favoured 
by the electrostatic field become less 
populous as kT Increases. Furthermore, the 
number of such "Islands of mobility* would 
Increase with temperature because of a 
concurrent decrease In the size of the 
"cooperatively* rearranging regions. The 
Increase In the magnitude would occur at the 
expense of the contribution due to the main 
relaxation. This of course has been observed 
In several molecular glasses (9) and In 
polymers (87,88). 

The number of such local regions In a 
glass, where molecules can admit different 
orientations, would, under Isothermal 
conditions, decrease with the molecular volume 
and therefore with the fictive temperature of 
the glass. The magnitude of the secondary 
relaxation would then be lower for an annealed 
glass than for one obtained by fast cooling, 
as discussed earlier. 

At a T > Tg, the total dipolar 
reorientation would be hindered by the 
potential energy barriers that are different 
from those Involved In the cooperative 
rearrangements. At very high temperatures, 
therefore, the secondary relaxation would be 
similar to that seen In liquids and In 
orlentatlonally disordered crystals at the 
microwave frequencies. This Is shown In 
Fig. 7, where the dashed line Indicates a 
possible extension of the rates of the main 
relaxation process. It Is evident that the 
rate of the secondary relaxation In the glassy 
state extrapolates linearly to very close to 
the values of the relaxation rates at room 
temperature and above, with an Arrhenius 
energy at 24.4 kJ mole*^. Although the 
extrapolation may not be entirely unambiguous. 
It Is significant that the secondary 
relaxation has about the same Arrhenius energy 
as the relaxation process seen In liquids at a 
viscosity of several centlpolses. 

One may conjecture, therefore, that In 
liquids, both the cooperative and hindered 
types of molecular rearrangements occur at T > 
T„. The relative contribution of the main 
and secondary relaxation processes to the 
transport property varies with the 
temperature. As the liquid approaches Tg, 
there Is an Increasing proportion of 
cooperative molecular process In the 
rate-temperature plane. This can be 
considered the main relaxation. The glass 
transition occurs at the cessation of this 
relaxation on the time scale of one's 
measurement. The secondary relaxation, which 
Is due to the hindered rearrangement of the 
molecules, continues to exist through the 
complete temperature range of the liquid and 
the glass. 

Molecular Notions and Structure of a Glass 

It Is obviously necessary that the 
existence of molecular motions associated with 
the secondary relaxations should be treated as 
a part of the theory of liquids or at least 
should be taken Into account In considering 
the models for the microstructure of a glass. 
The most familiar models Involve dense random 
packing (96,97), microcrystals (98), 
dislocations (99-102), mixed clusters of 
competing polymorphs (103,104), disciInatlons 
(105) and mixtures of disciInatlons and 
dislocations (106). These different 
possibilities, however, are not mutually 
exclusive. But, within the general features 
associated with amorphous packing, the 
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molecular mobility may be Interpreted In two 
ways. The first Is to suggest that the 
short-range structural states resulting from 
density fluctuations In the liquid at Tg are 
frozen In the glass. Thus a glass has two 
types of molecular environments (36): (1) 
where the structure Is relatively loose and 
molecules can undergo hindered rotations 
(regions referred to as 'Islands of 
mobility*), and (11) where the structure Is 
closely packed and cooperative rearrangement 
responsible for the main relaxation occurs. 
In this view a fraction of the total number of 
molecules contribute to the secondary 
relaxation. 

The second Interpretation has all 
molecules In a glass In essentially equivalent 
environments of Its dense packed structure, 
but each molecule capable of moving by a small 
angle In a relatively short time, followed by 
a large angle movement over a very long time, 
the former being responsible for the mobility 
In the glass and the latter for Its main 
relaxation or viscous flow. The small angle 
Jump Is a necessary prior step to the long 
angle Jump. In this view all molecules 
contribute to the secondary relaxation. 

The main difference between the two 
Interpretations Is that the first assumes a 
non-ergodlc behaviour of the relaxatlonal 
states In the structure of a glass, the second 
assumes an ergodlc behaviour In that all 
molecules go through all their relaxatlonal 
states as a function of time. There Is a 
basic objective to the latter assumption for 
an amorphous solid (31), but there are other 
objections to accepting the second 
Interpretation, which are based on 
experiments. For example, according to this 
Interpretation the annealing of a glass should 
decrease the rate of secondary relaxation In 
the same manner (but to a lesser extent) as It 
does the rate of main relaxation. This has 
not been found. Furthermore, It does not 
explain why the probability distribution of 
relaxation times Is centred about at least two 
average values, and why nematic, cholesteric 
and smectic glasses containing rod-like 
molecules show a relative magnitude of the 
secondary relaxation much smaller than that 
found In the Isotropic glasses (11,12). 

It seems therefore that the pursuit of 
the amorphous cluster models Is more promising 
for the structure of a glass. The basic units 
of the structure may be polyhedra, or highly 
ordered regions such as microcrystals, 
connected by loose Interstitial packing 
(graphically referred to as "glue* or 
'connective tissue*), where molecular motions 
are possible even when the polyhedra are fixed 
In place (107). Since thin films of nematic, 
cholestrlc and smectic glasses are 
anisotropic. It may be argued that the 
polyhedra In the structure are not 
microcrystals or crystal nuclei arrested In 
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various stages of their growth, for a random 
arrangement of such polyhedra of the amorphous 
cluster model would produce a macroscoplcally 
Isotropic, not anisotropic, structure. 

Conclusions 

During the ten years following the 
suggestion that the existence of molecular 
motions Is an Intrinsic property of the glassy 
state and has to do with the amorphous packing 
rather than with the molecular shapes, size or 
degrees of freedom, a considerable amount of 
experimental evidence has been obtained to 
determine the characteristics of these 
motions. But the understanding of the 
molecular process Itself Is ende and merely 
Intuitive. The explanations for It In terms 
of the structure of a glass, or the energy 
states In a multidimensional configuration 
space are restatements of the problem and may 
seem tautologous, without a predictive value. 

In an apparent tradition following 
Tamman (108), who likened the Increase In 
viscosity with the phenomenon In clays of the 
rigid Jamming together of the platel Ike 
particles when the Interstitial water 
separating them falls to a critical 
proportion, and Simon (4), who considered an 
order parameter for their molecular 
description, most scientists have given to 
glasses some sort of structural or geometric 
description (96,97,100,102,109-12) Involving 
mlcrocrystallltes, vitrons, amorphons, etc. 
Amongst them, Hoare (113), following Bernal's 
description (96), has generated Icosahedral 
model; which might be regarded as basic units 
In the structure of a glass. Such structures 
exist because It Is possible to place only 12 
spheres around a fixed one, and yet be able to 
move each of the 12 spheres on a tangential 
surface. When the spheres are arranged as 
regularly as possible they form a regular 
Icosahedron, which has the remarkable property 
of possessing six symmetry axes each having a 
five fold rotation. Such an axis Is 
Incompatible with a group of translations and 
therefore Is not crystallographic. Thus It Is 
not possible to build a crystal by adding more 
spheres to the unit of 13. Hoare (113) has 
generated such structures containing 115 atoms 
Interacting with a Lennard-Jones potential. 
The Implication Is that the basic units 1n the 
structure of a glass can also be well-packed 
polyhedra of high symmetries connected 
together by loosely packed Interstitial 
regions In which molecular motion Is still 
possible. This can also be an explanation for 
the almost universal Intrinsic mobility of a 
glass. 

Several other questions, however, remain 
unanswered. If the mobility In a glass at 
T < Tg Indicates the availability of certain 
configurational states In some local regions 
outside the dusters, how can the variation 
with kT of such states In a composite of 
clusters can be quantitatively explained. We 
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do not as yet know If thara Is a distribution 
In the size of such clusters or If there Is a 
fixed number of clusters at each temperature 
below T-. The structural theories of glass 
must take Into account such changes with 
temperature. 

FURTHER COMMENTS 

Since the time of the Workshop on Relaxation 
Effects in Disordered Systems, when these 
lectures were given,several developments in 
the experimental studies and theoretical 
concepts of the glassy state have occurred. 
Those within the context of the preceding 
text are briefly outlined in the following. 
Others may be found in the articles of the 
various authors. 

Mishima, Calvert and Whalley(114) have 
recently obtained an amorphous solid water by 
application of a high pressure to an ice 
crystal, which irreversibly destroyed its 
crystallinity. This amorphous solid has a 
dtisity substantially higher than that of the 
vapour-deposited amorphous solid water or 
supercooled glassy water. This seems to 
further suggest the existence of polymorphism 
in the amorphous state of water. MacFarlane and 
Angel 1(115) have now concluded that no change 
in the heat capacity prior to crystallization 
occurs on heating the amorphous solid water 
they obtained from vapor phase deposition. 
Thus the vapor-deposited amorphous solid water 
shows no glass transition temperature. This 
has put into question the correctness of several 
experiments by others who have found a glass 
transition temperature in the heat capacity 
measurements on heating the solid. It is 
difficult to judge the significance of 
MacFarlane and Angelí's(115) recent results, for 
they did not ascertain that an amorphous solid 
state of water was formed in their vapor 
deposition experiments. It seems that the 
paradox regarding the unability of the 
structural state of the supercooled water in 
approaching the structural state of vapor- 
deposited amorphous solid water without violating 
the third law of thermodynamics has remained 
unresolved, thu:, pointing to the existence of 
polymorphism in the amorphous state of solid 
water. This seems even more likely now after 
the discovery by Mishima, Calvert and Whalley 
(114) of yet another well characterizzble phase 
of the amorphous solid, whose properties do not 
extrapolate to the properties of liquid water 
in a simple manner. 

Mayer*s(116) experiments further show that 
the x-ray diffraction pattern of the glassy 
water obtained by depositing fine liquid 
droplets on a substrate substantially differs 
from the x-ray diffraction pattern of the vapor- 
deposited amorphous solid water, but agrees with 
that of the jet-cooled glassy water he had made 
earlier by cooling in a cryomedium(117). He 
seems to have thus confirmed the difference in 
the structures of the two amorphous solids. 

From the differential thermal analysis of the 
various vapor-deposited amorphous forms of solid 
water, Mayer and Pletzer(J. Chem. Phys. 80, 
2939 (1984) have clearly shown the occurrence of 
polymorphism in the amorphous state, as was 
suggested here. 

It is possible to conceive a molecularly 
or atomically disordered arrangement like that 
of a glass in a glasslike state of an orient- 
ationally disordered crystal. In such crystals, 
the centre of mass of the molecule does not 
exactly lie at a lattice site. Thus one may 
consider a molecule as an assemblage non-synm- 
etrically distributed about a lattice site. 
The assemblage may be represented by several 
unequal-sized spheres, each of which is able to 
acquire any of the several positions relative 
to the other but all remaining within the asse¬ 
mblage near the lattice site. This mutual 
orientations of the separate sphere would be 
equivalent to a positional disorder of the 
spheres. Its pictorial representation is rela¬ 
tively simple. For example, a cyclohexanol 
molecule can be thought of as an assembly 
of two spheres, one representing the 0-H 
group and the second obtained by rotating the 
CfiHn group about a certain axis. All possible 
arrangements of the two spheres within 
constraints of the covalent bond near a lattice 
site can now be pictured. This process when 
repeated at all lattice sites would generate a 
structure in which the arrangement of neither 
of the two spheres has a long range order. The 
orientational disorder can thus be envisaged as 
a positional disorder. 

It is also noteworthy that glass transition 
in the nematic, cholesteric and smectic liquid 
crystals has a certain resemblance to the 
glass transition in metallic alloys and in the 
computer simulated experiments on aggregates of 
hard spheres, where the choice of spheres pre¬ 
cludes the possibility of an orientational 
disorder and where the configurational restri¬ 
ctions that lead to the formation of a glass 
Involve only the positions of the atoms or 
molecules. 

It seems to us that Gibbs-DiMarzio's 
treatment(49, 50) of glass transion of a polymer 
chain is a special case of molecular interactions 
in which atoms can occupy all possible sites 
around each other, but constrained in distances 
and mutual positions by a suitable Interatomic 
potential . In their treatment of a polymer 
chain, the interactions acquire a highly dir¬ 
ectional character of tetrahedral bonding and 
of a fixed distance between the atoms. The 
difficulty of reconciling the theory and the 
Kauzmann's paradox with the existence of the 
entropy associated with secondary relaxations 

still remains. 

From the existence of a secondary rela¬ 
xation peak in the dynamic shear measurements 
of KN03.Ca(N03)2 glass, we have found(118) 
that certain modes of ionic motions may be 
mechanically active but dielectrically inactive. 
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It may therefore seem necessary to study both 
the dielectric and mechanical relaxations 
before concluding on the absence of secondary 
relaxations in certain glasses. The dynamic 
shear studies also show the general occurrence 
of secondary relaxations in glasses(119), which 
have been interpreted in terms of the existence 
of microshear domains(119,120), similar to the 
concept of the islands of mobility, in the 
structure of a glass. 

In recent studies of physical ageing on 
the kinetic properties of a glass by dynamic 
shear measurements, we have found(121) that the 
height of the secondary relaxation peak in a 
chalcogenide glass, As2Sei8iis decreased by 
more than half of its original value after 
isothermal physical ageing for 28 days. We have 
also noted that Struik's data on polymers(122) 
can be explained only if the height of the 
secondary relaxation peak Itself decreased 
on physical ageing. This is contrary to the 
conclusion by Struik(122) that physical ageing 
does not affect secondary relaxations. 

From both dielectric and mechanical meas¬ 
urements, it now seems certain that densifica¬ 
tion of a glass on physical ageing affects its 
properties quite differently than densifica¬ 
tion on cooling or compression. 

Our failure in confirming the applicabi¬ 
lity of time-temperature superposition for the 
real and imaginary parts of the shear modulus, 
G' and G", of polymers(while "good" master 
curves of G' and G" can be obtained by such 
superposition, a master curve of (G"/G') can 
not. We have also argued that the applicabi¬ 
lity of time-temperature superposition would 
in principle violate Curie's Law of inverse 
dependence of modulus with temperature) has 
led us to suggest that the effect of physical 
ageing and the memory effect observed in 
polymers can also be explained in terms of 
changes in the structure of a glass of the 
localized high-volume, high-entropy states, 
which contribute to its secondary relaxations 
(123). 

On the basis of temperature dependence of 
the amplitude of secondary relaxation and its 
dependence on physical ageing, we have pointed 
out(124) that the explanation of secondary rel¬ 
axations in amorphous polymers in terms of the 
motion of the side group is inconsistent with 
the observed decrease in the amplitude of rela¬ 
xations with decreasing temperature. 

Montroll and Bendler(125) have shown that 
the dielectric loss data of the secondary rel¬ 
axation in a rigid molecular glass and in a 
glass-like state of an orientationally disord¬ 
ered crystal can be fitted to Williams-Watt- 
Kohlrausch's function, and it is already known 
that the main relaxation can also be fitted to 
the same function but with very different par¬ 
ameters. This raises an interesting situation, 
namely, that cf the occurrence in time of a 
bimodal probability of a macroscopic dipolar 
relaxation process of the same functional 

form, but different in the shape parameters and 
characteristic times. From their theory, it 
seems Important to understand how raising the 
temperature of a glass brings closer in their 
characteristic times the probability of the 
occurrence of the secondary and main relaxa¬ 
tion processes such that the two processes 
apparently merge at a temperature far above 
T„. 
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Abstract 

Reasons are given for the need to study the 
equilibrium properties of glasses. It is 
shown that some materials have the amorphous 
phase as their lowest temperature equilibrium 
phase. The ubiquitous nature of the glass 
transition is explained by postulating that 
glassification occurs when the configurational 
entropy decreases to a critically small value. 
This postulate is shown to lead to correct 
predictions for glass transitions in polymeric 
systems where the lattice model can be used to 
calculate the partition function. The 
fluctuation-dissipation theorem is used to ex¬ 
plain the observed parallelism in the behavior 
of thermodynamic and dissipative variables near 
the glass transition. Order parameters and 
collective variables are discussed and defined 
and application to glasses is made. A con¬ 
straint on the simultaneous application of the 
William-Watts formula to both dielectric and 
mechanical relaxation is described. 

(I) Equilibrium Considerations 

The first thing we wish to establish is that it 
is meaningful to inquire into the equilibrium 
properties of glasses. Ordinarily, it would 
suffice to state that any collection of mole¬ 
cules has equilibrium properties and that it is 
legitimate to ask what these properties may be. 
Indeed, for most scientists this statement 
carries validity. However, there is a group of 
scientists studying glasses who view that 
glassy behavior consists precisely in the 
nonequilibrium aspects of the materials. Or to 
say it in another way, deviations from equilib¬ 
rium are "the subject matter" in the study of 
glasses. At most, the approach of the material 
towards equilibrium is of interest. For this 
group we give four reasons to study the equi¬ 
librium properties of those collections of 
molecules that we happen to call glasses. 

(IA) Necessity for an Equilibrium Theory of 
Glasses 

(1) The Crystal Phase is not Ubiquitous. In a 
previous paper' we divide all materialinto two 
classes. Class I is crystallizable material 

and Class II is noncrystallizable material. We 
showed that Class II was not null. 

Class IIA consists of many different kinds of 
molecules each of which can take on many 
shapes. Atactic polymer molecules constitute 
an example within this class that are not 
crystallizable. 

Class IIB consists of many kinds of molecules 
each of which can take on only one shape. Such 
systems are the subject of tiling theory . 
Penrose has a system of several (the minimum 
being two) kinds of 2-dimensional molecules 
that can completely cover a surface without any 
repetition of pattern3. a recent paper1* 
generalizes nonperiodic tilings to 3-dimen¬ 
sions. 

Class IIC consists of one kind of molecule that 
can take on many shapes. Many polymer and 
biopolymer molecules are of this type. We can 
perform a gedankln experiment which shows that 
in principle at least, this class contains 
noncrystallizable systems. Let us Imagine 
ourselves to be master chemists and then create 
a polymer molecule so that each shape has the 
same energy as any other shape. The equilib¬ 
rium state of a system of such molecules will 
be an amorphous phase with each shape occur¬ 
ring, even at a temperature of absolute zero. 
This then is our first example. A second, more 
realistic, example occurs when we allow one of 
the many possible shapes to be the lowest en¬ 
ergy shape and let all other shapes be of the 
same higher energy. We choose this lowest 
energy shape to be one which cannot pack in 
regular array in a space filling manner (we 
shall prove later that such shapes exist). At 
high temperatures each of the shapes occurs 
with roughly equal probability. As we lower 
the temperature more and more molecules fall 
into their lowest energy shape. As we approach 
absolute zero all the molecules want to go into 
their lowest energy shape. However, because 
this cannot happen only two other options re¬ 
main. (1) Molecules can always be aligned in 
regular spatial array if we are willing to 
place them far apart from each other. However, 
being master chemists we have made our mole¬ 
cules with strong intermolecular interaction 
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energies so that the molecules must pack 
tightly in space. This leaves only option (2) 
A certain fraction of the molecules fall into 
their lowest energy shape but the remainder are 
free to sample continuously their vast number 
of higher energy shapes. Such an equilibrium 
state is obviously not a crystal. 

To complete the proof we must now show that 
certain polymer shapes cannot pack together 
densely in regular array (i.e., cannot crystal¬ 
lize when all of the molecules have the same 
shape). Let us pick as the lowest energy shape 
one of the many shapes that has linear dimen¬ 
sions on the o-der of r1^^ where r is the mo¬ 
lecular weight. For simplicity it is useful to 
imagine polymer chains on a lattice but a lat¬ 
tice is not necessary to the argument. Imagine 
also that the shape we have chosen is roughly 
spherical in shape, being one of the many such 
random-walk shapes available to a polymer mole¬ 
cule. Now because of close packing the dis¬ 
tance between adjacent molecule centers is 
r1/3. However, the size of the molecules is 
r1/2. Thus, there is a large overlap and exten¬ 
sive mutual interpenetration of neighboring 
molecules. The number of molecules, N, con¬ 
tained in a sphere of radius R - r1/2 is equal 
to the total number of sites within the sphere 
(r3/2) divided by the number sites occupied by 
one molecule (r) 

N - r1/2 (1) 

Now let us make an estimate of the number of 
interferences in two chains whose center of 
masses must of necessity be a distance r1^ 
apart. For large r we can let each of the 
molecules occupy the same sphere of radius 
r1/2- In the following arguments we allow the 
segments of each of the two chairs to doubly 
occupy lattice sites. The shapes of the indi¬ 
vidual chains, however, are chosen so that 
there is no double occupancy of lattice sites 
by segments within the same molecule. The 
probability of a given site chosen at random 
within the sphere being doubly occupied is 1/r 
and since there are r3/2 SUCh sites the 
expected number of doubly occupied sites be¬ 
tween the pair of molecules is r1/2. Since the 
nunber of other chains within the volume is 
(r'/2 -i) we have (r1/2 -1)r1/2 - r as the 
expected number of chains in its neighborhood. 
This is good physics. If a volume is almost 
filled by segments and we place into that vol¬ 
ume a polymer of r segments we expect virtually 
all of the r segments to suffer interference. 
We have then, 

<Nd> - r (2) 

where Nd is the number of double occupations. 
Let us now estimate the probability, p, that a 
chain of fixed a priori chosen shape will not 
suffer Interference from the other (r1/2 -1 ) 
chains occupying the same volume. Let us first 
do the case of Interference between two chains. 

The probability that a given segment of the 
first chain does not overlap any segment of the 
second chain is (l-IZ/r), and the probability 
that none of the r segments of the first chuin 
do not overlap segments of the second chain is 

(1-1/1/r)r - exp(-)/r) (3) 

The probability, p, that the one chain shows no 
overlap with every segment of the otner (r1/2 
-1) . r1/2 chains is 

p - (exp(-/F) - exp(-r) (i|) 

which is a very small number. The numbers we 
have calculated are expectation values and 
there is a small but finite chance that a par¬ 
ticular chain whose shape is picked at random 
may have no Interferences. Indeed we have 
argued that this probability p is given by Eq. 
(4). However, in order for there to always be 
an equilibrium crystalline state every possible 
shape must be able to pack in regular array. 
But this possibility is clearly in contradic¬ 
tion to both Eqs. (4) and (2). These equations 
show that the vast majority of molecular shapes 
allowed to a polymer molecule are shapes that 
cannot pack in regular array in a space filling 
manner without double occupancy of lattice 
sites. 

Real polymer molecules have a range of energies 
associated with their various shapes rather 
than Just two as assumed above. As long as the 
lower energy shapes are of the kind that do not 
pack we know that the low temperature equilib¬ 
rium state will be noncrystalline. This con¬ 
stitutes the third example within Class IIC. 

Class IID consists of systems composed of one 
kind of molecule, one kind of shape. We have 
Just finished proving that the vast majority of 
the enormous number of polymer shapes cannot 
close pack on a lattice. That is to say, we 
proved the existence of Class IID in order to 
prove the existence of Class IIC. But we now 
wish to show that even when the molecule does 
not have an open structure and is compact we 
still may not have a crystalline phase. The 
open structured polymer molecules we have been 
considering have a Hausdorff dimension^ of D - 
dln(N)/dln(r) - 2. Normal globular proteins 
are compact structures and have a Hausdorff 
dimension of 3* It is for such molecules that 
the crystal phase is common and almost univer¬ 
sal. However, we wish to show that even for 
this case there exist molecules that cannot 
crystallize. 

Hoare^ has discussed the problem of densely 
packing molecules that locally at least abhor 
local regular arrangement. A prototype of this 
kind of molecule is a pentagon which does not 
pack nicely because of the nonexistence of five 
fold crystal symmetry. Higher-order regular 
polygons , with numbers of sides that are not 
multiples of 2 or 3, retain this amorphous 
nature and do not pack well locally. Such 
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objects (and their analogues In dimensions 
other than 2) are called amorphons or vitrons'. 
Monte Carlo calculations on such objects always 
result In amorphous liquids . Though sugges¬ 
tive these calculations do not constitute a 
proof of the existence of a low energy 
noncrystalline structure of systems composed of 
amorphons (molecular dynamics calculations on 
these materials would give added weight to the 
conclusion but seem to have not yet been per¬ 
formed). One must be open to the possibility 
that small clusters of amorphons (say three 
pentagons) can pack in regular array. The 
question then is whether there Is a strain 
induced by the attempt to pack the clusters In 
regular array and whether this strain Is suffi¬ 
ciently strong to distort the cluster to the 
point of breaking the crystal symmetry. Al¬ 
though there Is evidence that in Class IID we 
have low temperacure amorphous systems, we must 
admit that for this class and this class alone, 
we have no proof. The other three classes, 
however, have provided us with ample examples. 

Finally, we should at least mention that the 
geometry of amorphous solids whose atoms are 
covalently connected in a nonperiodic three 
dimensional network has been studied exten¬ 
sively. A useful reference is Zallen0. 

(2) Equilibrium Theory Is a Necessary Founda¬ 
tion for Nonequilibrium Theory. The second 
reason for an equilibrium theory of glasses Is 
that equilibrium considerations provide a nec¬ 
essary foundation for all the kinetic theories. 
As an example, consider the fluctuation 
dissipation theorem which relates the 
dissipative measures of material behavior to 
the spontaneous deviations of the material from 
equilibrium". A description of these devia¬ 
tions Is possible only within the context of 
equilibrium statistical mechanics. 

(3) Equilibrium Theory Necessary to Resolve 
Kauzmann's Paradox! The third reason for an 
equilibrium theory of glasses has to do with a 
resolution of Kauzmann's paradox10. If one 
examines the experimental entropy or volume 
curves one sees that as the temperature is 
lowered these quantities stop their precipitous 
descent at the glass temperature and level off 
to appropriate values. Let us suppose that the 
reason for the leveling off Is that kinetic 
considerations have come Into play. Then one 
can estimate the equilibrium properties simply 
by extrapolating the high temperature behavior 
through the glass transition. However, when 
this Is done it is found that Inadmissible 
values of volume and entropy result (negative 
entropies and volumes smaller than crystal 
volumes). This Is the paradox. It appears as 
if "kinetic sluggishness always Intervenes to 
save the thermodynamic day." Kauzmann's obser¬ 
vation actually provides strong evidence that 
there Is a fundamental connection between ki¬ 
netic and thermodynamic quantities. To resolve 
the paradox we must develop an equilibrium 

theory and use It to correctly predict the high 
temperature properties of the amorphous phase 
(above the glass temperature). Only then can 
we with confidence "extrapolate" beyond the 
glass temperature. We simply calculate the 
values of entropy and volume for temperatures 
less than the glass temperature. This opera¬ 
tion defines the word extrapolate. We see below 
that the paradox Is Indeed resolved by the 
thermodynamic theory. 

(4) Agreement with Many Experimental Observa- 
tions. In addition to the above a priori rea¬ 
sons for studying the thermodynamics of 
glass-forming materials, there is also an a 
posteriori one. The thermodynamic theory has, 
in fact, explained many experimental results. 
See below. 

(IB) S„ - 0 Is the Rosetta Stone of the 
Hieroglyphics of Glass Formation 

Long ago (not quite as long ago as the 
unearthing of the Rosetta Stone or the creation 
of hieroglyphics) the lattice model was used to 
calculate the equilibrium properties of bulk 
polymers . Entropy, S, and volume, V, were 
computed and found to agree with experimental 
observations. The equations displayed a second 
order transition In the Ehrenfest sense. This 
transition occurs where the configurational 
entropy, Sc, equals zero, and serves to define 
a transition temperature T2(P). 

SC(T,P) - 0 (5) 

Kauzmann's paradox Is Immediately resolved 
because there Is a break in the slopes of V(T) 
and S(T) at the thermodynamic transition tem¬ 
perature T2. T2 Is a lower bound to the glass 
temperature Tg (T2 < Tg^- The lar8e increase 
In viscosity which occurs as we cool is simply 
understood to be a consequence of the drastic 
reduction In the number of available configura¬ 
tions as we approach T from above. It is more 
difficult for the system to move from one al¬ 
lowed configuration to another as they become 
more and more separated in phase space. This 
fact serves to explain why "kinetics always 
Intervenes to save the thermodynamic day" in 
the Kauzmann construction. 

(IC) Test of the 5,,-0 Hypothesis with Ex¬ 
periment 

In order to compare theory with experiment we 
Identify the observed T with T2 and choose 
experimental data obtained with cooling and 
heating rates of degrees per hour or minute 
rather than faster rates. It Is not necessary 
to Identify T_ with T2; It is sufficient to 
allow the difference Tg - T2 to be a constant. 
It Is not necessary to insist that Sc - 0; It 
Is sufficient only that Sc approach a critical 
small value. The comparison with experiment 
has been adequately summarized In reference 1. 
Here we simply enumerate the comparisons in 

45 



.,. I I. M. I ■ 

h. 

order to display the wide region of applicabil¬ 
ity and to comment on the thermodynamic charac¬ 
ter of the comparison. It Is to be emphasized 
that in all cases the agreement of theory with 
experiment is good. 

1. The glass temperature T is correctly pre¬ 
dicted as a function oT molecular weight 
for homopolymers 11.12. it is shown in 
agreement with experiment that the T. of a 
polydisperse system varies as the number 
average molecular weight. This is a ther¬ 
modynamic result. If glassification were 
primarily a kinetic phenomenon one might 
have expected that viscosity average 
molecular weight was the proper variable. 

2. T vs. plasticizer content curves are cor¬ 
rectly predicted. To first order the main 
determinant of glass temperature depression 
is mole fraction of diluent This result 
is analogous to melting point depression by 
mole fraction of impurity. It also is the 
kind of result that is expected from a 
thermodynamic theory. Glass temperature 
depression is also a function of stiffness 
and size of the plasticizer when the 
plasticizer molecules are large1 

3. T_ of a copolymer as a function of 
copolymer composition both for addition and 
condensation copolymers Is adequately pre¬ 
dicted. Tne formula is the same as that 
for blends1. 

T a9, a function of pressure is calcu¬ 
lated Available experimental evidence 
Is meager because of the difficulty of the 
experiments, but the available results are 
consistent with the theory. 

5. The glass temperature of a rubber is pre¬ 
dicted as a function of stretch ratio and 
as a function of cross-link density . The 
two formulas have two very Interesting 
features. First, only thermodynamic quan¬ 
tities enter into the equations. Second, 
they are parameter free universal equations 
applicable to all cross-linked polymers. 
These equations provide a critical test of 
the thermodynamic views of glassification. 
Available data agree with the predictions, 
but critical experiments have not yet been 
done. 

6. The specific heat discontinuity at the 
glass transition, has been predicted to an 
accuracy of 15Ï without any parameters10. 

An important aspect of the predictions is that 
of the 6 sets of predictions ^ of them are 
no-parameter fits! In set 1, the T_ of the 
infinite molecular weight sample Is required, 
and in set ^ the size of a cell Is a parameter. 
Another important aspect of the comparison with 
experiment is that one does not want the agree¬ 
ment with experiment to be too good! The rea¬ 
son for this is that kinetic effects in glasses 

are Important and we must therefore allow that 
kinetics have sensible effects on our measure¬ 
ments. 

(ID) Critique of a Correct Equilibrium Theory 
of Glasses 

(1) Experimental Data for Glasses Is Pre¬ 
dicted Correctly. It Is a necessary but not 
sufficient condition for the validity of a 
theory that all predictions must be quantita¬ 
tively and qualitatively correct. Section IC 
is an admirable step in this direction in that 
we have attempted to compare the theory to all 
manner of experiments. It is most important 
that the thoery not fail even once. One fully 
documented failure is enough to discredit an 
entire theory and require its revision. In 
addition to the requirement of agreement with 
experiment there are four other conditions 
which are necessary for a theory of glasses to 
be valid. We now discuss these. 

(2) If the Theory Hakes Predictions for Mate¬ 
rials Other Than Glasses, They Too Must Be 
Correct ; even if we do not happen to be inter¬ 
ested in those results. Here we have a happy 
circumstance. The same lattice model that 
predicts the equilibrium properties of glasses 
so nicely also predicts correctly the equilib¬ 
rium properties of liquid crystals! We have a 
logical synergism. The correctness of the 
prediction for liquid crystals argues for the 
correctness of the prediction for glasses and 
conversely. The lattice model shows that the 
root cause behavior of the two classes of mate¬ 
rials is the same. In each case the difficulty 
that the chains have In packing against one 
another in space leads to the transition. The 
case of liquid crystals is understood more 
easily. Imagine rigid rods oriented randomly 
In a solvent. As we withdraw the solvent the 
chains have difficulty packing against each 
other in a random fashion. If we withdraw even 
more solvent from the solution we reach a con¬ 
centration for which the rigid rods can no 
longer pack at random and must align themselves 
along some common axis. This then, explains 
the transition from isotropic liquid to nematic 
liquid crystal. The reader can obtain an ap¬ 
preciation for the packing problem in 2-dimen- 
slons by placing pencils on a table. The same 
packing difficulties occur when an amorphous 
polymer liquid is cooled. The chains being 
semiflexlble stiffen as we cool. Also, the 
volume shlrnks. These two factors (but mostly 
the stiffening) make it difficult for the 
chains to pack. If the chains have the option 
of straightening as they stiffen then they can 
either forr, liquid crystals or crystals. How¬ 
ever, if the chains have as their lower energy 
shapes,^iiat cannot pack on a lattice they sim¬ 
ply get stuck. This is the basis of the glass 
transition. Because there is no energy (or 
entropy) change during the trapping process the 
glass transition is second-order. Because in 
liquid crystals there is an entropy change 
associated with the isotropic chains escaping 
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to the parallel alignment the isotropic liquid 
to nematic liquid crystal transition is 

first-order. 

(3) The Ubiquitous Nature of the Transition 
Must Be Explained. öur explanation of glass 
formation is incomplete because it is applica¬ 
ble only to polymers (it is only for polymers 
that we can calculate the configurational en¬ 
tropy). A equilibrium theory is needed which 
treats low and high molecular weights on an 
equal footing. Configurational and communal 
entropy must somehow merge into the same con¬ 
cept; communal entropy being important at low 
molecular weights. Recent work suggests the 
possibility of a glassy phase even for spheri¬ 

cal molecules 7. 

Another aspect of ubiquity is that some crys¬ 
talline materials can show glassy behavior as 
metastable states. For polymers this is easily 
understood. There are so many ways to pack the 
molecules in the amorphous phase that the one 
(or several) crystalline configuration may 
never be sampled in the time scale of the ex¬ 
periments unless there is a strong energy pre¬ 
ferring it. The question of sampling time is 
also an Important question for low molecular 
weight (even for spherical molecules). 
Nucléation theory shows that there is an ener¬ 
getic barrier to crystal formation at low 
supercooling, while viscosity studies show 
there is a kinetic barrier to crystallization 
at high supercooling. 

(H) The Kinetics of Glasses Must Be Qualita¬ 
tively Explained: It is reasonable to suppose 
that the viscosity and the configurational 
entropy bear an Inverse relationship to one 
another. As we observed in our resolution of 
Kauzmann’s paradox flow consists in the ability 
of a system to move from one allowed configura¬ 
tion to another. It seems obvious that as the 
number of allowed configurations diminishes as 
we lower the temperature they become further 
separated in phase space and, consequently, it 
becomes more and more difficult to move from 
one to another. In the limit of Sc - 0 f ow 
becomes very difficult indeed. Speaking in the 
language of the microcanonical ensemble we 
would suppose that there were no flow. But 
because the system actually behaves in accor¬ 
dance with the canonical ensemble there are 
allowed configurations even below the glass 
temperature and flow, though highly restricted 
is still possible. These ideas need to be 
quantified and, in fact, a treatment by Adam 
and Gibbs18 is an attempt along these lines. 

(5) no Conceivable Alternative Exists. Grant- 
ing that it is meaningful to discuss equillb- 

jm properties of glasses the question of 
alternatives is the same as the question of 
whether we can evaluate the partition function 
more accurately. Obviously, improvements can 
always be made and any present theory will be 
replaced in time by more correct calculations. 
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In the next section we briefly indicate new 
directions. 

(IE) Improved Evaluation of the Partition 

Function Q 

(1) Within the Context of the Mean Field Lat¬ 
tice Model. The theory which in Section (IC) 
gave such good results assumes a crude nearest 
neighbor model for the energy as a function of 
shape. The Isomeric state model as developed 
by Volkenstein 9 and Flory¿u provides a more 
realistic description of chains and can be used 
to implement the more general version of the 
Gibbs-Di Marzlo theory . Also, the stiffness 
energy can be made a function of pressur^ 
Certain experiments seem to require this 

(2) Wlthlji the Context of the Lattice Model. 
De Gennes*5 and des Cloiseaux^ showed that the 
n-0 vector model can be used to evaluate the 
statistics of polymer chains. One hopes that 
the method can be adapted to the case where the 
chain configurations are energy dependent. 
Nagle, Gujrati and Goldstein have argued, cor¬ 
rectly I believe, that the time is ripe for 
better equilibrium theories of polymers, and 
have made some progress towards replacing the 
mean field version with more modern treat¬ 
ments^^. Credit must be given to the enormous 
past successes of the mean field treatment, 
however. 

(3) Within the Context of the Cell-Lattice 
Model. There are two points to be made. The 
first has to do with the usual assumption of 
separation of position and momentum variables 
in the classical phase integral. This is a bad 
assumption, especially when the quantity of 
interest is the entropy (SVT or EVT equations 
of state). It is known by everyone that the 
specific heat is given correctly only by a 
quantum treatment, even at moderately high 
temperatures. For polymers it is also a bad 
assumption because in polymers there is actu¬ 
ally no separation of the phase integral into a 
product of a momentum part and a position 
part . Now the lattice model does not require 
an assumption of separation even though most 
lattice treatments are concerned only with the 
configurational part of the phase integral and 
do in fact assume it. Our first point then is 
the applicability of the latt.ce model to the 
whole phase integral. It is therefore natural 
to add vibrational contributions to the lattice 
model in order to obtain as good an estimate of 
S as possible. As soon as this is done we are 
forced logically to go from a lattice model to 
a cell model because the vibrations of the 
segments can cause excursions beyond the 
boundaries of their original cells. We are 
thus faced early on with the problem of combin¬ 
ing the lattice and cell models into a coherent 
overview. Our second point then is that the 
attempt to add vibrations forces us to consider 
the view that the cell and lattice models con 
stltute an organic whole. As explained above 
in Sec. (ID 3) a proper cell-lattice model 
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would help us to quantify the ubiquity of 
glassification via the Sc -0 hypothesis. 

(C) Computer Simulations. Computer simula¬ 
tions are an excellent way of mimicking the 
behavior of glasses. This is because there is 
little hope of solving the problems exactly. In 
the absence of energetics the combinatorial 
problem is equivalent to that of tha n-0 vector 
model, which is Itself unsolved. When we add 
energetics the problem is even more intracta¬ 
ble. Baumgardner has written a recent review 
which discusses modeling of amorphous phases^'. 
An example of the utility of computer modeling 
is a recent paper by Yoon and Baumgardner which 
establishes that there is a first order tran¬ 
sition from the amorphous liquid to crystalline 
phases even in the absence of volume changes^ . 
It is required only that the trans configurati¬ 
on is the low energy configuration. 

(II) Nonequilibrium Considerations 

Our aims In this section will be modest since 
the author feels that the problem of relaxation 
is not yet solved. We shall (1) show the un¬ 
derlying reason for the parallel behavior of 
thermodynamic and dissipative quantities; (2) 
clarify the meaning of order parameters, espe¬ 
cially as they apply to glasses; (3) make some 
comments on the notion of collective variables 
and their use in linear response theory (gener¬ 
alized Langevin theory); and (4) discuss the 
William-Watts relation. 

IIA Parallel Behavior of Thermodynamic and 
Dissipative Variables 

Because we are more familiar with first-order 
transitions rather than second-order transi¬ 
tions we shall consider them first. The (ther¬ 
modynamic) volume and entropy change 
discontinuously when we go through the transi¬ 
tion and so do dissipative quantities such as 
viscosity, diffusion coefficient and conductiv¬ 
ity (mass, thermal, and electrical). Notice 
that for a first-order transition no one would 
say that the reason for the transition is the 
sudden increase in viscosity or in diffusion 
coefficient. Pother the sudden Increase in 
viscosity is viewed as caused by the transi¬ 
tion. Scientists were able to predict phase 
transition behavior without ever needing to 
think at all about dissipation. Yet even in 
this case there have been suggestions that the 
location of the transition can be defined in 
terms of dissipative quantities. For example, 
Sherwood has shown that a FCC crystal melts 
when the self diffusion coefficient reaches a 
critical value2^. 

Now consider the glass transition. The thermo¬ 
dynamic quantities V and S show an apparent 
second-order transition and concomitantly the 
dissipative quantities also show breaks in 
their slopes (as functions of T,P). The vis¬ 
cosity in particular deserves discussion. It 
becomes so very large at the glass temperature 

that it can be usee! to define T . T occurs at 
about 10'3 poise. At first it selms like a 
strange dichotomy. For first-order transitions 
we use a thermodynamic criteria even though a 
kinetic one exists, while for second-order 
transitions we use a kinetic criteria even 
though a thermodynamic one exists (the S «0 
criterion). 

The experimental viscosity of glasses at high 
viscosities has not been studied carefully 
because of the experimental difficulties asso¬ 
ciated with such measurements. Whether there 
is a break in the n vs. T curve and whether we 
can find materials for which the break occurs 
at different viscosities are important ques¬ 
tions, A recent theoretical paper predicts a 
break3 , and there is also experimental evi¬ 
dence. The Important question is whether the 
break occurs always at the same value of vis¬ 
cosity. Were this to happen then there would 
be Justification in using the n-1013 poise 
criterion. If not then there is no more reason 
for using the criterion for glasses than for 
crystals. 

One can see from the fluctuation dissipation 
theorem that there is indeed a reason for the 
parallel behavior in the breaks (as functions 
of T,P) of the thermodynamic and the 
dissipative quantities. It is easy to prove 
that in general the dissipative quantities 
suffer the same kind of discontinuity as the 
thermodynamic quantities. The iluctuation 
dissipation theorem reads31 

Sltj(k,M) - 2kTxi;j(k,(u) (6) 

where j(k,u) describes how fluctuations at 
r,t correlate with those at r',t', and 
Xjj(k,w) describes how a system responds at 
r ,t' to a force or signal initiation at r,t. 
X can be viscosity, diffusion coefficient, 
dielectric response, etc., while S can be 
autocorrelations of velocity, force, polariza¬ 
tion, etc. Thus, the dissipative quantities 
undergo the same kind of transition as the 
correlation functions. Now it is known that 
the correlation functions in the limit of k.m 
both equal to zero have the same 
discontinuities as the thermodynamic 
susceptibilities32. These latter quantities 
(i.e., specific heat, thermal expansion coeffi¬ 
cient, etc.) have discontinuities of nth-order 
for nth-order transitions. Finally, we observe 
that correlation functions change smoothly as 
we vary r,t or k,u. This completes the proof. 
Previously we had used as a proof the observa¬ 
tion that the Onsager kinetic coefficients are 
explicitly dependent on the thermodynamic 
susceptibilities33 which display the proper 
transition behaviour. 

This parallelism betwen the thermodynamic and 
dissipative quantities resolves the Kauzmann 
paradox in a profound way. Viscosity does not 
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Intervene to save the thermodynamic day, rather 
viscosity and volume (as well as entropy) be¬ 
have In a parallel fashion and, In fact, their 
behavior reflects the underlying second-order 
transition. 

It also suggests that one might with profit 
follow the glass transition via dissipative 
quantities that are easier to measure than 
viscosity. Electrical conductivity has been 
used successfully34 and shows a break at Tg. 

IIB Order Parameters 

The concept of order parameters has been both 
used and misused In the study of polymer 
glasses, so It should be discussed. There Is a 
difficulty in that different people mean dif¬ 
ferent things by the term. There Is nothing 
wrong with this, but It does mean that we must 
describe the various uses. Otherwise, our 
discussion would become confusing. In what 
follows we shall describe applications to 
glasses within an enumeration of various ways 
order parameters are defined. 

Kinds of Order Parameters 

35 (1) Equilibrium-Thermodynamic. Stanley 
describes the use of density as an order pa¬ 
rameter (OP). This Is a useful concept in the 
neighborhood of a critical point since there Is 
a critical exponent associated with density. 
De Gennes36 shows that magnetization M or mag¬ 
netic susceptibility x can be useful as OPs for 
liquid crystals. Any of the extensive varia¬ 
bles from the conjugate pairs (V,P), (S,T), 
(Nj,g, ), (B.H), (E,D), (tyey) can be used as 
an OP, as can also the derivatives of these 
extensive variables with respect to Intensive 
variables. Since equations of state can always 
be expressed In terms of the fundamental 
susceptibilities (thermal expansion coefficient 
etc.) they have a special place as OPs. Appar¬ 
ently any extensive thermodynamic quantity or 
one trivially derived from it such as density, 
can be useful as an OP for describing behavior 
near a critical point. 

This brings us to our first misuse of S as an 
order parameter for glasses. Simon apparently 
thought that the solid-liquid transition line 
terminated at a critical point ,iU3t 33 the 
liquid-gas transition line does . He at¬ 
tempted to use S as an order parameter to meas¬ 
ure how deeply one Is into the solid region 
just as one can use volume (or density'' to 
measure how deeply one Is Into the liquid re¬ 
gion when encircling the gas-liquid critical 
point. It was a brilliant Idea that happens 
not to be true since there is no critical point 
along the solid-liquid line. 

(2) Equilibrium But Not Strictly Thermodynam¬ 
ic Order Parameters. There are many equillb- 
rium quantities which are not from the classic 
set of thermodynamic variables enumerated 
above. Yet, they are often used as OPs. One 

example Is the short range OP in a solid solu¬ 
tion of A and B atoms which measures the number 
of A's surrounding B's and the number of B's 
surrounding A's compared to their random mixing 
values. Another example Is the Intensity of a 
density wave with given (k,u). Such quantities 
are useful If there is a way to control or at 
least measure them experimentally, or if there 
is a way to calculate them from theory. 

Phenomenological thermodynamic variables are 
connected to the underlying microscopic varia¬ 
bles (If we restrict our considerations to the 
canonical ensemble) via the equation 

F - - kT In Q, Q - I exp (-E(i...J..l/kT) (7) 
ll.-.J-.t 

where F Is the Helmholtz potential, Q Is the 
partition function and {i...J..( enumerates all 
mlcrostates. Any summation variable ln Q can 
be used as an OP. An example In polymers Is 
the use of numbers of holes, n., (empty lattice 
sites in the lattice model) and the fraction of 
backbone bonds, f, flexed out of their lowest 
energy (usually trans) configurations' . One 
uses the maximum term method to evaluate Q and 
obtains a equation for F In terms of the ther¬ 
modynamic variables as well as equations for 
the numbers of holes and flexes as functions of 
T,P. Because the maximum term method was used 
the equations determining n0, f are equivalent 

to 

3G(T,P,n0,f) 

3Ñ 
o 

0 
3G(T,P,n0,f) 

3f 
0 (8) 

These equations are obviously a special case of 
the Davles-Jones order parameters Zf°which are 
determined at equilibrium by 

SGiT.P.Zj) 

3Z 
1 

0 (9) 

The Davles-Jones OPs are In turn a special case 
of the affinities of Prigogine and Defay3*. In 
the Glbbs-Dl Marzlo theory of glasses n and f 
are continuous across the glass transition but 
their derivatives with respect to T, P are 
discontinuous. Even though there are two OPs 
the Ehrenfest relations hold. In the Davies 
Jones approach the OPs were determined by Eq. 
(9) above the Tg(P) but were constant below 
T (P). This was shown to Invoive a contradlc- 
t?on4° unless the OPs were not Independent. 
The contradiction can be resolved only by re¬ 
placing Eq. (9) by the time dependent set 



, 3G(T,P,Zj) 

Zi‘ LlJ dZ ~ (10) 
J 

which describes Just how the Z, change with 
time. The 3G/3Zj are generalized forces. The 
assumptions Involved in Eq. (10) are the same 
as those of the Onsager reciprocal relations. 
An Important observation is that the 
dissipative coefficients Lj.tT.P), which are 
given as expectation values of correlation 
functions of Z^ and Z., hav^ the same behavior 
as functions of T,P as extensive variables . 
Eq. (10) can be used to determine experimental¬ 
ly if the glass transition is only a kinetic 
phenomenon. One uses various T(t),P(t) his¬ 
tories and then measures Z^.Zj. This enables 
one to determine if LyiT.P) show breaks at the 
glass transition. 

Other OPs can be extracted from the partition 
function. The summation variable need not be 
one that is susceptible to the method of the 
maximum term. Allowed OPs include functions of 
OPs, integrals of summation variables, Fourier 
transforms, mean values and deviations about 
the mean of summation variables. 

(3) Nonequilibrium Thermodynamic Order Parame¬ 
ters . The Zj we defined above as well as time 
dependent experimental tags are examples. 
There seems to be little point in discussing 
these OPs unless we discuss the time dependent 
equations. We shall do some of this in the 
section on collective variables. 

(il) Any Variable Which is a Measure of Symme¬ 
try Breaking. Haken1*1 uses ä more general 
concept of order parameter that is applicable 
to systems far from equilibrium. Any variable 
which is a measure of symmetry breaking can be 
an OP, but the variables need not be thermody¬ 
namic. 

The general idea of an OP seems to be any 
variable that gives us a measure of how far we 
are from a unique place at which there is an 
onset of a qualitative difference in the symme¬ 
try of the system. Symmetry usualy means spa¬ 
tial and/or temporal regularity, but its most 
general definition is through the symmetry 
operations of group theory. 

a 
IIC Collective Varjples 

We define a collective variable to be any func¬ 
tion of the 6N momentum and position variables 
of a system of N particles. The usefulness of 
collective variables is that many times the 
dynamics of a system can be adequately de¬ 
scribed at least in some of its aspects by a 
few equations with a few collective variables. 
The effective mass in solid state physics, the 
center of mass and the net force in planetary 

orbit theory conservation laws on energy-mo¬ 
mentum are all examples of the use of collec¬ 
tive variables. Whenever one can Justify the 
use of collective variables there is an enor¬ 
mous simplification. The collective variable 
concept has been used throughout history. 
Indeed, before the discovery of atoms all con¬ 
cepts were collective variables. Apple pie and 
motherhood, for example. Because of the 
hierarchical nature of the universe, concepts 
(and realities) at one level of the hierarchy 
are collective variables compounded from the 
concepts and realities of the lower levels of 
the hierarchy. The relevance of these remarks 
to glasses is simply that collective variables 
are used in their description. We wish to 
discuss the projection operator technique of 
Zwanzig and others 2 and offer a modest cri¬ 
tique. Their technique provides the most di¬ 
rect method known to concentrate on the 
collective variables of interest by using 
projection operators to project out the slow 
variables (called gross variables by them and 
collective .ariables by us) and to place all 
other variables into the fluctuating force 
term. We feel a discussion of this method is 
best done in the context of a discussion of the 
concept of collective variables. 

There Is ^a fundamental theorem of collective 
variables**^. If we have M functions Y|(q,,p.) 
of 6N variables qj.Pj and the rank of their 
functional matrix fs M-K then there are K rela¬ 
tions among the that do not involve the 
qj.Pj. The physical application of this theo¬ 
rem Is simply that one can (and does) concern 
himself with the Interrelationships among the 
Y, without ever having to consider the q,,?,. 
In fact, until recently mankind hardly realized 
that his most primitive and primal concepts 
were collective variables. Yet, it is 
non-the-less true that the level of ideas on 
which our minds operate Is the level of collec¬ 
tive variables. An important fact about col¬ 
lective variables is that the connection among 
the collective variables and the original 6N 
position-momentum variables cannot be recon¬ 
structed from a knowledge of the collective 
variables alone. 

Now because the real world is described by 
differential equations we must discuss collec¬ 
tive variables for differential equations. The 
simplest example is a linear matrix equation 

JJ.AX 

where ^ is an N component vector and A and NxN 
matrix. Now if the matrix is reducible then we 
can find a set of M new variables Y, which are 
linear functions of the N variables X, for 
which we have the relation 
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dt 

where B is MxM. Notice that if we were to have 
started with Eq. (12) we would not have been 
able to recover Eq. (11). We are always in the 
position of knowing the and not the X,, and 
of knowing Eq. (12) even though Eq. (11) is the 
more fundamental of the two. We cannot infer 
Eq. (ID from Eq. (12). This means that "col¬ 
lective variables" is not a reciprocal concept. 

Now the variables of linear response theory are 
collective variables. This i. seen most 
clearly in the projection operator technique of 
Zwanzig . The generalized Langevin equation 
reads 

-► £ 

— * in*a(t) - L ¢(T)*a(t-T)dT + f(t) (13) 
dt J° 

where a. are m "slow" variables and the remain¬ 
ing 6N-ffl fast variables show up in the random 
force ?. If the random force were identically 
zero then the a. would corespond exactly to our 
collective variable concept. If. as is usually 
the case, the random force is not zero then the 
average values of the a. are collective varia 
bles. The projection operator method of linear 
response theory is most beautiful since it 
allows a method of generating collective varia¬ 
bles. Its application to glasses, however, 
must wait on an answer to the following prob¬ 
lems. 

(1) The equations are not covariant. One does 
not in general recover a linear set of equa¬ 
tions from a linear set. Consider for 
concreteness the two coupled linear equations 

df - Ln f ♦ L12 N0 

dN^ ” L2i f * L22 Nq 
dt 

If we now make the substitution f «f, ? ”n0, 
then the resulting equations are not linear! 
Maybe the variables of Interest are not the 
linear set which would be obtained directly 
from linear response theory but rather the non 
linear set which would not be obtained directly 
from linear response theory. Obviously, it is 
important to know what the relevant variables 
are before we try to project them. 

(2) Do we have a complete set of collective 
variables? Let us suppose that our complete 
set of slow collective variables is M, but that 

we do not know this and project out a set of m 
variables (m<M). This means that the random 
force is not a rapidly varying quantity com¬ 
pared to the m a's that we chose but that the 
force has variations of the same time scale as 
the a's. Obviously, the method does not work 
well unless we have identified a complete set 
of slow collective variables. 

(3) Is the classification into fast and slow 
variables meaningful? For the classification 
to be meaningful the notion of slow variable 
must not be something that is a function of the 
time of observation. A meaningful measure of 
speed of decay is dln(a,)/dt. If is propor¬ 
tional to exp(-nBJ, (B<1) a 
William-Watts distribution, then we can order 
the variables according to their slowness. 
However, if 8 is allowed to have values greater 
than 1 then the notion of slow or fast varia¬ 
bles is time dependent and therefore invalid. 
In general, we would expect that there are 
times when the classification into slow and 
fast variables is meaningless and times when 
it is useful. The situation for glasses is not 
annarent. 

(4) Is the fluctuating force Gaussian and are 
the random variables independent? For simplic¬ 
ity consider 2 random variables that are 
uncorrelated. An arbitrary transformation to 2 
new random variables will generally result in a 
correlation between the new variables. This 
means that we cannot assume that the components 
of the generalized vector random force in the 
generalized Langevin equa>ion are uncorrelated, 
unless wse have reason to believe that our 
choice of variables is special. Once this is 
realized the simplicity of the Langevin ap¬ 
proach is lost. 

The above remarks show that an insight as to 
the nature of the relevant variables is re¬ 
quired before we can profitably use linear 
response theory. 

IIP. The William-Watts Relation 

The William-Watts distribution ha^4 been the 
subject of much recent discussion . Valid 
Insights into the causes of the nonexponential 
decay are being obtained. We wish only to 
suggest that the form of the WW distribution 
cannot be valid for all manners of 
susceptibilities. This can be seen clearly 
from a treatment of Di Marzlo and Bishop which 
relates the mechanical and electrical 
susceptibilities 

. L1 - iuin(iii)K] (15) 
e(o)-e(") 

where eU) is the dielectric response, n(w) the 
complex shear viscosity and K a constant. This 
equation is a simple generalization of the 
Debye equation in which the zero frequency 
frictional coefficient for rotation of a sphere 
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is replaced by its frequency dependent value. 

It is valid as long as the concentration of 

dipoles is small. The point we wish to make is 

simply that if e(in) is a stable distribution 

then n(w) is not. 
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Introduction 

In modeling the viscoelastic behavior of 
high molecular weight polymers, distributions 
of relaxation or retardation times are always 

involved.1 It is easy to understand the 
necessity for such distribution functions since, 

in these high molecular weight systems, 
various modes of motion of the molecules con¬ 
tribute to the measured response. Thus, short 
range motions which occur on a rapid scale as 
well as longer range motions which occur on a 
much longer time scale contribute significantly 
to the response of the system. The application 
of a distribution function formalism is a con¬ 
venient way to treat such varied molecular time 

scales. 

Although high molecular weight polymers 

usually form glasses, low molecular weight 
materials such as glycerol, ethanol and glucose, 
also exhibit vitreous states. In the last 
several years, there has been great interest in 
developing mathematical models to treat the 
varied and interesting kinetic aspects of glass 
transition behavior.^10 It has been found 
that multiple ordering parameter models which 
employ a distribution of recovery mechanisms 
have been quite successful in treating the 
behaviors of glasses. This is true for high 
molecular weight materials as well as for the 
lower molecular weight glass formers such as 

those mentioned above. 

In this paper, we will present a brief 
exposition of a form of such multiple ordering 
parameter models which we feel is the easiest 
to understand3 and will relate some of its 
successes as well as a few shortcomings. We 
will furthermore concentrate on one of these 
shortcomings, namely the difference between 
predicted and experimental behavior close to 
equilibrium and carefully investigate whether 
any set of parameters of the model can account 
for the approach coward equilibrium which is 

actually observed experimentally. 

Multiple Ordering Parameter Models 
of the Glass Transition 

In treating viscoelastic relaxation of 
polymers, a physical property such as the 
modulus, for example, is routinely partitioned 

as 

(1) 

E(0) represents the short time limit of the 
tensile stress relaxation modulus. This value 
results from the contribution of many indivi¬ 
dual terms, Ei, each of which is associated 
with a specific molecular motion in the system. 

In considering the kinetics of 9IMS 
transition phenomena, it is convenient to 
define a variable which we have called 6 

6 
V(t) - vœ 

(2) 

where V(t) is the instantaneous value of the 
volume under any experimental conditions and 
V«, is the equilibrium volume under these con¬ 
ditions. When dealing with other extensive 
variables, similar definitions for 6 are possi¬ 
ble. As was done for the stress relaxation 
modulus, 6 may also be partitioned as 

6(0)=l6i>0 (3) 

where 6(0) is the value of 6 immediately after 
the system has been perturbed from equilibrium 
by an "instantaneous" change Irt an Intonslve 
variable such as temperature or pressure, and 

6i 0 15 f*16 instantaneous contribution to the 
departure from equilibrium associated with the 

ith mode of molecular motion. 

The time dependence of equation (1) is 
Introduced by realizing that each mode of 
molecular motion takes place on its own effec¬ 
tive time scale denoted by tí. When treating 
the physics of the system properly, the time 
dependent stress relaxation modulus becomes 
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(4) 

where each partial modulus value is weighted by 
a damped exponential involving the relaxation 
time of that particular mode of motion. 

For volume relaxation of glasses, the sit¬ 
uation is similar but not identical. For the 
simplest case involving system response after 
an instantaneous perturbation from equilibrium, 
the differential equaltion controlling the 
response of each molecular mechanism is 

d^i 
dt 

6i 
(5) 

Here, is the contribution to the departure 
from equilibrium 6, associated with the ith 
node of molecular motion and is the retarda¬ 
tion time of that mode. The set of equations 
represented by equation (5) is very similar to 
the set of equations which were solved to yield 
equation (4). In equation (5), however, a very 
interesting and important coupling arises. 
Although not expressed explicitly in this equa¬ 
tion, it is clear that each of the ith retarda¬ 
tion times depend upon the overall temperature 
of the system. In a similar way, all of the 
multiple ordering parameter models employ a 
set of retardation times which depend on the 
overall departure of the system from equilibriurn, 
i.e. 6. Thus, the specific value of the t-j's 
determine the time evolution of 6 and, at the 
same time, the value of 6 determines the magni¬ 
tude of the retardation times. This circular 
coupling is the root of many of the interesting 
and important kinetic aspects of the glass 
transition. 

To this point we have only considered the 
response of a system subject to an instantane¬ 
ous perturbation from equilibrium. The model 
may be easily generalized to treat more compli¬ 
cated perturbations as 

''i - A 0 ^ W ' -Aaiq ' TTXa, (6) 
1 i ,raT“6 

where Aa^ is given as Aai = («i ,0^(0))^1-^ 

where a, is the coefficient of expansion of the 
liquid and ag is the coefficient of expansion 
of the glass. In equation (6) q is the heating 
or cooling rate and the retardation time is 
given a more general representation in which 
its structural and temperature dependencies are 
made clear as 

= Ti,raTa6 * 
(7) 

Ti>r exp[-e(T-Tr)]exp[-(l-x) ||] 

where r is the value of the ith retardation 
time at {he reference temperature Tr in equili¬ 
brium (6=0). 6 is a material constant which 
characterizes a temperature dependence of each 

under equilibrium conditions, and x is a 

partition parameter (0 £ x £ 1) which deter¬ 
mines the relative contributions of temperature 
and structure to . 

General Successes of Multi-Ordering 
Parameter Models 

The kinetics of glass forming materials in 
the glass transition range are surprisingly 
varied. The general features of the kinetics 
have been presented several times recently 3"10 
and will not be discussed at length again here. 
Nevertheless, it will be noted that these 
theories account for many aspects of the glass 
transition in a very satisfying way, these in¬ 
clude the time dependence of glass transition 
phenomenon, the non-linearity of the kinetics, 
the asymmetry of behavior with respect to the 
sign of the perturbation evoking the response, 
and memory effects which are clearly evident. 
The existence of a distribution of retardation 
mechanisms whose time scales are coupled to the 
overall departure of the system from equili¬ 
brium is the crux of the underlying molecular 
mechanism responsible for these complicated 
aspects of the glass transition. It is very 
reassuring, in fact, that so many aspects of 
the complicated nature of the behavior of 
glasses can be so straight forwardly explained 
in terms of this simple model. 

Discrepancies Between Theory and Experiment 

Models or theories are very important in 
science for many reasons. In part, their 
importance derives from their ability to 
explain or rationalize the apparently compli¬ 
cated results of many experiments in terms of 
but a few simple and plausible assumptions 
about the underlying fundamental processes. 
Perhaps even more importantly, however, models 
can be used to point out unexpected aspects of 
experimental results-results which signal that 
specific and maybe important modifications to 
the models must be made before the theory and 
experiment are in agreement. 

As mentioned several times, the kinetic 
aspects of glasses in this interesting region 
are very complex. In this case, rather than 
being disappointed by the shortcomings of the 
mode., one should be surprised at how much of 
the complicated behavior is actually explained 
by these simple multi-ordering parameter 
models. Nevertheless, it is still important 
to focus on the shortcomings of the models 
since here is where further success in our 
understanding of the glass transition can bewon. 

While we intend to concentrate on but one 
of the discrepancies in this paper, several 
groups 3,6-10 have noted apparent problems with 
the theory. In terms of a formulation of this 
multi-ordering parameter model involving a 
Williams-Watts distribution function, it seems 
clear that no single set of experimental para¬ 
meters is totally successful in describing the 
behavior of any single glass forming system 
over a wide enough variety of conditions. In 
addition, while one might expect that the par¬ 
ticular distribution function associated with 
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various extensive parameters such as volume or 
enthalpy might be different in any particular 
system, the formulation of these ordering 
parameter models suggests that the parameters 
controlling the specific values of each retar¬ 
dation time (x and 9) should be the same for 
all extensive variables. This does not seem to 
be the case.8*10 

In spite of shortcomings of this sort, 
there appears to us to be yet another major 
discrepancy between these theories and experi¬ 
ments which has the potential to force major 
modifications in the theories. 

Many years ago, Kovacs11 defined an effec¬ 
tive retardation time, denoted as 

I 
6 dt (8) 

which could be easily measured from experi¬ 
mental data obtained by subjecting samples at 
equilibrium to "instantaneous" temperature 
jumps. These have been called simple approach 
experiments. Plotting this effective retarda¬ 
tion time versus 6 for many simple approach 
experiments gives a very sensitive "fingerprint" 
of the kinetics of a particular glass former in 
its glass transition region. Kovacs11 published 
accurate data on the behavior of polyvinyl¬ 
acetate and a portion of this data is repro¬ 
duced in figure 1. On the figure long retarda¬ 
tion times are low and short retardation times 
are high. The data represented here is all 
measured at 35°C. The data on the right hand 
side of the figure comes from contraction 
experiments involving subjecting the sample to 
rapid temperature decreases from higher temper¬ 
atures (50, 40, and 37°C) to the experimental 
temperature of 35°C; the data on the left hand 
side of the figure is derived from expansion 

-2 

-1 

I 
f 0 
S 

2 
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Figure 1: Log ieff versus 6 for simple 
approach experiments on polyvinylacetate at 
35°C (Reference 11). Dashed line shows 
typical single ordering parameter model 
behavior. 

caused by subjecting the sample to a rapid 
temperature increase (from 30° and 32.5°C) 
to the experimental temperature, 35°C. 
Although, this is but a portion of Kovacs' 
data on polyvinylacetate, the richness of 
the response is obvious. In this figure, the 
dashed line denotes the dependence of a single 
relaxation time on 6 at constant temperature 
as given in equation (7) with reasonable para¬ 
meters. It is abundantly clear that a single 
ordering parameter model does not have much 
success in rationalizing xeff behavior for this 
typical glass forming system. 

The feature of figure 1 upon which we wish 
to concentrate involves the behavior of this 
system as equilibrium is approached in expan¬ 
sion experiments, i.e., from 6 < 0. The 
results of two experiments are shown; it must 
be remembered that all experiments are carried 
out at 35°C and, although not shown in the 
figure, the time scales of the experiments are 
long involving the sample being subjected to 
the experimental temperature for periods of 
hours. The responses of the system to the 
temperature jumps from 30° and 32.5°C are 
markedly different. What is most interesting, 
however, is the enormous difference in behavior 
as equilibrium is approached. At values of 6 
near 10-4, it is experimentally clear that the 
effective retardation time is dramatically 
different in each case—the effective retarda¬ 
tion times differing by approximately a factor 
of 5 at a value of 6 = 10-4 in each experiment! 

This behavior has certainly been noticed 
in the past. It is unexpected since, at such 
a small departure from equilibrium, the pre¬ 
vious sample history would not be expected to 
exert such a strong influence on behavior. In 
fact, in their papers, Kovacs, et al.3 com¬ 
mented on this point and indicated that, with 
the distribution function they have chosen to 
best fit the data for polyvinylacetate over a 
broad range of behavior, they had not chosen a 
set of parameters which will rationalize the 
strange behavior noticed in figure 1. 

It seems to us, that others have disre¬ 
garded this apparent discrepancy between theory 
and experiment. If the data are accurate (we 
are aware of no reason to assume they are not) 
any successful theory or model must show such 
markedly different behavior of Teff as equili¬ 
brium is approached in expansion experiments 
starting from various temperatures. 

We have, therefore, examined the intrinsic 
flexibility of multi-orderinq parameter models 
as represented by equations (6) and (7) with 
respect to their abilities to generate ieff 
behavior like that shown in figure 1 as equili¬ 
brium is approached in expansion experiments. 
We have tried to determine whether any set of 
experimental parameters involved in the model 
and any distribution function can give rise to 
such behavior. 
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Distribution Functions of Varying Shapes 

In order to investigate the influence of 
the shape of a distribution function on the 
approach toward equilibrium in expansion ex¬ 
periments, we have freely constructed functions 
which we feel represent all reasonable varia¬ 
tions of shape which might give rise to the 
observed behavior. The actual shapes which 
must be considered are somewhat limited since, 
as equilibrium is approached, only the long 
term part of a distribution function is in¬ 
volved. Thus, more complicated distribution 
functions spanning longer time scales are of 
no interest. 

The six distribution functions emp oyed 
are denoted as A through F and are shown in 
the accompanying figures 2 through 7. Here the 
functions are presented as g(r) vs. log t; 
however, since the actual calculations were 
done using a discrete distribution, the 
normalization 100 

1 = I 9(0 
i*l 1 

was applied to all distribution functions 
shown save function D which was represented 
by a thirteen point spectrum. The 
retardation times were chosen so as to be 
evenly spaced on a logarithm scale. 

Distribution function A is a simple box 
extending over four decades of retardation 
time. The height of the box is determined by 
the normalization, and the retardation times 
are sufficiently closely spaced such that the 
behavior calculated is indistinguishab’e from 
that resulting from a continuous spectru,-\ 
Spectrum B is Gaussian and Spectrum C a two 
box function like that used previously by 
Kovacs et al.3 

Figure 2: Single box distribution of retarda¬ 
tion times. 

The Williams-Watts type distribution 
function has often been used because of its 
computational simplicity.4*8*10 Here, rather 
than taking advantage of this feature, we have 
used the transform of the Williams-Watts 
function given by Lindsey and Patterson12 
which is shown in the figure and which is com¬ 
patible with our particular calculational 
formulas. The essential shape similarity 
between distribution D and distribution C 
becomes clear when the functions are repre¬ 
sented in this way. 

Figure 3: Taussian distribution of retarda¬ 
tion times with a fu'l width at half peak 
maximum of two. 

Figure 4: Two box distribution function used 
previously (Reference 3). 
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Finally two ramps were employed as distri¬ 
bution functions, one with positive slope and 
one with negative slope;both extended over four 
decades of relaxation time. Although behaviors 
associated with other distribution functions 
were in fact calculated, we feel that this 
selection of distribution functions is suffi¬ 
cient to make our point here. 

-2jO 0.0 
log t.( (hrs) 

Figure 5: Williams-Watts distribution function 
ß = 0.7. 

Figure 6: Ramp distribution function with a 
negative slope. 

Figure 7: Ramp distribution with a positive 
slope. 
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Rather than varying both the distribution 
function shape and the parameters involved in 
equations (7) simultaneously, we will investi¬ 
gate the variations in behavior brought about 
by changes in distribution function shape and 
then consider changes in the other variables. 
At this point, reasonable values for the 
material parameters will be employed: 

6 = 1.0°^1. Aa = AxlO'^K'1, and x = 0.4. 

The simple approach behavior resulting 
from the six distribution functionsidentified 
in expansion and contraction from equilibrium 
at two or three temperatures above and below 
the experimental temperature is shown in 
figures 8 through 13. The influence of shape 
of the distribution is very clear. For example, 
the flat box distribution function A shown in 
figure 2 shows up as a rather featureless 
almost straight line plot in expansion 
(figure 8) whereas the Williams-Watts function 
(distribution D) has a much more complex Teff 
structure (figure 11). Nevertheless, the 
feature of interest in this investigation is 
the variation in approach to equilibrium at 
small values of 6 in expansion experiments 
starting from different temperatures. 

We suggest that quantitatively the differ¬ 
ences between these curves at small values of 6 
are essentially inconsequential as compared to 
the large variation seen in the experimental 
data. It is our contention that none of these 
distribution functions gives behavior which is 
of the type observed experimentally by Kovacs 
and depicted in figure 1. We were unable to 
generate a distribution function which gives 
behavior like that observed experimentally 
with the values of x, 9 and Aa stated above. 

Since all of the simple approach behavior 
being considered takes place at a single 
temperature, the pure temperature dependence 
of the retardation times, as measured by the 
ax term in equation (7^ , is of no interest. 
The structural dependent term, however, is 
important; it is a function of the time inde¬ 
pendent parameters x, 9 and Aa . For the sake 
of our further discussion in the next two 
sections of this paper, we will consider both 
9 and Aa to be fixed at 1.0° K*1 and AxlO-40 
K-1 so that variations in the sensitivity of 
the retardation times to structure will result 
from changes in x alone. No loss of generality 
results from this simplification. 



Variation of Other Parameters 

As mentioned above, there is but one other 
parameter which can be varied in the theory 
under these circumstances which will have an 
influence on the Teff behavior, i.e., the value 
of X which gauges the structural dependence of 
each retardation time. In this section we will 
choose two other values of this parameter which 
represent near extremes of behavior. When x= 
0.95, a retardation time shifts very little 
with changes in 6. On the other hand, when 
x=0.01, the sensitivity is quite extreme. Even 
though distribution functions B, C, D and F 
seemed to have the most interesting behavior 
in the prevous section, here, for the sake of 
exposition, we will limitour consideration to 
the two box distribution function called C. 
The conclusions are identical for the other 
functions as well. 

The Wf behavior for this distribution 
function at these values of x is presented in 
figures 14 and 15. The values of x scan struc¬ 
tural sensitivities which essentially cover the 
range of all possible variations. Comparison 
of figures 14 and 15 makes this clear. In 
figure 14, the initial TPff value differs little 
whether the temperature jump evoking response 
is 7.5° or one third of this value. On the 

(D). 

other hand, in figure 15, a factor of two 
variation in the temperature jump results in 
the initial value of ieff varying by almost 
a factor of 10. 

Of all the ieff plots shown, figure 15 
would seem to have the most promise of 
duplicating experimentally observed behavior. 
Nevertheless, even with this extreme and 
perhaps unreasonable value of x, the variation 
in Teff at very small departures from equili¬ 
brium is, once again, very much smaller than 
the factor of approximately 5 which was 
observed by Kovacs.11 

Thus, we are forced to conclude that we 
have been unable to choose a distribution 
function and value o* the partition parameter 
x which will generate behavior which is even 
remotely like that which has been reported 
experimentally. If the experimental data are 
accurate, we feel that this conclusion repre¬ 
sents a major discrepancy between theory and 
experiment which deserves consideration. It 
is hard to imagine devising a reasonable 
mechanism within the framework of current 
multi-ordering parameter theories which will 
yield the experimentally observed behavior. 

Figure 12: Typical i-ff behavior associated 
with a ramp with negative slope (E). 
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A Possible Experimental Complication 

In carrying out all simple approach exper¬ 
iments, it is presumed that the sample is in 
an equilibrium state before it is subjected to 
the "instantaneous" temperature jump. This con¬ 
dition is easily satisfied for contraction 
experiments where the equilibrium must be 
established at high temperatures and relaxation 
times are rapid. On the other hand, for expan¬ 
sion experiments where the equilibrium must be 
obtained at low temperatures, relaxation is 
very slow. It has been suggested that perhaps 
the large variation in relaxation times observed 
experimentally in expansion experiments by 
Kovacs actually resulted from inadequate 
annealing of the sample such that the samples 
aged at the lowest temperatures were actually 
not at equilibrium before the glass was sub¬ 
jected to a rapid temperature increase. 

To explore the effect of such a possibility 
on experimentally observed Teff behavior, we 
have simulated exactly this situation on the 
compuer. Once again, the distribution func¬ 
tion employed was the two box one shown in 
figure 4. The value of x was taken as 0.5 and 
6 was increased to 2.5° K-1. This larger than 
usual value for 0 was taken primarily for 

Figure 13: Typical Teff behavior associated 
with a ramp with positive slope (F). 

the sake of computational convenience since a 
large temperature dependence helped to empha¬ 
size the effect. The situation is somewhat 
similar to experiments which Kovacs has called 
memory experiments in the past. The procedure 
is depicted in figure 16. Initially the sample 
is at equilibrium at the reference temperature 
of 300°K. For simplicity we have assumed that 
the sample has a volume of exactly 1.0 cubic 
centimeters under these conditions. In the 
first experiment, the sample is quickly 
quenched to 297.5°K. It is annealed under 
these conditions for 10 hours which is a 
sufficiently long time to allow 6 to attain a 
value less than 10-5i.e., the sample is essen¬ 
tially at equilibrium. Next the sample is 
heated back to 300°K and ieff is calculated as 
equilibrium is established. This behavior is 
shown as the AT=2.5°C curve in figure 17. The 
Teff behavior is as would be expected under 
these conditions, being similar to what was 
calculated earlier for this distribution func¬ 
tion (figure 10). The reason that the 
beha;*ors depicted there and here are not iden¬ 
tical is associated with the fact that 0 has 
been increased from 1.0 to 2.5 which makes the 
structural sensitivity, as well as the tempera¬ 
ture sensitivity, more extreme. 

Figure 14: Teff behavior with minimal struc 
tural sensitivity, i.e., x=0.95; double box 
distribution. 
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Figure 15: xeff behavior with extreme 
structural sensitivity, l.e., x-0.01; double 
box distribution. 

Temperoture *K 

Figure 16: Volume versus temperature behavior 
for expansion experiments departing from 
various states. Solid lines represent time 
dependent volume adjustment. Equilibrium 1s 
virtually established during annealing at 
297.5°K but not at 295.0°K. ai-e.OxlO-^K-1, 
ctg*2.0xl0",,oK_l. ' 

Referring back to figure 16, the lower 
temperature experiment takes place as follows: 
The sample, Initially at equilibrium at 300°K 
Is subjected to a rapid temperature quench 
to 295°K and Is then allowed to anneal for 103 
hours. This annealing time is much longer 
than that at 297.5°K. Nevertheless, because 
of the experimental parameters chosen, the 
system Is still far from equilibrium. Thus, 
this Is like the situation which has been 
suggested to be the case in Kovac's expansion 
experiments. The Teff behavior observed after 
the sample in this state is reheated rapidly 
to 300°K 1s also shown In figure 17. The 
behavior does not look at all like what is 
observed experimentally. Kovacs11 found that 
the Teff behaviors for expansion experiments 
starting from lower temperatures were much 
slower in approaching equilibrium than the 
teff behavior resulting from expansion experi¬ 
ments starting at higher temperatures. In 
this sample calculation, we see just the 
opposite situation. Here, the Teff curves 
actually cross; the one associated with the 

SxlO3 
Figure 17: teff behavior for the two expansion 
experiments represented in Figure 16. 
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lower starting temperature actually approach¬ 
ing equilibrium with relaxation times shorter 
than those evidenced by the system subjected 
to the smaller temperature jump. 

This behavior is constrary to what is 
observed experimentally; nevertheless, such 
behavior is consistent with this model and can 
be understood quite satisfyingly in terms of 
the data presented in figure 18. This is a 
representation of the state of the system in 
each expansion experiment depicted in figure 
16 immediately after the temperature jump 
back to 300°K. If the system were close to 
equilibrium before the temperature jump, this 
representation looks like the distribution 
function. For the 2.5° temperature jump, one 
sees the two box distribution function shown 
as the dashed lined. On the other hand, 
if the system had not yet attained equili¬ 
brium before the application of the tempera¬ 
ture increase, irrespective of the annealing 
time, then the situation changes somewhat. 
Because of the nature of this theory, the 

Figure 18: Normalized distribution of depar¬ 
tures from equilibrium for the two expansion 
experiments represented in Figure 16 immediately 
after heating to 300°K. Solid line is for the 
experiment in which AT = 5°C. 

non-attainement of equilibrium is associa¬ 
ted primarily with the more slowly relaxing 
terms in the system. Since the two 
temperature jumps are of opposite sign in 
this particular experiment, the net departure 
from equilibrium at the beginning of the high 
temperature recovery is partitioned as shown 
by the solid line in figure 18. In this 
figure, it is clear that the slowest recovering 
processses are not strongly represented. In 
fact, an experiment starting from equilibrium 
with a distribution function which looked like 
that depicted by t ie solid line would give 
exactly the same ieff behavior as that calcu¬ 
lated for expansion with this more complicated 
set of experimental conditions. Since the 
long time portion of the distribution function 
is somewhat deleted, it makessense that the 
effective retardation time behavior would show 
a more rapid approach to equilibrium. 

These calculations show quite conclusively 
that any non-attainment of equilibrium of this 
sort will not give well separated xeff 
approaches to equilibrium like those observed 
experimentally; rather, the behavior will be 
marked by xeff curves which cross or come 
close to crossing, a situation markedly 
different from experimental behavior. 

This exercise does suggest a manner in 
which the particular parameters of the multi- 
ordering parameter model may be chosen to 
mimic, at least roughly, Kovacs' result. If 
one could generate a situation like that 
depicted in figure 18 where the truncated 
"effective" distribution function were associa¬ 
ted with the smaller temperature jump experi¬ 
ment while the non-truncated distribution 
function were associated with the larger 
temperature jump experiment, one would have 
a situation which would give rise to large 
discrepancies in approach toward equilibrium 
of the sort observed experimentally. 

To make this point clear, we have carried 
out one additional calculation, the results 
of which are shown in figure 19. In order to 
devise a system which is further from equili¬ 
brium when annealed at a higher temperature 
than at a lower temperature (in spite of the 
fact that the annealing time is longer at the 
lower temperature) it is necessary to choose a 
rather unusual set of parameters. In our case 
0 = 0.5°^1 and x=0.2. The small value of 0 
is adopted since one needs a very small change 
in relaxation time resulting purely from 
temperature changes. As can be seen in figure 
19, with these parameters the desired situation 
is attained. Since the maximum value of delta 
for the large temperature jump experiment is 
close to -2 X 10*3, it is clear that the sample 
was about at equilibrium when annealed for 1Û3 
hours. On the other tend, if the smaller 
temperature jump experiment had reached 
equilibrium during its annealing time of 10 
hours, the maximum value of delta for this 
experiment would have been -IxlO*3. The sub¬ 
stantial difference here results from the 



non-attainment of equilibrium during annealing 
for the small temperature jump experiment. It 
must be remembered virtually all of this ^00- 
attainment of equilibrium will manifest itse.f 
as a truncation the long retardation time por¬ 
tion of behavior. This fact is seen in the 
approach to equilibrium depicted in figure 19. 
Here a major discrepancy of the type observed 
by Kovacs experimentally is actually seen. 
Nevertheless, we do not feel that we have shown 
a situation in which multi-ordering parameter 
models of the type discussed herein can be 
used to explain Kovacs' data. It is quite 
clear from numerous experiments that e is not 
of the order of 0.50^1 but rather much closer 
to 1.0° K*1. Without the small value of 6, 
the kinds of igff plots shown in figure 19 
would not arise using reasonable parameters. 
What is even more important, is the fact that 
the directly measured relaxational behavior 
associated with the annealing of a sample 
which would be described by these parameters 
would clearly shown an observant experimenter 
that the small temperature jump experiment 
needed more annealing time to reach equili- 
brium. Thus, it is not at all possible that 
the behavior we have calculated with this 
strange set of parameters explains or rational¬ 
izes the experimental results. 

2. 

Conclusion 

After much trial and error experimenta¬ 
tion with parameters and distribution 
functions of current multi-ordering parameter 
models of glass, we have found a situation where 
we can mimic the type of unexpected xeff beha¬ 
vior observed experimentally in simple approach 
expansion experiments as equilibrium is 
approached. However, this behavior could only 
be produced using parameters and assumptions 
which are not reasonable experimentally. Thus, 
we are forced to concluded that with any dis¬ 
tribution function and with any set of 
experimental parameters which are reasonably 
consistent with experiment, multi-ordering 
parameter models do not give the type of Teff 
behavior observed experimentally in simple 
approach expansion experiments and this isa 
major shortcoming of the model which has yet 
to be addressed. 
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THE EFFECTS OF PHYSICAL AGING ON ENTHALPY RELAXATION IN POLYMERS. 

A PHENOMENOLOGICAL APPROACH 

Ian M. Hodge 

BFGoodrich R&D Center 

Brecksville, Ohio 44141 

Abstract Contents 

Experisiental and computer simulation 

enthalpy relaxation studies of physical aging 

in glassy polymers are described. The effects 

on aging of different thermal and nonthermal 

histories of the glass, such as cooling rate, 

hydrostatic pressure, vapor absorption and 

desorption, and tensile stress, are discussed. 

The effects of the same nonthermal perturba¬ 

tions applied during aging, and of aging t^me 

and temperature, are also presented. Informa¬ 

tion on aging is obtained from the amount of 

enthalpy lost during aging and how that 

enthalpy is recovered during heating to above 

the glass transition region. The rate of 

aging is increased by histories which raise 

the excess enthalpy of the glass, reflecting 

the nonlinearity of the aging kinetics. 

Hydrostatic pressure, absorbed vapor, and 

mechanical stress applied during aging slow 

down the rate of enthalpy loss. Depending on 

the chemical nature and history of the glass 

and the aging conditions, enthalpy recovery 

during heating occurs in temperature ranges 

centered from well below to just above the 

glass transition range. Recovery below Tg is 

shown to be a manifestation of the me *ory 

effects associated with nonexponential decay 

functions. 

1. Physical Aging 

2. Phenomenology 

3. Mathematical Modeling 

4. Parameter Optimization and Fitting of 

Experisiental Data 

5. Comparison of Calculated and Experimental 

Results 

5.1 Thermal Histories 

5.1.1 Poly(vinyl chloride) PVC 

5.1.2 Polystyrene PS 
5.1.3 Poly(vinyl acetate) PVAc, poly(methyl 

methacrylate) PMMA, Bisphenol A 

polycarbonate PCarb 

5.1.4 Correlation of Parameters 

5.2 Preaging Nonthermal Histories 

5.2.1 Hydrostatic Pressure 

5.2.2 Mechanical Stress and Vapor Induced 

Dilation 

5.3 Coaging Nonthermal Histories 

6. Summary and Conclusions 
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1. Physical Aging 

Glasses usually exist in a non-equili¬ 

brium state and relaxation towards equilibrium 

is commonly referred to as physical aging. 

Aging affects a large number of properties 

including but not restricted to density, 

enthalpy and entropy, creep compliance and 

modulus, dielectric permittivity and electri¬ 

cal conductivity. The term "physical" aging 

intimates that the changes in these and other 

properties occur in the absence of phase 

changes (e.g. crystallization) or chemical 

reactions (e.g. photochemical degradation). 

Enthalpy is a convenient property to 

monitor physical aging with because of the 

availability of accurate and sensitive Differ¬ 

ential Scanning Calorimetry (DSC) instruments. 

Enthalpy lost during aging is recovered during 

reheating to above Tg, and this recovery is 

usually manifested as a maximum in the heat 

capacity which occurs at temperatures ranging 

from well below to the upper edge of the glass 

transition region. An example of enthalpy 

recovery well below Tg is found in the pio¬ 

neering study of PVC by Iliers (1), and 

recovery near Tg is exemplified by the early 

study of PS by Volkenstein and Sharonov (2). 

A large body of experimental data on the 

effects of physical aging on enthalpy relaxa¬ 

tion in polymers has been published (1-23) and 

some generalizations can be made: 

(1) The effects of aging are removed on 

heating the glass above Tg. 

(20), vapor induced swelling (20), 

hydrostatic pressure during cooling 

(4,16), and mechanical strain (16,20). 

(6) Cp x and AHe are strong functions of 

history before aging. Histories which 

elevate the excess enthalpy before aging 
increase AH and Cp . 

e *max 

The reproduction of these trends is an 

essential test of computer simulations of 
physical aging. 

2. Phenomenology 

The increased rate of aging as tempera¬ 

ture approaches Tg, and the elimination of 

aging effects after heating to above Tg, 

suggest a close connection between aging and 

the glass transition phenomenon. This is 

confirmed by the successful application of 

glass transition phenomenology to physical 

aging by Kovacs and coworkers (24) and Hodge 

and Berens (25). In anticipation of this 

connection, we describe in this section the 

phenomenology of nonexponential, nonlinear 

relaxations in the glass transition region. 

Glass transition kinetics are nonexponen¬ 

tial in the sense that relaxation towards 

equilibrium is described by a nonexponential 

decay function ¢(1). This is formally equiva¬ 

lent to a distribution of relaxation times 
g(t), related to ¢(1) by 

(2) The temperatures (T ) at which the heat 

capacity maxima (dp®* ) appear increase 

approximately linearly11 with both anneal¬ 

ing temperature (T ) and log(annealing 

time, t^), when the aged glass is not too 

close to equilibrium. There are indica¬ 

tions that T increases approximately 

with log(heating rate, QH) (9), although 

this is not well established. 

*(t) = ?0 g(t)e‘t/T dx (1) 

and normalized such that 

T0 g(x)dx = 1 (2) 

The moments of the distribution, <xn>, are 

given by 

(3) The magnitude of Cp increases approxi¬ 

mately linearly wiïfôx T and log t , as 

does the enthalpy lost cfuring aging,6 AH , 

of which Cp is a crude measure. e 
max 

(4) As the aged glass approaches equilibrium 

deviations from these linear relations 

are observed until at equilibrium no 

changes with aging occur. At fixed t , 

AH^ and Cp x pass through a maximum asea 

function oi T , often when T is about 

20K below Tg, and decrease toC zero when 

Te>>Tg. At fixed T , AH and Cp 

become constant at long t Cas the agiä 

glass approaches equilibrium. 

For PVC, additional general features are 
found: 

(5) Tmax is insensitive to the history of the 
glass before aging, such as cooling rate 

<Tn> = To x“g(x)dx (for all n) 

= T tn‘%(t)dt n£l 

>1 
= (-l)|n| --nS-l (integer) 

dt 
t=o 

(3a) 

(3b) 

(3c) 

There is abundant experimental evidence 

for nonexponential relaxation in amorphous 

media. One consequence of nonexponentiality 

which has important consequences for physical 

aging is the memory effect. In essence, this 

effect describes the observation tha.i relaxa¬ 

tion from a particular state depends not only 

on what the state is, but also on how that 

state was reached. A classic example of this 



in polymer glasses is the volume maximum with 

respect to time following two temperature 

steps of opposite sign observed by Kovacs 

(26). This effect is illustrated in Fig. 1, 

and it is instructive to analyze it. The 

thermal history consists of a downward temper¬ 

ature step of ATi to temperature Ti at time tj 

from a starting temperature T at equilibrium, 

and an upward step of AT2 to temperature T2 at 

time t2- 

The time dependence of volume for t>t2 is 

V(t) = AV^Ct-ti) + AV2II - <Kt-t2)] (4a) 

= AVi<|>[ (t2-t!) + (t-t2)] + AV2II - 0(t-t2)] 

(4b) 

where AV! and AV2 are the changes in equili¬ 

brium volume corresponding to the temperature 

steps ATi and AT2• If <t>(t) is exponential and 

the relaxation times at Tj and T2 are Tj and 

t2, then 

V(t) = AVi exp 
[. (tï-tt) . (t-tzjj 

Xi 

+ AV2 {1 - exp[-^^]} (5a) 

= AV2 + exp I 

t2 

{AVi expt^y-^l * AV2} (5b) 

The expression in curly brackets in Eq. 

(5b) is independent of time so that V(t) 

decays exponentially and no maximum in V is 

observed. This is not necessarily the case if 

()»(t) is nonexponential. To illustrate this we 

use a functional form for «(t) which has been 

found empirically to describe a large number 

of relaxation phenomena in a wide variety of 

amorphous material: the fractional exponen¬ 

tial or Williams-Watts function (27) 

¢(1) = exp[-(t/To)ß] 12ß>0 (6) 

For this function the transformation from 

Eq. 5a to Eq. 5b cannot be made because 

ß*l (7) 

In these cases V(t) may pass through a maximum 

for t>t2. This is illustrated in Fig. 1 where 

V(t) from Eqs. A and 6 is plotted for three 

values of ß. The long time tails for smaller 

values of ß seen in Fig. 1 result from longer 

average relaxation times: Eq. 3b gives for 

the first moment of the William-Watts function 

Figure One Calculated time dependences of 

volume following two temperature steps, for 

the indicated values of ß (Eqs. 4,6). 

<*> = rfy - V(1 + 
ilß) (8) 

where f is the gamma function. Thus <T>/ 

X = 1, 2, 6 for ß = 1, 0.5, 0.25 respective¬ 

ly- 

In addition to being nonexponential the 

glass transition phenomenon is also nonlinear, 

in the sense that the functional form of 0(t) 

changes with the degree of departure from 

equilibrium. Non-linearity can be convenient¬ 

ly treated by making the average relaxation 

time a function of "structure" as well as 

temperature. It is an additional convenience 

to treat the "structural state" of a system, 

as measured by a macroscopic property such as 

enthalpy, in terms of the fictive temperature, 

Tf introduced by Toole (28). The fictive 

temperature of a system is the temperature at 

which the observed property would be the 

equilibrium value (usually obtained by extra¬ 

polation). Isothermal relaxation from a 

non-equilibrium state is then described by the 

decay of T, toward T. It is worth noting that 

T, measurei only the relaxation component of a 

microscopic property and that the fictive 

temperatures assessed from different proper¬ 

ties of the same glass may differ. This is 

illustrated in Fig. 2 where two arbitrary 

properties are plotted schematically as a 

function of temperature. The fictive tempera¬ 

ture of the glass immediately after cooling, 

T ', is the same for each property, but 

because of different relaxation behavior in 

the transition range T, is different for each 

property at the same temperature within the 

range. Thus glasses with the same fictive 

temperature arrived at by different paths may 

not have the same molecular configuration. 

The fictive temperature is a phenomenological 

convenience and is not an accurate measure of 

molecular structure. 
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Figure Two Fictive temperature behavior for 

two arbitrary properties of the same material 

with the same thermal history. 

A commonly used method for handling 

nonlinearity is that of Narayanaswamy and 

Gardon (29,30). The relaxation time (e.g. x 

in Eq. 6) is i .¿pressed as 

T 
0 

= A exp[ 
xAh* 

RT 
+ 

(l-r)Ah* 

RTj J 
(9) 

where A, x, and Ah* are constants and R is the 

ideal gas constant. Note that for small 

departures from equilibrium, Tr~T and linear 

kinetics are recovered. The parameter x is a 

numerical measure of nonlinearity (l£x>0; x=l 

for a linear relaxation). The parameter Ah* 

determines the rate at which the frozen in 

fictive temperature, T,', changes with cooling 

rate QC (31-33): i 

approximately linear relation between log t 

and log te, for an exponential relaxation? 

3. Mathematical Modeling 

Two basic approaches to modeling non¬ 

exponential and non-linear relaxation pheno¬ 

mena near and below the glass transition have 

been used, both of which rest on earlier work 

by Toole (28) and Narayanaswamy (29,30). The 

approach of Kovacs, Aklonis, Hutchinson, and 

Ramos (24) treats the non-exponential decay 

function as a sum of exponentials, with 

relaxation times and weighting factors given 

by summation versions of Eqs. (1) and (2). 

The departure from equilibrium is described by 

differential equations, one for each relaxa¬ 

tion time. The resulting coupled, non-linear 

differential equations are solved for differ¬ 

ent thermal histories. 

Anotner approach is due to noymhan and 

coworkers (35,36). An extension of this 

approach to thermal histories which include 

aging has been described by Hodge and Berens 

(25), and is used here. The method treats 

cooling and heating as a series of temperature 

steps and isothermal hold times, and the 

response of Tj to each step is described by a 

decay function ¢(1). As a matter of conven¬ 

ience and good accuracy, ¢(1) is assumed to be 

of the Williams-Watts form although any other 

functional form (including a sum of exponen¬ 

tials) could also be used. The Narayanaswamy 

expression for T in terms of T and T, (Eq. 9) 

is used to define a reduced time t ^which is 

inserted into the argument of the decay 

function 

t = 1 At./x 
r i o 

(12) 

where i indexes the time intervals. For 

cooling and heating the time intervals are the 

isothermal hold times between temperature 
steps 

Ah*/R = -ainíQO/BÜAiy ) (10) At. = AT./Q. 
i i xi 

(13) 

and is easily obtained from cooling rate data 

(see below). The preexponential parameter A 

is determined by Tg and Ah*: 

In A ~ -Ah*/RTg + In XolTg (11) 

The most important effect of nonlinearity 

on aging is that X in non-equilibrium glasses 

is shortened relative to that in the equili¬ 

brium state at the same temperature, because 

T/>T. Thus significant decreases in Tr can 

occur over reasonably short times, *i.e. 

physical aging occurs. Nonlinearity also 

results in self-retarding relaxation during 

cooling and isothermal aging, and a self- 

accelerating return to equilibrium during 

heating which may increase the heat capacity 

overshoot above Tg. Self retardation during 

aging has been shown by Struik (34) to give an 

where A7 . is the temperature step and Q. is 

the cojfing or heating rate. The total 

response to cooling and heating is obtained by 

Boltzman superposition of responses to each 

temperature step. This is valid when the 

reduced time is used and the nonlinearity is 

removed by continual updating of x .. The 

expression for T^- is 0,1 

S AT. {1 
J 

exp(-( Î 
j=l 

)ßn 

_ » ,xAh* , (l-x)Ah*, 

- » «»'¡¡V * Sr—1 

(14) 

(15) 
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where T, is the fictive temperature after n 

atd?- temperatüre steps and T is a starting temper¬ 

ature well above Tg at which equilibrium 

exists. For almost all of the calculations 

reported here constant temperature steps of IK 

were used. The conditions under which this is 

inadequate are discussed later. 

„N 
The normalized heat capacity Cp(T) is 

given by dT -/dT and is calculated from the 

expression ^ 

« T, . - T, . . 

Cp(T) = 

i Vi 

(16) 

This is zero in the glassy state and unity in 

the rubber or liquid state. 

Aging is inserted into the cooling cycle 

and the aging time t is divided into subin¬ 

tervals to allow for changes in T, and tQ 

(25). For most of the calculationsJ5 logar¬ 

ithmically even spaced subintervals per decade 

of aging time were used. During aging, 

Eq. (14) is modified by summing only the 

reduced time and truncating the Boltzman 

summation since no temperature steps occur 

during aging. The total thermal history 

consists of cooling at a constant rate from Tq 

to the aging temperature T , staying there for 

the aging time t , cooling again at the same 

rate to the minimum temperature (usually 300K) 

and heating at constant heating rate to well 

above Tg. This deviates somewhat from many 

experiments in which the sample is cooled to 

room temperature, placed in an annealing oven, 

cooled to room temperature again, transferred 

to a DSC instrument and heated. The differ¬ 

ences appear to be negligible in most cases, 

however, since relaxation which occurs during 

transfer to and from the oven is generally 

small compared with that which occurs during 

aging. In any case for quantitative tests of 

the calculation procedure aging is performed 

in the DSC instrument, and the experimental 

thermal history exactly matches the history 

used in the calculations. The experimental 

variables which must be known are the cooling 

and heating rates and the aging time and 

temperature. 

The use of IK temperature stepg for 

Boltzman integration is adequate when Cp d°jj8 

not exceed ca 2.0. For larger values of Cp, 

smaller temperature steps are required. In 

these cases the temperature step is varied 
__*. - /”*£! ^»1 rs.il ot-osl t-ha* nr#»vinilR according to Cp calculated for the previous 

step: 

1 

ATi = „N . 
Cp,i-1 > 1 

Cp,i-1 07) 

= 1 Cp,i-1 Í 1 

For very large values of Cp this procedure may 

Figure Three Calculated temperature dependen- 

ces of Cp as a function of aging temperature. 

also be inadequate. However, thermal lag 

effects in DSC instruments would also affect 

these large heat capacities and quantitative 

comparison with experiment would therefore be 

difficult in any case. 

It has been shown by Hodge and Berens 

(25) tha* the calculation procedure described 

above reproduces all of the experimental 

trends listed in Section 1. As an exampl^, we 

show in Fig. 3 calculated curves of Cp for 

different values of T^ at constant t . The 

experimentally observed increase in peak 

height (Cp ) and shift to higher peak 

temperaturesal\[T ) with T are reproduced. 

The peak height is calculated to pass through 

a maximum when T ~Tg-20 and then decrease with 

T (observed experimentally). This maximum 

occurs because at low T the loss of enthalpy 

is restricted by long relaxation times, 

whereas at high T the relaxation time is 

sufficiently short “that equilibrium can be 

reached (T r=T) and the loss of enthalpy is 

determined ^by how much Tr' exceeds T^ at the 

start of aging. This extess decreases as T 

increases and eventually disappears when T^ is 

above Tg. 

One of the more interesting effects of 

physical aging on enthalpy relaxation is the 

development of heat capacity peaks well below 

Tg, corresponding to enthalpy recovery in the 

glassy state. The earliest experimental 

observation of this phenomenon appears to be 

that of Illers (1) for PVC, and it has since 
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Figure Fijje Calculated temperature dependen¬ 

cies of Cp for a slow cooled and fast quenched 

plus aged glass for ß = 0.25 and 1.0. Inset: 

Thermal histories expressed as vs T. 

been observed by others for PVC 

(3,5,15,20,37,39,41), PS (4,9,13,17,38,60,43,- 

44), and PUMA (22,41,42). The first theore¬ 

tical explanation in terms of the glass 

transition kinetics was given by Kovacs et al. 

(24). Here we discuss the phenomenon in terms 

of the calculation procedure described above. 

First we establish the combinations of mater¬ 

ial parameters which produce sub-Tg peaks by 

calculating the effects of the parameters x 

and ß for different values of Ah*. The 

pre-exponential factor A is varied with Ah* to 

keep Tg constant. The results are shown in 

Fig. 4. Low values of ß and high values of 

Ah* and x favor peaks below Tg. For ß=l no 

combination of parameters or thermal histories 

could be found which produced a sub-Tg peak, 

suggesting that the memory effect associated 

with non-exponential decay functions is 

essential for sub-Tg peak development. This 

is confirmed by calculated heat capacity scans 

of two glasses with the same T.' arrived at by 

different paths: a slow codl, and a rapid 

quench followed by aging. These histories are 

displayed in Fig. 5 inset in the form of T^ 

vs. T plots. The corresponding heat capacity 

curves are shown in Fig. 5 for ß = 0.25 and 

1.0. For ß=l the two histories produce 

identical curves, corresponding to the absence 

of any memory effect for an exponential decay 

function. For ß=0.25 the slowly cooled glass 

exhibits an overshool above Tg and the aged 

glass a sub-Tg peak. The sub-Tg peak is 

analogous to the volume maximum following two 

temperature steps, observed by Kovacs (51) and 

discussed above, because cooling, aging, and 

heating are qualitatively similar to two 

temperature steps separated by a waiting time 

(the times for cooling and heating are short 

compared with the aging time). In both cases 

the glass "remembers" the aging time or time 

between temperature steps when ß^l. 

The lowering of T with increasing Ah* 

and x also occurs for 'sliorter aging times and 

lower aging temperatures. These variations in 

parameters and aging conditions correspond to 

the effective aging time, t /x , being shor¬ 

tened. This is demonstrated by combining 

Eq. (9) and (11) to give 

where X0(Tg) has been put equal to 1 sec and 

the dependence of t on t has been neglected 

for simplicity. Since Tj'~Tg, 

Inx 
o 

xAh* ,1_ 1_ 

R 4e ' Tg 
(19) 

from which it is clear that increasing x and 

Ah* and decreasing T all lengthen X and thus 

shorten the effective aging time te/Ç . 

We conclude this section with a curious 

result associated with the effects of Ah*. 

For linear relaxations in which the relaxation 

time is an Arrhenius function of temperature, 

and the functional form of the decay function 

is independent of temperature, the variable In 

X (In u> in the frequency domain) is equiva¬ 

lent to Ah*/RT. The temperature range of a 
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Figure Six Effect of Ah* on aging peaks. 

QC= 103, QH = 20, t = 1 week, T = 313K, 

ß = 0.25, X = 0.35. 

relaxation is therefore a function of Ah* and 

it is of interest to see if such scaling 

occurs for nonlinear relaxations. Calculated 

Cp curves for different values of Ah* (from 

ref. 25) are plotted as a function of Ah*/RT 

in Fig. 6. The glass transition "background" 

is independent of Ah* when plotted in this way 

but the aging peaks are not: their width at 

half height is a linear function of Ah* 

(Fig. 6 inset). The linear relation is not 

understood, but the general phenomenon appears 

to be analogous to the superposition of volume 

maxima on a smoothly decaying background for 

different aging treatments [Kovacs (51)). 

4, Parameter Optimization and Fitting 

Experimental Data 

Before comparing calculated and expeii- 

mental results it is necessary to normalize 

the experimental data. The normalized heat 

capacity Cp(T) is given by 

Cp(T) = 
Cp(T) - Cpg(T) 

CPl(T) - Cpg(T) 
(20) 

where Cp, Cp., and Jpg are the measured liquid 

and glassy1 heat capacities respectively. 

Linear extrapolations of Cpg and Cp^ are made 

into the transition range, and it is irsportant 

that the heat capacity be measured far outside 

the transition region to accurately assess the 

temperature dependences of Cpg and Cp^. 

The fictive temperature immediately 

before»heating, Tf ' , is obtained by integra¬ 

ting Cp(T), measured during heating, from well 

below to far above the transition range. The 

fictive temperature of the glass is obtained 

from the temperature axis intersection of the 

extrapolated high temperature integral (a 

straight line with unity slope). For this 

analysis it is desirable to keep the heating 

rate constant so that calibration of the DSC 

instrument is needed for only one heating 

rate. The experimental Cp(T) data are evalu¬ 

ated every IK and a computer file containing 

Cp over a 100K temperature range is created. 

For calculations using dynamically varying 

temperature steps (Eq. 17), which produce jjata 

at non-integer temperatures, values of Cp at 

integral temperatures are obtained by linear 

interpolation. 

The Marquardt optimization procedure (45) 

was used by Hodge (22) and Hodge and Huvard 

(21) to obtain the best fit model parameters 

(A, Ah*, X, ß) from experimental data. The 

FORTRAN program for the Marquardt procedure 

was a modified version of that given by 

Kueater and Mize (46) and worked well in this 

application. The objective function •() was 

i|> = I (Cp(T) - Cp(T) ]2 

T 

X 

where Cp and Cp are jthe experimental and 

calculated values of Cp(T). This objective 

function has the advantage of placing t|je 

least weight on the smallest values of Cp, 

which have the greatest uncertainties because 

of uncertainties in Cpg. The initial trial 

values of x and ß were 0.5 and the initial 

value of A was calculated from Eq. 11 with 

In t = 1.0 at Tg. The best fit values of x 

and ^ were constrained to lie between 0.001 

and 1.0 and InA was restricted to ±15 of the 

initial estimate. The values of QC, T^, t^, 

QH, Tg fdefined for convenience as the temper¬ 
ature at which Cp=0.5), and Ah* were input. 

The output consisted of best fit values for x, 

ß. A, and i|>. The value of Ah* was obtained 

either from the cooling rate dependence of T^' 

(Eq. 10), or from the minimum in i|» as a 

function of input Ah*. In ail cases for which 

comparisons could be made, the two evaluations 

of Ah* were in reasonable agreement (±20%). 

In one case, discussed below, agreement was 

within 5%. 

For PVC i|i is determined more by the glass 

transition data than the sub-Tg peaks, and the 

optimization failed because the glass transi¬ 

tion for PVC is broad and not easily repro¬ 

duced. In .this case, x and ß were obtained by 

matching Cp and T of the sub-Tg pei ks 

for severa Imaging times at a single aging 

temperature (see 5.1.1 for details). 

5. Comparison of Calculated and 

Experimental Results 

5.1 Thermal Histories 

5,1.1 Poly(vinyl chloride) PVC. The 

value of Ah* for PVC obtained from the cooling 

rate dependence of T,' (Eq. 10) is 450 kcal 

mole-1 (25). The Tg of ca 363K (Cp=0.5, 

QC=40, QH=10) gives InA(sec) = -619.0. For 

the aging studies, very rapid quenching was 

needed to accelerate the development of sub-Tg 
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TABLE I 

I 

Fit to Aging Data for PVC 

(Ah* = 450 kcal mole'1, ln(A,sec) = -619.0, 

X = 0.11, ß = 0.25, QC = 2x104K min’1, 
QH = 20K Bin"1) 

V ”c V hr cp; 
N 

obsd caled obsd cald 

20 7 

27 

150 

0.13 

0.14 

0.21 

0.08 

0.12 
0.21 

324 

328 

332 

323 

327 

333 

40 6 
24 

50 

0.16 

0.33 

0.40 

0.19 

0.31 

0.40 

336 

341 

343 

337 

341 

343 

60 1 

7 

24 

50 

0.21 
0.66 
1.10 
1.60 

0.37 

0.76 

1.20 
1.60 

351 

357 

359 

360 

350 

355 

357 

359 

peaks. This was achieved by pouring PVC 

powder (containing agglomerates of ca 1 pm 

diameter particles) at ca 120°C into liquid 

nitrogen. Boiling of the nitrogen stopped 

after about 2 sec. Assuming Newtonian cooling 

(exponential decrease in temperature from ca 

400K to 77K in 2 sec), a cooling rate through 

Tg of 2x104K min-1 was estimated. Aging at 

40°C was analyzed to obtain values ot.x and ß 

which gave the best overall fit to Cp and 

laax for a*in8 tiines of 6< 24» and 50mftours. 
The best fits were obtained with x=0.11, 

ß=0.25. Interestingly, the value of ß is the 

same as that obtained from dielectric data 

(47). Although it is not expected that 

dielectric and enthalpy relaxation parameters 

would be exactly the same, the unusually small 

values of ß for both properties lends credence 

to the enthalpy relaxation analysis. The best 

fit parameters and a comparison^gOf experimen¬ 

tal and calculated values of Cp and T 

for several aging times at three afing temper¬ 

atures are summarized in Table I. The agree 
ment is within experimental uncertainty, and 

it is shown below that the parameters in 

Table I also give a good account of the 

effects of non-thermal histories on aging at 
room temperature. 

The value of Ah* for PVC is very high, 

about four times larger than typical carbon- 

carbon bond energies. This suggests that at 

least five chain segments are involved in a 

relaxation event. The high value of Ah* and 

small value of ß contribute to the low T 

and well developed sub-Tg peaks (Fig. 4). Tfie 

small value of x would increase T but this 

i* evidently outweighed by tfi^x opposite 

effects of ß and Ah*. 

Figure Seven Comparison of experimental 

(points) and calculated (lines) data for a 

polydisperse polystyrene (ref 21), after aging 

for one hour at the indicated temperatures. 

5.1.2 Polystyrene (PS). The value of 

Ah* for a polydisperse polystyrene (Mw/Mn = 

3.8) obtained from the cooling rate dependence 

of T,' is 157 kcal mole*1 (21). Analysis of a 

single thermal history with no aging gave a 

best fit value of 165 kcal mole"1 (21), in 

excellent agreement with the experimental 

value. Other parameters obtained from analy¬ 

sis of the same thermal history were InA(sec) 

= -216.6, x=0.63, ß=0.68. These narameters 

accurately predict the response of Cp to other 

thermal histories, including those with aging, 

indicating that the glass transition kinetics 

determine the kinetics of physical aging down 

to about 30K below Tg (the lowest aging 

temperature studied). A^comparison of experi¬ 

mental aud calculated Cp is given in Fig. 7. 

One hour anneals at temperatures down to ca 

30K below Tg did not produce sub-Tg heat 

capacity maxima, in contrast to PVC which 

exhibited a well developed sub-Tg peak when 

aged 1 hour about 30K below Tg (see Table I). 

Analysis of data obtained by Prest (48) 

for a monodisperse polystyrene, also for aging 

temperatures down to ca 30K below Tg, produced 

a set of parameters similar to that obtained 

for the polydisperse material (50). However, 

analysis of data published by Chen and Wang 

(17) for another monodisperse polystyrene 

produced parameters which are more like those 
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TABLE II 

InA(sec) 

Material ±1 

PVAc -275.A 

PVAc -223.6 

PVC -619.0 

PS -216.4 

PS -457.0 

PMMA -355.7 

PCarb -353.6 

AsgSes -85.5 

B2O3 -75.6 
5P4E -153.1 

Enthalpy Relaxatioa Parameters 

Ah* 

(kcal mole-1) x 

±10% ±0.05 

ß 
±0.05 Reference 

175 0.28 

142.6 0.41 

450 0.11 

165 0.43 

350 0.12 
275 (±20%) 0.22 

300 0.22 

81.8 0.49 

90 0.40 

77 0.40 

0.53 

0.51 

0.25 

0.68 
0.39 

(±0.1) 0.37 (±0.1) 

0.54 

0.67 

0.65 

0.70 

22 
49 

25 

21 
21 
22 
22 
36 

35 

36 

for PVC than for the two PS materials just 

discussed (Ah*=350 kcal mole-1, InA(sec) = 

-457.1, x=0.12, ß=0.39). Although this set of 

parameters is less reliable because data for 

only two thermal histories could be analyzed, 

no single set of parameters could be found 

which reproduced data for all materials. The 

parameters for the polydisperse material did 

not produce the sub-Tg shoulder reported by 

Chen and Wang under any of several aging 

conditions which equaled or approximated the 

experimental conditions. Similarly, the 

parameters for the m'.nodisperse material did 

not reproduce the annealing data for the 

polydisperse material. 

The large difference in parameter values 

for the different polystyrenes is not well 

understood. However, the low aging tempera¬ 

ture for the Chen and Wang experiments (about 

60K below Tg) compared with the other experi¬ 

ments (less than 30K below Tg) suggests that 

the glass transition kinetics give a poor 

description of aging far below Tg. This is 

confirmed by analysis of non-thermal histories 

for PS which involve perturbations at or near 

room temperature (see §5.2.2 below), which 

indicate that the Chen and Wang parameters are 

needed to give a satisfactory account of the 

data. This contrasts with PVC, for which a 

single set of parameters gives a good descrip¬ 

tion of aging from Tg down to room temper¬ 

ature. If this difference between PS and PVC 

with regard to their low temperature aging 

behavior is real, it is speculated that it 

reflects the difference in secondary relaxa¬ 

tion temperatures (high for PS, low for PVC). 

5.1.3 Poly(vinyl acetate) PVAc, Poly- 

(methylmethacrylate) PMMA, Bisphenol A poly¬ 

carbonate PCarb. Poly(vinyl acetate) has been 

studied by Sasabe and Moynihan (49) for 

thermal histories with no aging, and by Hodge 

(22) for histories with and without aging. 

There is good agreement between the two sets 

of parameters (see Table II), and in both 

cases agreement between experimental and 

calculated results is comparable with that 

found for polystyrene (Fig. 7). Polycarbonate 

was studied by Hodge (22) who again obtained 

agreement between calculated and experimental 

data comparable with that found for PS. For 

PMMA Hodge (22) obtained significantly poorer 

agreement between observed and calculated 

data. The parameters for PCarb and PMMA are 

included in Table II. For all three materials 

aging temperatures lay between Tg and ca 

Tg-30K. Thus the possibility exists that, as 

for PS, different parameters would be obtained 

from analysis of low temperature aging data. 

5.1.4 Correlation of Parameters. A 

summary of the best fit parameters for mater¬ 

ials to which the Moynihan formalism has been 

applied is given in Table II. An inspection 

of this table reveals strong correlations 

between all four parameters, which are dis¬ 

played in Fig. 8. These correlations are 

robust with respect to uncertainties in the 

parameters, as illustrated by the "best fit" 

parameters for PVAc obtained for values of Ah* 

differing by ±15% from the experimental value 

(Fig. 8). These parameter values move along 

the correlation lines, so closely in fact that 

it raises the possibility that the correla¬ 

tions may be generated by the parameter 

uncertainties. However, the full range of 

parameters is far greater than the uncertain¬ 

ties and the correlations cannot be eliminated 

by forcing the parameters to their extreme 

values. Accordingly the correlations will be 

accepted as fact for the purpose of discus¬ 

sion. 
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Figure Eight Correlations between best fit 

parameters for the indicated polymers and 

inorganic glasses. Nonoptimum parameters for 

PVAc indicate correlations between parameter 

uncertainties. 

The correlation between A and Ah* re¬ 

flects the small range in Tg of the materials 

listed in Table II. We offer no molecular 

interpretation of this correlation since it is 

difficult to attach physical significance to 

values of A which can be as small as 

lO-270 sec (!!!). The other correlations are 

consistent with commonly held views on the 

cooperative nature of the glass transition. 

To make the discussion concrete, we interpret 

ß as a measure of the number of segments which 

can move statistically independent of adjacent 

segments (smaller values of ß correspond to a 

larger number of segments). It is speculated 

that this number corresponds to a correlation 

length for some form of fluctuation. The 

involvement of many chain segments is expected 

to give a large activation energy, thus 

accounting for the inverse correlation between 

ß and Ah*. As noted above for PVC, the large 

activation energies for most polymers exceed 

C-C bond energies and therefore also demand 

the involvement of several chain segments. 

Relaxation events in which a larger number of 

chain segments participate might also be 

expected to be more affected by the molecular 

environment (i.e. "structure"). To the extent 

that the parameter x reflects the importance 

of molecular structure, relative to tempera¬ 

ture, in determining the average relaxation 

time an inverse correlation between x and the 

number of chain segments per relaxation event 

might also be expected. This could account 

for the correlations between x, ß and Ah*. 

These speculated relations between the number 

Figure Nine ïchematic of speculated relations 

between mode) parameters and number of chain 

segments per relaxation event. 

of chain segments per relaxation event and the 

parameters ß, Ah*, and x are summarized in 

Fig. 9. Many more data on many more materials 

are needed to establish the generality of 

these correlations. 

5.2 Preaging Non-Thermal Histories 

Several studies of the effects of non- 

thermal perturbations on physical aging have 

been reported. We restrict ourselves here to 

the effects of hydrostatic pressure, mechani¬ 

cal stress, and vapor absorption. In this 

section we discuss the effects of perturba¬ 

tions which are removed before aging; studies 

in which the perturbations are maintained 

during aging are considered in section 5.3. 

5.2.1 Hydrostatic Pressure. We discuss 

two experimental investigations, of PVC 

(16,39) and PS (4). In both studies pressure 

was applied above Tg, maintained during 

cooling to the glassy state, and released 

before aging and reheating. The experimental 

heat capacity daca of Prest í.nd coworkers (16) 

for PVC, obtained after aging for 110 days at 

room temperature and atmospheric pressure, are 

shown in normalized form in Fig. 10a. The 

glass transition moves to slightly higher 

temperatures with pressure and the sub-Tg peak 

becomes sharper and more assymetric and moves 

to somewhat lower temperatures. Weitz and 

Wunderlich (4) studied the effects of hydro¬ 

static pressure applied during cooling on 

enthalpy relaxation in PS, PMMA and the non¬ 

polymeric glasses phenolphthalein, sucrose, 

and KNOa/CalNOaJî. Their normalized experi¬ 

mental data for PS are shown in Fig. 11a. 

Each sample was cooled at 0.083K min'1 under 

various pressures, transferred to the DSC 

instrument, and heated at 5K min'1 at atmos¬ 

pheric pressure. In some cases samples were 
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Fisure Ten Cp data obtained at atmospheric 

pressure for PVC formed by cooling under the 

indicated hydrostatic pressures, and aged for 

110 days at room temperature. (A) Experimen¬ 

tal data after Prest and Roberts (16). (B) 

Calculated dat^ using the calculation proce¬ 

dure AP~A(Ah*) (see text). 

stored at -10°C for an unspecified time 

(presumably days or more) before scanning. 

Physical aging was not deliberately investi¬ 

gated in this study, but probably occurred 

during transfer of the saoiple to the DSC 

instrument and/or during storage at -10°C. 

For calculation purposes these conditions were 

assumed to correspond to aging at 300K for 

1 second. 

Hydrostatic pressure P can be introduced 

into the calculation procedure in three 

equivalent ways. All start from the observa¬ 

tion that P increases Tg by lengthening the 

average relaxation time, and all assume the 

parameters x and ß to be independent of 

pressure. In the first method, the fictive 

temperature is decreased so that T,<T at 

equilibrium when P>0. In the second method 

the preexponential parasieter A is increased 

with P. Equivalent changes (A) in and InA 

are related by 

Finure Eleven Cp data obtained at atmospheric 

pressure f5r PS formed by cooling under 

hydrostatic pressure. (A) Experimental data 

after Weitz and Wunderlich (4). (B) Calcula¬ 

ted data after aging 1 second jpt 300K, using 

calculation procedure AP~AlnA (see text). 

AlnAP ~ ATP (21) 

where the superscript P indicates changes due 

to pressure. Third, the activation energy is 

increased with pressure. Equivalent changes 

in AlnAF and A(Ah*)r are given by 



r r s' ; . . ., , » . 

“«*p - ^ 
(22) 

An approximate relation between AT. and 

AP is readily derived. First, 

A (p)T ~ -TVAo (23) 

where a is the thermal expansion coefficient 

and A now refers to changes at the glass 

transition. Inserting the relation A(dH) = 

ACpdT into (22), and noting that 

dT, 
M-x; 

dT 

gives 

ATP 
f . X ' TVAa 

AP ~ ’ll-xJ ACp 

(24) 

(25) 

In order to provide a reasonable test of 

the calculation procedure it is necessary to 

evaluate AT^/AP. For PVC ACp~0.07 cal 

gm-1K-1, Ai/~2xl0~4 K"1, V=0.7 gm cm'3, 

Tg=363K, x=0.11. Inserting these values into 

Eq. (25) gives 

ATjP/AP ~2K kbar'1 (26) 

history and in the parameters for PS, the 

overall good agreement between calculated and 

experimental curves is regarded as indicating 

the essential correctness of the calculation 

procedure. The calculations indicate that 

significant room temperature/atmospheric pres¬ 

sure aging occurs in seconds for glasses 

prepared under high hydrostatic pressure, 

because of the small values of X following 

pressure release. The sub-Tg peaßs observed 

experimentally for PS are evidently physical 

aging peaks with the aging occuring during 

sample transfer from the pressure cell to the 

DSC instrusient. 

Data for nonpolymeric glasses exhibit a 

simple reduction in overshoot with pressure 

with no sub-Tg peaks occuring, according to 

Weitz and Wunderlich (4). Insertion of 

parameters typical of nonpolymeric glasses 

(e.g. those for 5P4E listed in Table II) 

produ'.ed similar results - no sub-Tg peaks 

were calculated to occur. 

An interesting feature of the calcula¬ 

tions for both PVC and PS is that shortened 

relaxation times in the glassy state are 

produced only after pressure release; the 

relaxation time before pressure release is 

longer than that for the atmospheric pressure 

vitrified glass. This isiplies that aging 

under pressure would be slow, which is ob¬ 

served experimentally (see 5.3). 

The experimental pressuu range (0-6 kbar) 

thus corresponds to AT, ~0-12K. Eq. (21) 

gives AlnA1^ -0-12 for Jthe same range, and 

A(Ah*)~0-8.7 kcal mole'1. Calculated normal¬ 

ized hßat capacities are shown in Fig. 10b for 

A(Ah*) ; the parameters are those obtained 

from analysis of purely thermal histories for 

another P^C (Table £1). The calculated curves 

using AT, and AlnA are very similar to those 

shown inJFig. 10b. Although only qualitative 

reproduction of experiswntal trends was aiswd 

for in these calculations, the agreement is 

quantitatively very good. 

To reproduce the PS data it was necessary 

to use the parameters obtained from the 320K 

annealing data of Chen and Wang (17) (see 

Table II). Insertion of the appropriate 

quantities onto Eq. (25) gave AT, /AP -2K 

kbar'1 ~2x10'2K MPa"1. Eqs. (21)¿and (22) 

give values of 1.1 kbar'1 for AlnA and C.82 

kcal mole*1 kbar'1 forpA(Ah*)— As for PVC, 

calculations using AT, , Aln^ , and A(Ah*) 

gave compatible resultr.. Calculated results 

using AlnA are shown in Fig. 11b. The 

experimental trends are qualitatively repro¬ 

duced, namely a decrease in overshoot at low 

pressures, the developsient of a sub-Tg peak at 

intermediate pressures, and the developsient of 

an exothermic minimum between T and Tg at 

the highest pressures. Similar trends were 

observed experimentally by Yourtee and Cooper 

(40) and by Dale and Rogers (43). In view of 

uncertainties in the experimental aging 

5.2.2 Mechanical Stress and Vapor In¬ 

duced Dilation. The effects of mechanical 

stress of various kinds (cold drawing, powder 

compaction) on physical aging and enthalpy 

relaxation in polymers have been observed by 

several investigators. The general effect is 

to accelerate aging. Several types of vapor 

and liquid adsorption and desorption treat¬ 

ments also hasten physical aging (14,20). The 

discussion here is restricted to data obtained 

by Berens and Hodge (20) for PVC, which are 

representative. 

The influence of mechanical stress on 

aging is typified by data for PVC film which 

was slowly cooled (about 40K min"1) and then 

cold drawn beyond the yield point (to about 

100% elongation). Samples were aged at 40°C 

for up to 140 hours. Sub-Tg heat capacity 

peaks developed faster than in liquid nitrogen 

quenched PVC powder (estimated cooling rate 

2x104K min"1, see ref. 20 for details). TJjese 

data are included in Fig. 12 as plots of Cp 

and T vs log t . The effects of swelling 

by absorbed penetrant are represented by aging 

data for PVC powder which was cooled at about 

40K min"1, swollen by absorption of methyl 

chloride to a concentration sufficient to 

depress Tg below room temperature, and vitri¬ 

fied by rapid desorption of the penetrant (in 

a few seconds, see ref. 20 for details). The 

rate of sub-Tg peak development in this 

material, after aging at 40°C, was cosiparable 

with that observed for the liquid nitrogen 
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TABLE III 

Figure Twelve Experimental „ (pointa) and 

calculated (linea) valuei of Cp and T va 

log t , for PVC with the indfftfted priaging 

pertuAations. Experimental data after Serena 

and Hodge (20). Inaet: Schematic of calcula¬ 

tion procedure. 

quenched powder. Theae data ar alao dia- 

played in Fig. 12. 

Mechanical atreaa and vapor induced 

dilation are introduced into the crlculation 

procedure in the agaM way. An inatantaneoua 

increase in T,’, AT^, ia aasumed to occur aa a 

result of tne treatment, which decays with 

aging time and reheating according to 

AT^(tr) = AT® exp[-trP] (27) 

where t is the reduced time given by Eq. 

(12). l'iiis is superimposed on the response to 

the thermal history, Eqs. (14),(15). The two 

responses are coupled by their common depen¬ 

dence of t on T,. It is assumed that the 

model parameters J are unaffected by cold 

drawing or swelling. The calculation proce¬ 

dure is displayed schematically in Fig. 12 

inset. 

A comparison of calculated and experi¬ 

mental data requires that AT, be evaluated. 

Its value was obtained by BMtrching the calcu¬ 

lated and smoothed experimental values of 

Cp for an aging time of 24 hours at 40°C. 

TheaXcalculations„ are tested by comparing 

predictions of Cp for other aging times, 

and T for all flaws, with experiment. The 

caicufafed curves are shown as the solid lines 

in Fig. 12, and are in good overall agreement 

with experiment. In particular the experimen- 

Effects of Hydrostatic Pressure Applied 

During Aging of PVC 

Hydrostatic 

Pressure 

(MPO 

Cp 

obsd 

max 

caled 

T 
max 

obsd caled 

0 0 
47 -2 

94 -4 

0.14 0.18 

0.07 0.11 

0.04 0.04 

341 345 

333 332 

320 321 

tal result that the vapor swollen and liquid 

nitrogen quenched powders age almost identi¬ 

cally is reproduced. This is in apparent 

disagreeswnt with the memory effects associ¬ 

ated with a nonexponential decay function. 

However, the important concept in the memory 

effect is the reduced time taken to reach the 

starting value relative to the reduced evolu¬ 

tion time. In both the liquid nitrogen 

quenched and vapor dilated glasses the eleva¬ 

ted enthalpy at the start of aging is reached 

(from the equilibrium state above Tg) essen¬ 

tially instantaneously compared with the aging 

time. 

The good agreement of calculated and 

experimental results exhibited in Fig. 12 

indicates that the calculation procedure is 

essentially correct. In particular, the 

agreement justifies the assuaiption that the 

awdel parameters are not affected by possible 

structural or conformational changes induced 

by cold drawing or swthyl chloride plasticiza¬ 

tion. 

5.3 Co-Aging Nonthernal Histories 

The effects of hydrostatic pressure, 

tensile stress and vapor adsorption applied 

during aging, on enthalpy relaxation in PVC, 

have been investigated by Berens and Hodge 

(44). In all cases the development of sub-Tg 

peaks is slowed down, corresponding to a 

lengthening of the average relation time. The 

peak temperature, T , generally decreases 

although in some cases this is not evident 

until large perturbations are applied. The 

discussion here is restricted to the effects 

of approximately hydrostatic pressure, applied 

by a plunger to powdered PVC. The powder was 

cooled at about 40K min-1 at atmospheric 

pressure before aging for 24 hours at 

under several pressures. A summary of Cp ^ 

and T as a function of applied pressure is 

given'fn Table III. 

The calculation procedure for coaging 

perturbations was to decrease T, by an amount 

AT^ during aging, or to increase A or Ah* by a 

constant amount during aging. As before, the 

parameters x and ß are assumed to be unaffec¬ 

ted by pressure. This procedure guarantees 
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that AH will diminish with pressure, so that 

barring an extreme narrowing of the sub-Tg 

peak Cp will also decrease. The accuracy 

of the circulation is assessed from the shift 

in T , and an assied monotonie increase in 

the magnitude oj AT,r with pressure. Calcula¬ 

ted values of Cp Jand T are compared with 

experimental values in Talffe III. The agree¬ 

ment in T is very good andp tl ere is an 

almostp linear increase in AT, , AlnA, and 

A(Ah*)r with P. This agreement again indi¬ 

cates that the calculation procedure is 

essentially correct. 

6. Summary and Conclusions 

The effects of physical aging on enthalpy 

relaxation in polymers are generally well 

described by the phenomenology used to charac¬ 

terize the glass transition kinetics. The 

development of sub-Tg heat capacity maxima 

with aging in some materials, most notably 

PVC, has been shown to reflect the nonexpo¬ 

nential decay function for enthalpy relaxa¬ 

tion. The effects of nonthermal perturbations 

such as hydrostatic pressure, mechanical 

deformation, and vapor induced dilation can be 

calculated by simple extensions to the stan¬ 

dard phenomenology. Perhaps surprising is the 

apparent invariance of the four parameters (A, 

Ah*, X, and ß) with respect to temperature, 

pressure, deformation, and departure from 

equilibrium. It is known that these invari¬ 

ances are approximate but evidently any 

variations are incidental to, and not causa¬ 

tive of, the enthalpic manifestations of 

physical aging. The correlations between the 

four parameters observed for several polymers 

need to be investigated in more detail. The 

success of the Marquardt optimization proce¬ 

dure for obtaining enthalpy relaxation parame¬ 

ters from experimental data should allow 

testing of correlations for a large number of 

materials, including but not restricted to 

other polymers. If the correlations success¬ 

fully withstand further studies, a common 

physical origin for all the parameters would 

be indicated. A possible candidate is the 

number of chain segments per relaxation event, 

or perhaps a correlation length for fluctua¬ 

tions in conformation or similar measure of 

molecular structure. 
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INTRODUCTION 

The mechanical response of most polymers 

is strongly dependent on the time or frequency 

of measurement. This time-dependence is beyond 

a change in the character of the material such 

as is caused, for example, by thermal-oxidative 

degradation. With the character of the material 

being constant its changing réponse with time 

is clearly due to the sluggish response of 

molecular mechanisms to applied tractions or 

strains. Two of the most common causes for the 

retardation of molecular responses are the ex¬ 

treme crowding experienced by supercooled liq¬ 

uids near their glass temperatures and the ex¬ 

tremely complicated convolutions required of 

long threadlike molecules. Amorphous thermo¬ 

plastic and elastomeric polymers display time- 

dependent mechanical responses for both reasons. 

Materials with a variable time dependent response 

in the present sense are said to be viscoelastic. 

The viscoelastic response is temperature de¬ 

pendent but this dependence is not involved in 

defining viscoelastic behavior. A dynamic 

modulus may change rapidly with temperature 

over several orders of magnitude as a result 

of the temperature dependence of its viscoelastic 

behavior. However, the temperature variation 

of the mechanical response does not constitute 

a viscoelastic behavior. All liquids that hap¬ 

pen not to freeze upon being cooled are unavoid¬ 

ably destined to become glasses and hence are 

markedly viscoelastic at least in the neighbor¬ 

hood of their glass temperature. T . Although 

it is difficult to precisely characterize, it 

is clear that the structure of a liquid varies 

significantly with temperature. When the equil¬ 

ibrium form of the structure can no longer make 

a complete adjustment to a temperature change 

in the time alotted, the liquid is below^its 

T . Thus the so-called "glass transition is 

n§t a transition hut is something not happening- 

the something being the maintenance of an equil¬ 

ibrium liquid structure with continual cooling. 

Class temperatures are usually determined by 

establishing the temperature where the expansion 

coefficient, in a volume-temperature curve, or 

the heat capacity in a DTA or DSC* curve show 

abrupt increases with temperature. Both curves 

should be determined at a constant rate of cool¬ 

ing. The refractive index, n, of a liquid, 

which is proportional to the electron density 

and hence the mass density, can also be used as 

the experimental variable to determine T . Fre¬ 

quently the maximum found in the loss tangent 

as a function of temperature is identified as 

T . We cannot recommend this procedure since 

it is yet to be established which, viscoelastic 

mechanisms are intimately related to the molecular 

motions which are in ^Ived in a change in the 

structure of a liquid. The procedure has consid¬ 

erably less claim to validity when one is dealing 

with the non-crystalline portion of a crystalline 

polymer. 

The role of the density in determining the 

rate at which irreversible processes (such as 

viscoelastic responses, changes in liquid struct¬ 

ure, or crystallization above but near T ) occur 

in polymers or any other supercooled liquids can 

be appreciated by asking how such processes can 

take place over time scales which are literally 

dozens of orders of magnitude slower than the 

basic molecular step involved. Molecular vibra¬ 

tions occur at some 10^2 Hz and some of the rate 

processes referred to can persist for minutes, 

hours, months and far longer if the proper condi¬ 

tions are chosen. It seems clear that nearly 

all of the molecular vibrations are fruitless 

in responding to the pertinent forcing functions 

and that rare stochastic local density fluctua¬ 

tions are necessary for a combination of molec¬ 

ular motions to contribute a fruitful response. 

Thermal kinetic energy is usually involved in 

effecting the response but the amount must be 

considered sufficient to bring about the re¬ 

sponding change in molecular positions when a 

local rarefaction of necessary magnitude occurs. 

Activation energy barriers to the motion are not 

involved since under conditions of great molecular 

crowding the geometrical barriers, when present, 

are too high to be overcome by the thermal ki¬ 

netic energy present. Among the most convincing 

pieces of evidence against the direct influence 

of temperature in determining the magnitude of 

*DTA, differential thermal analysis, DSC, 

differential scanning calorimetry. 
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the rate processes to which we are alluding are 
the rate changes that occur during isothermal 
and is c volume contraction that can 
convem, .^iy be observed some 10 to 20°C 
below the usual Tg. (1.2) The merit of the 
free volume rationale of rate processes in 
supercooled systems is testified to by the 
applicability and successes of the Doolittle 
equation which has its intrinsic volume de¬ 
pendence implicitly indicated by variations 
with temperature in the widely used Williams, 
Landel, and Ferry, WLF, equation. Discussion 
of the temperature dependences of the vis¬ 
cosity and viscoelastic responses will be 
given below. 

The fundamental principal variable of 
viscoelasticity is time, and the material 
characterizing curves shift markedly on the 
time scale with temperature. The material 
variables and their effects on viscoelistic 
response that will be explored here are molec¬ 
ular weight and, to a lesser extent, its 
distribution; plasticizer concentration; and 
stereochemical structure. Most of the data 
that we personally have available is in the 
form of shear creep and creep recovery. With 
the aid of computer programs some of the data 
have been transformed into other viscoelastic 
functions and is available for contrasting 
comparisons. The discussion here will deal 
principally with the viscoelastic behavior in 
terms of creep compliance curves, J (t), and 
the corresponding retardation spectra, L (Int > 

The creep experiment involves the sudden 
creation of a fixed level of stress in the 
previously relaxed material being studied. The 
ensuing monotonically increasing strain is 
measured as a function of the time following 
the "instantaneous" increase in stress level. 
At small strains and stresses the strain, Y(t), 
at any time, t, sec., is proportional to the 
stress level, a , dynes/cm^ or N/nr. Then the 
strain per unit stress is a unique function of 
time and is called the creep compliance function, 

J(t)-Y(t)¿3 o-.y- J/UHt/n (1) 
The creep compliance ïs usually decomposed into 
the three terms shown in Eq. (1). J , repre¬ 
senting a recoverable deformation, il usually 
considered to be a constant, but in reality is 
the long time limiting value of preceding dis¬ 
persions such as those attributed to the motion 
of side groups on the polymer chain. These are 
not normally seen at or above Tg because of 
their short response times. The second term, 

'l'(t), represente the principal time depen¬ 
dent recoverable deformation, where Y(t) is 
the normalized retardation function which varies 
from 0 to 1 as the time, t, extends from 0 to 
" and Jj, the retarded compliance, is the normal¬ 
ization constant. All of the permanent deform¬ 
ation is represented by the t/n term, where n 
is the shear viscosity coefficient. This vis¬ 
cous deformation is the only deformation that 
we refer to as flow. Under constant stress 
conditions the permanent deformation accumulates 
linearly with the passage of time. It contrib¬ 
utes additively not only to the creep compliance 
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function but also to the complex dynamic com¬ 
pliance. The viscoelastic functions that are 
rigidities are not so separable. The presence 
of permanent deformation in the creep response 
of a material distinguishes viscoelastic liquids 
from viscoelastic solids. That is, if n is in¬ 
finite all of the creep response is ultimately 
recoverable and the material being measuted is a 
viscoelastic solid. One can conclude that it 
contains an effective molecular network as is 
found in crosslinked elastomers. 

The character of a creep response cannot 
be seen by looking at a linear plot of the re¬ 
sults since qualitatively the response of all 
linear viscoelastic materials is the same in 
that the monotonically increasing deformation 
accumulated as a function of the time of creep 
has a monotonically decreasing velocity. The 
only qualitative difference between viscoelastic 
solids and liquids is that the long time limiting 
velocity is zero for solids and finite for liq¬ 
uids. The recoverable deformation of a visco¬ 
elastic liquid Jr= J + Jjtít) can only be 
reliably determined By allowing the material to 
recover under zero stress conditions after 
creeping to steady state, where ^(1)=1. Zero 
stress is achieved by removing the traction that 
produced the state of stress. Mathematically, 
the recoverable compliance is also J(t)-t/n, 
but this difference all too quickly becomes less 
than the experimental uncertainty and therefore 
is valueless in the terminal region of response. 
Since there is no flow during recovery, the 
recoverable deformation has the same qualitative 
appearance as the creep deformation of a visco¬ 
elastic solid. The terminal velocity is zero. 
Our comments will be restricted to non-cross- 
linked amorphous polymers which are viscoelastic 
liquids. 

When an experimentally determined creep 
compliance curve is plotted logarithmically, 
i.e. log J(t) versus log t, characteristic 
features immediately become apparent. These 
features can be seen in Figure 1 where plateaus 
in the response curve indicate the paucity of 
viscoelastic deformation mechanisms in the cor¬ 
responding time scale regions. The regions of 
response in between plateau levels are called 
dispersions. A steep rise in Jr(t) indicates 
a high population of viscoelastic mechanisms. 
More often than not dispersions are referred to 
as transitions. The danger in this practice is 
the possibility of confusing transitions in a 
property with a supposed transition in the state 
of the material. In a linear viscoelastic re¬ 
sponse the state of the material is not changed; 
only the compliance or modulus of the material 
varies. If one is not simply studying the time 
dependent response, but is measuring, for example, 
a dynamic modulus and loss tangent while the 
temperature is varied, changes in the modulus 
level and peaks in the loss tangent can be en¬ 
countered which may or may not reflect thermo¬ 
dynamic transitions in the material. 

Most often a single type or group of mol¬ 
ecular mechanisms contribute to a dispersion, 
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although overlap between groups of mechanisms is 

encountered. In Figure 1 the dotted lines in¬ 

dicate the three contributions to the creep com¬ 

pliance equation. The numbers indicate the 

various features that should be noted. The 

schematic curve shown semi-quantitatively re¬ 

presents the response of a linear amorphous 

polymer with a weight average molecular weight 

in the neighborhood of 1.0 to 2.0 x 10 , and an 

ordinary spread in chain lengths, say, not far 

broader than the most random distribution. The 

primary softening transition or dispersion usu¬ 

ally extends from a glassy level of 1.0 x 10~ 

cm2/dyne (1.0 x 10-9 m2/N) to a rubbery level of 

3 x 10-6 cm2/dyne (3 x 10“9 m^/N). This enor¬ 

mous rise is due to the retarded response of the 

threadlike polymer chain backbones. The response 

of the chain molecules has been described in 

terms of normal coordinate modes of motion; (3) 

now called Rouse modes. The extent of involve¬ 

ment of the polymer chain in this dispersion is 

limited to segments found between molecular en¬ 

tanglements. The presence of the rubbery plateau 

is the principal piece of evidence for the ex¬ 

istence of a transient molecular network where 

the entanglements between molecules play the 

role of crosslinks. After delaying the response, 

the entanglements eventually slip and a sub¬ 

sequent dispersion follows. We will return to 

the nature of this terminal dispersion after the 

effect of chain length on Jr(t) is discussed. 

The final level of the recoverable deformation 

yields the steady state recoverable compliance, 

J° , which next to the viscosity is the most 
common viscoelastic characterizing parameter 

referred to. The same symbol without the super- 

cript is used to describe the terminal level of 

recoverable deformation of an elastomer which 

is a viscoelastic solid, onlv in this case it 

is called the equilibrium compliance. Numbers 

were intentionally left off the abscissa of 

Figure 1 since the values depend enormously on 

the temperature of measurement. If the measure¬ 

ment were carried out at the glass temperature, 

T , the first log time mark next to the left 

border would correspond to 0 or one second. 

Each subsequent mark would indicate the passing 

of an order of magnitude of time. Hence, the 

steady state response is attained some eleven 

decades of time later or after the passage of 

30,000 years. (Note that if an estimate of 

the viscosity of the polymer is desired from 

Figure 1 the extrapolation of the t/n dotted 

line to log t= 0 yields-log n; (log Jn(t)«log t- 

logn) . 

Obviously a compliance curve as shown in 

Figure 1 is not measured directly. It is 

constructed by the temperature reduction pro¬ 

cedure that was discovered by Leaderman (/ 

and futher developed by Tobolsky and Andrews'’ > 
and then by Ferry. (&/ Figure 2 shows how 

this procedure works. Measurements are taken 

over the range of time or frequency that is 

possible and convenient with the instrument 

available; in this case creep runs extending 

from one second to slightly more than a day are 

indicated. Then, if the response curve does 

not change its shape with a change of temper¬ 

ature, the curves obtained at different temper¬ 

atures can be shifted horizontally to superimpose 

on a reference curve measured at a chosen re¬ 

ference temperature, T0. Sometimes small ver¬ 

tical or magnitude shifts are also necessary. 

(7>8ZThe shape of the curve is maintained if all 

of the viscoelastic mechanisms involved have the 

same temperature dependence. Quite often the 

temperature 'ependence (really the volume de 

pendence, 1 see below) of all the mechanisms 

within a group contributing to a single dis- 

persion is close to the same, but, in general, 

the temperature dependence of mechanisms from 

different groups is different. Generally, it 

is found that dispersions occurring at shorter 

times relative to any other dispersion will be 

less temperature sensitive; i.e. its apparent 

activation energy will be smaller. Figure 2 

shows a secondary dispersion at times less than 

one second and indicates that the effect of the 

distribution of molecular weights is found in 

the terminal zone. A material with a broad 

distribution will show a far larger final dis¬ 

persion in the recoverable compliance than that 

with a narrow distribution. The former will 

normally range from 20 to 50 times that of the 

rubbery plateau value while the latter will be 

as small as a factor of 2.5 to 3. The measure 

of the temperature dependence is the shift along 

the logarithmic time scale to accomplish the 

superposition of each temperature curve onto the 

reference temperature curve. The shift is 

identified as log aT where a-3 is the factor by 

which retardation times change when the temper¬ 

ature is changed from a general temperature, T, 

to the reference temperature, T0. If the orig¬ 

inal temperature is higher than T0, the creep 

rates are higher, so they must be slowed down 

to correspond to the response at the lower temp¬ 

erature, T0. The reduced time is t/a^. and must 

be larger than t, which demands that aT<l and log 

aT <0. For all T<To, log aT >0. 

The time dependent recoverable component 

of the creep compliance has an alternate form 

which utilizes the concept of the distribution 

function of retardation times, L (Inx) , which is 

often referred to as the retardation spectrum; 

T, the retardation time, is the material clock 

time. It is a measure of the population of 

viscoelastic mechanisms that are characteristic 

of the material. Using L (Inx) 
J(t) = J + / L (Inx) (l-e“t/TM Inx + t/n 

g (2) 

Although it is not necessary, it can be help¬ 

ful in appreciating the nature of L (Inx) to 

know that this mathematical formulation was 

derived from the mechanal analogue called the 

Generalized Kelvin or Voigt Body; an infinite 

series of springs each in parallel with its 

own dashpot; included are two degenerate ele¬ 

ments, a single series glassy spring to account 

for J and a single series dashpot to represent 

the plrmanent deformation, t/n, contribution. 

To find out the terminal value for the recover¬ 

able compliance, J°, set t= « (any time greater 

than the time it takes 't'(t) to come close as 

one chooses to value of one) . Then J® * 1^.(^) 

•V L (In x) d In x (3) 



The steady state recoverable compliance is simply 

the sum of the glassy compliance and the area 

under L(lnr) when plotted linearly against In 

T. It is our opinion that the effects by vari¬ 

ations of molecular and other material vari¬ 

ables are best seen in the retardation spectrum, 

L (Ini) . Since viscous flow does not contribute 

to L (Inij the long time effects of molecular 

orientation giving rise to recovery are not 

obscured as they are in most of the visco¬ 

elastic functions. The behavior of the visco¬ 

sity can be analyzed separately. 

MOLECULAR WEIGHT AND ITS DISTRIBUTION 

\) Commercial Polymers 

Many commercial polymers have molecular 

weight distribution which are slightly broader 

than a random distribution where the weight 

average molecular weight My, is twice as 

large as the number average, Mj,. In Figure 3 

we see the creep recovery behavio ' of such a 

polymer- a polystyrene produced by Arco/Polymers 

where Mn= 93,000 and 220,000. The results 

from measurements at nine temperatu es ex¬ 

tending from slightly below T„, wher ï the glas¬ 

sy response is seen, up to 87oC above Tg where 

the attainment of steady state is seen. W 

The J(t) curves for the higher temperatures 

where viscous flow is appreciable are shown i’ 

Figure A. The short dashed curves represen» 

the corresponding recoverable contribution.- and 

the long-dashed lines the permanent viscous de¬ 

formation. With 100°C chosen as the reference 

temperature the recoverable compliance curves 

are shifted horizontally to form the reduced 

curve showin in Figure 5. Little more can be 

said than that every feature of J (t) alluded 

to in Figure 1 is seen here including the sub 

stantial 30 fold increase of the deformation in 

the dispersion above the rubbery plateau level. 

Whereas a mechanical analogue model with a 

single retardation time would sweep through 

the largest part of a dispersion in little more 

than a decade of time, polymers as exemplified 

here require 6 decades of time. 

In Figure 6 the reduced Jr (t) curve for 

the Dylene 8 sample is compared with two 

slightly higher molecular weight grades of 

polystyrene. For 8E, Mn= 104,000, and M = 

260,000; and for 80, M - 122,000 and Mw= 290, 

000. The small differences in molecular weight 

result in significant trends in the response. 

The primary dispersion is oblivious of the 

molecular weight differences of the samples. 

The other two features to be noticed is that 

that rubbery plateau is more strongly developed 

with increasing molecular weight and higher Je 

is reached at a later time. Hie same results 

are compared on a linear basis in a semi- 

logarithmic plot in Figure 7 and it can be seen 

that the differences e substantial, especially 

in the terminal region. 

In Figure 8 the retardation spectra derived 

from the recoverable compliance curves of Figure 

6 are shown. For moderate to high molecular 

weight polymers the common features of the 

distribution function, L are: 1) At short times 

near the glassy region of response L (Int)” 0.246 

3t i/3, which reflects the fact that the form of 

the creep in this region is Andrade Creep, (10,11a) 

■KtWg-Wt1'3; 2) In the following region a 

peak is found which, like the Andrade region, is 

independent of molecular weight at high molecular 

weights. This ptak represents viscoelastic mech¬ 

anisms which contribute to the primary softening 

dispersion. When the rubbery plateau is reached 

the preceding large concentration of deformation 

mechanisms is past and L (Int) diminishes. At 

sufficiently high molecular weights a well de¬ 

fined minimum is found; 3) a second peak, which 

is at least as big as and usually is much big¬ 

ger than the first, is found beyond the minimum. 

This peak reflects the presence of mechanisms 

associated with the terminal dispersion app¬ 

roaching steady state. The position of the first 

peak on the time scale is largely determined by 

the T_ of the polymer and the position of the 

second peak moves out to longer times with in¬ 

creasing molecular weight and the breadth of the 

distribution. For polymers with narrow molecular 

weight distributions the second peak is only 

marginally greater than the first as will be seen 

below, but for high molecular weight polymers 

with broad distributions the terminal peak can 

be enormously higher and broader. 

Near the maximum the first peak in L is 

usually symmetrical but the second peak is 

usually asymmetrical with the left or short 

side approach to the maximum often following 

the Andrade form, indicating that, the recover¬ 

able creep compliance has the form Jr(t)=JN+ 

ß’t l/3, where JN is the rubbery plateau com¬ 

pliance and 8' is a different characterizing 

constant than that found in the glassy region. 

In Figure 8 most of the above features 

are seen except for the minimum between peaks. 

The Andrade region is found between log t/a^= 

0 and 3; the first softening dispersion peak 

between 3 and 8 and the terminal peak from 8 to 

14. The molecular weights of these materials 

are not quite high enough for the two peaks 

to be completely resolved. The first peak ap¬ 

pears to be a strong shoulder on the larger 

second peak. 

A reduced curve for the creep compliance 

was not shown simply because the reduction pro¬ 

cedure dows not work well for J (t), at least 

within 20°C of Tg. An example of this kind 

of reduction failure is present in Figure 9, 

with the creep compliance of a polystyrene 

with a narrow molecular weight distribution, M= 

47,000. The time scale shift factors were cal¬ 

culated from viscosities, (?) log a^=Il(T)/ri(To) 

Further analysis revealed that the recovery 

curves reduced successfullv with empirical 

shift factors and that Jr(t) had a different 

temperature dependence from that of the vis¬ 

cosity. This difference is the reason for the 

lack of reduction seen here. Note that if the 
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viscous deformation had not been analyzed sep¬ 

arately £ind the results used in the reduction 

attempt the curves in Figure 9 could have 

been superimposed with a fair degree of success. 

Discrepancies might have been attributed to 

experimental uncertainties. Close examination 

reveals that the temperature dependence of the 

mechanisms contributing to the terminal dis¬ 

persion of the recoverable compliance has the 

same temperature dependence as that of the 

viscosity. If stress relaxation measurements 

are made, where the decaying stress in a sample 

deformed to a fixed strain is monitored as a 

function of the time following the imposition 

of the strain, stress relaxation modulus curves 

are obtained. As mentioned above the contrib¬ 

ution from viscous processes do not appear in 

an additive fashion and the inapplicability of 

the reduction process is not as readily dis¬ 

cerned as it is from creep and recovery measure¬ 

ments. 

B. Polymers with Narrow Molecular Weight 

Distributions 

The terminal region of response is far 

more dependent on the molecular weight dist- 

tribution than it is on the molecular weight! 

As a consequence of this fact the determination 

of the effect of the molecular weight on the 

viscoelastic response had to wait until the 

advent of anionic living polymers with their 

comparatively narrow molecular weight distri¬ 

butions. Even many of these research samples 

have proven not to be sufficiently narrow. 

Only the examining a series of samples of so- 

called "monodisperse" polystyrenes and exam¬ 

ination of fractions of these has data been 

collected that appears to represent the tin- 

adulterated molecular weight dependence of Jr(t). 

Tn Figures 10, 11, 12, and 13 the reduced 

Jr (t) curves of part of a series of samples 

are shown. The recovery behavior of lowest 

molecular weight sample of the set, A-25, My3 

47,000 is shown in Figure 10. A single dis¬ 

persion extending from the usual glassy level 

up to a steady state value of log Jr (“O“ 6.18 

is seen. The dispersion covers over 8 decades 

of time. The second dispersion you think you 

see is real for the sample, but sufficient 

evidence has been obtained to attribute it to 

a residual high molecular weight tail. In 

Figure 11 sample M102 with a molecular weight 

of 94,000 shows a log Je= -5.88. Only those 

readers with great perception and insight can 

clearly see the beginning of the development 

of a rubbery plateau at about 10 sec. In the 

response of polystyrene L-2, Mv= 189,000, the 

lack of complete superposition can be seen, but 

a rubbery plateau is clearly visible followed 

by a surprisingly small terminal dispersion. 

The steady state recoverable compliance has 

not increased with the increase in molecular 

weight; log Je= -5.90. This constancy of log 

Je persists in the behavior of polystyrene 

sample A-19, Mv= 600 000, as seen in Figure 13 

where the rubbery plateau is well developed. 

On the basis of predictions of the 
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dilute solution theory of Rouse (3) J° was ex¬ 

pected to be proportional to the first power of 

the molecular weight and the surprising molecular 

weight independence of at high molecular 

weights was discovered by Tobolsky, Aklonis and 

Akovali in 1965.(12) A number of investigators 

has followed up and individually confirmed this 

observation. However as seen together in Figure 

14 the functionality of the dependence of J° on 

M is not altogether clear. If we single out oi.. 

own results which cover the entire measured 

range of molecular weights we see in Figure 15 

that at low molecular weights, below 10 , the 

Rouse theory prediction adapted to bulk polymers 

(13) is followed except for a possible deviation 

at very low molecular weights. Since the Rouse 

theory does not apply to very short chains the 

deviation is not surprising. In fact we are 

surprised by the excellent agreement with a 

theory originally intended for isolated molecules. 

Above a molecular weight of about 100,000, the 

jo values become completely independent of chain 

length. To explain this we have coupled the 

questions: why is J° independent of molecular 

weight and why is the ratio 80 small? The 

best samples indicate that the steady state re¬ 

coverable compliance, J°, which reflects the 

maximum degree of molecular orientation per unit 

stress is between 2.5 to 3 times larger than 

the rubbery plateau compliance, JN. The latter 

is determined by the molecular weight per en¬ 

tangled unit, Me, which is inversely propor¬ 

tional to the number of chains in the transient 

network, v. Using the kinetic theory expres¬ 

sion for the rubberlike response of the tran¬ 

sient entanglement network we have 

JN-Me/pRT(l-2Me/M) (3) 

where M » N.pV/v; N, is Avogadro's number; p 

is the tensity; V, the volume; R, the gas 

constant; and T, the absolute temperature in 

Kelvins. The parenthetical expression is the 

usual correction for loose ends where M is 

the number average molecular weight. This 

expression, derived for crosslinked systems 

is more accurate for the entanglement network 
_ w. 1 v t" M Cl 

_ 

avoidable presence of trapped entanglements in 

a crosslinked material is not accounted for by 

the theoretical expression . For the entangle¬ 

ment network itself is no such interference. 

Returning to our double question, it must 

be kept in mind that since we are restricting 

ourselves to linear behavior, the total number 

and distribution of entanglements in the mate- 

ial remains constant during the measurement. 

The entanglement level is determined dynamically; 

entanglements cease to exist when polymeric 

chains diffuse apart and new ones are created 

when two molecules diffuse into the same domain. 

Thus, we are dealing with a dynamic equilibrium 

(between the rate of disentangling and the rate 

of entangling) which is unaffected by our 

measurement, but when an entanglement comes 

apart it affects our measurement. Statistical¬ 

ly it is replaced by a newly formed entangle¬ 

ment arising from the free diffusion process. 

The network chains associated with the new-born 
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entanglement have not had the opportunity to 
come to their new "equilibrium" states of ori¬ 
entation and therefore they must go through 
the motions associated with the first peak 
of the retardation spectrum. In the mean time 
they Jo not support their share of the load and 
when distributed among the older network chains 
an additional increment to the deformation is 
made resulting in an increase in Jr (t) . The 
time for the diffusion of the entanglement to 
the center of the molecule must be involved in 
establishing its full network status or J° 
would necessarily decrease with increasing mo¬ 
lecular weight if the time for re-establishment 
to full status would be fixed by the position 
of the first peak in L since the rate of dis¬ 
entanglement is diminished with the increasing 
viscosity as the chain length is increased. 
The Jg level then also represents an entangle¬ 
ment network response which is determined by 
the concentration of effective network chains 
(or entangled units). For the present then 
we have to accept that polymers are telling us 
that between 1/3 to 1/2 of the entanglements 
are effective at steady state. 

For polystyrene with a molecular weight 
of 600,000 (i.e. A-19) Jjj was found to be 4.9 
X 10”^ cm2/dyne by integrating under the first 
peak of L (Int), see Figure. 16. With Equation 
(3) one finds that this corresponds to Mp= 14,000. 
From Je= 1.59x 10”^ an effective molecular weight 
per entangled unit M9 - 41,000 is obtained. The 
entanglement network is well developed when the 
molecular weight of a polymer is over 5 x 10^. 
The two peaks in L (Int) are well separated for 
A-19 as shown in Figure 16. The development of 
the second peak in L (Inr) as the molecular 
weight increases can be seen in Figure 17 where 
the samples have the following viscosity molec¬ 
ular weight averages A-25, 47,000; M102, 94,000; 
L-2, 190,000; A-19, 600,000; A-16, (¡00,000. 
Slight time scale adjustments, labeled aM were 
made to bring about the best superposition of 
the short time end of the spectrum. The shape 
of the spectrum below log t/aja^“ 6 is in¬ 
dependent of molecular weight for all samples 
greater than 30,000. The position on the time 
scale is a function of the T of the polymer 
and hence the number average^raolecular weight 
and any plasticizing impurities present. The 
second peak appears to grow out of the first and 
move rapidly toward longer times until a fairly 
deep minimum separates them. We can see in 
Figure 18 by examining the Jr(t) and curves 
with the filled points how the maxima in L (Ini) 
are in an approximate line with the half point 
levels (on a linear scale- 0.3 log units below 
the plateaus) of the Jr(t) curves and how the 
minimum reflects the flattest portion of the 
rubbery plateau. The sample represented here 
is the narrow distribution polystyrene PC-6A 
with M = 840,000. 

V ’ 

We will not go into detail concerning the 
lower molecular weight samples that show no en¬ 
tanglement effect because the details are in 
the literature.(15) One reduced curve of a 
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lower molecular weight sample A61, 1^= 16,000, 
is shown in Figure 19 to illustrate the fea¬ 
tures that are characteristic of the low end 
of the molecular weight scale. A single dis¬ 
persion is seen extending from the glassy level 
out to the steady state level. The Je’s sur¬ 
prisingly are temperature dependent. Reduction 
obtains a short times and small compliances but 
the curves from different temperatures separate 
as steady state is approached. It is seen that 
Jg decreases with decreasing temperature, whicn 
is unexpected and unexplained except that we 
suspect the difference in the temperature de¬ 
pendences between the Jr (t) and n is involved 
in changing the position of the steady state 
balance between orientation and Uffusion pro¬ 
cesses. Je does approach a high temperature 
assymtote as the temperature sensitivities ap 
proach one another. The level of the high 
temperature asymptote does not rise above the 
predicted Rouse level; see Figure 15. Also 
note that the Tg for this sample is 92°C and 
at the same reduction temperature of 100°C which 
was used for the higher molecular samples the 
response is shifted more than two orders of 
magnitude toward shorter times. Glass temper¬ 
atures for the very high molecular weight sam¬ 
ples are close to 98oc. The retardation spec¬ 
trum, not shown here, has only one maximum be¬ 
tween the glassy region and steady state. 

PLASTICIZER CONCENTRATION 

It has been known for a long time that 
plasticizers and other diluents depress the 
Tg severely. Most plasticizers are super- 
cooled liquids themselves and are therefore 
glass-formers. In many instances their T is 
in the neighborhood of -60°C. When added8to 
a glassy polymer at any higher temperature the 
plasticizer is bringing with it, so to speak, 
a great deal of free volume which is responsible 
for the solution having a much lower T than 
the bulk polymer. ® 

It has also been known that the effective 
molecular weight of a polymer appears lower in 
solution by virtue of the separation of molec¬ 
ules; i.e. one must go to a higher molecular 
weight to see entanglement effects.(16) The 
system Polystyrene-Tricresvl Phosphate (or 
equivalently Tritolyl Phosohate)has been studied 
over the entire composition range O-'î The 
polystyrene was the PC-6A whose bulk (pure) 
response is shown in Figure 18. The depression 
of Tg is illustrated in Figure 20 where the 
value decreases from 98°C to 70°C. In the mid 
concentration range two T 's were observed, 
which suggests the presence of two phases but no 
other evidence of phase separation was noted and 
a similar effect in the system polystyrene- 
toluene has been reported (18), Since toluene 
is an extremely good solvent for polystyrene, 
phase separation does not appear to be likely 
there. The drop in Tg with increasing diluent 
is accompanied by comparable shifts in the vis¬ 
cosity response as is shown in Figure 21. The 
concentration of polymer is indicated as weight 
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per cent. 

The viscoelastic behavior of polymer 

solutions has been studied extensively by Ferry, 

and his co-workers in both the dilute and con¬ 

centrated ranges. Elsewhere little at¬ 

tention has been given to the study of the vis¬ 

coelastic response (as defined above) of polymer 

solutions over wide ranges of concentration. A 

number of studies of temperature variation have 

been made that did not include the measurement 

of the time dependence and as a result yielded 

little information. The study being referred 

to here shows with some clarity the metamor¬ 

phosis of the retardation spectrum with large 

scale changes in the concentration of diluent. 

It has become clear that the following con 

centration variable linearly obscures the pat¬ 

tern of change in somewhat the same manner as 

does an examination of a viscoelastic repense 

as a function of linear time or frequency. The 

information content is precisely the same but 

is considerably more apparent with logarithmic 

variations of the independent variable. 

Since the time scale of response varies 

enormously with dilution because of the Tg 

depression, a corresponding state comparison 

of the response curves is desirable. Normally 

this would be the behavior at the glass tem¬ 

perature. In this case, because of the Tg 

ambiguity, we have chosen to match the position 

of the principal or first peaks of L (Inr) of 

the various solutions on the time scale. The 

comparison is shown in Figure 22 where the time 

scale is that of the pure PC-6A at a reference 

temperature of 100°C. It is immediately clear 

that the change in L with the addition of the 

first fifty per cent of plasticizer is trivial 

insofar as its shape is concerned. The rubbery 

plateau is shortened as diluent is added. This 

is reflected by the decrease in the separation 

of the maxima in proportion to the 3.4 power 

of the volume fraction of solvent. Hence a 

decrease of about one logarithmic unit on the 

time scale in the peak separation from 100% 

to 55% polymer is barely noticeable. The 

vertical shift or increase in magnitude is 

approximately a square dependence on the concen¬ 

tration. By the time three fourths of the 

polymer is replaced by solvent the shape of the 

curve is considerably altered as the peaks merge. 

At 10% polymer the merger is complete and the 

individual peaks have lost their identity as 

they would have with a recuction of the molecular 

weight by a factor of 10. There are no entangle¬ 

ment effects on the one per cent level and there 

is one narrow peak in L that reflects visco¬ 

elastic mechanisms involving the polymer. The 

1.25% solution does have two peaks in its spec¬ 

trum but the low one at short reduced retard¬ 

ation times is that of the solvent alone. The 

plasticizer behavior is completely Andrade creep 

up to the maximum in L at log x/a^, at -1.5. 

The corresponding Jr(0 curves are seen 

in Figure 23 in slightly shifted positions 

(because of a different attempt for a cor¬ 

responding state). The dashed line through 

the 1.25% recovery curve has a slope of one. 

Where the Jr (t) curve matches this slope 
there is no information concerning the retard¬ 

ation spectrum, i.e. L is immeasurably small. 

No detectable viscoelastic mechanisms are present 

in that region of the time scale. Notice the gap 

in L in Figure 22. A slope of one in a log-log 

plot of J(t) or Jr(t) versus t is the highest 

possible observable slope in the response of a 

linear viscoelastic material. The slope of one 

means the velocity is constan^. Constant veloc¬ 

ity in creep is often taken as evidence of the 

achievement of steady state. This is a misguided 

conclusion. If a creep curve has a constant ve¬ 

locity within experimental limits the corect 

conclusion is that no information ab.ut L is 

available from that creep curve. Information 

corcerning L may very well be present in the 

recovery curve in the same region of time scale. 

When 1tl(t)= 1 or when L has gone to zero for the 

last time steady state has been reached. Ex¬ 

perimentally it can be difficult to be sure 

steady state is achieved. Creep curves can 

be encountered that have log-log slopes greater 

than one—reflecting the presence of acceler¬ 

ation. This behavior puts it outside the bound¬ 

aries of linear viscoelasticity and indicates a 

structural collapse of some sort within the 

material. 

The recovery curves in Figure 23 contain the 

same information indicated by the specta in the 

preceding figure but we don't believe it is as 

apparent. Four of the corresponding creep curves 

are presented in Figure 24 with the recoverable 

components indicated by dashed lines. For 

samples with entanglements, the pure polystyrene 

and the 55% solution, the onset of measureable 

viscous flow coincides with the beginning of the 

terminal dispersion. This coincidence is in ac¬ 

cord with the contention that the terminal dis¬ 

persion is tied in with the rate of disentangle¬ 

ment. The J(t) curve for the 10% solution 

serves as a warning pointing to a possible mis¬ 

interpretation of creep compliance curves as 

well as some of the other viscoelastic functions. 

The slight plateau in J(t) could be mistaken 

for a rubberlike plateau from which one might 

attempt to estimate the mòlecular weight per 

entangled unit. From the fact that J^,(t) 

shows but one dispersion, and therefore L but 

one peak, it is clear that knowledge concerning 

the entanglement network cannot be extracted. 

For those familiar with dynamic moduli Figure 25 

is presented where the real G', and imaginary 

G", components of the complex dynamic shear 

modulus, G*= G' + iG", shown along with the 

loss tangent, Tan f>m G"/G', of the 10% solution 

as a function of the reduced radian frequency, 

i)ax=2Fvax; V is the ordinary frequency in Herz. 
Seeing tbe log G' curve, one certainly would be 

tempted to claim the presence of an entanglement 

plateau at the level of 10^ dynes/cm2. The above 

discussion shows this to be ridiculous. The 

retardation spectrum or J* must be examined before 

such conclusions can be drawn. The final comment 

we wish to make concerning Figure 24 is that the 
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viscous component of the creep of the 1.25% 

solution does not become negligible vlth de¬ 

creasing time until the glassy level is reached. 

The concentration dependence of Je of poly¬ 

styrene PC-6A is shown in Figure 26. The 

sources of the data are indicated in its legend. 

At concentrations of polymer greater than Log C 

(g/cm3)=-0.6 the slope is in the neighborhood 

of -2 indicating at C-^ dependence and at the 

lower concentrations indicated it shifts to 

an inverse first power. At still lower con¬ 

centrations a maximum is expected and to its 

left a direct first power dependence is theo¬ 

retically predicted. (3,19,20) 

MOLECULAR WEIGHT REVTSITED 

Since the form of the viscoelastic re¬ 

sponse of a polymer is little affected by an 

appreciable addition of plasticizer while T 

is severely depressed, it is possible to extend 

the investigation of the effect of molecular 

weight to higher values while diminishing the 

threat of thermal degradation. Such an extension 

was attempted as depicted in the diagram in 

Figure 27. A series of 55% solutions of high 

molecular weight polystyrenes in TCP was studied 

to determine if the molecular weight independ¬ 

ence of Je persisted. (21) The spectra obtained 

are presented in Figure 28. Here again the 

general features listed above are seen; the 

glassy Andrade region; the softening dispersion 

peak; the deepening minimum; and the retreating 

terminal peak with increasing molecular weight 

preceded by a second Andrade region in the rub¬ 

bery plateau. Even with the substantially 

lowered T steady state was not achieved with 

the two highest molecular weight samples (7.0 

and 43 million). An extrapolation technique 

was required to estimate J and the terminal 

region of L (Ini). Reduced steady state 

recoverable compliances, J° , from three 

different studies are presedfed in Figure 29 

as a function of M<t>, where $ is the volume 

fraction of polymer. The conclusion reached 

was that the drawn line represents the true 

behavior of monodisperse samples and that J° 

continues to be independent of molecular weight 

to indefinitely high values of M. Any residual 

molecular weight dispersion increases the re¬ 

coverable compliance above the monodisperse 

level. This fact coupled with knowledge that 

samples with molecular weights above a mil¬ 

lion tend to be somewhat broader alloys one 

to suspect that the points above the line 

are somewhat in error. 

One of the most familiar of the polymer 

property laws is the Fox and Flory equation(22) 

n- KM 3-4 (4) 

for samples with molecular weights above a 

critical value, M , where the effect of en- 
c ; 

tanglements makes its appearance. The value 

of Mc, the break-point in a log-log plot of 

viscosity versus molecular weight, for poly¬ 

styrene is 33,000. Since the length of the 

rubbery platetu as well as its height is a 

function of the entanglement network, attempts 

have been made to connect it to the vis¬ 
cosity-molecular weight relationship.(13,12,7) 

For broad distribution polymers there has been 

no successful proposition. In Figure 30 the 

results from the same three studies indicated 
in the diagram of Figure 27 (15,17,21) yield 

an expression for the recoverable deformation 

of narrow distribution polymers which is com¬ 

pletely parallel to the viscosity law. The 

length of the rubbery plateau is best measured 

by the separation of the maxima in L (Ini). 

Thereby we are considering the ratio of the 

two most dominant retardation times, 
3.4 

Tm,2^^1= (M/Mc) (5) 

or A log t --3.4 log M + 3.4 log M 
m “ c 

Therefore for narrow distribution polymers one 

can write 

,3.4 ..... (¿O n= KMJ M>M„ 3.4 

m.2 
K'M M>M_, where K'= t ./Mc 

c’ m.l L (7) 

Earlier attempts at characterizing the molecular 

weight dependence of the length of the rubbery 

plateau were carried out in terms of monomeric 

friction coefficients and terminal relaxation 
times. (13,12,7) is not clear how they cor¬ 

respond to the above expression. The cor¬ 

responding expression for a broad 

distribution polymer will defend on the form 

and breadth of the distribution, but will be 

a much stronger function of the molecular weight. 

Perhaps a high moment of the molecular weight, 

such as M™ or higher, will be appropriate if 
tbe position of the softening dispersion peak 

is kept as the reference. Note that the Mc 

la Equations (4) and (7) are the same. The 

second peak in L (lm) appears at the molecular 

weight where entanglements start influencing the 
viscosity; see the intercept in Figure 30. 

STEREOCHEMICAL VARIATION 

It has been observed by Karasz, Bair and 

O'Reilly (23) that asymmetrical vinylidene 

polymers like polymethylmethacrylate, PMMA, 

and poly a methyl styrene, PaMS exhibit large 

variations in their Tg's with changes in their 

stereo-regularity or tacticity. Their cor¬ 

responding vinyl counterparts, polymethyl¬ 

acrylate, PMA, and polystyrene, PS, do not. 

Extreme steric hindrance and a resulting tend¬ 

ency toward helical conformations even in the 

melt apparently are behind the variations 

observed. It has been demonstrated that the 

viscoelastic response of PMMA is profoundly 

affected by the stereochemical form. (24-28) 

The lack of an effect in the vinyl polymers 

is yet to be demonstrated. Figure 31 shows 

the abrupt manner in which Tg rises with in¬ 

creasing syndiotactic pair content. (3^^ 

Commercial PMMA has a syndiotactic pair content 

of about 75%. From 50% to 100% syndiotacticity 

the T_ increase is slightly more than 10°C. The o 
curve is drawn through points determined on 

samples that have no measurable tendency toward 

90 

V- .'v 

i- 

*.1 

"/-1 

-i 

d 

y 

ri 
yV.vM 



.*7 'y* w'"*' V- - ^ ^1 *:■ r-^ « ■ «■« i- «'V'J'U . J I. 

block formation. 

The Jr(t) behavior of a commercial PMMA 

sample with a viscosity average molecular 

weight of 7.6 x 105 is presented in Figure 32. 

Reduction worked well over the entire range of 

response. Three items should he noted. The 

glassy compliance indicated is exceptionally 

high; the material has a soft glass. The rub¬ 

bery plateau is rather low, corresponding to an 

M of 4700, and the rubbery plateau is ex¬ 

tremely broad. It is as broad and as flat as 

any in the literature. T for this material is 

about 117°C. The retardation spectrum obtained 

from this recovery curve is shown in Figure 33. 

Well developed Andrade regions are seen above 

and below a symmetrical central peak. The 

sample is a whole polymer (as opposed to a 

fraction) with a broad molecular weight distri¬ 

bution. Steady state was not achieved even at 

189°C so the peak associated with the second or 

terminal dispersion was not reached. Previously 

we conjectured that the two Andrade regions de¬ 

rived from a common group of viscoelastic mech¬ 

anisms, but having seen how the Andrade region 

in the rubbery plateau moves out continually 

toward longer times with increasing molecular 

weight (see Figure 28) no connection is seen at 

present. 

Methacrylates with intermediate variations 

of tacticity have been studied but the principal 

dramatic differences can be seen if the behavior 

of the virtually 100% isotactic form is examined 

in Figure 34. The molecular weight of the poly¬ 

mer (My- 6.1 x 105) is nearly as high as that of 

the above commercial PMMA, yet, instead of a 

well developed rubberlike plateau, there is 

none. Such a response has not previously been 

seen and has not been explained even in the most 

qualitative sense. We can only imagine that 

the molecules are in a helical conformation 

which imparts such rigidity to the molecule that 

normal entangling is precluded. Another ap- 

pirent difference is the glassy compliance 

which is clearly about three times smaller than 

that of the commercial material. This harder 

glass is a reflection of the fact that the side 

groups along the polymer chain backbone are not 

free to move independently. The mechanical 8 

mechanism is virtually absent from highly iso¬ 

tactic PMMA. Dielectric measurements 1 

support this contention. A feature that is not 

obvious in Figure 34 is that this material did 

not flow; i,e. the t/n contribution is nissing 

from J (t) and therefore J (t) is indistinguish¬ 

able from J (t). Non-crosslinked, amorphous 

polymers have on rare occasion been observed 

r.ot to flow at temperatures far above their Tg. 

v31)This phenomenon has been linked to the 

presence of long chain branches. 

for block formation. The behavior of the spec¬ 

tra for the commercial and atactic samples ap¬ 

pears to be similar in the molecular weight in¬ 

dependence region. The faster response of the 

commercial polymer might be an intrinsic prop¬ 

erty of the higher Tg, since as will be shown 

below the form of the volume dependence, i.e. 

the apparent temperature dependence, suggests 

that the curves are at their true corresponding 

state volumes. A corresponding first peak in 

L (Inx) is compatible with the slight shoulder 

seen on the huge concentration of viscoelastic 
mechanisms which is responsible for the absence 

of the rubberlike plateau. 

TEMPERATURE DEPENDENCES 

The shift factors for all of the Jr(t) 

curves of the narrow distribution polystyrene 

samples of differing molecular weight fall on 

one typical looking curve when the reference 

temperature is T_ and the values for log a^ 

are plotted as a function of T-Tg 38 seen in 

Figure 36. The sensitivity to temperature al¬ 

ways becomes dramatically greater as the Tg is 

approached from above. The same kind of curve 

is observed if we examire the variation of the 

viscosity of the polystyrenes with temperature, 

Figure 37. Though qualitatively the same as 

the aT curve from the Jr (t) response, they 

represent different temperature dependences. 

These kinds of temperature dependence curves for 

glass-forming systems were first noted by M.L. 

Williams (32) to have the same functionality 

when plotted in the manner of Figure 36. Shortly 

after the "universal" Williams, Landel and Ferry, 

WLF, equation was proposed (33) and rationalized 

in terms of the fractional free volume concept 

of A. Doolittle. The WLF equation is 

log ap- 
-q (T-T0) 

' q + T-T0 (8) 

where T0 is any chosen reference temperature 

which can be Tg, and q and C2 are charater- 

izing constants which can be related to free 

volume parameters. Williams, Landel and Ferry 

showed how, assuming volume temperature lin¬ 

earity, Equation (8) can be derived from the 

Doolittle equation 

. b/<tf (9) 
n -Ae v ’ ^ 

where the relative free volume, 4>f- vf/vo= 

(v-v )/v0. The volume is v, the occupied 

volume is v0 and the free volume,vf, is their 

difference, v-v0. A and b are characterizing 

constants. In addition they showed than an 

alternate form is, the Vogel (34) Tamman and 

Hess (36) Fulcher, (35) VFTH, equation 

n=A exp c/(T-T<%>) (7^ 

The retardation spectra of the two PMMA 

samples discussed above along with that of an 

ideally atactic PMMA polymer are shown in 

Figure 35. The ideally atactic polymer has 

25% isotactic triads, 25% syndiotactic triads 

and 50% heterotactic triads and no tendency 

where A, c and T„ are characterizing constants. 

Extrapolation of the metastable equilibrium 

volume-temperature line to Too yields the op¬ 

erational occupied volume, v0 since this rep¬ 

resents the hypothetical state of the super¬ 

cooled liquid where the viscosity is infinite. 

In log form 
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Phys. 45, 3038 (1966). log n“ log A + c/2.303 (T-T^) 

so that a plot of log n versus 1(T-TW should 

yield a straight line. Repeated guesses for 

have to be made until all the data points 

lie on a straight line. If positive curvature 

results the guess for T« was too low and neg¬ 

ative curvature indicates that it was too high. 

A resulting sigmoidal shaped curve indicates 

that no fit is possible. Most all of the 

polymer rate data in the literature can be fit¬ 

ted to these expressions. The Jr (t) shift 

factor data from Figure 36 are replotted in 

Figure 38 according the the VFTH equation. 

The quality of fit to the form of the equation 

is easy to judge in this straight line re¬ 

presentation. Within experimental uncertainty 

it can be seen that the recoverable compliances 

of polystyrenes with molecular weights from 10^ 

to 10^ have the same free volume dependence. 

A comparable plot for the viscosities of these 

same samples showed puzzling variations in 

form. However when the product nJe was plot¬ 

ted accordingly the results seen in Figure 39 

are obtained. Details are given in the legend. 

This product represents a characteristic time 

of the material and appears to be a more fun¬ 

damental Irreversible or rate process variable 

than the viscosity. The parallel lines shown 

in Figure 39 makes the same statement as the 

single line of Figure 38. The free volume 

parameters describing the temperature de¬ 

pendence of the two kinds of deformation, 

recoverable and non-recoverabie, however, 
are different.(15) 

If we finally examined the temperature 

of dependence of the recoverable compliance 

of the PMMA samples with differing tacticity 

we note that in spite of some of the striking 

differences in the form of their viscoelastic 

responses their dependence on temperature 

relative to corresponding state temperatures, 

T0~Tg, is identical; see Figure 40. The sur¬ 

prising fact is that their common form of 

temperature dependence is unique in the realm 

of high molecular weight polymers. It does 

not fit the free volume form over the entire 

temperature range of measurement. The dotted 

line in Figure 40 represents the best fit of 

the low temperature data to a WLF curve. Up 

to the present all of the other high polymer 

temperature dependence data can be fitted to 

the free volume expressions. The difference 

of the PMMA behavior at this time is not 

understood. 

Nearly all of our data, comments and 

conclusions concerned polystyrene and poly¬ 

methylmethacrylate, but there is ample rea¬ 

son to expect most of the conclusions to 

be applicable to a great many linear amorphous 

polymers. 
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© Primory transition (5) Stsody slot« complianc# 

(3) Entonglomant piatsau © Viscous déformation 

2 2 
Figure 1. Schematic creep compliance curve, J(t), cm /dyne or m /N, 

as described in text. 

Figure 2. Schematic creep and recovery curve illustrating the temperature 
reduction process and the extent of recovery found for polymers 
with narrow and approximately random molecular weight distribu¬ 
tions. 
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Plots of reduced recoverable com¬ 

pliance versus reduced log time of 

Dylene samples. Reference temper¬ 

ature T0- 100°C. The curves are 

identified by the key in Figure 6; 

8G has the highest molecular weight 

and the highest steady state com¬ 
pliance. 

Comparison 'of the retardation spec¬ 

tra (logarithmic plot, L in cm2/ 

dyne, î/a^ in sec.) of Dylene 

samples at the reference temper¬ 
ature of 100°C. 

Figuru 9. Logarithmic plpt of creep compliance, JD(t) against reduced 
time scale t/a», àT « !îD(T)/ri (T ), r = 100°C. Failure of 
temperature reduction Vindicated" Long-dashed line is 
the 100° t/e| contribution. Short-dashed line is the 
reduced recoverable compliance curve. 
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Figure 10 

Logarithmic plot of recoverable 

compliance, •Ir(t^í‘JP^t)”t'r,t,/a 
against reduced time, t/aT, 

reduced to 100°. The dispersion 

observed at reduced times Später 

than 108 sec is believed to be due 
to the presence of a high molecular 

weight tail in the sample and doe. 

not represent the behavior of the 

Figure 11. 

Logarithm of reduced recoverable compliance of M"10- 
(irol wt. = 94,000) presented as a function of reduced 
time I = 100°C. Temperatures of measurement are: 
97.9¿,0°; 102.9°,0 ; 105.7°,o ; 109.4°,CD; 113.4°, 

Qi 119.4°,O; and 134.l°C,©. 
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Figure 13. Log J (t) verms Log t/a_ for A-19 (M = 600,000). Red iction 
referlnce temperature T = 100°C. Temperatures of measure-«ent 
are: 100.6°,© ' 103.0«, 0 • 10S.0°,Ô ; 109.^, Oí 112.4U, 
©; 119.4°,©; 144.6°, 0; 160.0°,©; 180.0°,©. 
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The retardation spectrum for polystyrene A-19 (Mv = 600,000) 
plotted as a function of the reduced retardation time. The 
reference temperature, Tq = 100oC. 
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Figure 17. Second approximation values of the retardation spectra for 
polystyrene samples A-25, ^ = 47,000; M102, M = 94,000- 
L-2, My = 189,000; A-19, = 600,000; and A46, Mv = 800,000 
plotted logarithmically against the reduced time scale where 
a_ is the temperature reduction factor and aM is the effective 
nimber average molecular weight factor which reflects differences 
in T . The reference temperature, T = 100°C and the 
reference ¡nolecnlar weight is 6.0 x Î05. 
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compliance curvea. 

Figure 25. Logarithmic plots of the real. G', and the imaginary, G 
components of the complex dynamic shear modulus, G*, for a 
10% solution of polystyrene, PC-Äa = 860,000) against 
the reduced frequency scale, Reference temperature, T = 
The corresponding loss tangent curve is presented linearly 
as a function of log 
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Second approximation to the retardation spectrum (distribution 
function of retardation times) of a commercial sample of 
polymethylmethacrylate, (My - 760,000) shown versus the 
reduced retardation time. The reference temperature, To = 120°C. 
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The shear creep compliance of isotactlc polymethylmethacrylate 
(M„ = 610,000) presented as a function of reduced tiw:. The 
reference temperature, T « 50°C 
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Second approximation to the retardation spectra of three 
PMMA samples of differing stereoregularity plotted M a 
function of reduced retardation time at their respective 
corresponding state temperatures. Corresponding states 
determined with their temperature dependence curves. 

Tem>%e»-ature rtpnendenoe shift factors obtained from Jr(t) curves 
of the polystyrene samples A67, hi, = 1100; A61, = 16,000; 
A2S >L, = 47,000; Ml02, = 94,000; L5, 122,000; 1-2. 190,000; 
Aio’ 6000.000; A16, 800.000 presented as a function of the tern- 

’ ’ _ _ _»  _..14-i.w* T ir» - -- j j 

perature difference T-T 
case is Tg. 
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Figure 39. 
Spmi’ocarithmic plots of the product of the viscosity of 
i poise)*and the Equilibrium recoverable co^ll,!lnc®(¿e1(cn' /dyne) 
against the reciprocal of the temperature, T-JT-60OC7. 
Viscosities for all plotted points were measure«. (•) 

« / \ V «mb rtrkl fl** Afl /\T 1 nt*P TDO Ifl 160 tTC 

il piorrea pointa me«*—.— - vw/ 'e 
measured, (®) Je extrapolated or^interpoiatedjrom creep 
SEUrfO)(® ™epoÍrtroErtoVr;it'«ic”ui¡trons of J . Molecular 

dweights°of samples are shown.^The line for M - 1100 ñas been 

drawn parallel to that for M = 3400. 
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Temperature shift factors, a_, for three stereochemical isomers 
shown logarithmically as a function of temperature, T, 
relative to a reference temperature T0, where T0= T • 
The dashed line is the best fit WLF equation at the lower 
temperatures. 
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LIGHT SCATTERING SPECTROSCOPY OF PURE FLUIDS NEAR THE GLASS TRANSITION 

G. D. Patterson 
AT&T Bell Laboratories 

Murray Hill, New Jersey 07974 

Abstract 

Light scattering is due to spatial 
fluctuations of the dielectric tensor e 
of the fluid. In liquids these 
fluctuations are dynamic. As the 
liquid approaches the glass transition 
some of these fluctuations become very 
slow. Dynamic light scattering is one 
of the most powerful tools in the study 
of the distribution of relaxation times 
associated with molecular motion in 
liquids near the glass transition. In 
the present paper I will summarize the 
experimental results obtained by light 
scattering spectroscopy of pure fluids 
near the.glass transition. 

Introduction 

The incident light in a light 
scattering experiment is characterized 
by a well defined frequency u0 and 
wavevector Light which is 
scattered through an angle 0 in the 
scattering plane is characterized by a 
wavevector 4g and a frequency spectrum 
S (q, u) where is called the 
scattering vector with magnitude 

q m 

where n is the refractive index of the 
fluid and X is the wavelength of the 
incident light in a vacuum. The 
dielectric fluctuations can be 
representad as 3 dependent amplitudes 
according to 

where the integral is over the 
scattering volume. Light is scattered 
through an angle 0 only by fluctuations 
characterized by 3 for that scattering 
angle. 

The fluctuation amplitudes are a 
function of time in liquids and can be 
described by a relaxation function 

(2) 

The spectral density S(3»w) of the 
scattered light is related to the 
relaxation function for the 
fluctuations by 

sari-ks“'*“«'1» »i 

When the time scale for the fluctua¬ 
tions is faster than 10"6s it is 
customary to measure the frequency 
spectrum of the scattered light 
directly. When the fluctuations are 
slower than that, the relaxation 
function is obtained by measuring the 
intensity autocorrelation function 

(4) 

where A depends only on experimental 
parameters such as the coherence area 
of the scattered light and the discrete 
sample time used to measure the digital 
autocorrelation function. The experi¬ 
mental measurement of the frequency 
spectrum1 or the relaxation function^ 
has been described extensively 
elsewhere. In this article we will 
focus on the results of light 
scattering studies and their importance 
for the understanding of the glass 
transition. 

The incident light can also be 
polarized and the scattered light 
analyzed. If the incident light is 
polarized vertically(V) with respect to 
the scattering plane and the scattered 
light is observed with vertical 
polarization (W) , the symmetry of the 
fluctuations that lead to light 
scattering is longitudinal. In the 
HV(VH) configuration the symmetry is 
transverse. 
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The dielectric tensor fluctuations can 
be expressed as 

(5) 

where the A: are scalar or tensor 
variables which couple to the 
dielectric tensor. The equilibrium 
dielectric tensor is a scalar and 
depends primarily on the density p of 
the liquid. The other major source of 
light scattering in pure fluids is the 
inherent optical anisotropy of the 
molecules. Fluctuations in the orien¬ 
tation of the molecules leads to local 
birefringence in the liquid and hence 
to light scattering. In this paper we 
will consider only these two sources of 
light scattering. 

The complete phenomenological theory of 
light scattering by a liquid has been 
presented by Rytov^. In this paper we 
will consider the spectrum due to 
longitudinal density fluctuations and 
the spectrum due to pure orientation 
fluctuations. For a more complete dis¬ 
cussion of light scattering from 
liquids see Ref. 4. 

Theory 

The phenomenological theory of light 
scattering by longitudinal density 
fluctuations is expressed in terms of 
the mechanical and thermal moduli of 
the liquid. These are the modulus of 
compression K, the shear modulus G, the 
thermal modulus where C, is the 

T 
specific heat at constant volume and T 
is the temperature, and the quantity 
KaT where a<r is the thermal expansion 
coefficient. The mechanical moduli 
occur in the combination known as the 
longitudinal modulus M = K + ^G. The 
spectrum also depends on the^thermal 
conductivity k. The exact expression 
for the spectrum is given by 

A>) 
-k.T [ YW 
2irib) [ A (6) 

where kB is Boltzmann's constant, 

y = il.C - ^ + A - (Mfl1 - <*?)C +KW, 
dp T I Mi 

and c.c. denotes the complex conjugate. 
The spectral features depend on the 
roots of the dispersion equation A=0. 

The simplest model for a liquid is a 
compressible, viscous fluid. The 
longitudinal modulus can be expressed as 

M -Kt+ jT*), 
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where Kq = 1/ßm is the static modulus 
of compression and ß-j. is the isothermal 
compressibility, nv is the volume 
viscosity and ns is the shear viscosity. 
There are then three roots of the 
dispersion equation. There will be a 
central line called the Rayleigh peak 
with linewidth 

r. , jsL 
pCf 

where Cp is the specific heat at 
constant pressure. There will also be 
two shifted features called the 
Brillouin peaks with splitting 
iAw, and linewidth T, where V, is 
the longitudinal sound velocity. 
Brillouin scattering is due to 
scattering by sound waves of wavevector 
3. The linewidth is determined by the 
lifetime of the sound waves. The sound 
velocity is given by 

r? vi 

and the linewidth by 

where y = Cp/Cy is the ratio of 
specific heats which expresses the 
ratio of adiabatic to isothermal 
moduli. Sound waves are adiabatic in 
organic liquids. The contribution to 
the Brillouin linewidth due to direct 
conduction of heat is very small and 
will be ignored in the further 
discussion. This three peak structure 
was first predicted by Landau and 
Plazcek5. The predictions of the 
theory are quite good for atomic fluids 
like argon, but they break down 
completely for fluids near the glass 
transition. 

As the liquid approaches the glass 
transition the viscosities become very 
large. This would mean that the 
Brillouin peaks would be too wide to 
observe. In fact they are quite sharp 
near Tg. The simple theory also 
predicts that the sound velocity 
decreases as the Brillouin linewidth 
increases which is the reverse of the 
actual experimental observations. The 
prediction for the Rayleigh peak 
remains good over the entire liquid 
range, but it is very difficult to 
measure the linewidth. In the further 
discussion we will ignore the Rayleigh 
peak, except to note that the adiabatic 
modulus must be used for the Brillouin 
peaks. 

Real liquids are viscoelastic. After 
a step change in the volume the 
pressure takes time to approach its 
equilibrium value. The apparent 
longitudinal modulus then becomes a 

V, 
V, 



function of time and changes from its 
initial value M<x> to its final value yKq. 
The difference MR is called the 
relaxation modulus. In the simplest 
case the relaxation can be characterized 

by a single relaxation time t. The 
simplest form for the modulus which 
yields the correct qualitative behavior 
for the longitudinal sound velocity and 

Brillouin linewidth is w .„r.+ — 

The Brillouin linewidth is then 
predicted to go through a maximum and 
the sound velocity increases as x 
increases. In addition a new central 
feature is predicted. This dynamic 
central peak, was first described 
theoretically by Mountain6 and is 
picturesquely called the Mountain peak. 
The linewidth of the new central peak 
depends on 1/t. The intensity of the 
Mountain peak depends on the dispersion 
in the sound velocity due to the finite 
relaxation time. While the correct 
qualitative behavior of Fl is predicted, 
the quantitative predictions near the 
glass transition are very bad. Near Tg 
the relaxation time must be very long 
and the simple theory predicts that the 
Brillouin linewidth would be unobserv- 
ably small. In fact the value of Fl 
near the glass transition is a substan¬ 
tial fraction of its value at its 
maximum. The Mountain peak is also 
predicted to be a single Lorentzian 
peak since there is on.1.y a single 
relaxation time. The observed Mountain 
peak is highly non-Lorentzian (or highly 
non-exponential in the time domain). 
This means that a distribution of 
relaxation times must be invoked to 

explain the results. 

The adiabatic longitudinal modulus can 
in general be represented as 

(7) 

where p(x) is the distribution of 
relaxation strengths for all the 
processes which relax longitudinal 
stress. The * denotes that M is 
complex and can be decomposed into 
real part M' and an imaginary part 
The sound velocity is then given by 

a 
M" . 

and the linewidth by 

2 •• 
T _ q M" (AoiJ The eXpiicit expression 

‘ 2pA(ol 
for the linewidth is then 

r, 1 + AwiV 
■dt 

(8) 

As long as Aü^tccI for all x the 
Brillouin linewidth is determined by 

the average relaxation time 

r,(o)«£M,<T> (9) 

Near the glass transition many of the 
processes which relax the longitudinal 
stress have relaxation times that are 
too long to contribute to F t but enough 
fast processes persist to keep the 
linewidth measureable. The Mountain 
spectrum is now predicted to be of the 

form 

-fiilil_ 
1 + dit* 1 + (10) 

Only those processes with sufficiently 
long relaxation times contribute fully 
to the Mountain spectrum since only 
those processes lead to dispersion in 
M'. All these features will be 
illustrated with actual data below. 

Molecular orientation is a microscopic 
quantity so that a purely phenomeno¬ 
logical theory would have no macro¬ 
scopic variable which leads to light 
scattering. In the limit of rotational 
diffusion molecular orientation 
fluctuations give rise to a depolarized 
(HV) central Lorentzian spectrum whose 
width is determined by the orienta¬ 
tional relaxation time. Such times 
have been observed to follow the 

empirical relation 

where C depends only on the size and 
shape of the molecule and Xq accounts 
for the observed finite intercept in a 
plot of xor against 2.. As the glass 

transition is approached the viscosity 
becomes very large and the orientation 
relaxation time must become very large 
if rotational diffusion is the only 
mechanism. In fact the observed relaxa¬ 
tion functions for orientational motion 
near the glass transition are highly 
non-exponential. Further discussion on 
this topic will be deferred until the 
results have been presented. 

Experimental Results 

The Rayleigh-Brillouin spectrum has now 
been studied as a function of tempera¬ 
ture and pressure in many liquids from 
high temperatures down to the glassy 
region. A thorough review of Brillouin 
linewidth studies is available7. The 
Rayleigh-Brillouin spectrum of a 
typical8 viscoelastic liquid over its 
entire liquid range is shown in Figure 
1. As the liquid is cooled the 
Brillouin splitting and linewidth 
increase. The Brillouin linewidth goes 
through a maximum while the splitting 
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Figure 1. Rayleigh-Brillouin spectra of 2,4,6-trimethylheptane at 
six different temperatures that span the full range of viscoelastic 
behavior. This liquid was chosen because almost ail the intensity 
is due to longitudinal density fluctuations. At the highest 
temperature (294 K) the spectrum is typical of a low viscosity 
liquid. The sample is in the glassy state at 96 K. The frequency 
scale is the same for each frame and is equal to 27.1 GHz. 
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increases monotonically. One spectrum 
in the glassy state is also shown, but 
it does not look qualitatively different 
than the spectrum for an equilibrium 
fluid near Tq. In the region of the 
Brillouin linewidth maximum the Mountain 
peak is evident in the spectrum. At 
lower temperatures it becomes the major 
component of the Rayleigh-Brillouin 
spectrum. The contributions from the 
Rayleigh and Brillouin peaks can be 
subtracted from the spectrum and the 
Mountain peak obtained by itself. The 
results are shown in Figure 2. The 
spectrum is highly non-Lorentzian at all 
temperatures. At the lowest tempera¬ 
tures the half-width of the spectrum is 
too narrow to be resolved directly in 
the frequency domain. However, 
significant intensity persists in the 
wings of the spectrum all the way out 
to the frequency of the Brillouin 
splitting. It is these high frequency 
processes which keep the Brillouin line- 
width measureable near Tq. 

The low frequency part of the Mountain 
spectrum near the glass transition can 
be studied by photon correlation 
spectroscopy. A typical relaxation 
function is shown in Figure 3. The 
relaxation function ¢2 (t) is plotted 
against log t. The function is highly 
non-exponential but can be well 
described by the empirical function^ 

«KO (12) 

where 0<B<1 is a measure of the width 
of the distribution of relaxation times 
implied by the non-exponential decay. 
The relaxation function can be 
characterized by the average relaxation 
time <x> which for the empirical 
function is given by <t> = where 

F (x) is the gamma function. The average 
relaxation time is observed.to follow 
the empirical relation _ ÍA + BP) 

../ r_T» J 
where Tq is an empirical 
temperature well below Tg. A typical 
result for <t> is plotted logarith¬ 
mically against 1/T in Figure 4. 

The distribution of relaxation times 
necessary to describe the observed 
relaxation function is at least several 
decades in width. However, for many 
materials the shape of the relaxation 
function (as characterized by the 
empirical parameter S) is invariant to 
changes in temperature, pressure or 
dilution with a small molecule^. 
Although the value of ß changes from 
one material to another the insensitiv¬ 
ity to the thermodynamic state suggests 
a type of universality for the glass 
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transition phenomenon 

Dynamic mechanical studies of polymers 
near the glass transition usually 
consist of measuring G’ and G" as a 
function of temperature and frequency 
over a wide range. 
Corresponding measurements of the 
frequency dependent dielectric constant 
yield values of s’ and e". Just as the 
Brillouin linewidth is observed to go 
through a maximum, the imaginary part 
of G and c goes through a maximum as a 
function of frequency or temperature. 
For some materials more than one 
maximum is observed. The lower 
frequency (higher temperature) maximum 
is called the primary glass relaxation 
(or ex process) , while the higher 
frequency (lower temperature) maximum 
is called the secondary glass relaxation 
(or ß process). If the frequencies of 
maximum dielectric or mechanical loss 
(where e" or G" is a maximum) are 
plotted against 1/T the primary glass 
relaxation data follow the same sort of 
empirical law as the average relaxation 
time determined by light scattering10. 
The secondary relaxation data follow an 
Arrhenius temperature dependence. 
However, this apparently simple 
behavior masks the fact that the shape 
of the relaxation function associated 
with the secondary relaxation is 
changing with temperature and is very 
much broader than the primary relaxa¬ 
tion. The two relaxation processes do 
appear to merge at high temperatures or 
frequencies . 

The light scattering relaxation 
functions observed for the alkyl 
methacrylates change shape dramatically 
as the glass transition is 
approached2»11'12. The relaxation 
function observed for poly(ethyl 
methacrylate)(PEMA) near Tg is shown in 
Figure 5. It is over 7 decades wide. 
The apparent value of ß changes from 0.4 
at high temperatures to 0.16 at 70 t. 
This behavior is also observed for 
poly(methyl methacrylate)(PMMA). The 
average relaxation times observed for 
PEMA and PMMA are consistent with the 
mechanical relaxation data and have the 
same temperature dependence as that 
found for the primary glass relaxation. 
This is because the average relaxation 
time <t> is dominated by the longest 
relaxation times associated with the 
primary process. Beciuse the relaxa¬ 
tion function is monotonically 
decreasing and very broad it is not 
obvious how to separate the decay into 
more than one component. Until recently 
the data was not of high enough quality 
to attempt to calculate the distribution 
of relaxation times directly from the 
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2,4,6-TMH 

Figure 2. Mountain spectra for 2,4,6-TMH at six temperatures 
spanning the Brillouin linewidth maximum. The spectra are 
highly non-Lorentzian at all temperatures. At the lowest 
temperatures the half width of the peak is too narrow to be 
resolved in the frequency domain, but significant intensity 
persists in the wings of the spectrum. 
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Figure 3. A typical relaxation function 4>2(t) 
plotted versus log t for longitudinal density 
fluctuations observed near the glass transition. 
The line is the best calculated empirical function 

<J> (t) = exp (-t/x ) ^). 
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Figure 4. Average relaxation time <x> plotted against 

1/T for poly(ethyl methacrylate) (PEMA). The data 
follows the empirical law <x> = <T>0exp(A,T-T0))• 
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Figure 5. Relaxation function 4>2(t) plotted versus log t for P EMA at 
70‘C. The value of ß is very low (0.16) and indicates that both the 
primary and secondary glass relaxation are contributing to the 
observed relaxation function. 
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data. However, this has now been 
accomplished^. 

Extensive studies of the depolarized 
Rayleigh scattering of polystyrene near 
the glass transition have also been 
carried out14-17. The same empirical 
function used to describe the shape of 
the Mountain peak works well for the 
orientational fluctuations observed by 
depolarized Rayleigh scattering. The 
average relaxation time also obeys the 
same empirical law as that observed for 
the Mountain peak or normal mechanical 
or dielectric relaxation studies. How¬ 
ever, the average relaxation time is 
approximately two decades longer than 
that determined directly from mechanical 
measurements. The longitudinal modulus 
depends on both the modulus of 
compression and the shear modulus. Part 
of the shear modulus is due to the 
coupling between orientation and shear18. 
Thus, the depolarized Rayleigh 
scattering is sensitive to only part of 
the full distribution of relaxation 
times that determine the longitudinal 
modulus. For chain molecules the over¬ 
all reorientation of the chain or of 
some shorter segment is much slower than 
the local chain rearrangements that 
dominate the relaxation modulus near the 
glass transition. But the rate of 
orientational relaxation is determined 
by the rate at which the local 
rearrangements take place so that the 
same non-exponential relaxation function 
with the same temperature dependence is 
observed. 

Although the observed relaxation 
function in polystyrene does not change 
shape as a function of temperature, 
pressure or dilution, there is at least 
20/ of the initial decay that is too 
fast to observe with a correlator. 
Attempts to observe this component 
directly in the frequency domain were 
unsuccessful because it is expected to 
be very broad. The strong sharp peak 
due to the slow processes makes it very 
difficult to separate the small poten¬ 
tial differences between the wings of 
the central peak and any other real 
small contribution. However, the value 
of the relaxation function $(t) 
observed at 10-6 s requires that there 
be faster processes present. The best 
evidence for their existence is the 
finite value of the Brillouin linewidth 
observed in polystyrene near the glass 
transition19. 

Another way to observe the presence of 
processes with relaxation times 
substantially faster than those 
associated with the primary process is 
to use pressure to increase <t> to 10° 

s. The sample is allowed to 
equilibrate for a week and is then 
measured. Some of the fluctuations are 
too slow to relax during the 104 s 
necessary to obtain the data and 
contribute as if they were elastic 
sources of light scattering. This 
complicates the analysis, but there is 
a very broad decay evident in the 
results20. 

Part of the observed relaxation 
function near the glass transition 
seems to behave in a universal manner 
with temperature and pressure. Tliis 
part is well described by the empirical 
relaxation function with values of & in 
the range 0.3-0.7. The shorter time 
(higher frequency) part changes shape 
with temperature and may be well 
separated from the longer time primary 
glass relaxation. Only by considering 
the full relaxation function will a 
consistent picture of the dynamics of 
liquids near the glass transition 
emerge. Light scattering is helping to 
provide the experimental basis for a 
deeper understanding of the glass 
transition. 
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RELAXATION IN CRY ST ALLI IC POLYMERS 
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Abstract 

A discussion is given of the proble** 
involved in developing a theoretical under¬ 
standing of the dynamics of phase trsnsfor**- 
tions in crystalline polymers. These ideas are 
illustrated by a description of approaches taken 
in studying three simple materials — -»olyvinyl- 
idene fluoride, polytetrafluoroethylene, and 
polybutylene terephthalate. In the first case 
one is studying the rotation of a planar 
molecule, in the second the unwinding of a 
helix, and in the third the longitudinal motion 
involved in the stretching of a coiled chain. 

Introduction 

Although we seldom give the question much 
thought, our lives are in fact surrounded by 
changes of state of polymeric aystema. Every 
time we smile or frown, our skin, which is 
itself a biopolymer, relaxes and restores to our 
face the for* it had before the smile lit it up 
or the frown disfigured it. The mythical East 
Wind that is said sometimes to blow and freete 
on the faces of unlucky individuals the scowl or 
frown that was to be found there would be a 
representation of the effects to be felt if the 
relaxation phenomenon were to cease. In the 
realm of synthetic polymers, the act of sitting 
down while wearing a pair of stretch jeans 
induces a change of phase fro* one crystalline 
for* of a polymer known as PBT to another form 
which has a longer crystal axis dimension; the 
act of standing up while wearing the aame pair 
of stretch jeans then, through the same happy 
piece of technology, allows one to display no 
wrinkled knees or other unesthetic baggines» but 
to show the world a smooth face. When we throw 
an egg into the frying pan to cook breakfast, 
few of u* are aware that if the pan is lined 
with PTFE, then a couple of crystal-crystal 
phase transitions will occur in this Teflon 
lining as the pan is heated above room 
temperature. 

In the scientific study of phase transitions and 
of their time dependence in polymers we will be 
concerned with two kind* of motion. Because a 
polymeric molecule existe in the for* of a long 
chain, it is useful to divide the types of 
motion that the molecule may undergo into 
motions parallel to the chain direction and 
motions that do not involve translation of the 
chain in ita own direction. These other motions 
can be lateral translationa or, more commonly, 
rotations about the chain axis. A third cate¬ 
gory, in which one discusses the time dependence 
of the polymerisation process itself, will not 
be discussed at length here. In relation to 
this type of phenomenon we could, for instance, 
investigate the process of solid state polymer¬ 
isation. Bere a single crystal formed fro* a 
monomer can be induced to polymerise by the 
action of ultraviolet or gamma radiation. Then 
new chemical bonds are formed, and what had been 
a lattice of small chemical units becomes an 
ordered array of long chaina over a time and 
with a time dependence that will vary with 
temperature, pressure, and the chemical 
environment. 

Polymers, being as ubiquitous and complex as 
they are, provide a rich source of study for 
relaxation processes. This very richness, 
however, forces us to restrict our attention in 
a paper such as this to a few illustrative 
examples. Here we will look at two simple 
polymer* in which chain rotation is important, 
and one in which longitudinal motion of the 
polymer chain is of great interest. 

Po Iwinvlidene fWbt ids. 

Polyvinylidene fluoride, also know as PVP2» i* • 
remarkable material in that it can be produced 
in a for* in which it has a spontaneous electric 
dipole moment. Unlike ceramic ferroelectric*, 
in which the moment arises fro* an instability 
in the phonon spectrum of a non-polar material, 
PVT2 consists of a flexible chain composed of 
units of fixed dipole moment of about 7x10 
coulomb-meters. The particular phaae in which 
PVFj shows these effects is known as thep phase^ 
and is shown schematically in Fig. 1. 
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The great technological intcreat in^-PVFj 
ariaea fro* the fact thct one *ay make 
tranaducera and other devicea of large area fro* 
it. It say be produced in coaplex ahapea, ia 
eaaily cut without damage, and ia light and 
flexible. It requirea no complex mounting 
proceea, ia chemically atable and aechanically 
atrong, and can handle large electrical power. 
Ita denaity ia aufficiently low that it haa a 
better acouatical natch to water than *oat other 
ferroelectrica. Ita pietoelectric propertiea 
make it uaeful in hydrophonea, loudapeakera and 
optical aodulatora, while ita pyroelectricity 
lenda itaelf to uae in infrared detectora, 
radionetera, and intruaion detectora. 

0=0 I B ■ 180* 

! Ie 
Y ! A 

V ! A 
Y ! A 

Y ! A 
Y ¡ A 

1 
FIG. 2. At the boundary between oppositely polarized 

regions some chains are In a neutral environment for 
which the energies of either of two opposite orientotions 
are approximately equal. 

As produced by drawing fro* the more stable 
tC phase, a film of £-phase material will consist 
of randoaly oriented donaina. In order to 
obtain useful aligned material, this aaaple ia 
exposed to large electric fielda at nodeatly 
high teaperaturea, a procesa known as poling. 
To inderstand the process by which the chains 
rotate about their axea to align themselves with 
tie applied field haa been a challenging task in 
theoretical polyaer physics. 

The first aodel to be studied was one introduced 
by Aslakaen (1), in which the polyaer chain 
rotates by 180* about ita axis. The aecond 
aodel followed a more recent suggestion by 
Kepler and Anderson (2), who noticed that a 
rotation by 60* wight also occur. Both these 
aodela led to results that were at great vari¬ 
ance with the experimental results as known at 
the time. Fortunately, this uncomfortable sit¬ 
uation was relieved by aoae more careful experi¬ 
mentation, which showed that a theory based on 
one of these aodela had in fact predicted the 
observed relaxation tiae for the poling process. 

The first aodel considered the situation shown 
in Fig. 2, in which a domain wall separates 
oppositely polarized regions of a crystallite. 
A phenomenological Hamiltonian may then be 
proposed of the form 

//= r+ U, 

FIG. 3. Interchain contribution to the potential energy 
of a monomer unit of PVFj as a function of angle of rota¬ 
tion about its chain axis. The unit is located at the cen¬ 
ter of the orthorhombic unit cell of the ß phase. All 
neighboring chains are aligned at 0=0. 

where 

(1) 
i 

•nd í/= E (M1 - cosâj) + 4j(l - cos20,) 

<2> 

where I is the aowent of inertia of a aonoaer 
unit about the center-of-aass axis of the chain 
and the dot signifies differentiation with 
respect to tiae. The first two terms in D 
represent the combined influence of the local 
crystalline order (that ia, the interchain 
potential) and an applied electric field. They 
constitute a potential having a inis« at 0*0 and 
It, providing 4A2>|A, |. In practice, even with 
large applied electric fields, this condition is 
satisfied. The last term in U repreaents the 
toraional rigidity of the chain. The interchain 
potential for a aonoaer unit of a chain at the 
center of the^-phase unit cell is shown as a 
function of the rotational angled about its 
axis in Fig. 3. 
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The ti«e verietion of Jit the engular «omentu« 
of the ith unit, define-i ee 

./,=/0( 

obeys a Langevin equation of the fora 

(3) 

j^-dU/ae^xJt + FiV), (4) 

This equation is the dynamical equation of the 
system supplemented by a damping term *n<l • 
Brownian-motion term F^Ct). 

Aalaksen (1) had pointed out that any polymer 
chain in the crystal field of its neighbors has 
two locally stable orientations, in one of 
which, the stable orientation, the polariaation 
of the chain was parallel to that of its 
neighbors, and in the other of which it was 
antiparallel to the neighbors' orientation. For 
this reason he suggested that poling involved a 
possible reversal of orientation of the 
polarisation of a crystallite, rather than 
wholesale rotations of crystallites. The poling 
field would then lower the energy of the 
metastable antiparallel orientation of the chain 
polarisations in such a way as eventually to 
reverse the orientations of all polymer chains 
within a crystallite. The advantage of this 
picture is that the topological structure of a 
polymer sample is preserved, and large-scale 
motions of polymer chaina, corresponding to 
changes of orientation of the local crystal 
axes, are avoided. 

When the potential defined in Eq. (2) is 
inserted in Eq. (4) one obtains a set of coupled 
nonlinear differential equations of motion which 
have not been solved analytically, even in the 
absence of the thermal-fluctuation term. There 
are, however, some known special solutions to 
the equation that is obtained by taking the 
continuum limit of Eq. (2) at aero temperature. 
That is, one replaces the difference 

®¿«.| - ÍGC + & i-1 hy the differ«1*1 

a with a the repeat distance along 
the chain direction x, and ignores the thermal 
term F(t). The equation that results, 

= - ,4, sin0 - 2A2 si',20 + ka’tfe/dx2) - A/0 , (5) 

is known as the double sine-Cordon equation. (3) 

To this equation there are the "kink" solutions, 
which describe the motion of the boundary 
between two regions of the chain, in one of 
which 0* Oand in the other of whichtf^lT. In 
the present case the potential energy is lower 
for d^JTand so this region advances *t the 
expense of the region in which 0*0 . This is 
illustrated in Fig. 4. 

The approximation that yields the double sine- 
Gordon equation has a number of obvious 
weaknesses. One knows, for example, that the 

x/o 

FIG. 4. Solution of the double sine-Gordon equation 
represents a kink traveling to the left. 

poling process is temperature dependent, and so 
the exclusion of the Brownian-mot ion term F(t) 
from Eq. (4) allows only a eero-temperature 
result to be predicted. One must also expect 
the discrete nature of the polymer chain to play 
a significant role in the motion of a kink of 
po larixation. 

In view of these inadequacies of the analytical 
approach, a series of computer experiments were 
performed in which the discrete nature of the 
chain and the thermal fluctuations were taken 
into account. A chain of 40 monomer units was 
chosen for study, in accord with experimental 
observations of lamellar thickness (2). The 
.«quations of motion, Eqs. (4), were solved by 
1 inearixation and direct integration over a 
small time increment At. The thermal forces 
were included by adding an impulse of fixed 
magnitude(¡iVIllftT/Akyfc’but of random sign during 
each time increment. Because of the random 
nature of the force, all the finite-temperature 
experiments were performed repeatedly and 
average values taken. 

A computer experiment was then performed to 
determine the waiting time t that on average 
elapses between application of the field E and 
passage of a kink into the crystallite along a 
given chain. The results of this study are 
shown in Fig. 5, in which t is plotted as a 
function of inverse temperature for various 
fields. The approximately linear behavior 
suggests that a picture of thermally activated 
kink creation is valid, with 

= a.,b/t 
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FIG. 5. Logarithm of the average waiting time tw for 

creation of a 180* kink Is shown as a function of T*1 for 

various fields E In units of ICGVm'1. 

The "atteapt frequency" A-1, found froa the 
coaaon extrapolations of the lines to infinite 
teaperature, yields a value of about 7 THs, 
which is to he coapared with the figure of 8.4 
THz obtained by aultiplying twice the libra¬ 
tions 1 frequency at aero wave nuaber of 2.1 THs 
by a further factor of 2 to ailow for the two 
ends of the chain. Tha activation energy Bk., 
found froa the slope of theae lines, can be 
interpreted satisfactorily in teras of the 
contributiona of the various taraa in the 
Haailtonian given in Kqs. (1) and (2). 

The average waiting tiae for a chain to raverse 
its electric polarisation under tynical poling 
conditions (T-373 K, 500 MV a-1) and in a 
neutral crystal environnent is predicted by this 
aodel to be of the order of 7x10* aec. The 
theoretical poling tiae for the entire aaaple 
will clearly be auch larger than thia, and of 
the order of days or weaka. Because poling had 
been observed to occur in periods of a few 
ainutes, there wes clearly sons inadequacy in 
the aodel. 

The clue to the alternative aechanisa for poling 
cane froa the orthorhoabic nature of PVT,. The 
closeness of the structure to a hexagonal fora 
led Kepler and Anderson (2) to asks an ingenious 
auggeation of an alternative aechanisa of 
poling, naaely that a rotation of the chaina 
through 60* rather than 18C* plus a saall 
distortion of the lattice night be the correct 
aodel. Thia possibility is illustrated in 
Fig. 6, in which the boundary between auch 
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FIG. 6. Boundary between regions of 0-phase PVFj 

differing in direction of polarization by 60". 

twinned regions is shown. Soae support for such 
a aechanisa has recently been given in the fora 
of infrared studies in which the optical 
properties of a PVT, surface were shown to be 
aodified by poling (5). A siaple reversal of 
chain orientation through 180* would presuaably 
have left these unchanged. 

In this aodel the potential barrier to rotation 
was greatly reduced, and poling proceeded auch 
aore rapidly than in the previous case. In 
fact, the predicted poling tiae waa now reduced 
to be of the order of aicroseconds to 
ailliseconda (6). He had escaped froa the 
frying pan of having predicted a poling tiae too 
long by three orders of aagnitude only to land 
in the fire of a prediction apparently too short 
by aix orders of aagnitude. It was thus a 
welcoae resolution when Furukawa and Johnson 
(7), in a careful aet of aeasureaents of the 
poling procesa, concluded that ralaxation to the 
poled atate occurs in tiaes of the order of 
aicroseconda. Subsequent analysis (8) showed 
that the detailed fora of the growth of the 
polarisation with tiae was watched quite closely 
by thia aodel of propagating kinks. Thus were 
we rescued froa the ribald coaaents of our 
critics. 

rglymuflwmthrltBg 

Teflon, or PTFB, is well known for its 
"non-stick" properties. Egga, in principle, can 
be fried in a pan lined with PTFB and then 
reaoved with no adhering traces left behind. 
This saae alipperinesa that wakes Teflon unwil¬ 
ling to bind to other substances shows up also 
in the ease with which the polyaer chain can 
rotate about its crystalline axis. Early 
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experiments (9) es’ jblished that under 
atmospheric preaaure Pii'E exists in the form of 
helical chain molecules. At least three solid 
phases have been identified at atmospheric pres¬ 
sure (9,10). with two structural phase 
transitions occuring at 19*C and 30°C. While 
early x-ray studies found a commensurate 13¿ 
helix as the conformation of the low-temperature 
phase (phase II), recently Clark et al. (11) 
have concluded from careful examination of elec¬ 
tron diffraction data that this helix is, in 
fact, incommensurate. 

A number of theoretical studies (12-16) 
have been conducted on the conformation and 
phase transitions of PTFE. However, no compre¬ 
hensive theory exists of the conformations in 
the different phases or of the phase trsnsitions 
of PTFE. It has been speculated that the phase 
transitions may be modeled as incommensurate- 
commensurate (IC) transitions. 

One route to a Hamiltonian for the PTFE 
system that might yield insight into the phase 
diagram of this polymer is through molecular 
mechanics. The basic problem in this approach 
is the determination of universally applicable 
parameters characterizing the nonbonded inter¬ 
actions. Such parameters are never really uni¬ 
versal and do not produce very accurate results, 
energy differences of 1 kcal mol~ being barely 
significant in calculations using this method. 
(The barrier between the right- and left-handed 
helices in PTFE is estimated to be about 2 kcal 
mol"1.) 

This being the case, Banerjea (17) has 
formulated a model in which the most basic 
elements of the Teflon chain are present, but in 
which the mathematics is sufficiently tractable 
to permit solution of the relevant equations. 

While Teflon has a molecular structure 
similar to the PVFj shown in Fig. 1, but with 
all the hydrogen atoms replaced by fluorines» a 
simple model of this system may be visualised aa 
a 11 »r array of canted "arrows" or "spins" of 
equal size, each free to rotate in a plane 
perpendicular to the line joining the arrows, aa 
shown in Fig. 7. The angle that the jtn arrow 
makes with a certain fixed direction, defined aa 
the z-direction, is ft . Each arrow interacts 
with its nearest neighbors with a potential 
energy of the form: 

"<W ♦„» • cos(<ti 
n+1 

a) (6) 

Here o6> is a measure of the degree of natural 
cantedness of the system. In other words, to 
minimize this energy in the absence of other 
forces the arrows form a helix, and 06 is a 
measure of the pitch of that helix. Theae 
arrows, or CFj units, are also subject to an 
external symmetry-breaking field which repre¬ 
sents the effect of interchain interactions. 
The potential energy of the j1“ arrow in the 
presence of the external field is given by: 

V(4ij) = - Y cos(2i(ij) (7) 

Z 

FIG. 7. In the helical molecule of PTFE successive 
CF2 units are oriented at angles <p to the crystal 
z axis. 

The constant 'S characterizes the strength of 
the interchain forces, and hence the pressure. 
Under the influence of this pressure term alone, 
i.e. with no nearest-neighbor interaction, the 
ground state configuration would have all the 
arrows aligned parallel or anti-parallel to the 
z-direct ion. 

The total Hamiltonian for the array of 
arrows is then 

H * - E {cos(4i .,-41 - a) + y cos(2<t> )) (8) 
n+l n n 

n 
The conditions for a ground state configur¬ 

ation may be found simply by minimizing the 
total energy with respect to the set of vari¬ 
ables {¢,1Differentiating the total Hamil¬ 
tonian with reapect to ft, and setting the deriv¬ 
ative equal to zero gives an infinite set of 
equations: 

sin(*n+l - *n - a) - 8in(*n " Vl “a) 

= 2y sin(2Pn) (9) 

Solutions to Eq. (9) yield configurations 
for which the energy is a local extremum. Of 
these, a aubset are minimum energy configuration 
and a further aubaet of these are the ground 
state configurations. 

The equations determining the condition for 
a ground state, Eq. (9), transform, in the con¬ 
tinuum limit, to a non-linear second-order dif¬ 
ferential equation. It is quite common in deal¬ 
ing with aecond-order differential equations to 
reduce each to two couplad first-order differen¬ 
tial equations. A similar operation can be 
carried out with the difference equations. In 
fact, auch a procedure applied to the discrete 
sine-Gordon equation gives rise to the well- 
known and much-atudied standard map, also re¬ 
ferred to as the Taylor-Chirikov (18) map or the 
Frenkel-Kontorova map. In the caae of Eq. (9) 
this reduction can be effected as follows. 

US 
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FIG. 8. A plot of s(;) shows how the anf?le between successive CF-, units varies with the angle between 

a CF unit and the crystal axis. The left-hand figure shows cormnensurate states as Isolated rings or 
dots; the right-hand figure shows that at higher pressure chaotic states exist for which s Is not a 
simple function of 1.

equation

k new variable s^ is defined through the

sln(; -a) (10)
n ’n+1 n

Then Eq. (9) can be rewritten in terat of and 
•n *•

s - s , n n-1 2asln2; Ql)n

Together, Eqs. (10) and (11) fora a pair of 
equations analogous to a pair of coupled first- 
order differential equations.

The variable ^ is defined as modulo rr and 
lies in the range C0,7f3 while the variable a is 
restricted to lie in the range 0~l i-h IJ in 
order that the inverse sine be well defined. 
With these restrictions, Eqa. (10) and (11), 
which we rewrite here for convenience in the
form

,,=y +i+sln^s n+1 n n (12)

s ., • s + 2ysln2;n+1 n n+1 (13)

define a mapping of a part of the surface of a 
cylinder onto itself. This mapping, which can 
be expressed as

"^^n-"n> * (-n+r (14)

can be trivially shown to be area-preserving.

This is shown in Pig. 8, which is a aap of 
Sji as a function of 0^. In (a) the pressure is 
low, and the continuous lines are indicative of 
an incoanenaurate system, with all possible 
values of ^ occuring, although for some energies 
these lines have broken up into rings, which are 
characteristic of commensurate states. At 
higher pressures, as shown in (b) the commen­
surate states are surrounded by a chaotic region 
in which Sjj is not restricted to be a finitely 
valued function of One may speculate that 
these disordered states may play a crucial role 
in permitting rapid relaxation of one phase of 
PTFE to another as the temperature or pressure 
is varied.

Polvbutvlene Terenhthalate

This a 1most-unpronounceable polymer is 
usually known as PBT, although some workers 
refer to it as PTMT, which is an abbreviation 
for the totally unpronounceable alternative name 
of polytetramethylene terephtha late. The repeat 
unit of the polymer chain consists of the 
terephthalate part, which is a benzene ring with 
a couple of carbon dioxides attached on opposite 
sides, and a linking butylene piece of connected 
CH2 units, as shown in Fig. 9.

While no complete solution is possible, 
Banerjes was able to make a number of conjec­
tures within the context of this simple model of 
PTFE. One of the most interesting ideas results 
from the observation that increasing pressure 
induces a commensurate phase to form at certain 
energies, but that there is an accompanying 
region of chaotic states of higher energy.

The interesting properties of PBT reside in 
the fact that the butylene part baa two possible 
conformations that are very close in energy. 
One of these is an extended conformation, in 
which the carbon atoms form a planar zig-zag, 
while the other has the butylene segment 
slightly coiled up. Luckily (for the wearers of 
stretch jeans) the coiled conformat’on has the 
lower energy, and is thus the stable form. It 
takes only a modest stress, however (and modesty 
is not an unimportant concept in this area) to 
produce a transition to the extended form.

The crucial aspect of this transition from 
the coiled conformation, which is known as

.V’.vv
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Cone lu» ions 

FIG. 9. Chain conformation in the a (left) 
and ß (right) forms of PBT. 

o¿-PBI i to the extended £-PBT ia that it •PP,‘” 
to be totally reveraible. On renoval of tha 
.tie»» fro« the^chain, theotchain i. recovered. 
Thi. property «ake. PBT al«oet unique among the 
•imple polymer», and po»ea a challenge to theo¬ 
retical analyei». 

The fact that thi» »tretchable property of 
PBT doe» repreaent a true cry»tal-cry»tal pha»e 
tranait ion ha» now been demonstrated by a number 
of experimental technique». Perhap» the meet 
convincing of the.e i. the type of «»^«ical x- 
ray meaeurement now poaeible uaing »ynchrotron 
radiation. There one can aee the disappearance 
of »one diffraction »pot» and the appearance of 
other, a. the cry.tal i. .trained over période 
of a few tnilliaecond., the tran.ition being 
apparently complete at »train, of about ten per 

cent. 

Very little i» yet known about the detailed 
mechanism by which thi. polymer «P‘nd> 
contract», although .ome competing model, are 
starting to be »ugge.ted. Vandana Datye (19) 
ha. studied the question of whether neighboring 
benrene ring, in adjacent chain, remain linked 
to each other, or whether one chain can tran 
slate along its axis like a worm in a t«*“*1- 
Preliminary results seem to indicate that a 
model of linked chains yields better predictions 
for the stress at the critical point than does 
the alternative; these calculation», however, 
were only performed within a mean-field model, 
•nd so too great a reliance should not be placed 

on them. 

While crystalline polymere are an increas¬ 
ingly important object of scientific study, a 
large number of unanswtred question» remain. In 
particular, the dynamical price»»»» that come 
into play when crystal-crystal phase transitions 
take place represent aa area immersed in, at 
best, controversy and, at worst, ignorance. The 
experimental information now being provided by 
more powerful and sophisticated instruments and 
techniques present us with an 'jc yet uncompleted 
patchwork of clues as to the microscopic 
processes occurring. The development of a true 
theoretical understanding of the nature of 
relaxation in crystalline polymers will remain a 
challenge for some years to come. 
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MEASUREMENT OF THE TORQUE AND NORMAL FORCE IN TORSION IN THE STUDY OF THE THERMOVISCOELASTIC 
PROPERTIES OP POLYMER GLASSES 
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Abstract 

The simultaneous measurement of the torque and 
normal force responses in torsion experiments 
on viscoelastic materials provides multidimen¬ 
sional (multiaxial) data from a single simple 
test geometry. Two sorts of experimental pro¬ 
grams are chosen as examples of the utility of 
these measurements in materials characteriza¬ 
tion. In the first, results from the literature 
are used to show how the torque and normal force 
data can be used to test constitutive relations 
in an efficient way. Data are presented which 
support the important theoretical prediction 
that in two step torsional deformations where 
the magnitude of the second step is one-half 
the magnitude of the first step, the normal 
stress response is predicted to be independent 
of the duration of the first step and equal to 
the single step response to a deformation of 
the same magnitude as the second step. 

The second program involves a study of physical 
ageing in a freshly quenched polymer glass. The 
simultaneous measurement of the normal force 
and the torque provides an additional probe of 
the effects of the changes in volume accompa¬ 
nying ageing on the viscoelastic response of 
the glass. Results are presented which show, 
not only that the torque and normal force "age" 
differently, but also that the ageing behavior 
of the derivatives of the strain potential 
function is such that the classical picture of 
ageing needs to be reevaluated. 

Introduction 

Early in this century, Poynting (1) carried out 
some elegant experiments in which he twisted 
steel wires and simultaneously measured length 
and volume changes. The length change effect 
has become widely known as the Poynting effect 
while the measurement of volume changes has 
been largely ignored*. The Poynting effect has 
an analogue if one performs torsion experiments 
and holds the sample length constant: a normal 
force is measured on the ends of the sample.. 
The implications of the Poynting effect and its 

*In recent work, Matsuoka, et al. (2) have 
measured length and diameter changes of solid 
polymers subjected to torsional deformations. 

V. 

analogue normal force are well understood in 
terms of finite or second orde- elasticity 
theories (3,4) and have been extensively studied 
in the physics and rheology of polymer solu¬ 
tions, melts (5,6) and elastomers (4,7,8). It 
is only recently that work has been carried out 
to measure simultaneously the torque and normal 
force (or length change) of materials which are 
considered to be rigid solids such as glassy 
polymers (2,9,10) and highly deformable (plas¬ 
tic) metals (11,12,13). 

In this paper we discuss the usefulness of nor¬ 
mal force measurements which are made simultan¬ 
eous with torque measurements when viscoelastic 
solids are subjected to stress relaxation his¬ 
tories. First we will show how the normal 
force data can be used as a consistency check 
in studying proposed constitutive relations 
which describe the torsional data. Second the 
use of normal force measurements will be shown 
to add an extra dimension to conventional phy¬ 
sical ageing experiments (e.g., measurement of 
the evolution of the viscoelastic properties 
of a glass after a quench from above Tg). 

Experimental Tests of Constitutive Relations 

The BKZ Constitutive Relation 

In 1963 a single integral constitutive relation 
for non-linear viscoelastic materials was pro¬ 
posed by Bernstein, Kearsley and Zapas (14). 
This BKZ relation was formulated based upon the 
idea of an "ideal elastic fluid" and has proven 
an excellent model in the study of the visco¬ 
elastic behavior of polymeric melts and solu¬ 
tions. 

In general, for an incompressible material, the 
stress, o^U) for any deformation history is 

described by the following constitutive rela¬ 
tion (14,15): t ,,, 

Oij(t) = + /{Di(I^•l2»^‘T)®ij(t»T^" 

U^^.I^t-x) B^U.OJdT (1) 

where p is the hydrostatic pressure, is the 

Kronecker delta, BU.t) is the relative left 
Cauchy-Green deformation tensor, I-j and I2 are 
the invariants of B, U is the strain potential 
function, U-| = aU/alj, and Ug = aU/alg. 
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The important feature of the BKZ theory was that 
from the determination of the material functions 
(U, and IL) in single step stress relaxation 
hiitories, the behavior in more complicated 
deformation histories could, in principle, be 
described. For example Zapas and Craft (16) 
successfully used the single step stress relax¬ 
ation behavior in simple extension and the BKZ 
theory to describe the behavior in multiple 
step, constant rate of stretch (load & unload) 
and creep and recovery experiments. (See 
Figures 1-3). Zapas and Phillips (17) success¬ 
fully correlated the single step relaxation 
responses in shear of a polymer solution to the 
observed non-linear response for relaxation 
after cessation of steady shearing flows (Fig. 
4). Thus, the BKZ theory has proven to be an 
excellent model of the non-linear viscoelastic 
behavior of polymeric materials. Its failings 
will be discussed subsequently, but first we 
show some results for the theory which are nec¬ 
essary in understanding the importance of simul¬ 
taneous measurements of torque and normal force 
responses to study constitutive models. 

Figure 1. Comparison of BKZ prediction (black 
circles) with experimental results (open circles) 
in two step stress relaxation experiment on 
polyisobutylene in which the second step is 
greater than the first (16). 

Although the BKZ theory postulates the exis¬ 
tence of a strain potential function, U (which 
is similar to the strain energy function common 
to finite elasticity theories), Bernstein (15) 
has shown that for specific geometries of defor¬ 
mation one need only obtain the single step 
stress relaxation response of the system in 
that geometry and over the relevant range of 
time and magnitude of deformation in order to 
be able to describe arbitrary deformation his¬ 
tories in the same geometry. This obviates the 
necessity of actually determining U, and U, in 
many practical situations. ¿ 

Thus, for example, in simple shear experiments: 
t 

a12^) =/ MyUJ-yÍt),t--r)dT (2) 

LOG ( t, i) 

Figure 4. Comparison of BKZ prediction (black 
circles) for stress relaxation after steady 
shear with experimental results (open.cirlces) 
for polyisobutylene. (IV) ^=0.177 s ; (V) 
Y“1•11 s'1; (VI) ;=5.56 si 



where o12(t) is the shear stress response at 
time t, y(t) and y(t) arj the shear strains at 
times t and t respectively, G(Y,t) is the single 
step stress relaxation response at strain y and 
time t, and G* = 3G/3t. 

In torsional experiments (see Figure 5), the 
shear strain, y. is a function of radial posi¬ 
tion, r, in the cylinder. In this case we must 
integrate over the cylinder cross section and 
find that the torque response T(t) is [9]: 

T(t) = / MY(t)-*(T),t"t)dT (3) 

where the U/s are the derivatives of the BKZ 
strain potential function described previously 

(Eq. 1). 

r-4- r7 

-y = Ry- = R*y 
max L 

Figure 5. Torsion of a cylinder. 

Similarly, one can find the normal force res¬ 
ponse in torsion: 

t 
N(t) = / H*U(t)-4<(T),t-î)dT (6) 

where now H is the single step normal force 
relaxation function and is written as 

p R 
H* U,t) = 2n jL*Ur,t)r dr (7) 

o 
where L* in terms of the BKZ strain potential 
function is: 

L* = U^ZUg (8) 

For single step stress relaxation histories 
described by 

^(t) = 0 for -®<x<0 
^(x) = for t>_ 0 

the torque response is: 

T(t) = / K*(*,t-T)di=K (i|-,t) (9) 

where ^ is the angle of twist per unit length 
and K* is analogous to G* in eq. 2 only it 
includes the integration over the geometry, i.e., 

R o 
K* U.t) 1 -Zir* / G*(vr,t)r dr (4) 

o 
and we note here that 

G* = Z^+Ug) (5) 

thus, it is shown that KU.t) represents the 
single-step torque response at a constant angle 
of twist (strain) and time, t where K(i|/,“)=0. 
We note that K is an odd function in i.e., 
K(4/,t)=-K(-*,t). Similarly, it can be shown 
that the normal force response to a single step 
history is 

N(t) = HU.t) (10) 

where we note that H is an even function in 
i.e., H(iii.t) = H(-ÿ,t). 

For a two step strain history given by (see 
Figure 6) 

\|/(t) * 0 for -«°<T<-t, 
\|i(t) “ y, for -t^iíü (A) 

' ' - for 0<t *(t) = 4-2 

we obtain the torque response as 

T(t)-K(4-2,tn1 )+^4-2-4^ .O-KUg*^ ( il) 

and the normal force response as 

N(t)-H(4/2.t+tl)+H(4;2-4-1)t-H(4-2-4-l.t+t1) (12) 

*2, 

+ -0 

■t 

Figure 6. Two step deformation history. 

Now as it turns out. it is in two step strain 
histories where the second step in strain is 
less than the first step in strain that the BKZ 
theory fails. Some of the first data showing 
this was obtained in the laboratories of the 
National Bureau of Standards by R. W. Penn (18). 
In his experiments, Penn twisted high purity 
aluminum wires and applied the BKZ theory to 
describe complicated strain histories from the 
single step stress relaxation response (Fig. 7). 
As can be seen in Figure 8, when the loading 
increases, the theory and experimental results 
agree reasonably well. On the other hand, if 
the sample is unloaded half way (i.e., yz = 
1/2 yi) the BKZ theory, while correctly pre¬ 
dicting a maximum in the shear stress response, 
is unable to quantitatively describe the beha¬ 
vior (Fig. 9). Subsequently, Zapas (17) 
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carried out similar experiments on a solution 
of polyisobutylene and found that the BKZ 
theory was unable to predict the second step 
response (see FI;. 10). 

Figure 8. Comparison of BKZ prediction (solid 
line) with experimental results (black circles) 
for two step stress relaxation experiment in 
torsion of aluminum (18). 

Though the BKZ theory does not correctly des¬ 
cribe all deformation histories, Its Inherent 
simplicity and the power of the model have led 
to many efforts to modify the BKZ theory, with¬ 
out changing Its fundamental structure (19,20, 
21). In the following we will look at one 
such model and show how simultaneous measure¬ 
ment of torque and normal force responses 
proved an efficient method of testing a modified 
form of the theory. 

Figure 9. Comparison of BKZ prediction (solid 
line) with experimental results (black circles) 
for "half-step" torsional stress relaxation of 
aluminum (18). 

Figure 10. Comparison of BKZ prediction (open 
circles) with experimental results (black cir¬ 
cles) for "half-step" shear stress relaxation 
of a polyisobutylene solution. The solid line 
represents the modified BKZ prediction (21). 

A Modified Form of the BKZ Constitutive Equation 

One attempt to correct the "faults" of the BKZ 
theory was proposed by Zapas (21) in 1974. He 
Introduced a "material -clock" function into the 
memory term of the kernal in the BKZ constitu¬ 
tive equation. This function "shifted" the 
material memory In a fashion which depended on 
the previous strain history. In what follows 
we will follow the development used in (9) for 
the torque and normal force responses in the 
modified BKZ theory. 
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In the original BKZ theory, the effect of the 
material configuration at all previous time, 
X<t, was taken to work in the same fashion as 
an elastic potential with the configuration at 
time, X, being the preferred configuration. 
Furthermore, the effect was one of a fading 
memory which depends upon the time elapsed 
between time, x, and the present time, t, i.e., 
t-x. In the modified theory the memory depends 
on the previous strain history. For torsional 
histories the memory for the modified BKZ is 
given by: 

/ ¿(ÿ(t),y(x),i|;U),t-ç)dç (13) 
x 

where ¿ is the derivative of « with respect to 
the argument t-ç. In the present work we take 
iUUh^x^Uht-O to be independent of ÿ(x). 
Then the torque response to a general history 
can be written as: 

t R 
T(t)=-4ir/ /MtH(x)HG,[U(tH(T))r, 

-00 0 

/iU(t),ÿU)>t-ç)dç]}i(v(t),U/(x),t-x)r3drdx (14) 
T 
and similarly for the normal 4orce: 

t R ? 
N(t)=2n/ /4(tH(x)}¿tL*[U(t}-*(x))r, 

-oo 0 

t 
/¿(y(t),!|lU),t-Ç) 

dc]H(^(t),^(x),t-x)r3drdx (15) 

where the function $ has the following proper¬ 
ties: 

¢(^(¢),^(0.°1)^ 
OU t),*U),0) = 0 .,,. 

and $U(t),*(U,t) = t when tHtHU) 

and the functions G* and L* are defined as: 

G* = ZO^+U,,); L* = l^+ZUg (16) 

where the U-) and U2 are as in the BKZ theory 
but now with the memory terms corresponding to 
the modified form, i.e., 

t 
U1(ï,t)=U1(Y,/i(Y(t),Y(0.t-6)i;) (17) 

T 

With the given definitions of ^ we can obtain 
the dependence of G* and L* (or U-| and Ug) on 
strain as in the unmodified BKZ theory. Then 
from two-step histories the function $ can be 
evaluated. 

Following the procedure used in the above dis¬ 
cussion of the unmodified BKZ theory for the 
single step stress relaxation torque and normal 
force responses we get T(t) = K(ÿ,t) and N(t)= 
H(i|j,t)r respectively. For the two-step his¬ 
tory (A) the results are: 

T(t) = K(^2,t+;)+K(4/2-i)-1,t)-K(^2-K-1,t+c) (18) 

N(t)=H(^2,t+c)+H(o2-*1,t)-H(^2 -v1 .t+c) (19) 

where, again, K and H are the single step stress 
relaxation responses at the appropriate argu¬ 
ments and ; is given by 

t+t, 
ç = / ¢(^2,^1^)^6 (20) 

There are two interesting points to be made 
here. First, note that the function ; is the 
same for the torque and normal force responses. 
This means that the same function required to 
fit the two step torsional data must fit the 
normal force data. This is a strong reason for 
simultaneous measurement of torque and normal 
force in the two step experiment because a 
function ç car always be found to fit the 
torque (or shear) data. Now, the same function 
must also fit the normal force dafor the 
theory to be valid for these histories. In 
the subsequent section we will present the 
experimental results showing how this works. 

Second, if we carry out a two step experiment 
in which ii2~ 1/2 ^1 (what we call a half step 
strain history), due to the fact that H is an 
even function in 41 the normal force response 
is given as: , v 

N(t) = HUo.t) (21) 

thus, we find tha": in this history N(t) is inde¬ 
pendent of the duration of the first step and 
equal to the single step response at a deforma¬ 
tion amplitude, 42» of the second step. This 
result is also given by the unmodified BKZ 
theory. The torque response does, however, 
depend upon the first step duration (through ¢) 
and is given by: 

T(t) = 2K(42.t+c)-K(42.t) (22) 

Using the modified theory. Zapas (21) was able 
to describe experiments which the BKZ theory 
did not successfully describe. In figure 10 
are compared th: BKZ, modified BKZ and experi¬ 
mental data for a 19.3¾ polyisobutylene solution 
in cetane. As can be seen, the modified theory 
successfully describes the behavior. However, 
because of experimental limitations, Zapas was 
unable to carry out normal stress measurements 
in stress relaxation experiments and, therefore 
the theory could not be further tested without 
going to more complicated strain histories. As 
a result, the description of two step shear 
stress data with the modified BKZ theory could 
be criticized as "curve fitting". In order to 
test the modified theory, we carried out experi¬ 
ments on PMMA tubes as described in the fol¬ 
lowing section (9,10). 

Simultaneous Measurement of the Torque and 
Normal FoTce in Torsion 

Experimental. We conducted our experiments (9) 
on cast cylindrical tubes of poly(methylmetha- 
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crylate) (PMMA), which were obtained from a 
commercial supplier*. 

The nominal tube inner diameter was 2.54 cm and 
the nominal outer diameter was 3.81 cm. The 
tubes were cut to 15.2-cm length and machined 
to an outer diameter of 3.33 cm on a lathe so 
that the outer and inner surfaces were coaxial. 
Tube diameters varied somewhat from specimen to 
specimen, but each cylinder was measured indi¬ 
vidually to the nearest 0.0025 cm and these 
values used for all subsequent calculations. 

Gel permeation chromatography of o ,e tube 
indicated that this manufacturer's cast acrylic 
has a number average molecular weight of 
approximately 546,000 and a narrow molecular 
weight distribution as indicated by an f^/M- of 
1.17. It is expected that these values could 
vary from sample to sample, but no effort was 
made to examine such variations. 

All tests were conducted at room temperature 
(24 ±1 °C) using an Instron** tension-torsion 
test machine. This machine is a servohydraul1c 
system Interfaced with a Hewlett-Packard** 2100 
minicomputer for control and data acquisition. 

Single-step and multiple-step stress relaxation 
tests were conducted at various angular displace¬ 
ments. During the test normal force, torque, 
linear displacement, and angular displacement 
voltages were acquired as a function of time. 
Data were obtained at times from 0.05 to 10,000 
seconds. 

Two sets of experiments were performed. In one, 
tests were conducted on samples which had under¬ 
gone no previous known strain history. Tests 
were conducted on PMMA which had been mechani¬ 
cally conditioned by cycling through a pre¬ 
scribed strain history. Single-step and two- 
step strain histories were applied to the sam¬ 
ples. The time to reach the desired strain 
varied with the strain amplitude. The time to 
obtain a strain of 0.03 was less than 0.05 sec 
while the time to reach a strain of 0.06 was 
approximately 0.10 sec. For this reason the 
short time data at high strains may be somewhat 
unreliable. 

*Yhe equations for a tube are similar to those 
for a solid cylinder, however, the geometry is 
integrated from R] to Rp rather than from 0 to 
R. The problem is briefly discussed in (10) 
and the results of Eqs. 11,12, and 18-23 are 
unchanged. 

**Certain commercial materials and equipment 
are identified in this paper in order to specify 
adequately the experimental procedure. In no 
case does such identification imply recommenda¬ 
tion or enuorsement by the National Bureau of 
Standards, nor does it imply necessarily the 
best available for the purpose. 

In several cases the di amater was monitored for 
possible changes on samples tested at high 
strain amplitudes. No changes were observed 
within the measurement capability of the cali¬ 
pers used (0.0025 cm). No attempt was made 
to internally pressurize the tubes. 

We also carried out experiments on a polyiso¬ 
butylene solution (19.3¾ in cetane) using a 
parallel-plate arrangement (diameter = 7.0 cm, 
gap = 3.0 nrn) in a Rheometrics Mechanical 
Spectrometer**. The steps were introduced with 
the aid of dc voltage supply which could be 
varied to obtain the desired machine response 
(10). The two step strain histories studied 
are shown in Table 1 along with the equations 
which describe the torque and normal force 
responses. 

Table 1. Two Step Strain Histories 

Typ« History 1 2 N(t) T(t) 

t. jT 
0-1 

2 H(2\(, t + {) 
+ H(\M)-H<(M + í) 

K(2i¿,t + 0 
+ KW, t)-K(iM + <) 

II. Inn 
*«, 0-1 

4> 0 H(tM> 
-H(vM-K) 

- W, t) 
+ K(v¿, l + O 

III. yp 
-t, 0-1 

12 HIM 2K<i¿,, t + O 
-KlJa, t) 

Results and Discussions. In the following dis- 
cussion it is important to keep in mind that, 
for all of the strain histories described,the 
shear stress (torque) response can be fitted 
using the modified form of the BKZ theory. From 
the values for ; (or ¢) determined from this 
fitting procedure it is then possible to pre¬ 
dict the normal stress response in the same 
strain history. If the normal stress response 
is successfully predicted it shows that the 
theory works for the strain histories involved 
and the theory has a predictive rather than 
merely a descriptive capability (if only the 
shear response is considered). 

Figure 11 shows the normal stress response to a 
Type I history in which ^ = 2^i (y?=2y-|). 
Also shown are the BKZ and modified^BKZ predic¬ 
tions. As can be seen the experimental results 
agree with the modified theory. Figure 12 
shows the measured normal stress response along 
with the BKZ and modified BKZ predictions for a 
Type II history in which v2=0. Again the 
modified theory quite successfully predicts the 
measured normal stress response. (We note here 
that for PMMA the regular BKZ theory, obviously, 
does not describe the torque response in two 
step histories). 
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Figure 11. Second step normal stress response 
for a two step torsional history for PMMA in 
which 2y1=y?. BKZ theory (+); modified BKZ 
theory (é) .experimental data (■) (9). 

i ■ i a y»! . w w; v. r. f. V. TT} 

response for y=0.03. As can be seen there is 
no difference between the data points within 
experimental error. In Figure 15 we show a 
similar result for the PIB solution. Another 
check on this prediction is to test whether or 
not the response is independent of the first 
step duration, t]. As can be seen in Fig. 16, 
this is indeed the case over a range of t] from 
3.28 to 1678 seconds. It is interesting that 
the BKZ type theories correctly predict that 
the normal stress behavior in the half-step 
(Type III) history is independent of the dura¬ 
tion of the first step. This suggests that the 
structure of the BKZ-type theories is quite a 
good one. We note here that this response con¬ 
strains the multiple integral expansion form of 
constitutive relation in such a fashion (by 
suppressing odd terms) that Coleman (22) felt 
that it would be useful to expand about the BKZ 
model instead. 

( Figure 12. Second step normal stress response 
’ for a two-step history for PMMA in which y2=0- 
r BKZ theory (+); modified BKZ theory (•); experi- 
r mental data (■) (9). 
■ 

The success of the modified BKZ theory in des¬ 
cribing the Type I and Type II strain histories 
on the conditioned PMMA is very encouraging. 

1 __ However, the usefulness of measuring normal 
forces simultaneous with the torque can be seen 
to be important from the following, unique 

; results, which we reported several years ago 
(9,10) and which are predicted both by the 
modified BKZ and the regular BKZ theories. In 
the half-step. Type III strain history, we 
recall that the BKZ theory could not describe 
the shear stress response (Figs. 9,10,11) but 
that the modified theory corrects this defici- 

• ency (Figs. 10,13). However, both theories 
¿ predict that the normal stress response in this 
■ history is the same as in a single step experi- 

■ ment at a deformation amplitude equal to that 
V of the second step (see eq. 21 and Table 1). 
’. Until 1979 (9,10) no one had noticed this inter- 
; esting prediction. In Figure 14 we show a 
^ comparison between the second step response at 
l y2=0.03 (yj=.06) compared with the single step 

Figure 13. PMMA torque response in single-step 
stress relaxation history with ^=1.81 rad/m (o) 
compared with the second step response in a 
"half-step" history with ^=3.62 rad/m,^2=1.81 
rad/m, t,=419 s(D). Also shown is the BKZ 
predictiin (x) (10). 

One other point about measuring the torque and 
normal force responses simultaneously is demon¬ 
strated in the following negative result. The 
"as received" PMMA which we tested could not 
be successfully described using the modified 
BKZ theory (9). In spite of the ability to 
describe the shear data in a Type II (y2=0) 
strain history, the normal stress data Could 
not be described. This is shown in Fig. 17. 
Without normal force data we would not have 
been able to state emphatically that as 
received PMMA cannot be described by this con¬ 
stitutive relation. 

In summary, then, the simultaneous measurement 
of torque and normal force during stress relax¬ 
ation experiments in constant length torsion is 
an efficient means for evaluating constitutive 
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Figure 14. Second step normal stress response 
for a "half-step" stress relaxation history in 
which yi=2y2 compared with the single step 
stress relaxation response at strain, yz* The 
triangles represent the single step response at 
y=0.05; the crosses represent the second step 
response at y2=0-05 (9). 
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Figure 15. Polyisobutylene (19-3¾ in cetane) 
normal force response in a single step torsion¬ 
al stress relaxation history with v=28.5 rad/m 
(□) compared with the second step response when 
ii<2=l/2^1=28.5 rad/m (o) (10). 

relations, as shown by the contrasting results 
for the "as received" and the "mechanically 
conditioned" PMMA. In addition the simultan¬ 
eous measurement of torque and normal force 
responses led to the interesting discovery that 
if the second step torsional deformation is half 
that of the first step (^2=1/2^) then the nor¬ 
mal stress response on the second step is tne 
same as the single step noimal stress response 
at this deformation, i.e., and independent 
of the duration of the first step. 

In the next section we show how simultaneous 
measurement of torque and normal force respon¬ 
ses can serve as a useful probe of the visco¬ 
elastic response of glassy polymers as a func- 

Figure 16. PMMA normal stress response in 
"half-step" torsional stress relaxation his¬ 
tory vs. duration of first step t,. yi=0.10; 
Y2=0.05. Solid lines show mean values for 
single step responses with y=0.05. Dotted lines 
represent single standard deviation for single 
step response based on five replicate tests 
(10). 

Figure 17. Second step normal stress response 
for unconditioned PMMA in a two step history in 
which Y2=0. BKZ theory (+); modified BKZ 
theory (•); experimental data (■) (9). 

tion of their physical state or structure after 
a quench from above Tg to below, Tg. 

h; 
>: 
.- 

Torque and Normal Force Responses as Probes of 
Physical Ageing in Glassy l?o)ymers~ 

iT- 

The Classical Picture of Ageing 

Upon isobaric cooling through their glass tran¬ 
sition range, undercooled liquids are known to 
depart from their thermodynamic equilibrium 
(23). This is illustrated schematically in 
Fig. 18. Non-equilibrium glassy structures are 
inherently unstable since they evolve spontan¬ 
eously towards their equilibrium structure 
which depends only upon T (and P) (23). This 
approach towards structural equilibrium is 
clearly reflected in the time dependence of the 

.• 

1.36 



r « I I. I « 1-1-1-1 . I. . .. .. .. « .11 . ■ j . . j. .. . • v. * —r Mr.* ™ - ■ 

k 

i 

volume and enthalpy of the glass as well as by 
its mechanical (viscoelastic) properties. Fig. 
19 shows typical volume recovery curves for a 
polymer glass and Figure 20 shows how the relax¬ 
ation modulus changes with increasing ageing 
time. This behavior was first evidenced by 
Kovacs, et al. (24) and subsequently named 
"physical ageing" by Struik (25) in his exten¬ 
sive work on a large number of glass forming 
materials. 

Figure 18. Schematic of volume temperature 
behavior of a glass. 

Although Kovacs, et al. (24) could not account 
for the changes observed in the dynamic visco¬ 
elastic properties of a poly(vinyl acetate) 
glass with the time, t , elapsed after quench¬ 
ing, by a simple shift of the relaxation spec¬ 
trum along the time (frequency) axis, Struik's 
(25) data, taken in creep, strongly suggest 
that ageing can be described quite accurately 
by merely shifting the retardation spectrum of 
the glass towards longer times. We refer to 
Struik's widely read treatise (25) for our 
"Classical Picture of Physical Ageing". 

dor v i 10 w 
/-//, (^s) 

Figure 19. Isothermal volume recovery of )ly- 
vinyl acetate quenched from above Tg to tempera¬ 
ture indicated. Note that over a large range 
in time, the slope, ß-’-div-vj'vJ/dlog t is 
constant and nearly inde1 <dent of temperature. 
(After Kovacs (23) with varmlsslon). 

Figure 20. Small strain tensile creep of a PVC 
glass quenched from 90 °C (Tg + 10 °C) to 20 °C 
at various ageing timrs, te, after the quench. 
(After Struik (25), with permission). 

creep compliance, J(t,tj or relaxation modu¬ 
lus, G(t,te) curves measured at increasing 
values of t to that obtained at a reference 
ageing time? Struik further notes that, in 
the so-called ageing range, u*l. His arouments 
are detailed in Appendix D of Reference (25). 

The classical picture of ageing, as formulated 
by Struik, is based on the postulate that as 
the volume of the glass decreases with increa¬ 
sing ageing time (c.f. Fig. 19) after a quench, 
the change in the glassy structure (free volume) 
changes the relaxation (or retardation) spectrum 
only by shifting it along the time axis by an 
amount t . The amount of the shift per decade 
of time,eu, is found [from considerations of the 
autoretarding nature of the approach curves (of 
Figure 19) and free volume-molecular mobility 
arguments] to be less than or equal to unity, 
i.e., 

In the classical picture of ageing, the above 
arguments are valid in the small deformation, 
linear viscoelastic range when the duration, 
ti, of the relaxation or creep test is small 
relative to the ageing time, i.e., t^t^O.10. 

dlog a/d log te < 1 (23) 

where log a denotes the shifts along the logar¬ 
ithmic time axis -equired to superpose the 

Struik has also investigated the change with 
ageing of the large stress (or deformation) 
properties of polymer glasses. He reports two 
additional phenomena: 
(1) Creep at large stresses "erases" (partially 
or completely) the effect of previous ageing 
(thus "rejuvenates" the glass by shifting its 
retardation spectrum towards shorter times) 
(see Figure 21) and, (ii) The rate of ageing, 
n, decreases dramatically as the stress 
increases (see Fig. 22). 
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Figure 21. Schematic of the relative effects 
of ageing on the small stress and large stress 
creep behavior of a glass (after Struik (25), 
with permission). 

Figure 22. Variation of the "double logarith¬ 
mic: shift rate with maximum shear stress for 
PVC quenched from 90 °C to various temperatures 
(after Struik (25), with permission). 

Within a fair approximation, both of these 
effects are claimed to be virtually independent 
of temperature and the geometry of the deforma¬ 
tion (tensile of shear) regardless of the chemi¬ 
cal nature of the polymer. Struik (25) tenta¬ 
tively attributed these results to an increase 
of the free volume of the sample created by the 
deformation, i.e., by the mechanical energy 
dissipated by the system. 

Although the Struik picture of ageing is still 
contested (::6,27,28), it does serve as a useful 
reference to understand at least qualitatively, 
the model. In what follows, we will show what 
happens when the ageing phenomenon is studied 
in torsion and both the torque and normal 
force responses are measured simultaneously 
(29,30). As will be shown, the measurement of 
the normal force response provides an addi¬ 
tional piece of information, which makes simple 
interpretation of ageing data along the lines 
of Struik's arguments quite difficult. 

Comparison of the Effect of Ageing on Torque 
and Normal Force Responses 

Analysis. From Section II we know that single 
step stress relaxation experiments carried out 
in torsion at constant length results in torque 
and normal force responses. In order to ana¬ 
lyze the effects of ageing on the single step 
data in the non-linear viscoelastic range, we 
chose to use a reduced orque, TB(t), and a 

reduced normal force, Mt), defined as 
follows: , 

TR(t) = T(t)AR\=G/2 (24) 

where T(t) is the measured torque at time, t, R 
is the radius of the cylinder, y=^R where ^ is 
the angle of twist per unit length and G is the 
secant modulus in torsional stress relaxation. 

NR(t) = 2N(t)/,R2y2 (25) 

where N(t) is the measured normal force. NR(t) 
is analogous to a second order relaxation 
modulus. Variation of TR with y implies non¬ 
linear behavior while that of NR implies that 
higher than 2nd order terms are also operative 
(7,9,31). 

In studying the effects of physical ageing on 
the TR(t) and NR(t) responses, we will make 
use of the Struik "double logarithmic shift 
rate", u defined in eq. 23 but now there 
will be a u which corresponds to the torque 
response and one which corresponds to the nor¬ 
mal force response. 

As discussed subsequently, our results showed 
unexpectedly that the torque and normal force 
responses "age" differently. We therefore 
found it useful to take advantage of a "scaling 
law" derived by Penn and Kearsley (7) to decom¬ 
pose our torque and normal force responses into 
more "fundamental" quantities which are, for 
viscoelastic materials, analogous to the deri¬ 
vatives of the strain energy function in rubber 
elasticity. The development follows reference 
32: a. The Strain Potential Function 
Derivatives. For simple viscoelastic materials, 
Rivlin (33) has shown that for certain defor- 
maton histories, such as those obtained in 
single step stress relaxation experiments, 
isochronal data can be treated in the same 
manner as equilibrium data for elastic mate¬ 
rials. For incompressible materials he showed 
that the stress in any deformation can be des¬ 
cribed using two material functions which are 
functions of time, t, and the invariants in the 
principal stretches, Ii and 1-. Though one 
need not assume the existence^of a strain 
energy (or potential) function to describe 
single step stress relaxation histories, we 
shall use the BKZ-type notatico presented in 
Section II. 

In the BKZ theory of an elastic fluid (14) the 
existence of a time dependent strain potential 
function is postulated. If we consider single 
step stress relaxation deformations, then we 
can define isochronal values for the deriva¬ 
tives of the strain potential function m 
follows: t 

W1 (t)«3W/3li(I1, Ig.tJ^aU/a^ (^,I2,t-T)dx(26) 
• CO 

where Dis the potential function of the BKZ 
theory and the 1^'s are the i^" invariants of 
the left relative Cauchy deformation tensor, 
t is present time and t is past time. 



For torsion of an elastic rod with fixed ends, 
Penn and Kearsley (7) showed that the deriva¬ 
tives of the strain energy function can be 
determined from torque and normal force measure¬ 
ments. By a similar analysis for a viscoelastic 
(BKZ) rod we can find values for the W^t) 
defined above: ¿ 
W^t) + W2(t) =■ l/4ir^(3T+T^ ) (27) 

W](t) + 2W2(t) - -l/VR4(N+^2) (28) 

where R is the radius of the rod, ^ 1s the 
angle of twist per unit length, and N 1s the 
total normal force required to keep the length 
constant. T, = sT/H and N j'^N/aU2). 

W y 
Equations 27 and 28 can be solved simultaneously 
for W,(t) and WJt) as functions of both twist 
and tUe. 

McKenna and Zapas (32) have determined W^t) 
and WoU) from the torque and normal force 
data obtained In single step stress relaxation 
experiments for the unconditioned PMMA des¬ 
cribed in Section II. Their results showed 
that W](t) is negative and Increases towards 
zero (or even becomes positive) as either 
strain or time increase (F1g. 23). W?(t) on 
the other hand is positive, much greater In 
magnitude than Wi(t), and decreases towards 
zero as time or deformation Increase (F1g. 24). 
The differences in the time and deformation 
behavior of W^t) and W2(t) will be seen to be 
important in understanding the results of the 
ageing experiments described subsequently. 

In studying the behavior of a polymer glass 
which Is ageing, it is now necessary to do the 
scaling law analysis for W^t.tp) and W2(t>te) 
where te is the ageing time. It is then possi¬ 
ble to determine how and W2 shift with 
ageing time. 

Experimental■ Specimens of an industrial grade 
PMMA (Myrl.SxlO6) were machined into 50 mm long 
cylinders with a 4.5 mm diameter along the 30 
mm long gauge section. Both ends of the 10 mm 

Figure 24. W, as a function of time at various 
strain levels¿(as indicated) for PMMA. 

diameter cylinder were pierced by concentric 
holes (5 mm in diameter 7.5 mm in depth) for 
accurate centering of the specimen inte the 
Rheometrics Dynamic Mechanical Spectrometer 
(ROMS). The samples were heated to To=120 °C 
for 30 minutes, prior to each mechanical test¬ 
ing, and quenched to different T, values (40, 
60 and 80 °C) in the ROMS oven. The moment of 
the quench defines the origin of the ageing 
time, te, of the specimens. 

Stress relaxation was measured with such sam¬ 
ples submitted to the same deformation, y=4-R, 
at increasing ageing times. The relaxation 
tests, during which torque, T, and normal 
force, N, were recorded continuously, lasted 
only approximately 0.1 x te to reduce errors 
due to simultaneous structural recovery (see 
Struik (25)). 

Results. Figure 25 depicts two families of 
stress relaxation "isotherms" for TR at T,=40o 
and 60 °C, both obtained in the liniar raAge 
(y=0.0027) at various ageing times, as indica¬ 
ted. Clearly, these relaxation curves cannot 
be superposed by simple horizontal shifts, even 
within each family of isotherms, nor can the 
isotherms be superposed with an additional ver¬ 
tical shift. In fact, at both temperatures the 
TR(t) isotherms appear to rotate counterclock¬ 
wise with increasing te, and the negative slope: 
s=-dT-/d log t, at comparable te, is always 
slightly larger at 40° than at 60 °C. These 
features are in contradiction with the classical 
picture of ageing of Struik (25), but they are 
consistent with the results recently obtained 
by Guerdoux and Marchai (34) in dielectric, and 
by Guerdoux et al. (35) in dynamic mechanical 
investigations with a similar PMMA. Figure 26 
represents three families of TR(t) isotherms 
obtained at ^=80 °C, at three different defor¬ 
mation levels, as indicated. This figure reveals 
a more classical behavior than Figure 25, since 
for any fixed value of y the TR(t) curves are 
superposable within a good approximation by 
simple horizontal shifts. Moreover, the TR(t) 
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isotherms at a given ageing time but obtained 
at various deformations appear also to be super¬ 
posable merely by horizontal shifts. Neverthe¬ 
less, the amount of the latter Increases with 
te. In fact, at fixed y the shift rate y (cf. 
eq. 24), which is close to unity at small defor¬ 
mations, strongly decreases with increasing 
strain, implying that ageing has its greatest 
effect on the viscoelastic properties in the 
linear deformation range as can be seen in 
Figure 26. This is in gratifying agreement 
with Struik’s findings for the modifications of 
the shift rate induced by increasing the stress 
(25). 

Figure 25. Small strain torsional relaxation 
of PMMA at 40° and 60 °C at increasing ageing 
times, t (in hours) as indicated (29,30). 

Contrasting with the results displayed in Fig. 
25, Fig. 27 shows that in the non-linear defor¬ 
mation range the Tp(t) isotherms become super¬ 
posable even at low temperatures, and involve 
u values which again are considerably smaller 
than unity. Figure 27 also depicts the relax¬ 
ation behavior of the reduced normal force 
Nfc(t) measured at the same deformation and the 
same ageing times as TrU). Clearly, the NR(t) 
isotherms are also superposable with a fairK 
accuracy by shifting along the time axis. The 
relevant shift ’'ate, however, can be seen to be 
significantly larger than that displayed by the 
Tg(t) isotherms. This reveals that in the non¬ 
linear deformation range, the relaxation beha¬ 
vior of Np is much more sensitive to ageing 
than is T^(t). 

Figure 28 shows the dependence of shift rate y 
on deformation for both the torque and normal 
force responses after quenches to 80 °C. It 
can be seen that for a given deformation y 
is greater for the normal force than for the 
torque except at the highest strain (y=0.074) 
and, possibly at the smaller strains where 
normal force data is unobtainable. Table 2 
summarizes the shift rates determined from 
both torque and normal force measurements at 
various values of T, and y. It can be seen 
that the value of y decreases substantially 
with increasing deformation for TR, whereas for 
the normal force the decrease is much less 
dramatic. Also shown in Table 2 are the iso¬ 
thermal volume recovery rates, 6, the values 
of which are independent of T^ (23,29,30). 

IS . 

*y 

Figure 26. Torsional relaxation of PMMA at 
80 °C at various deformations and ageing times, 
as indicated (29,30). 

Figure 27. Torsion and normal force relaxation 
of PMMA at 60 °C, at y=0.039 and at various 
ageing times, te> as indicated (29,30). 

An analysis of the torque and normal force 
responses to determine W^(t,te) and W2(t,te) 

as described in the previous section was under¬ 
taken to examine the effects of ageing on W1 
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Figure 28. D formation dependence of the shift 
rates for IR and NR at 80 °C (29,30). 
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Table 2. Mechanical and Volumetric Ageing Para¬ 
meters for PMMA (29,30) 

'1 104X6 y 
3-1, 

(°C) (cmV ) 
max 

u(rR) u(Wfi) 

40 

60 

80 

3.6 

3.7 

3.5 

0.0027 
0.039 

0.0027 
0.039 

0.0027 
0.0027 
0.020 
0.031 
0.040 
0.045 
0.060 
0.074 

0.17-0.44“ 
0.17 

0.40-0.803 
0.25 

0.94 
0.66 
0.61 
0.45 
0.56 
0.27 
0.19. 

-0.06c 

b 
0.51 

b 
0.66 

b 
b 

0.71 
0.82 
0.77 
0.82 
0.49 

-0.03c 

aThe relevant tr isotherms were not superposa¬ 
ble. The figures indicate the approximate 
range of shift rates at the shortest and lar¬ 
gest t values investigated (see Fig. 2). 

^Normal force could not be measured at these 
small deformations. 

Negative y values at high values of y suggest 
some strain softening is occurring. 

An analysis of the torque and normal force 
response to determine Wi(t,t ) and W2(t,t ) 
as described in the previous section was Dnder- 
taken to examine the effects of ageing on 
and W2. As can be seen from Figure 29, not 
only are the shift rates for Wi and Wg differ¬ 
ent, but that for W, is greater than unity at 
strains less than y = 0.05, and the variation 
of u with deformation is greater for Wi than 
for Wp. These results do not fit in with the 
classical picture of ageing as discussed below 

Discussion. The results reported by McKenna 
and Kovacs (29,30) on the ageing behavior of 
PMMA reveal a few, though significant, discrep¬ 

ancies as compared to the general picture emer¬ 
ging from Struik’s investigations (25). In the 
linear viscoelastic range, the Tp(t) relaxation 
Isotherms, measured at increasing ageing times, 
cannot be superposed by mere shifting along 
the time axis below some critical temperature 
range (60 °<TC <80 °C). This critical tempera¬ 
ture range decreases, however, as the deforma¬ 
tion Increases. Such effects may be accounted 
for by a change with increasing ageing time in 
the shape of the relaxation spectrum at short 
times (24). This change in shape may arise 
from the fact that the contribution of the 
secondary relaxation processes varies with T1 
(36). These processes are in fact known to 
display a much smaller temperature sensitivity 
than do the main retardation processes control¬ 
ling the glass transition (25), and presumably 
similar differences exist for the structure 
dependence of these relaxations. Furthermore, 
the shift rate for the torque relaxation func¬ 
tion, TR(t), decreases much more rapidly with 
increasing deformation than does that of the 
normal force relaxation function NR(t). This 
difference in shift rates for the torque and 
normal force responses Increases with decreas¬ 
ing temperature (cf. Figs. 26-28 and Table 2), 
and implies that the molecular processes con¬ 
trolling the torque (shear) response are less 
sensitive to changes in structure (free vol¬ 
ume) during ageing than are those determining 
the normal force response. 

Decomposition of the torque and normal force 
into W,(t) and WjU) gives an interesting 
result which requires further study for defi¬ 
nite interpretation. However, the following 
can be said: (a) the finding that Wi(t) and 
W2(t) show different shift rates implies that 
the molecular processes which are responsible 
for Wi(t) are affected differently by changes 
in glassy structure (free volume) than are 
the processes responsible for W2(t), (b) the 
result is consistent with the finding of 
McKenna and Zapas (32,37) discussed previously 
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In which the time dependence of W](t) and W2(t) 
are different. Since the torque response Is a 
function of Wi(t) and W2U) [c.f. eqs. 3-8] and 
and the normal force response Is a function of 
Wi(t) and ZVMt), the shift rates for Wi, W2, IR 
and Nr can all be different. This accounts forK 
the observation that at y<0.05 <1 and nN <_1 

while u,, >1 and uu :1. and (c), tRe observation 
wi "2 

that the shift rate u for W^t) can be >1 

Implies that the Strulk (25) arguments that 
u<.l need to be reevaluated because they apply 
to the kinetics of the volume relaxation and 
should, therefore, be independent of the visco¬ 
elastic property for which y Is measured. 

Summary 

Simultaneous measurement of the torque and nor¬ 
mal force 1n solid materials gives additional 
Information concerning their behavior which can 
only be obtained, otherwise, by carrying out 
a large number of experiments 1n various test¬ 
ing geometries. This procedure, then, has been 
shown to be useful In testing constitutive laws 
which have been used to "fit" torsional data. 
Thus, In Section II (9) we showed how a 
modified BKZ theory could be used to describe 
two step torsional (shear stress) stress rela¬ 
xation data simply from the existence of an 
extra term (material clock) In the equation. 
By adding the measure of normal force it was 
shown that the behavior of "mechanically con¬ 
ditioned" PMMA could be well described by the 
modified theory while the same measurements on 
"as received" PMMA showed that this material 
did not follow the modified BKZ equations. 

In addition, the normal force measurements were 
important in discovering (9,10) a fundamental 
material behavior which is also predicted by 
the BKZ and modified BKZ theories. That 1s, 
the normal stress (force) response to a two 
step strain history in which the second step 
strain Is half the first step 1s predicted to 
be independent of the duration of the first 
step and Identical to the responses to a single 
step history at the strain level of the second 
step. 

Is different from that of WJt), which implies 
that the effects of glassy Structure (free 
volume) on W,(t) and W-U) are different. Fur¬ 
thermore, 1t was found^that y>_l for W,(t), 
Implying that Struik's (25) argument that u<_l 
Is Incorrect. 

The findings summarized In this article were 
made because of the ability to measure simul¬ 
taneously the torque and normal force responses 
1n torsional stress relaxation experiments. 
They show that 1t Is important to carry out 
experiments 1n a multi-dimensional geometry. 
Such experiments can be used for testing con¬ 
stitutive laws in a relatively efficient manner. 
They can also serve as probes of other pheno¬ 
mena, such as physical ageing, by allowing one 
to observe two material responses simultaneous¬ 
ly. Further work 1s continuing 1n this labora¬ 
tory with the goal of resolving the questions 
raised by the experiments and analyses 
presented here. 
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We have extended a linear viscoelastic model to the nonlinear 

viscoelastic regimes of amorphous polymers. This is done by intr 

duction of the structural state of relaxation and its dependence on 

strain For any strain or stress history, the structural state of 

relaxation is evolving as a function as a functl0n ^^^3^ of 
minable from a self-consistent equation. After the structural state or 

relaxation is solved as a function of time, we are led to a constitu 

tive equation for stress and strain. A new set of exPerime"tS ^ 
designed and implemented for polycarbonate to verify the ^as 

predictions of the model. The experimental data supports the basic 

premise of the model and brings out several of its predicted features. 

Some measurements in nonlinear viscoelasticity by other workers 
renewed and are shewn to be consistent with the mode . Comparisons 

are made between our model of nonlinear viscoelasticity with sever 1 
established models. There are some common features as wel1 aS ^ 
ferences Our model, based on fundamental mechanism of relaxation, 

provides a more micr’oscopic foundation of the features of nonlinear 

viscoelasticity of amorphous polymers. 

INTRODUCTION 

The mechanical properties of materials 

under finite or large deformations are of 

interest both from a fundamental and from a 

practical point of view. Materials of interest 

include metals, ceramics, plastics, textile 

fibers, inorganic glasses, elastomers, etc. In 

this work we limit our discussions to glassy 

polymers below their glass transition tempera¬ 

tures. Linear viscoelasticity based on the 

Boltzmann superpositi m principle, which 

describes well the behavior of glassy polymers 

at small strains, is no longer adequate at 

large strains. Therefore, a nonlinear visco¬ 

elasticity description needs to be constructed. 

Several nonlinear viscoelastic theories pro¬ 

posed in the past years have been reviewed by 

various workers.These theories, if 

used properly, can be useful in making predic¬ 

tions. However, it seems more advances have to 

be made before we have a satisfactory descrip¬ 

tion that provides physical insight into the 

problems. There apparently is still plenty of 

room for contributions to be made in this area. 

This view is shared by Ward in his recent 

review where he stated "There is not at pres¬ 

ent a representation of nonlinear viscoelastic¬ 

ity which gives an adequate description of the 

behavior and provides some physical insight 

into the origins of this behavior." 

A new approach to nonlinear viscoelastic¬ 

ity of amorphous polymers is proposed here 

which first puts its emphasis on the fundamen¬ 

tal origin, that is, a mechanism of nonlinear 

viscoelastic relaxation on the "molecular" 

level. This enables us to construct a non¬ 

linear viscoelastic model in which the stress- 

strain response functional is proposed to have 

a specific form derivable from the molecular 

mechanism. In contrast, in most existing non¬ 

linear viscoelastic theories the response func¬ 

tionals or functions are not derived from a 

physical basis and are left as empirical, to be 

determined by experiments. After the new 

approach has been presented, we shall discuss 

experimental data that give support to the 

model. Then, we shall review the various 

theories and models of nonlinear viscoelastic¬ 

ity proposed by others in the past. For the 

purpose of comparing our model with others, we 

consider only theories that are either specifi¬ 

cally designed for or claimed to be applicable 

to amorphous polymers below the glass transi¬ 

tion temperature. This restriction is neces¬ 

sary because the mechanism, and hence the model 

to be described here, is appropriate for amor¬ 

phous polymers and may rot be applicable to 

elastomers, polymer melts, etc. Although the 

approach with some modifications should be 

useful there also. In the future, we shall 
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return to the nonlinear viscoelasticity of 
these other systems. 

MODEL FOR RELAXATION 

In glassy polymers, relaxation of a primi¬ 
tive species such as the primary (a) or the 
secondary (ß, y, etc.) relaxations are respon¬ 
sible for many of the mechanical and dielectric 
properties^ jl^.e traditional treatment of the 
relaxation ’ of any of these primitive 
species follows the conventional picture of 
transition in the presence of a heat bath. The 
transition rate is a constant W =l/t , indepen¬ 
dent of time. The constant,0 T ,° is often 
called the relaxation time. In gla^ssy polymers 
the mechanical relaxation properties cannot be 
explained by a single relaxation time. JUmost 
without exception, theoretical models19 have 
invoked a distribution of relaxation times 
ascribed to one cause or another. We may add 
that what is proposed is an "inhomogeneous" 
distribution of relaxation times. In other 
words, for various reasons that invariably can 
be traced to randomness, one primitive species 
is said to relax with a relaxation time dif¬ 
ferent from that of another. 

In an approach21 2 that departs at the 
outset from the traditional one, it was recog¬ 
nized that, in general, a primitive speices 
does not relax with a constant relaxation rate 
w0 Instead, the relaxation rate is time- 
dependent. Let us examine where the time- 
dependence of the relaxation rate comes from. 
Consider a primitive relaxation species in a 
glassy polymer. We can think of the primitive 
species as one or a few repeat units of a poly¬ 
mer chain, or a molecular moiety, or a side 

group, etc. As usual, the primitive species 
couples to the heat bath, through which relaxa¬ 
tion of the primitive species with a constant 
relaxation rate W is now possible. In any of 
the above-cited examples of primitive species 
in a glassy polymer, in addition to the heat 
bath, these species couple also to many nearly 
degenerate (energy-wise) configurations of the 
polymer solid. After an initial period of time 
in which the primitive species has proceeded to 
relax, this coupling will cause concomitant 
adjustments of the configurations. Put another 
way, the initial relaxation of the primit’ve 
species will switch on a new coupling with the 
rest of the polymer, causing transitions 
between the near degenerate configurations to 
entail. These transitions which necessarily 
accompany the relaxation of the primitive 
species due to the coupling of the latter to 
its environs will slow down the relaxation 
process. The way that these accompanying 
transitions slow down the relaxation is by 
making the initial constant relaxation rate a 
function of time, in particular, a decreasing 
function of time, W(t), at long times. The 
decrease in relaxation rate at long times (i.e. 
W(t)<Wo) slows down the relaxation process by 
modification of the simple exponential decay to 
slower decreasing functions of time. There is 

an alternative but equivalent description in 
terms of entropy evolution of the near degener¬ 
ate configuration levels. Before relaxation of 
the primitive species takes place, these con¬ 
figurations are at thermodynamic equilibrium 
and hence attained the maximum value of the 
entropy. After relaxation of the primitive 
species has been initiated, its coupling with 
the configurations will drive them away from 
thermodynamic equilibrium by causing transi¬ 
tions among them. The entropy of the configu¬ 
rations which has the maximum value initially 
can only decrease. From theory,25 the relaxa¬ 
tion rate of the primitive species is exp 
(-F/RT)= ^expi-AH/RTlexpiAS/R). Since entropy 
will decrease, AS is negative. The relaxation 
rate is reduced from the primary rate of W = 
^expi-AH/RT) by the factor exp(AS/R). 0 In 

general, AS is a function of time. Hence we 
can see from the entropy evolution following 
relaxation of the primitive species that its 
relaxation rate in glassy polymers will be 
reduced from its primary value. The reduction 
is a function of time and the exponential 
relaxation, exp(-t/io), will be modified and 
slowed down. Thus it is inappropriate to start 
with exponential relaxation with a time- 
independent relaxation time, x , to describe 
relaxation of a primitive species in glassy 
polymers. Each primitive species has a funda¬ 
mental reason to relax nonexponentially with a 
time-dependent relaxation rate. Hence the 
traditional approach to describe relaxation of 
macroscopic quantities in glassy polymers by 
invoking an inhomogeneous distribution of 
time-independent relaxation times cannot be 
justified even though it is widely used. 

After pointing out that relaxation rate is 
fundamentally time-dependent, one may ask how 
the time-dependence can be calculated. A full 
review of the calculations is outside the scope 
of this work. Only a skeletal description of 
the essential steps and results will be given 
here. For details, the reader is referred to 
References 20 and 24. The results to be 
described follow from a model of near degener¬ 
ate configuration levels we have constructed. 
Although we know very little about the rather 
complicated configuration levels, there is a 
fundamental physical principle related to 
energy level repulsion that gives us informa¬ 
tion on the distribution of energy level spac- 
ings. For practically most condensed matter, 
including glassy polymers, the spacing distri¬ 
bution is always linear in energy at small 
energies. The interactions between the levels 
switched on by the primitive species after it 
starts to relax is a random variable. The 
distribution of this random interaction should 
be the same for all levels provided all level 
spacings involved are small. Knowledge of this 
distribution is difficult to obtain, and this 
is typical in amorphous and/or disordered 
materials where quantification of randomness is 
always difficult. We are not doing any better 
in ascertaining the distribution of the random 
interaction. Fortunately, even without any 
information of the actual distribution, we can 
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still proceed to obtain useful results and 
predictions of how the relaxation of the primi¬ 
tive species is modified. One has to pay a 
price, although not a dear one, of introducing 
parameters into the theory. The key parameter 
needed is n, which is the product of the aver¬ 
age of the square of the random interaction 
variable and the proportionality constant of 
the linear (in energy) level spacing distribu¬ 
tion. The quantity n is a combined measure of 
the strength of coupling of the primitive 
species to the configuration levels and the 
density of these levels. The linear spacing 
distributions which start at an energy Ec=hu)c 
(h is he Planck's constant) and extends down to 
zero energy decrease in entropy with time 
according to -n£n(w t). This reduces the 
relaxation rate to S^íw^t) At energies 
exceeding E , the levelspacing distribution no 
longer increases linearly with energy. It 
levels off and then cuts off exponentially. 
The entropy decrease of these levels with 
spacings larger than E has no characteristic 
time dependence. We incorporate their contri¬ 
bution and call it -AS>. The reduced relaxa¬ 
tion rate has the form of: 

W(t) = W e’^V t)‘n, 05n<l (1) 
o c 

Substitution of the time-dependent relaxation 
rate given by Eq. (1) into the relaxation equa¬ 
tion for primitive species, P, gives 

dP/dt = -W(t)P (2) 

and on integration of Eq. (2), the primitive 
soecies relaxes according to 

P = Poexp(-t1'n/(l-n)exp(-AS>/R)u»"to) (3) 

This can be written as a pair of equations: 

P = P^expl-U/ip)1 n] (4a) 

and 1/1 — n 
X = [(l-n)exp(-AS /R)u> X ] Oán<l (4b) 
p ^ c o 

Equation (4a) has the form of a fractional 
exponential function which has been repeatedly 
suggested26"31 in the past as empirical relaxa¬ 
tion functions. The compliance functions cor¬ 
respondent to the relaxation functions in the 
form of Eq. (4a) can be traced to Kohlrausch 
who in 1866 suggested a fractional exponential 
creep compliance function. Apparently Pierce 
in 1923 was the first to suggest directly the 
fractional exponential relaxation function 
which we rewrite in the familiar form of 

P = Poexp[-(t/x)^], 0<PS1 (5) 

In the field of dielectric relaxation, Williams 
and Watts31 were the first to suggest Eq. (5) 
as a useful empirical function. In the field 
of amorphous polymers, Eq. (5) is often 
referred to as the Williams and Watts function 
even though mechanical relaxations are consid¬ 
ered. We shall follow this custom. 

Our model has led us to derive the Wil¬ 
liams and Watts function from a microscopic and 
mechanistic approach, i.e., Eq. (4a). There 
is, in addition, another prediction given by 
Eq. (4b) that is entirely new. It gives a 
physical meaning to the measured effective 
relaxation time, X , by relating it to the 
microscopic primary^relaxation time, Xo, in a 
well-defined and quantitative manner. Equa¬ 
tion (4a) and Eq. (4b) are coupled predictions. 
By coupled we mean that if the fractional 
exponential time dependence of Eq. (4a) gives a 
good fit to the time or frequency dependence of 
the experimental data for a ch'ice of n and x^, 

then these same n and X appear in Eq. (4b). 
Even with these same seti of n and x already 
determined via Eq. (4a), the abundance*of extra 
parameters, AS>, w and Xq makes Eq. (4b) not 
difficult to be satisfied. In other words the 
extra prediction given by Eq. (4b) does not 
appear to lend extra validity to the model. 
However, this weakness is only apparent. To 
see this, let us stress the meaning of Eq. (4b) 
which is a restatement of the basic physics of 
the model. The primary microscopic relaxation 
time, X , of the primitive species is modified 
by the °mechanism to X . The latter can be 
deduced readily from experimental data. Along 
with this modification, the dependences of Xq 
on thermodynamical variables such as tempera¬ 
ture T, on molecular variables such as molecu¬ 
lar weight, etc., will also be modified for X^ 

For example, if X is thermally activated with 
activation enthalpy E^ so that 

Xo = X(Bexp(EA/RT) , (6) 

then 

Xp = x*exp(E*/RT) (7) 

where E*, the activation enthalpy of X is 
related to E^ by 

EA = EA/(1"n) (8) 

in which only n appears. This provides a 
stringent test since n can be obtained from 
experimental data. Such a prediction between 
the apparent activation enthalpy, EŸ, and the 
microscopic activation enthalpy has been veri¬ 
fied in many instances. For amorp^g118 polymers 
below X , the most detailed study was on the 
y-relaxltion of chloral-polycarbonate, a deriv¬ 
ative of bisphenol-A-polycarbonate. In glassy 
chloral-polycarbonate measurements of NMR and 
dynamic mechanical relaxations have been made. 
Both sets of data are well fitted by Eq. (4a) 
with n=0.8. The primitive relaxation species 
involved has been identified by NMR techniques 
to involve phenylene ring rotation about the 
chain axis. Yet, the dynamic mechanical 
results suggest that the primitive species is 
at least one repeat unit. Thus an apparent 
contradiction existed. Both of these molecular 
motions have been studied by Hartree-Fock 
calculations and the activation enthalpy is 
found to be about 10 kJ/mol. in both cases. 
Earlier the same relaxation has been studied by 
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33 
NMR in dilute solutions of chloral-polycar¬ 

bonate. In the most dilute solutions, it was 

found that the activation energy measured is 

close to about 10 kJ/mol. In this case, we 

have a rather clear situation. The activation 

energy based on theoretical molecular calcula¬ 

tions is known. Further, in dilute solutions, 

the chain-chain interactions in the bulk are 

absent. One may then expect the measured 

activation energy of about 10 kJ/mol. can be 

taken as approximately that of the primitive 

species. Now with E, = 10 kJ/mol. known and 

n=0.8 for the same relaxation in the glass, we 

can make an additional prediction based on 

Eq. (8) that the activation energy observed in 

bulk chloral should be about 50 kJ/mol. This 

is indeed the case. The apparent contradiction 

was resolved by considering a type of motion 

that was consistent with all the experimental 

observations and theoretical calculations. 

We shall give a few more examples that 

lend strong support to Eq. (4b). These exam¬ 

ples are restricted to the domain of polymeric 

systems, although some nonpolymeric glasses 

will also be included in the discussion. We 

shall illustrate that predictions of Eq. (4a) 

and (4b) are able to explain widely different 

features of polymer systems in the glassy, 

transition, rubbery plateau and terminal relax¬ 

ation regions. Discussions will be brief 

because we do not intend to write a review here 

but rather cite them to bring out the universal 

nature of the mechanism. Consider monodis¬ 

perse, linear, flexible polymers in the melt 

region. At sufficiently high molecular 

weights, Mc the chains entangle with each 

other. Through the entanglements, each polymer 

chain couples to the rest, i.e. configurations 

of other chains. The bare Rouse modes of 

relaxation of each polymer chain are given by 

the familiar expression 

M2 a2£0 
Toi - I* 1 6n2M2kT ' ’ i=1’ 2 ••• (9a) 

o 

Note that 

r01 “ «2 (9b) 

The fundamental mechanism now works through the 

entanglement coupling, shifting each of the 

bare Rouse -elaxation modes, T ., to the appar- 

ent Tpi' degree of cooperativity of the 
Rouse qnoda decreases rapidly with the index i. 

Since the degree of cooperativity gives a 

measure oi the coupling strength of the bare 

Rouse mode to the configurations, we expect 

that the fractional exponent, n. , for mode i 

will be largest for i=l and decreases rapidly 

to zero as i increases. Fror the prediction of 
Eq. (4b), rewritten now in tV form 

rpi = ( (l-n^)exp(-AS>/R)u)™i ioi]1/(1‘ni) (10a) 

TDi “ M (10b) 

it follows that the shift of r . to t to 
oi pi 

longer times is the most significant. It is 

well known from Rouse's work that the bare i=l 

mode makes a major contribution to the flow 

viscosity. The nonlinearity of the magnitude 

of the shift obtained through exponentiation in 

Eq. (10) will enhance further the dominance of 

the shifted i=l Rouse mode. Thus the terminal 

relaxation region can be considered to be 

almost entirely due to one mode with relaxation 

time, i , and exponent, n . Its contribution 

to stress relaxation is 

G(t) = G° exp(-(t/Tpj)1-nl) (il) 

which implies a steady-state viscosity 

n=GNTpir[1/(1‘nl),/(1'ni) (,2a) 

with 

n “ Tp] cc M2/(1"ni) (]2b) 

where F denotes the gamma function. The prod¬ 

uct of the plateau modulus and the recoverable 

compliance can be calculated directly. The 
expression is 

JeGN = (l-n1)r(2/(l-n1))/r2(l/(l-n1)) (13) 

So far we have outlined the predictions on 

various measurable quantities of melt rheology. 

The tests come from analyses of experimental 

data. The test of Eq. (4b), now in the form of 

Eq. (11), comprises making comparisons of 

terminal relaxation frequency or dependence 

with the family of fractional exponential 

relaxation functions to see if there is an n 

value that gives a good fit to the data; and, 

if so, determine it. We have examined mono- 

disperse linear, flexible entangled polymer 

melts and concentrated solutions, using stress 

relaxation data G(t), dynamic data G'(uj), 

G"(u)), and creep compliance data J(t). We 

found that without exception, each set of data 

is well fitted by the appropriate viscoelastic 

functions derivable from Eq. (11) for some n 

value. It is remarkable that good fits are 

obtained for most of the data for values of n 

lying between 0.4 and 0.47. Now with n fixed, 

at least inside an interval, we can test criti¬ 

cally Eq. (4b) via Eqs. (12b) and (10b). That 

is, with the Pj values determined, do they 

predict a viscosity which has the molecular 

weight dependence of the form founu for 

most polymers? This is indeed a discriminating 

test because, with the allowable values of n 

already decided, there are no other adjustable 

parameters. It is easy to verify that for 

nj=0.4, Eq. (12b) predicts that 

0 “ M3-3 , JeG° = 2.05 (14) 

and for n = 0.47, 

H « M3-8 , JeG° = 2.63 (15) 
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These predictions are in very good agreement 

with data. By going through this example, we 

hope the reader has acquired a better under¬ 

standing of the general applicability of the 

coupling mechanism in relaxation, and how the 

relaxations of the bare microscopic primitive 

species (which in here is the terminal Rouse 

mode) are slowed down, resulting in a shift of 

the effective relaxation time that appears 

in the fractional exponential relaxation func¬ 

tion to a much longer time than the original 

T .. 
01 

Brief mention ^ill be made on conductivity 

relaxatiog .yif Li ion in lithium-borate 

glasses. ’ A nonexact version of the work 

will be given for the sake of simplicity. The 

conductivity relaxation is described by the 

electric modulus function (u))-iM"(u)) 

which can be deduced from dielectric relaxation 

measurements. The primitive species is the Li 

ion. The relaxation process is the hopping 

motion of the Li ijOn from site to site. The 

coupling of the Li ion to the configuration 

levels causes the hopping relaxation rate to be 

time-dependent and has the gen^gic form of 

Eq. (1). Indeed the measurements show again 

that M*(w) is well fitted by Eq. (4a) with 

n~0.48. In this system, we can design a very 

stringent test of the second relation of Eq. 

(4b) by studying the isotope mass dependence. 

One has a choice of **Li or ^Li isotope in 

sample preparation. The temperature dependence 

of the hopping relaxation has the Arrhenius 

form. The activation energy as well as the 

value of n is independent of the isotope, as 

expected. The isotope mass dependence of is 

known. The simplest relation of 

^7/6=1.08 is expected. Then Eq. (4b) predicts 

that the observed T as well as the resistivity 

p (the electric aftalogue of flow viscosity) 

will have an enhanced isotope mass dependence 

,f 

p(7) (6)=T(7) (8) 
p p 

(t(7)/T(6))l/(l-n) 
(16) 

This is another unambiguous test of Eq. (4b), 

since in Eq. (16) only n, predetermined by 

fitting to M*(w), appears The experimental 

data are in quantitative support of Eq. (16), 

thus verifying once more that the time depen¬ 

dent transition rate mechanism is appropriate. 

Before we enter into the discussion of 

nonlinear viscoelasticity, it would be helpful 

to bring out clearly the concept of "structural 

state" implied by the present model of relaxa¬ 

tion. The configuration levels that play a 

central role in modifying primitive species 

relaxation in a manner according to Eqs. (4a) 

and (4b) depend on the "structure" of the 

condensed matter in which the primitive species 

are immersed. This leads to another idea of 

checking Eqs. (4a) and (4b). Suppose we modify 

the "structure" of the condensed matter in one 

way or another, while the primitive species is 

kept the same. Then the configuration levels 

as well as their strength of coupling to the 

same primitive species will be changed for the 

modified structure. We use the term "struc¬ 

tural state" to describe the set of parameters 

{n, u) , AS>) which essentially characterizes 

the configuration levels and their coupling to 

the primitive species. Structures modified 

differently will have different structural 

states. Their effective t 's will be related 
P 

differently to the same T because the sets in, 

u) , AS>} are different. Consider the example 

tfiat t is thermally activated with I = 

T^exptE^/RT). Let j=l,2, . . . index the dif¬ 

ferent structures that are obtained by modifi¬ 

cations of the original which we label by j=0. 

Then, n. of the structural states }n., u> ., 
J J CJ 

AS>.} being all different, Eq. (4b) implies 

tha¿ 

PJ 

where 

= *¿j«P(E¿j/RT) (17) 

E*. = EA/(l-n.) (18) 

Equation (18) can be restated as follows: The 

product E*j(l-n^) is invariant and is the 

actual microscopic activation energy of the 

primitive species. An example of structural 

modification is the absorption of different 

amounts .of..water in polymers. In several 

studies, Eq. (18) has been verified. 

Another example is dilution. Solutions 

polycarbonates studied by Jones and coworkers 

on the ^relaxation are in accord with Eq. (18) 

as mentioned earlier already. Variation of 

temperature and pressure, or physical aging for 

a long enough time period will also modify the 

structure and the structural state. These 

modifications often take place most importantly 

when the temperature is near T . When near T , 

structural changes in most polymers and many, 

though not all, glasses are accompanied by vol¬ 

ume changes ojTgCjj^figurationa 1 entropy change^ 

A free volume ’ or configurational entropy 

rationalization of the relaxation rate of the 

primitive species, t , suggest that To will 

also change with structural changes. In these 

circumstances, in addition to the structural 

state specification, we should add the informa¬ 

tion about I . We write it as {n , u> , AS ; 

T .}. The relaxation rate is giver. byJEq. (i) 

anti the effective T is still obtained from 

t . by Eq. (4b) — si&?e the mechanism is uni¬ 

versal, it is always operative. Other treat¬ 

ments of relaxation have usually neglected 

this; X . is mistaken to be just T .. The 

nonexponiTitial nature of the relaxation is 

accounted for, as an afterthought, to be due to 

a distribution of I .'s. To justify Eq. (4a), 

one needs to find anr* additional reason why the 

assumed distribution of T .'s is always such 

that they lead to Eq. (4a).0^ 

Most workers in relaxation of amorphous 

polymers and glasses have recognized the struc¬ 

ture dependence of relaxation, especially near 

149 

V .- -• -• c. - .--.k. . . • ..- - ■ •. ».* ./ 

.-. ‘ \V-Y-.- -Y-Y-Y-.-'.‘•■Y-Y-Y 



T . The structure has been described by a^ic- 
t§ve temperature, T,, introduced by Toole, J or 
by deviation of voluin^, 6, from equilibrium, 
considered by Kovacs. ' We shall use I to 
label the structure with the understanding that 
I can be identified with T^. or with 6 wherever 
it is appropriate. Replacing the index j by a 
functional dependence on 2, the structural 
state dependence on structure is specified in 
general by the set: 

{n(2), u>c(I), AS^I) ; to(2)} (19) 

in the context of the present model. In the 
literature, for example, the dependence of I 
on structure has been proposed by Narayana- 
. ..iiny to have the form of 

t 
o 

xAh* 
R 

U_->0 Ah" 
RT, 

(20) 

where x, lying between Jgro and one, is a 
parameter. Kovacs et al. have proposed the 
form 

T = 
o 

Tr exp(6(Tr-T)] exp I -0(l-x)(Tf-T)) (21) 

which takes into account the dependence of T 
on the structure. The nonexponential nature o? 
the relaxation process is then attributed to 
the existence of a distri£ytion of relaxation 
times. Moynihan, et al. have empirically 
used the fractional exponential functions with 
a temperature or structure independent ß = 1-n 
to model the distribution. Kovacs et al. have 
used a two-box distribution which gives approx¬ 
imately the same results as that of a frac¬ 
tional exponential for some value of ß. It is 
important to emphasize that much of the impor¬ 
tant aspects of relaxation have been recognized 
by these workers and others. We come into this 
area by making a contribution to the under¬ 
standing of the origin of the nonexponential 
nature of the relaxation, tracing it to a 
fundamental mechanism, and pointing out that 
structure dependence comes not only through t 
but also through n, ui and AS>. That n is 
structure dependent is easy to check with 
experimenta^ data. Torsional creep data of 
polystyrene0 undergoing physical aging shows 
that n inci'ases significantly as aging time 
increases, and indicates that n is structure 
dependent. Similar observations have been made 

on creep data of polyvinylchloride and poly- 
48 49 

propylene. ’ Stress relaxation data of 
48 48 

polystyrene " and silicate glasses-'” also 
exhibit the same behavior. Dielectric relaxa¬ 
tion data on a number of glasses and polymers 
near T show that n for the primary relaxation 
is a f%nction of T. In all these instances it 
is remarkable that not only n changes with T, 
but the relaxation proceeds according to Eq. 
(4a) at all temperatures. This is suggestive 
of the existence of i physical mechanism like 
the one discussed here. 

MODEL FOR NONLINEAR VISCOELASTICITY 

The purpose of a lengthy discussion of the 
model for relaxation in the previous section is 
dual. First, we have given several examples to 
support the general applicability of the funda¬ 
mental mechanism of relaxation described by 
Eqs. (1) or (4a) and (4b). These will facili¬ 
tate the reader's understanding, especially in 
the construction here of an approach to non¬ 
linear viscoelasticity. Second, some rudimen¬ 
tary concepts associated with the model for 
relaxation have been brought out and discussed. 
The most important concept is the structural 
state of relaxation specified by {n(2), w (2), 
AS>(2); I (2)} where 2 denotes the structure. 
The varialft.es that specify the structural state 
are a function of the structure itself. At 
time t' if the material is subjected to a step 
change of temperature or strain, etc., and if 
the structure is held constant thereafter to be 
2(t')=2', then the structural state of relaxa¬ 
tion will modify the relaxation of a primitive 
species from the rate of X0l¿) to 

W(2\ (t-t')) = T^1(2' )exp(-AS>(2' )/R) 

(u)c(2’)(t-t'))‘n(I,) (22) 

for t>t'. If the structure 2 is also changing 
with time, then the structural state of relax¬ 
ation is an implicit function of time. The 
momentarily relaxation rate will acquire an 
additional dependence on time through 2(t), 
i.e. 

W(2(t), (t-t')) = t¡1(2(t))exp(-AS>(2(t))/R) 

(ujc(2(t))(t-t’))'n(I(t)) (23) 

Although we have not explicitly written 
down for t>t' the dependence of T on the 
thermodynamic variables such as pressure or 
temperature, yet such dependences must be 
included in cases where pressure or temperature 
variations are involved. This is important for 
enthg^p^Q recovery in step changes of tempera¬ 
ture ’ and for continuous ^o^ng and heat¬ 
ing as in a D.S.C. experiment. ’ 

As an example let us consider the cl^gs^g 
cal volume recovery experiment of Kovacs. ’ 
A finite temperature jump near T from T to T 
at t=0 is entailed by structural relaxation 
which can be monitored by the volume recovery 
to its equilibrium value of for temperature 
T. It simplifies matters if the instantaneous 
structure 2(t) can be specified by the volume 
V(t) or by the volume deviation 6(t)=(V(t)- 
V»)/^oo ^rom equilibrium. The primitive species 
is now the relaxation responsible for structure 
or volume change near T . The time development 
of 6(t) with the relaxation rate of Eq. (23) is 
governed by the differential equation 

dô(t)/dt = -W(6(t), t) 6(t) (24) 



which has the self-consistent solution of 

6(t)/6(t=0)=exp{-;^dt,W(0(t'), t’)} (25) 

where 

6(t=0) = (V(t=0) - (26) 

and 

W(6(t),t) = 1^(6(1), T) exp(-AS>(6(t))/R) 

[ui (6(t))t]*n(6(t)) (27) 
c 

Equation (25) can be solved numerically. The 
solutions have the features of asymmetry, 
nonlinearity and memorv-effects as pointed out 
by Aklonis and Kovacs. ^^Application has been 
made to polyvinylacetate. 

We shall be using a generalization of the 
expression on the right hand side of Eq. (25) 
repeatedly in this work. The generalized form 
takes into account that the step change occurs 
at t1. It has the form of 

exp{-j£, dt" W(I(t"), t"-t’)} 

= <Kt, f; I(t")) (28) 

From now on we need not indicate the tempera¬ 
ture explicitly. This is because in consider¬ 
ing nonlinear viscoelasticity the temperature 
is often kept constant throughout a stress- 
strain history. 

With most of the tools at hand, we are 
ready to build a model for nonlinear viscoelas¬ 
ticity. To make things simpler, we consider an 
amorphous polymer in some state which does not 
change with time or changes with time so slowly 
that within any of the time periods of inter¬ 
est, the state remains in effect the same. An 
example of this is a well annealed sample with 
the structure approaching near that of equilib¬ 
rium such that structure relaxation would be 
negligible in the time period of interest. 
This initial state can be considered free of 
stress or strain. If at some time, to, a step 
increase of strain is imposed on the sample. 
For t>t , the sample is then under a constant 
strain ê . Since the material is viscoelastic, 
the resuîtant stress will relax from an instan¬ 
taneous value according to 

o(t) = e M(t-t ) t>t (29) 
o o o 

where M(t) is the stress relaxation modulus. 
The single step increment in strain corresponds 
to a strain history of 

e(t) = e 0(t-t ) (30) 
o o 

where 0(t) is the unit step function, 6(t)=0 
for t<0 and 0(t)=l for t>0. We can consider a 
more general strain history. The immediate 
generalization is the imposition of an arbi¬ 
trary number of increments £. in strain at 
times t., i=0, 1, 2 . . . N.1 If the stress 

relaxation can be accurately described by the 
linear superposition of responses 

o(t) = l e.eU-t.Mt-t.) (31) 

for the same M(t), and if M(t) is a function of 
time only and is independent of the strain 
magnitude £ in Eq. (29), then the relaxation 
is linear viscoelastic. The modulus M(t) is 
related to relaxation processes in the molecu¬ 
lar level of description. That M(t) is inde¬ 
pendent of strain magnitude and strain history 
is equivalent to the same independences of the 
molecular relaxation processes. The latter 
proceeds in general according to the relaxation 
function given by Eq. (28). Therefore, in the 
regime of linear viscoelasticity, the structure 
l is not modified by any of the strain magni¬ 
tudes considered, and it remains unchanged 
throughout any strain history. 

Large strain magnitudes that invalidate 
linear viscoelasticity in causing both the 
dependence of M(t) on £^ and breakdown of 
linear superposition in t?.e form of Eq. (31) 
may be attributed partly to changes in struc¬ 
ture. A change of structure will lead to a 
dependence of M(t) on £ caused by the implicit 
dependence of the primitive species relaxation 
rate on I, as can be seen in Eq. (23). This, 
together with the change of 1 with time, make 
linear superposition with the same relaxation 
modulus function impossible. To construct a 
model of nonlinear viscoelasticity, we consider 
the dependence £^(£) of the equilibrium struc¬ 
ture on strain E. The initial state has been 
assumed to be at equilibrium with structure 
I (£=0). If at time t=0, the sample is sub¬ 
jected to a large strain increment £ . The 
strain history is given by £(t)= £0(1^. For 
t<0, 2(0=1^=0) and for t>0, Ift) relaxes 
from the inTtial structure £^(£=0) toward the 
final equilibrium structure 2^(£o). The primi¬ 
tive molecular process that is responsible for 
the structural relaxation relaxes with the rate 
of Eq. (23) that is dependent on the instan¬ 
taneous structure I(t) through the parameters 
of the structural state, 1^, w AS> and n. If 
I can be represented by a scalar s^h as the 
fictive temperature, T^, of Toole^ or the 
equilibrium volume, V^, of Kovacs, then the 
relaxation of I for the strain history of 
£=£ 0(t) follows the differential equation 

0 

dl(t)/dt = -W(I(t),t)I(t) (32) 

The solution of which, consistent with the 
boundary conditions, 

2(t) = 2.(£o) + a00(e=0)-IÄ(£o)) 

exp{-/^dt’W(2(t1), t’)} (33) 

With a fictive temperature representation of 
structure, the solution can be written as 

Tf(t) = V£0> + (W^-Tf^o» 

exp{-/^dt1W(Tj(t'), t')} (34) 
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We shall use 2 as well as Tf for the designa¬ 

tion of structure from this point on. 

The stress relaxation modulus M(t) associ¬ 

ated with the same primitive molecular relaxa¬ 
tion procès: is given by 

M(t) = Mr + (^) 

exp{-/^dt’W(Tf(t'), t’)} (35) 

where and MR are the unrelaxed and relaxed 

stress moduli respectively. If more than one 

primitive relaxation process is involved in the 

time period of interest, then we have to sum 

over their contributions in Eq. (35). If there 

is absence of variation of Tf with time so that 

all the relaxation parameters of the structural 

state are constant, moreover, if M_ and M.. are 

independent of the stress magnitude, thenTHt) 

is a function of time only. The linear super¬ 

position of responses can hold and we have 

linear viscoelasticity. In general Tf evolves 

with time, and both and ft. can depend on 

strain magnitude when the latter is large. 

Consideration of the dependences of M_(£) and 

am(c)5(mu'mr) on e from a fundamental point of 
view is beyond the scope of this work. The 

stress relaxes as 

0(t) = M(t)£o = MR(£0)eo + AM(£o)£oexp{ 

- ^dt’W(Tf(t’),t')} (36) 

If we define the fractional departure of the 

fictive temperature from equilibrium as 

ATf(t.£o>=iTf(t)-Tf«.(eo)]/lVe=0) 

-W1 (37a) 
According to Eqs. (34) and (28) 

ATfit.Eo^expl-^dt’WiTfit’J.t')} 

= ♦(t,0; Tf(t')) (37b) 

Then on comparing Eq. (34) with Eq. (36), we 
obtain 

o(t) = Mr(£o) + AM(£o)-ATf(t, Eo) (38) 

relating the stress relaxation to the struc¬ 
tural relaxation. 

Multiple Steps 

An N step strain history described by 

£(t) = t.ed-t.) (39) 

and for i=l . . . N-l will be consid¬ 

ered by generalizing the one step result. Here 

£. can be positive or negative, so long as 
£It)èO for all tèO. 

Let £r = 5! £ , which is the final strain 

at t>max{t.}. Then by superposition of the 

ISi^N relaxation of the structure to each of 

the N steps, it can be verified that the fic¬ 

tive temperature will relax according to: 

Tf(t) = w+ X (AWj 
expf-J^ dt'Wít'-t ; T (t'))} (40) 

j J 

where 

(ATfJl = V£=0> - W (41) 

and 

^fjj = Wj) - Tfoo(£j) (42) 

for 2$j£N. The star superscript for the summa¬ 

tion reminds us that if t.<t<t. , then the sum 

over j goes from 1 to k only. * 1 

The development of stress with time can be 

obtained by superposition of expressions given 

in Eq. (36) with the result 

o(t) = .£ VVej * "j 'j 

exp{-/‘ dt'VU'-t ; T (t'))} (43) 

j J 

where 

AM. = AMi.ij ^) (44) 

Continuous Strain History 

Having the result for a number of finite 

steps, we are ready to generalize it to infini¬ 

tesimal steps and continuous strain history. 

The generalizations of Eq. (40) and Eq. (43) 

can be written down immediately for a strain 

history of E(t), t20 and £=0 for t<0. The 

structural relaxation proceeds as 

î,(t) = V(£(t))-j;,t' 

dt. Tf(t"))) (45) 

while the stress relaxation goes as 

0(t) = /¡¡dt’ Mr(£) |, - /¡¡dt' AM(£) g, 

exp{-/¡¡,dt" W(t"-t'; Tf(t"))} (46) 

For the particular case of increase in strain 

starting from t=0 at a constant strain rate £, 

as encountered in yield studies, d£/dt in 

Eqs. (45) and (46) is a constant. 

Equation 46 can be used to obtain creep in 

the nonlinear regime. For example, for a 

single step increase a in load from zero load 

at t'=0 we can regard the strain on the right 

hand side of the equation to increase exactly 

as that corresponding to the creep experiment. 

Then the stress on the left hand side must 

remain constant at o . The creep strain (t) 

can be obtained by solving the two simultaneous 
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integral-differential equations (45) and (46) 
with o(t) set identically equal to oq. This 
consideration can be generalizeu to multiple 
steps or continuous loading history. The 
simultaneous equations can be solved numeri¬ 
cally by a high speed computer. Results of 
such computations will be obtained in the 
future. In lieu of the numerical results, we 
give a physical description of nonlinear creep 
here. After the application of a large load 
o , the strain initially increases exactly as 
tße compliance function for the structure 

o 
I . Creep compliance is related to the relaxa¬ 
tion modulus by the relation 

o 

(t) (t-t)dt = t (47a) 
o o 

which can be derived from Eq. (47) if T, or I 
remains unchanged and neglecting the first form 
on the right hand side. After an increment in 
time ôt, the strain has increased by 6e.. If 
6e. is large enough such that I (ôe^) is dif¬ 
ferent from l , and if ôt. is Tong enough so 
that the structure I(6t^)H2.j at 6tj has 
departed from l , then the structural state of 
relaxation is modified and as a consequence the 
relaxation modulus is changed to M5 . For a 

1 
next increment in time 6t?, the creep compli¬ 
ance will follow (t), obtainable by invert¬ 
ing 1 

/1 J (t)M. (t-T)dx = t , (47b) 
1 1 

After Ôt2 the strain will be incremented by Ôt^ 
and the“1 structure changed to I(ôt2) = 22- 

Then, fur another increment in time 6t~, the 
creep will have compliance function (tj 

2 
that can be obtained by inversion of the formal 
relation with and so on. In other words, 

z 
the creep compliance is composed of "pieces" 

from the family of -curves Jj (t). For ,|j6t.<t 
i J 

<*ÍÍôt., we take the piece from (t). This 
J-l J 1i 

is illustrated by Fig. 1. If 6t. is taken as 
infinitesimals, the vertical jumps between 
pieces is also infinitesimal. Passing to the 
limit of a large number of infinitesimal 
pieces, the J(t) for nonlinear creep can be 
constructed as the curve defined by the squares 
in the figure. Note that n(2^+j)<nr'.. ). When 
we return to nonlinear creep in th next sec¬ 
tion, these discussions will be useful for 
understanding the experimental data. It is 
also worth noting that if dependence of T^ or 

on e is known, and if the structural state 
dependences n(Tj) etc. on T^ or 2 is known by 
stress relaxation measurements, then we can 
predict creep behavior at long times. 

Fig. 1. A family of creep curves (t) gener- 
i 

from an equation like Eq. (47a) with (t) 
i 

taken to have the form of Eq. (3) with n a 
function of 2.. At time t., if the structure 
is 2., the creep compliance is taken from the 
Jr èurve at I . as illustrated by the crossed 
2. i J 
i 

squares. 

FEATURES OF THE MODEL 

We shall bring out the salient features of 
the model through discussions of its predic¬ 
tions and the comparisons of these predictions 
with experimental data. New experimental 
evidence to support the basic premise of the 
model will be presented first. This is fol¬ 
lowed by a selected review of relevant experi¬ 
mental data available in the open literature 
and the interpretation of these in the context 
of the model. 

The physical picture behind the model is 
the strain induced structural change with time, 
resulting in the structure moving towards a new 
equilibrium structure 20)(£), where £ is the 
step increase in strain at t=t'. Associated 
with each of the transient structure 2(t) is 
the structural state of relaxation specified by 
the set {n(2), u> (I), AS>(2); xo(2)}; and the 
relaxation proceeSs with the rate of Eq. (23). 
If sufficiently long time has elapsed such that 
2. has settled into 2 , then the structural 
state will assume the final constant values of 

loa»)}- lf we probe the relaxation state of the equilibrium struc¬ 
ture at t=t' without modifying it any further, 
then the relaxation with the time dependence of 

l-ntfj 

exp[-(t-£) /(l-n(2J) 

exP(-AS>(2J/R)(u)c(2J)n(I»)Xo(2aJ)] (48) 

should be observed for t>£. Let us clarify this 
statement further because it is rather impor¬ 
tant. Probing the relaxation state of the 
equilibrium structure without modifying the 



I 

' 

.“>• 
' %' 

structure means the measurements of the visco¬ 
elastic relaxations made have not induced any 
structural change throughout the duration of 
the measurements. We can envisage using mea¬ 
surements like conventional nuclear magnetic 
resonance (NMR) of the spin lattice relaxation 
times Tj or in the rotating frame, dielec¬ 

tric relaxation, photon correlation spectros¬ 
copy, thermal stimulated current spectroscopy, 
creep and stress relaxation etc. as probes. It 
is immediately obvious that all these measure¬ 
ments, except the mechanical relaxations will 
not induce any change of structure. Even the 
mechanical relaxation measurements will not 
modify the structure further provided the 
additional strain or stress imposed is suffi¬ 
ciently small. That is, although we are deal¬ 
ing with the subject of nonlinear viscoelastic¬ 
ity, linear viscoelastic measurements with 
small strain or stress can be made and used to 
characterize the structural state of relaxation 
at the equilibrium structure. The idea of 
characterization of the structural state of 
nonlinear viscoelastic amorphous polymers by a 
technique of another kind, such as light scat¬ 
tering, is attractive though not pragmatic at 
this time. It is far more convenient to use 
small strain induced stress relaxation since 
essentially the same experimental set-up can be 
used. Characterization of relaxation state can 
be generalized to a transient structure I(t) at 
any t provided the change in I(t) during the 
period of time necessary for making the mea¬ 
surements is negligible. If this condition is 
satisfied, the measurements for characteriza¬ 
tion can be thought of as a snapshot taken of 
the transient structure I(t). To make easy 
reference to the small strain stress-relaxation 
measurements, and to avoid confusion with the 
large strain stress response, we shall call the 
former "tickle" measurements or runs. 

EXPERIMENTAL EVIDENCE 

The experiments-, are designed to verify the 
predictions of the model in the case of large 
strains. Uniaxial tensile experiments are used 
for convenience, even though shear experiments 
are somewhat easier to interpret. In the 
experiment, an initial strain is applied in the 
form of a ramp. After some time t has 
elapsed, the structure has approached essen¬ 
tially a constant state, and it is probed with 
an additional small strain step, i.e., a 
"tickle." It is this tickle step that is 
analyzed in terms of Eq. (48). This experi¬ 
mental procedure is schematically illustrated 
in Figs. 2 and 3. The time necessary for the 
structure to reach a constant state t is 
simply determined by the application ^f a 
series of small tickles, each of which is 
analyzed in terms of Eq. (48). When the cou¬ 
pling parameter n becomes constant to within 
the experimental error, then t is considered 
to have been reached. The experimental details 
are given in the following sections. 

Fig. 2. An initial large strain is first 
applied and followed by an additional small 
strain step ("tickle") after an elapsed time, 
t . 
s 

Fig. 3. Stress relaxation as a function of 
time (thick curve) that corresponds to the 
strain history of Fig. 2 and redrawn for 3% 
initial strain and 0.1% tickle. The elapsed 
time is approximately 1 day. 

Specimen Preparation 

The polymer selected for these studies was 
BPA-polycarbonate in the form of 2.5mm-thick 
extruded sheets made from Texan thermoplastic 
resin produced by the General Electric Co. The 
molecular weight of this material has been 
determined by GPC using methylene chloride as 
the solvent and polystyrene as standard. M^. 
was found to be about 30,000 and M about 
10,000. A small amount of orientation existed 
in the as-received sheets as judged by the 
amount of birefringence, which was quite uni¬ 
form. Most of the experiments were performed 
on the as-received material without further 
treatment. Both the tensile modulus and the 
tensile yield strength were found to be inde- 
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pendent of the extrusion direction. In DSC 
measurements, the as-received material exhib¬ 
ited enthalpy overshoot indistinguishable from 
quenched materials. The T of .these materials 
was found by DSC at 20° %iin to be 147°C. 
ASTM D638 Type I tensile specimens were pre¬ 
pared from the sheets with a template and a 
high-speed router. The specimen edges were 
carefully polished. A thin coating of liquid 
rubber was applied to the entire specimen to 
prevent crazing. 

Testing Equipment and Procedure 

The specimens were tested in a special 
high response servo-hydraulic testing machine 
manufactured by Instron Corp. This machine and 
the associated data acquisition equipment have 
been described elsewhere. Special high 
frequency response high sensitivity extensom- 
eters were attached to the specimen in both the 
longitudinal and the transverse directions. 
Uniaxial strain was applied to the specimens in 
either.stroke or strain control at the rate of 
2 sec" . Thus a 5% strain was applied in about 
25 msec. The load, longitudinal and transverse 
strains, and the stroke (displacement) signals 
were simultaneously recorded onto a Norland 
Model 3001 digital oscilloscope. The data 
acquisition intervals were controlled by a 
logarithmic timer. During this first strain 
step data were recorded from 0.1 sec to 10 sec 
To determine t the relaxation behavior was 
probed by the Application of a small 0.1% 
strain step (tickle) after some time had 
elapsed from the initial application of the 
first strain step. This procedure was carried 
out as follows: the testing machine was set to 
stroke control (if it was not already in that 
mode); then the load and strain amplifiers were 
reset to zero and the sensitivities were 
increased by a factor of ten. The machine was 
then reverted to strain control, and a 0.1% 
strain step was applied in 2 msec. Data acqui¬ 
sition, again at logarithmic time intervals, 
was resumed from 0.1 to 10 sec. some 
experimentation it was found that ts-10 sec- 
The results reported here, .unless otherwise 
noted, were obtained after 10 sec. The tests 
were conducted in an environmental chamber 
providing temperature stability of ±.5° in the 
105 sec. interval. The load cell was thermally 
isolated from the test chamber and kept at 
31 ± 1°C. 

Results 

The first step stress relaxation at vari¬ 
ous strain levels at 35°C are shown in Fig. 4. 
The true stress values are shown as the changes 
in cross-sectional area have been taken into 
account. Each of the curves was obtained from 
fresh specimens with nominally identical ther¬ 
mal history. These curves demonstrate clearly 
that the material is in the nonlinear regime. 
Figure 5 is a plot of the isochronous modulus 
at various strain levels. These data are 
consistent wi1*1 the observations of Yannas and 
co-workers, that the linearity limit in poly- 

Fig. 4. First step true stress relaxation at 
various strain levels at 35°C. 

Fig. 5. Plot of the isochronous modulus at 
arious strain levels. 

carbonate is about 1% strain (see Figs. 6a-c). 
Note also that except at the lowest strain 
levels, the curves cannot be fitted to a frac¬ 
tional exponential function. The failure of 
the fractional exponential function to describe 
the nonlinear stress relaxations is consistent 
with the notion, advanced in earlier sections 
of this paper, that the structure in the glass 
is continuously relaxing (Eq. 36). 
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Fig. 6a. Isochronous relaxation modulus data 
of polycarbonate by Yannas, Sung and Lunn (Ref. 
53) replotted against strain at different tem¬ 
peratures (t=10 sec.). 
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Fig. 6c. Isochronous relaxation modulus data 
of polycarbonate by Yannas et al. replotted 
against strain at different temperatures (t = 
•1000 sec.). 
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Fig. 6b. Isochronous relaxation modulus data 
of polycarbonate by Yannas et al. replotted 
against strain at different temperatures (t = 
100 sec.). 

To determine the time required for the 
structure to stabilize, t , small, 0.1% tickle 
strains were applied at Various times tj from 

the application of the first strain step. 
Figure 7 is a collection of these results at 
I. = 3.3, 8, 27, and 45.5 hrs. for a first step 
strain of 4%. Although the coupling parameter 
n for the best fit is shown for each of the 
curves, deviations from fractional exponential 
behavior are significant for tT=3.25 and 8 hrs. 
These results simply indicate1 that within the 
second step time scalè of 10 sec, the structun 
is still changing rapidly at these values of 
tj. These results also demonstrate that after 
approximately 10 sec, the structure has stabi¬ 
lized to the point where n becomes constant to 
within experimental error. This series of 
experiments has shown that a choice of t = 

10^ sec is appropriate. 

The stress relaxation result* from the 
tickle runs are shown in Fig. 8. Since the 
second step is superimposed on the first step, 
the results shown are for the combined 
stresses. Since the stress due to the first 
step is changing very slowly on this time 
scale, the effect is rather insignificant. 
Figure 9 compares the net second step relaxa¬ 
tion, obtained by subtracting off the first 

step stress extrapolated from t. = 1x10^ to 
5 1 

tj. = 1.1x10 sec, against the gross stress 
relaxation. It is clear that the difference 
between the two curves is small, and essen¬ 
tially the same parameter n is obtained in both 
cases. The data in Fig. 8 indicate that the 
effect of increasing strain is to systemati¬ 
cally change the shape of the relaxation 
curves, as well as to shift the effective 
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Strain-4.0*0.1« 
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3.3 hra. n-.«5 

!■ 4.H 

Fig. 7. Stress relaxation data for a total 
strain of A.0+0.1% for determination of the 
time required for the structure o stabilize 
after a first step strain of 4%. 

Fig. 8. Stress relaxation data from the tickle 
runs. 

relaxation times to much shorter times. The 
fact that these curves cannot be shifted onto a 
master curve by any combination of vertical and 
horizontal shifts is obvious from the gross 
difference in the shapes of the curves. These 
curves, however, can be fit very well to Eq. 
(48) with little systematic deviation. 
Figure 10 plots the coupling parameter n 
against strain. The approximately linear 
dependence is remarkable. Even more striking 
is that when extrapolated to e=6%, which is 
roughly the yield strain of polycarbonate at 
35°C ard moderate strain rates, a value of 
n=0.6 is obtained. From dielectric measure¬ 
ments it is known that n=0.6 for the a relaxa¬ 
tion (Tg) of polycarbcnate. This implies that 

the elevated strain at incipient yield induces 

After aatrapolated streaa 

relaxation from firat strain 

step la subtracted off. 

Tickle run before 

baseline correction. 

im 
LOG t. mo. 

Fig. 9. Net second step relaxation obtained by 
subtracting off the first step stress. 

Fig. 10. The coupling parameter n plotted 
against strain. 

a structure tha+ relaxes in the same manner as 
the polymer at itc T^. This result is consis¬ 

tent with the concepts advanced in section III, 
and with the model proposed by Robertson for 
yielding in glassy polymers. The effective 
relaxation times X , which can be obtained from 

P 
both the curve fitting and Eq. (46), are shown 
in Fig. 11. Remarkably, t has been shifted by 

course, the reason why polycarbonate, at tem¬ 
peratures well below T , behaves almost like an 
elastic material at ®small strains, but is 
capable of undergoing large shear flow at 
yield. 

Discussion of Experimental Data 

The purpose of this work is to establish 
the basis of the nonlinear viscoelasticity 
model, discuss the concepts and making overall 
comparisons with experimental data. In con¬ 
trast to the tickle runs, during which an 
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Fig. 11. The effective relaxation time T 
plotted against strain. ^ 

approximately constant structure ^(e) is 
maintained throughout, the nonlinear stress 
relaxation in the period of 10 to 103 sec 
witnesses the evolution of the structure from 
I (e=0) to 1(e). From Eqs. (38), (37b), (35), 
(28) and (27), it follows that the logarithmic 
derivative 

dTïïgtT {1°8 d0/dt 1 (49) 
may not have a constant value because the 
structural state of relaxation changes with 
time. If the variation of n(Z(e,t)) dominates, 
then the time dependence of the logarithmic 
derivative reflects that of n(I(e,t)). The 
data for e ranging from 1.1 to 5.1% when ana¬ 
lyzed this way are indeed consistent with a 
continuous decrease of n(Z(e,t)) as t 
increases. This provides evidence for the 
evolution of the structural state of relaxa¬ 
tion. We observe also that if t^len 

nUJCj)) > n(ZJe2)) (50) 

and 

nUUjtj)) > n(Z(e1t2)) (51) 

if These properties require that, for 
stress relaxation, the strain and time depen¬ 
dences of the response are not separable. They 
suggest also that at low strains and/or at 
short times, the response is linear viscoelas¬ 
tic. This is so because under one or both of 
these conditions, the structure has hardly been 
modified. However, at higher strains and at 
long times, the behavior is nonlinear. The 
stress relaxation data at various strain levels 
are in accord with this picture of viscoelastic 
behaviors. We shall discuss other nonlinear 
viscoelastic measurements of amorphous polymers 
with these properties in mind. Note that these 
properties germain to amorphous polymers and 
glasses below T^ may be irrelevant for elas¬ 

tomers, crystalline polymers, metals, etc. At 
this time, it cannot be ruled out that some but 
not all of the properties established here for 
amorphous polymers may be applicable to other 

materials. Nonetheless, we shall exercise cau¬ 
tion in limiting our considerations to amor¬ 
phous polymers and glasses. 

The tensile creep data of unpinsticized 
polyvinylchloride at 20°C by Turner offers 
another set of evidence for the time develop¬ 
ment of structural state of relaxation. How¬ 
ever, before we discuss Turner's nonlinear 
creep data, it would be worthwhile to examine 
the linear viscoelastic properties of glassy 
PVC. In particular we chooje^o present the 
data of Cama and Sternstein, ’ who conducted 
linear stress relaxation experiments in pure 
torsion at shear strains between t^e values of 
0.6% and 1.5%. In Cama's thesis, the quan¬ 
tity (see Eq. (49) for comparison) 

-d log G(t)/d log t 

measured at 30, 100, 500 and 1000 minutes is 
tabulated. The isochronal values of -d log 
G(t)/d log t are nearly the same for shear 
strains between the values of 0.6% and 1.5%. 
If G(t) is a fractional exponential, exp[- 

(t/T)1""], then 
p-dlogG(t)/dlogt = (l-n)(t/ip) 

and a plot of the logarithm of -d log G(t)/d 
log t versus log t will be a straight line with 
slope 1-n. In Fig. 12, we have plotted in this 
manner several sets of the data by Cama and 
Sternstein. It can be seen that good linear 
relations are obtained. In Fig. 13, the G(t) 
data for different samples are plotted together 
with fits by the fractional exponentials. In 
any case the data support the fractional expo¬ 
nential time dependence of linear stress relax¬ 
ation in glassy unplasticized and plasticized 
PVC. This information will be useful for the 
discussion of nonlinear creep data of PVC to 
follow. 

Log Tim* (min.) 

A -dlogG(t)/dlogt vs logt plot of Fig. 12. 
unplasticized PVC data of Cama and Sternstein. 

We have presented the formulation for 
nonlinear _creep in the previous section III. 
During creep, the structure and hence the 
structural state of relaxation will evolve with 
time after a step increase Oq in load. Turner's 
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data are replotted as creep compliance e(t)/o 
as a function of time for various Oq in Fig. 14, 
and as a function of applied load ao at various 
times in Fig. 15. Similar data on polycarbon¬ 

ate reported by Yannas et al.53 is shown in 
- -- • -- -— -r r' 15 Figs. 16a and 16b. By inspection of Figs, 

and 16, it is clear that the time dependence of 
the creep compliance changes with the load 
level. The stress and time dependences of 
creep are therefore not separable, as noted by 
Turner. The cause for the nonseparability of 
stress and time dependences of creep is the 
same as that for stress relaxation. It is the 
evolution of structure and the dependence of 
the rate of evolution on stress level. The 
nonseparability in the main is the consequence 
of the inequalities: 

(51) ndCOj.t)) > n(I(o2,t)), if o2>o1 

and 
if Vt2 (52) ndio^tj)) > ndiOj.tj)), 

Here I(o ,t) stands for the structure at time t 
after a step increase in stress of magnitude 
has been applied at t=0. Equation (51) essen¬ 
tially says that the time dependence of the 
creep compliance at one stress level cannot be 
obtained from the other at a different stress 
level by an appropriate shift in time scale. 
The structure evolution is different in the two 
cases and as a result the creep curves bear no 
simple relationship to each other. 

The plots of Figs. 15 and 16 illustrate 
the existence of a linear region at short times 
and low stresses. In the linear region, the 
creep compliance is approximately independent 
of stress at sufficiently low stresses. This 
follows as a consequence of the model. At 
short times and low stress levels, the struc¬ 
ture has not undergone any change that is 
significant enough to alter the structural 
state of relaxation. 

9 8 -2 0 2 4 6 
Loo Cl/cl. 3 CMIN) 

Fig. 13b. Stress relaxation data of unplasti¬ 
cized PVC by Cama and Sternstein and fit to a 
fractional exponential with coupling constant 

n=0.75. 
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Fig. 14. Turner's tensile creep data of 
unplasticized PVC replotted as creep compliance 
versus log t for various step increase in load. 

,v 

Fig. 13a. Stress relaxation data of plasti¬ 
cized 6PPH TCP-PVC by Cama and Strernstein, and 
fit to a fractional exponential with n=0.73. 

On the other hand, for the same stress 
levels and time scales, the recovery compliance 
j (t-t.) may now be dependent on stress and 
hince is nonlinear. Recovery involves the 
application of a stress 0 at zero time fol¬ 
lowed by its removal at time t^. The recovery 
compliance at time t, J (t-tj), is defined as 
the difference between tlie compliance Jj(t), at 
time t if the initial stress is applied con¬ 
tinuously and the compliance, J2(t), at time t 
if the same initial stress applied at zero time 
is removed at time t.. For a linear viscoelas¬ 
tic material, if the former is J(t), then the 
latter is J(t)-J(t-t^) and 

Jr(t-t1)=J(t)-U(t)-J(t-t1)]=J(t-t1) (53) 

Returning to nonlinear viscoelasticity and the 
case that at some low stress Oq for times 
shorter than t , the creep compliance is 
approximately independent of stress. If the 
stress Oq is removed at tj and ti>>tmax> t‘ien 
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Fig. 15. Turner's tensile creep data of 
unplasticized PVC replotted as creep compliance 
versus applied load at various times. 

Fig. 16a. A replot of isochronous creep com¬ 
pliance data of polycarbonate by Yannas and 
Lunn versus stress at various temperatures at 
t=100 sec. 

during the period of time, t -t , the struc¬ 
ture could have had enough1 t%e to change 
significantly and furthermore continues to 
change after t . Let us examine the effect of 
this structural change on the recovery compli¬ 
ance. If the structure changes from I(cr=0, 
t=0) to I =Z(a , t ), then the structural state 
of relaxation at tj will satisfy 

(54) "(KOo.tj)) < n(I(oo,t)) 

At short times after t such that for all t>t 
that further structural change 
can be ignored, we have J =J (tJ-J^ (t-t ) and 

1 

Jr(t'tl) = Jl(t) ' I'M1) * Jy (t-t.)] 
1 1 

(55) 
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Fig. 16b. A replot of isochronous creep com¬ 
pliance data of polycarbonate by Yannas and 
Lunn versus stress at various temperatures at 
t=1000 sec. 

where .t-t.) is the creep compliance fanc- 
1 1 

tion at t>tj for the structure I . Equation 
(54) together with similar inequalities for the 
other structural state parameters leads to the 
inequality 

> Jj(At) (56) 

where, to avoid confusion, we have used At to 
represent the increment of time starting from 
zero time and has the same magnitude as the 
difference t-t . Combining Eq. (55) with 
Eq. (56), we obtain 

Jr(t'tl) > Mût) (57) 

which is a restatement of the phenomenon that 
(1) creep and recovery curves are not identi¬ 
cal, the recovery compliance is larger than the 
creep compliance at short times, and (2) the 
recovery compliance is not independent of 
stress at stress levels that the creep compli¬ 
ance is independent of stress. The latter fol¬ 
lows directly from Eq. (55) and the dependence 
of Ij on stress. 

In a two-step loading program with a 
stress Oo at t=0 followed by an additional 
stress o at time t=t,i the additional creep ic 
defined By the difference of the observed creep 
and the creep for a one-step loading only at 
t>t.. For t>tj, the second step in loading 
will cause the structure to change further, 
resulting in 

n(t, 2-steps) < n(t, 1-step) (58) 

and this will cause the additional creep curves 
to be in excess of the initial creep, as is 
often observed in experiments. 

It is important to reemphasize that a key 
prediction of the model given by Eqs. (51) and 
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(52) is consistent with commonly observed 
nonlinear viscoelastic behavior of amorphous 

polymers . 

COMPARISONS WITH OTHER MODELS 

In this work we seek a model of nonlinear 
viscoelasticity that is based on the complex 
time dependences of relaxations of molecules 
and chains in glassy polymers. The latter are 
traceable to a very fundamental mechanism of 
relaxation of any primitive species in a com¬ 
plicated structure or environment such as 
glasses. The rate of relaxation depends on the 
structure. Large strain deformation modifies 
the structure. There are well-defined predic¬ 
tions of the fundamental mechanism that have 
been proven repeatedly in several areas of 
polymer physics and glass sciences. On appli¬ 
cation of the fundamental mechanism, these 
predictions lead to the construction of a model 
for nonlinear viscoelasticity. The structure 
evolution with time is aelf-consistently 
related to the time dependences of stress or 
creep strain, and both ran be calculated for 
any strain or stress program. Thus the nature 
of this model is different from all other 
models reviewed in several recent articles. It 
is also a unified model, relating some basic 
physics of nonlinear viscoelasticity to those 
in apparently unrelated physical phenomena in 
polymeric or nonpolymeric systems. Equations 
(43), (27) and (28) in conjunction with Eq. 
(40) provide an explicit expression, derivable 
from first principles, for the general consti¬ 
tutive equation often written as 

o(t) = tE_œ [e(t)l (59) 

which states that the stress at time t is a 
function F of the strain at all previous times 
t. This should be contrasted with most other 
approaches where kernal functions, which are 
used to approximate the functional, are left to 
be determined by a basic experiment such as 
one-step strain increase, or are postulated as 
an empirical function. The remarks made here 
and throughout this section about other models 
and approaches should not be viewed as promo¬ 
tions of the present model as being superior. 
These other models have their own advantages 
and serve different useful purposes. Rather, 
we would like to think of our physical and 
mechanistic approach to play the role of com¬ 
plementing and/or supplementing some of these 
engineering, rheological and other microscopic 
approaches. That is, our emphasis is on basic 
physical mechanism and on constructing a non¬ 
linear model from this basis up. This is the 
angle that none of engineering and rheological 
approaches has taken. There is no doubt in our 
minds that proven successful rheological 
approaches such as the modi^ed Bernstein, 
Kearsley and Zapas (BKZ) theory for an incom¬ 
pressible elastic fluid probably will be able 
to correlate the data from the type of step 
plus tickle experiments presented in this work 
for glassy polymers. After all, McKenna and 

Zapas1*1’15 have demonstrated the applicability 
of a modified BKZ theory to PMMA below Tg. It 

is worthwhile to discover the reason why an 
incompressible elastic fluid theory should work 
for compressible glassy polymers (and to metals 
such as aluminum). Our work may provide some 
clue to this query. When formulated specifi¬ 
cally to apply to amorphous polymers, the 
constitutive equation (4h) obtained bears soiji^ 
similarity to the BKZ and the Schapery 
equations, although there are also some dif¬ 
ferences. The similarity may account for the 
success of BKZ in describing stress relaxation 
in amorphous polymers. The differences, such 
as the kernal exp{-J ,dt"W(t"-t'; Tj(t")} in 
Eq. (46) which has an inseparable dependence on 
strain and time, help to remove difficulties 
that the original BKZ and the Schapery theories 
may encounter. The emergence of our way of 
description of nonlinear viscoelasticity does 
not take away any of the merits of these and 
other theories. On the contrary, it lends them 
some support by providing them with a funda¬ 
mental basis. This is the theme we shall 
adhere to throughout this section. 

As a first example, we cite that power 
laws for creep strain as a function of time are 
often found to be appropriate for nonlinear 

16 35 
viscoelasticity. Turner, Van Holde and 

Findley56 and co-workers have all proposed the 
empirical expression 

e(t) = eo(o) + A(o)tm (60) 

for the creep strain under a constant stress o. 
Here e and A are functions of O and m and are 
considered to be material constants. Our 
approach provides a justification for Eq. (60). 
This follows from Eq. (47a) and the fractional 

exponential expí-t/T^)1 " time dependence for 

M(t). The creep compliance can be well approx¬ 
imated by Eq. (60) at short times, where m=l-n. 

Schapery1s model11 introduced nonlinearity 
by modifying the Boltzmann's single integral 
stress relaxation or creep compliance functions 
by an appropriate shift in time scale. For 
stress relaxation, he proposed that 

o(t) = heGre(t) 

+ hj J^AGip-p') ^ h2le(T))dt (61) 

where AG(t) = G(t)-G , G is the relaxed modu¬ 
lus and the reducedr time p is the so-called 
reduced time defined by 

p = p(t) = /6dt'/ae|e(t')l , ae>0 (62) 

and T 
p' = p(t) = J^dt'/ae(e(t'))] (63) 

h , h , h? and a are material properties which 
are runctions of strain. By inspection of 
Eq. (61), one can see that the strain and time 
dependence of the stress relaxation response of 
Schapery are separable. This is inadequate for 
description of nonlinear viscoelastic response 
of glassy polymers as lygntioned in the previous 
section and by Turner. 
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The stress relaxation given by Eqs. (45) 
and (46) according to our model cannot be 
written in Schapery's representation. The 
product 

AM(e)exp{-^,dt"W(t"-t' ; Tf(t"))} (64) 

of the kernal in Eq. (46) cannot be cast into 
Schapery's form of 

dh 

hl dT AG l/î-dt"/ae[e(t")]] (65) 

There are at least two reasons for this. First 
is the dependence of W on the difference (t"-t') 
and the second is the variation in the form of 
the function W with t" according to 

W(t"-t'; Tf(t")) = T’1(Tf(t"),T) 

expl-AS^TjU"))/^ [u)c(Tf(t")) 

(t"-t')]"n(Tf(t"^ (66) 

Moreover T£(t"), obtainable by solution of 
Eq. (45), depends on the strain history of 
previous times. It is a functional of e(t). 
All these cause the inseparability of strain 
and time. These make it impossible to cast 
expression (64) as the time scale transforma¬ 
tion of a function which is Schapery's repre¬ 
sentation. 

theory cannot be made because the latter is 
based on an incompressible fluid. Neverthe¬ 
less, interpreting our results of Eqs. (45) and 
(46) as much as possible in terms of a memory, 
it is not difficult to see that there are some 
similarities with the modified BKZ representa¬ 
tion. The modified BKZ, like the original BKZ 
theory, does not give explicitly the response 
function bit leaves it to be determined by a 
single-step stress relaxation experiment. The 
memory dependence on the previous history is 
also evaluated by two-step strain experiments. 
Our model, in which an attempt has been made to 
give the form of the response function expli¬ 
citly, may be viewed as complementary to the 
modified BKZ theory. 

The most general representation of non- 
linear3 viscoelasticity is given by Green and 
Rivlin in their multiple integral theory. The 
constitutive equation in its one-dimensional 
form is written as 

^) = /LGi(t-T)¿(T)dT + . 

t-t2) ¿(X,) ¿(t2)dt1dt2 + 

G3(t'Tl' t-T , t-T,) £(T.) £(1,) £(1,) 

The larger the strain at t" is, the more 
the structural state if relaxation parameters 

o’ ^>’ ^c and n at t" accelerate the 
relaxation rate W in Eq. (66). This effect is 
taken into account by an appropriate shift in 
time scale by Schapery. Under certain condi¬ 
tions and for some strain programs this repre¬ 
sentation may be adequate for stress relaxa¬ 
tion. However it is important to bear in mind 
that Eq. (61) has neglected some other aspects 
that may become important at large strains and 
at long times. 

The original BKZ theory*1 has a similar 
problem as the Schapery representation. The 
kernals m(t-x), a(t-x) and b(t-x) that enter 
into jljhe original fluid theory are fixed. 
Zapas has modified the original BKZ theory by 
including dependence on previous strain his¬ 
tory. An elegant treatmenr. of this has been 

given by McKenna and Zapas.15 The stress 
response of the modified BKZ theory is no 
longer separable in strain and time. This is 
achieved by replacing the fading memory which 
depends upon the time difference t-T by 

j^mt), y(t), ns), t-4) d£ (67) 

where $ is the derivative of the function 0 
with respect to the time argument, t-£. 
Although the modified BKZ is still an incom¬ 
pressible fluid theory, it is so sophisticated 
that no doubt much of the physics of nonlinear 
viscoelasticity of glassy polymers has been 

incorporated. McKenna and Zapas ^15 have 
demonstrated its utility in normal and shear 
stress responses of PMMA. Direct comparison 
between our approach with the modified BKZ 

dTjdT2dT3 + higher order terras . (68) 

The G functions are not given a priori and are 
to be taken as empirical functions of time. 
The first term is the Boltzmann's superposition 
linear term. The second and the higher order 
terms take into account nonlinear behavior. 
This representation is complicated, and, often 
for practical applications, only the lowest 
order terms are retained. A three-term approx¬ 
imation has been adopted by Onaran and Find¬ 

ley. Kinder and Sternstein^ pointed out 
that published creep data require terms of 
higher order. In Eq. (68) all the G functions 
depend on the tgime differences t-x. only. 
Pipkin and Rogers proposed a reformulàtion of 
Eq. (68) by generalizing the«B’functions to be 
a function of both elapsed time t-x»and strain 
£(x^). They wrote the constitutive1equation as 

°(t) = C(X) ]¿(x)dX 

+ /-oo^-ooG2^ t”^l’ E(t1^’ 1 

¿(T2)dTldT2 

+ higher order terms . (69) 

The hope is that in this manner fewer lower 
order terms need to be retained than in the 
original Green-Rivlin representation for an 
adequate description. In particular, if only 
the first term need be retained such that 

°(t) = /-ooGit-^> e(T)] £(x)dx , (70) 

the model becomes simple and attractive. It is 
a single integral constitutive equation that 
preserves the additivity of incremental strain 
effects in the Boltzmann superposition sense 
but allows for nonlinear effects. Equation 



(70) is termed the „nonlinear superposition 
theory by Sternstein/ It is instructive to 
discuss our constitutive equation (46) as a 
nonlinear superposition theory. Equation (46) 
cannot be written exactly in the form of Eq. 
(70) because the kernal in Eq. (46) is not a 
function of e(t) but a functional of T„(x') of 
the entire strain history 0Sx<t. Nonetheless, 
with this difference explicitly written out as 

oit) = tE0[Tf(x')l] c(x)dx (71) 

where 
t 

G[t-x, tE0 |Tf(x')]| s MR(e(x)) + AM(e(x)) 

exp-jJdx’WU'-x; Tf(t')) (72) 

we obtain an analogous nonlinear superposition 
theory. G in Eq. (71) is now a functional of 
the structure Tf(x'), which, according to our 
model, c^n change with time in the nonlinear 
region. 

CONCLUSIONS 

We have offered an alternative way of 
looking at the phenomena of nonlinear visco¬ 
elasticity in glassy polymers. Starting out 
from a microscopic, physical and mechanistic 
approach to relaxation time dependences, non¬ 
linear creep and s .ress relaxation are pre¬ 
dicted and a const itutive equation is con¬ 
structed. The possibility of structural change 
with time for a glas s; polymer under nonlinear 
stress or strain is jointed out. The instanta¬ 
neous creep/relaxat on rates are structure 
dependent. The stru ture evolution with time, 
when solved self-consistently, then leads to 
the prediction of no.'linear creep and stress 
relaxation. The approach proposed here is 
justified by experimental data which support 
the idea of a time dependent structural state 
to relaxation and its dependence on strain. 
Some published data of nonlinear creep and 
stress relaxation are analyzed and used to give 
additional evidence for the present point of 
view. The approach and its results: are con¬ 
sistent with some of the most sophisticated 
representations of nonlinear viscoelasticity, 
though there are differences. It provides some 
physical insight into several rheological 
approaches . 
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COMPARISON OF FLOW AND STRUCTURAL RELAXATION IN AMORPHOUS ALLOTS WITH 

PHYSICAL AGINO IN AMORPHOUS POLYMERS 

A. I. Ttnb 

General Electric Corporate Reaearcb and Development 
Schenectady, NY 12301 

Abatract 

Strnctnral relaxation hat a etrong effect on the 
flow behavior of anorphona alloya. Increaaet In 
vlacoaity of aore than 7 ordert of Magnitude are 
coaaonly obaerved during iaotheraal annealing of 
theae aaterlala. Thit increate in the flow 
reaiatance hat been attributed to the equilibra¬ 
tion of the atoaic atructure and it therefore 
tiailar in nature to the phyalcal aging prooeaa 
exhibited by aaorphoua polyaera. In thit paper, 
data on the effect of preannealing on the eubae- 
quent atreaa relaxation behavior of aaorphoua 
alloya it reanalyxed by the technique uaed for 
aaorphoua polyaera at aunaarized by Struik. 
While aoae ditorepenciea are found, it appeara 
that a general oharaeterlatio of aaorphoua aate- 
riala it a linear tlae dependence for the flow 
reaiatance. The ehift rate for polyaera la 
about unity below T and the viaeoelty of aaor- 
phoua alloya and inorganic glaaaea inoreaaea 
linearly with tine. Thit linear relation ia 
characteriatic of a aelf-retarding proceaa and 
it therefore conaiatent with the general aodel 
that explaina the increate in the flow reaia¬ 
tance in teraa of the equilibration of the 
atonic atructure. 

Introduction 

There have been nuaeroua inveatigationa of the 
kinetica of flow and atructural relaxation in 
aelt-quenched aaorphoua alloya tince their 
diacovery aoae 25 yeara ago (1) and our under- 
atanding of the behavior of theae aaterlala hat 
increated treaendoualy. Theae reaearch efforta 
have been conducted priaarily by aetallurgiata 
rather than by the aore traditional inventiga- 
tora of aaorphoua aaterlala and thia hat 
reaulted in a method of prêtenting experiaental 
data that différa aignificantly froa that uaed 
in polyaer and inorganic glaaa acience. Thia 
hat nade interdiaciplinary coanunication diffi¬ 
cult even though the baaic phenoaenon reported 
for the metallic glättet are atrikingly tiailar 
to thoae found in other aaorphoua ayateaa. In 
thia paper, an atteapt will be nade to reforau- 
late the flow data of aaorphoua alloya into a 
foraat that ia conaiatent with that uaed for 
aaorphoua polyaera. 

Firat, aince thia paper will ea^haeixe thoae 
a apeóte of the flow behavior that deal with 
atructural relaxation, a brief overview of the 
aodel that haa been developed to explain the 
effecta of atructural change on flow will be 
preaented. Then a auaaary will be made of the 
exiating data on the flow of aaorphoua alloya 
uaing the terminology that hat been developed by 
the aetallurgiate. The data on atruoturally 
atabilixed apeoimene will be reviewed to lay the 
groundwork for the more complex data on the 
effecta of atructural relaxation. Finally, the 
latter will be reformulated for eonparieon with 
the phyeical aging data for aaorphoua polyaera. 

The Metalluralata Viewpoint 

Structural Stxte Peflnltiwaii 

Alaoat every intrlneie property of aaorphoue 
alloya haa been ehown to vary aa the atructure 
changea (2.3), with perhapa the aoet dramatic 
effect being the change in the flow reeietance. 
The origin of the effect of atructural change on 
the viacoaity can be explained with the aid of 
Figure 1 which illuetratee the variation of the 
viacoaity of a glaaa foraing alloy with tempera¬ 
ture. Conaider the alloy at a temperature above 
the melting temperature T . The atoaic atruc¬ 
ture and phyeical properAee of the alloy in 
thia regiae are deterained by the equilibrium 
atate. If the alloy ia cooled below T , ite 
atomic atructure continuoualy adopta configura- 
tiona dictated by equilibriua, until the region 
of the glaaa tranaition temperature T ia 
reached. At aoae temperature near T , the 
atoaic configuration begina to "freexe. That 
ia, the reaiatance to atoaic motion becoaea 
large enough o reatrict atructural rearrange¬ 
ment, resulting in the time required for the 
atone to adopt their equilibriua configurâtiona 
becoaing greater than the tine allowed by the 
cooling proceaa. The atonic atructure then 
begina to deviate fron the configuration 
required by equilibriua. Aa the temperature 
continues to decrease, the reaiatance to atonic 
notion increases even aore and the tine required 
for atructural ream ngeaenta becoaea larger. 
Eventually, significan, structural change on the 
tiae scale of the citing procesa ceaaea and the 
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atonic confi|aration it ’’frozen in." Curve a in 
Figure 1 repraaenta the itoconfignrational (i.e. 
- conatant atraetore) viecotity of the alloy in 
the aa-qnenched condition. 

Snbaeqaent heat treataient of the alloy at ten- 
peraturea belov T allova the atoaiic atractnre 
to approach ita eqhilibrina configuration before 
cryatalliaation conencea. Thia reaulta in a 
ahift of the iaoconfignrational curvea tovarda 
the equilibriuai curve, aa ahown acheuatically in 
Figure 1. Thia ahift ia nanifeated aa an 
increaae in the viacoaity of the alloy. 

The viacoaity of a glata forming alloy ia there¬ 
fore not a unique function of temperature in the 
range T^T . One muat diatlnguiah between the 
viacoaitiea of the metaatable equilibrium 
liquid, the iaoconfigurational glaaa and the 
cryatallized alloy. In thia paper ve will con¬ 
centrate on the glaaay atate. Within thia 
regime, diatinction muat atill be made between 
thoae teata that involve a preanneal of the 
glaaa to atabilize ita atructure during aubae- 
quent flow teating and thoae teata in which the 
atructure of the glaaa ia continuoualy changing. 
We examine firat flow in a atructurally atabi- 
lized glaaay alloy. 

Flow in SttncturallY Stabilized Sneclmena. 

Figure 2a ahowa a typical atrnin va time plot 
obtained from a creep teat of an amorphoua alloy 
following a long term preanneal at the teating 
temperature (5). The anneal ia required to ata¬ 
bilize the atructure of the alloy and will be 
deacribed in more detail later. Following the 
definitiona of Nowick and Berry (¢), the atrain 
reaponae of the material ia divided into three 
componente aa ahown in Table I. 

TABLE I 

Component 

Ideal Elaaticity 
Anelaaticity 
Vicoelaaticity 

Recoverable 

Yea 
Yea 
No 

Time-Dependent 

No 
Yea 
Yea 

The inatantaneoua elongation y ia characterized 
by ideal elaaticity. The ateady atate atrain 
y , eatabliahed in thia caae after about 50 
hbura, ia viacoelaatic. The anelaatic contribu- 
tion ia reapoaeible for the tranaient flow 
that occura before the ateady atate condition ia 
eatabliahed. Separate diacuaaiona of each of 
theae flow componenta, including reference to 
the effecta of atructural relazation, follow. 

Ideal Elaaticity. The inatantaneoua elongation 
meaaured on loading apecimena haa been ahown to 
be completely reveraible on unloading (y « 
-Ye') and to vary linearly with the applied 
load. Structural changea in the amorphoua atate 
have been ahown to affect the elaatic atiffneaa 

Figure 1. Schematic plot of the teaqterature 
dependence of the viacoaity in a glaaa forming 
alloy during quenching and reheating. Curve a 
repraaenta the deviation of the viacoaity from 
the equilibrium curve during the quench. Curvea 
b and c illuatrate the ahift in the iaoconfl- 
gurational viacoaity tovarda the equilibrium 
curve during annealing, (from ref. 4) 

Figure 2. Strain reaponae to atreaa cycle from 
35 tc 71 to 35 MPa. Sample preannealed at teat¬ 
ing temperature of 500 K for 575 houra. (a) 
Total atrain. (b) Anelaatic atrain obtained by 
aubtracting the ideal elaatic and viacoelaatic 
atraina. (from ref. 5) 



of netillic glattes (7). Increatet in modulus 
approaching 10% relative to the as-quenched con¬ 
dition, have been reported for many systems 
annealed near the glass transition temperature 

(8). 

Anelastic i tv. Figure 2b shows the anelastic 
component of the total strain of Figure 2a 
obtained by subtracting the ideal elastic and 
viscoelastic contributions. The time-dependent, 
transient nature of the flow is evident. In 
this case, additional anelastic flow is not 
resolvable after approximately two days. The 
figure also illustrates the recoverability of 
the anelastic fltw. In the test, the stress was 
cycled from 35 to 71 to 35 MPa and complete 
recoverability of the anelastic strain is veri¬ 
fied (y »= -y The linearity of the anelas- 
tic strain wiA stress and the superposition of 
the anelastic strains has also been verified 

(5). 

It has been shown that the anelastic strain can¬ 
not be described as a simple exponential decay 
but that successful fits to the data can be 
obtained with a spectrum of relaxation times. 
Argon and Kuo (9) have measured this spectrum 
for several alloys by performing recovery creep 
experiments on structurally stabilixed speci¬ 
mens. The specimens were first mechanically 
polarized by creep over a long period of time at 
T - 150K, followed by cooling under stress to 
2ftOK and removal ol he stress. The temperature 
was then increased incrementally and the degree 
of creep recovery measured. The data was ana¬ 
lyzed to obtain activation energy spectra. The 
spectra are continuous functions rising sharply 
from very low values (~ 20 kcal/mole) to peak 
cut-off values at about 45-55 kcal/mole. 

More extensive studies of the anelastic behavior 
of amorphous alloys using dynamic testing 
methods such as the vibrating reed technique 
have been performed to study the anelastic 
energy spectra in more detail (10). These stud¬ 
ies have shown that the anelastic energy spec¬ 
trum is very sensitive to the degree of struc¬ 
tural relaxation in the alloys (11). However, 
the anelastic flow component measured in creep 
and stress relaxation tests appears to be only 
weakly affected by structural relaxation (12). 

Viacoelasticitv. The viscoelastic flow exhib¬ 
ited by structurally stabilized itpecimens is 
characterized by a constant strain rate. Refer¬ 
ring to Figure 2a, the viscoelastic component ia 
shown to contribute throughout the test, 
although constant strain rate, steady state flow 
is not fully established until after the decay 
of the anelastic transient. 

The viscoelastic flow has been found to vary 
linearly with stress at low stresses while 
exhibiting power law dependence at higher values 
of stress (13). This behavior has been shown to 
be consistent with Eyring's (14) transition 
state model which predicts a stress (t)-strain 
rate (y) relation of the form (15-17): 

Y0SINH (1) 

y o is the volume strain element where yq is 
_- th» lnc«1 shear strain that an mo ' measure of the local shear strain 

atomic scale volume Qf undergoes when contribut¬ 
ing to flow. The experimental determinations of 
this parameter show a strong temperature and 
composition dependence (13,18-20). 

Viscoelastic flow is strongly affected by struc 
tural change in the alloy. Changes in the 
viscoelastic strain rate due to structural 
change of more than 7 orders of magnitude are 
commonly observed (21-23). The origin of the 
effect of structural change on the viscosity was 
explained qualitatively in the previous section. 
In the following section this aspect will be 
reviewed in greater detail. 

Figure 3. Equivalent strain rate as a function 
of test time for a sample creep tested from the 
as-cast condition at the indicated temperatures, 

(from ref. 22) 
Flow With Accompanying Strqqtyrgl RejaggUgni 

In contrast to the flow behavior of structurally 
stabilized amorphoua alloys discussed above, the 
flow of onâimetlod •pcciwen* doe* not attain a 
steady state condition. Rather, the strain rate 
y continues to decrease throughout the test as 
shown in Figure 3 for a sample of 
Pd_, .Cu-Si., , creep tested in the as-quenched 
condition. 16 At the lower temperatures, the 
strain rate varies i«»verselí(^iyee from the 

start of the teata: y~t . At 
higher temperatures a similar decrease is 
observed, but only after an initial transient 
period of approximately thirty minutes. 
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Figure 4. Viscosity ss s function of test tine 
st the indicsted temperstures, (from ref. 22) 

K)»/i ir'i 
Figure 5. Kste of chtnge of viscosity with time 
ss s function of tempersture, ss messured in 
tensile creep, tensile stress relszstion snd 
bend stress relszstion tests. The testing 
stress rsnges sre indicsted. (from ref. 30) 

Since the flow of these slloys hss been shown to 
be Newtonien st low stresses, it hss been more 
convenient to ezsmine the viscosity i\=z/y, 
rsther then the strsin rste. It should be 
pointed out thst this viscosity is only the 
"sppsrent" viscosity snd not the true viscoelss- 
tic viscosity since the testing procedure pre¬ 
cludes subtrsction of the snelsstic contribution 
from the totsl strsin rste. Figure 4 shows thst 
the viscosity incresses linesrly with time st 
sll the temperstures tested. In fsct, the 
viscosity relszstion ezponent n=d(In ij)/d(ln t) 
for s wide rsnge of slloy compositions hss been 
found to be nesrly unity (0.9in¿1.0) 1“ th« tem¬ 
persture rsnge T < T -20 (22-28). 

8 

The viscosity incresse observed in creep ezperi- 
ments is siso msnifested in stress relszstion 

tests (23). As the preennesling time is 
incressed, the viscosity of the ssmple incresses 
snd correspondingly, the stress relief kinetics 
slow down. This lesds to s shifting of the 
stress relszstion curves to longer times. When 
the msgnitude of this shift is relsted to the 
chsnges in the viscosity due to the preennesling 
trestment, the viscosity is found to incresse 
linesrly st s rste thst is consistent with thst 
messured during creep testing. 

In Figure 3, the rste of viscosity chsnge with 
time T) for smorphous Fe40Ni4o£i4Bfi* is Plotted 
sgsinst inverse tempersture.. The dsts indícete 
thst the messured velues of t) sre independent of 
the testing method (tensile creep snd tensile 
snd bend stress relszstion) snd the investigstor 
(22,24,23,29,30), prior thermsl trestment of the 
slloy (3,22,26,31), snd the msgnitude of the 
testing stress (3,22,32). The non-Arrhenius 
form of the dsts is consistent with thst 
observed on s wide rsnge of smorphous slloys 
(27-28). 

We now sddress sn sppsrent psrsdoz in the dsts. 
The viscosity relszstion hss been shown to 
proceed continuously during testing of unsn- 
nesled specimens. It hss siso been shown thst 
even if s specimen hss been given s preennesl, 
the viscosity continues to incresse during sub¬ 
sequent flow testing st s rste thst is the ssme 
ss thst messured on unsnnesled specimens. Yet, 
in the previous section, dsts on strueturslly 
stsbilized specimens wss presented in which s 
stesdy stste strsin rste (i.e. - constsnt 
viscosity) wss sttsined. It is importent there¬ 
fore to define whet is mesnt by s "stsbilized” 
structure. It hss been estebllshed thst the 
structure releves snd thst the viscosity chsnges 
continuously during isothermsl ennesling. How¬ 
ever, since the rste of viscosity incresse q is 
s constsnt, tht frsctionsl rste of viscosity 
incresse d(ln q)/dt decresses ss the test 
proceeds. If s specimen is snnesled until the 
frsctionsl rste of viscosity chsnge becomes less 
then sbout 5% per dsy, then short time testing 
(<1 hour) st the ennesling tempersture esn be 
performed under "pseudo" stesdy-stste condi¬ 
tions. Further, if the testing tempersture is 
below the preennesl tempersture, then testing 
over longer periods is sllowed since the relszs¬ 
tion rste is lower st the lower tempersture. 

This technique of estsblishing "pseudo" constsnt 
structure conditions hss proved very useful in 
determining the tempersture dependence of the 
constsnt structure (isoconfigurstionsl) viscos¬ 
ity. It hss been demonstrsted thst if s speci¬ 
men is snnesled until the frsctionsl rste of 
viscosity chsnge becomes less then 10% per dsy, 
then one esn lower the tempersture, mes sure the 
viscosity snd then rsise the tempersture bsck to 
the snnesl tempersture snd find thst the viscos¬ 
ity hss not chsnged from its originel vslue. 
The viscosity esn siso be reproduced sfter 
higher tempersture cycling if the messurements 
sre msde in s short time. The return to the 
originel viscosity vslue st the end of the test 
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Fi|ure 6. Iiooonfigur»tion»l vl»co»iti#» of 
(Ittty Pd.23ilg obtained after stabilixing 
anneals at8ithe8 indicated tenperatnres. (fro* 

ref. 2«) 

implies that negligible structural change 
occurred during the tesiperature cycle. This 
ability to reproduce viscosity measurements dur¬ 
ing tesiperature cycling is the operational defi¬ 
nition of isoconfigurational measurements. The 
tests are not truly at constant structure, 
rather the irreversible structural change during 
the test is negligible. 

Figure 6 shove the isoconfigurational viscosity 
data for a Pdg,Si18 specimen that was structur¬ 
ally stabilizeBd in the manner described above, 
at successively higher teaqieretures. As 
expected, the isoconfigurational curves are seen 
to shift in the direction of the equilibrium 
curve with increasing annealing temperature. A 
constant activation energy vas obtained 0-192 ± 
17 kJ/mole. Further studies have shovn that 
this activation energy is unaffected by the mag¬ 
nitude of the applied stress during both the 
stabilizing preanneal and the isoconfigurational 
testing (4,31). 

All of the aval.1 able isoconf igurational data are 
shovn in Figure 7. The existing equilibrium 
data is included for completeness. Temperature 
normalization has been applied to facilitate 
comparison betveen alloys. The agreement of the 
experimental data vith the schematic illustra¬ 
tion of Figure 1 is readily apparent. It has 
recently been shovn that the activation energy 
for isoconfigurational flov does not remain con¬ 
stant over the entire temperature range but that 

it increases vith temperature (curve g). The 
change in activation energy is sma'l at lov tem¬ 
peratures, but it increases rapidly as the glass 
transition temperature is approached. This 
trend is similar to that found for Q.. 

Reformulation of the Data. 

In the previous section, the basic phenomenon 
associated with the flov behavior of amorphous 
alloys have been presented with distinction made 
betveen those experiments done under conditions 
of "pseudo" steady-state and those performed 
under conditions where the structure of the 
alloy changed continuously during the tests. 
Tu*» structural changes and their effect on the 
flov behavior are described generally as an 
equilibration of the atomic configuration. In 
that sens'., the observations made are analogous 
to the physical aging that occurs in amorphous 
polymers. Accordingly, in this section the 
structural relaxation data will be reformulated 

Tq/T 
Figure 7. The available isoconfigurational and 
equilibirium viscosity data as measured in creep 
tests. Reduced-temperature scaling is used. 
For those alloys which do not exhibit a glass 
transition, the temperature at the onset of 
crystallization is used, (from ref. 28) 
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into ■ format that is consistent with that nsed 

in the polymer literature so that direct compar¬ 

ison can be made with that data. In particular, 

comparison will be made between the amorphous 

alloy data summarized above and the correspond¬ 

ing small-strain properties of amorphous poly¬ 

mers summarized in the recent monograph by 

Struik (33). 

Figure 8 shows the relaxation modulus 

G(t)=o(t)/r (34) for several as-quenched samples 

of amorphous Pd._ .Cu,Si., , tested in bending 

at 498K after the* indicated preanneals at the 

testing temperature for the indicated times t 

(23). The middle curve gives the result of a 

superposition of the data by a horizontal shift 

in the direction indicated by the arrow. In 

agreement with the results of Struik on many 

amorphous polymers, the data can be reduced to a 

master curve by a horizontal shift. Continuing 

with Struik's analysis, the horizontal shifts 

between successive stress relaxation curves are 

noted by an acceleration factor a, which is 

taken as positive for a shift to the left. In 

Figure 9, the acceleration factor relative to 

the 420 second preanneal is plotted against the 

aging time. The acceleration factors for tests 

performed at 523K are also shown in the figure. 

The aging can be characterized by the shift rate 

p=-d(ln a)/d(ln t ). In this case, p is found 

to be reasonably <ilose to unity, p=0.80. 

Similar analyses 

Fe,„Ni 

were done for amorphous 

40‘~4ûP,14B6 Uee Fi*ur*J/) /nd Pt40‘’ 
— all- * — These ’alloys'' exhibited shift factors’consider¬ 

ably less than unity. For the FeNiPB alloy, 

both tensile and bend stress relaxation test 

data were analyzed and found to be in good 

agreement. The shift factors are plotted in 

Figure 10 as a function of temperature. The 

data for several amorphous polymers as reported 

by Struik are also included in the figure. 

As Figure 10 illustrates, the aging behavior of 

all polymers is very similar. The shift rate p 

is zero above T where the material is equili¬ 

brated. Just bllow T , it rapidly increases to 

about unity, remaining unity over a wide tem¬ 

perature range below T . At low temperatures, 

the aging begins to cease and p decreases. This 

lower temperature decrease in p is associated 

with secondary relaxation in the materials 

(motion of side groups or parts of chain seg¬ 

ments compared to motion of the segments as a 

whole) and may not have an analog in amorphous 

metallic alloys. The data for the latter is too 

limited to draw any significant conclusions on 

the temperature dependence of the shift factor. 

However, the reason for the differences in p 

between the alloys cannot be merely a function 

Figure 9. Acceleration factor as a function of 

annealing time t for the data of Figure 8. 

Additional data lor PdCuSi at 523 K and FeNiPB 

is included. 

Figure 8 Bend stress relaxation data for 

PdCuSi. The specimens were preannealed at the 

test temperature for the indicated times. The 

data is shifted horizontally in the directions 

indicated to superimpose on the curve for t = 

420 seconds, (after ref. 23) 

Figure 10. Shift rate p as a function of tem¬ 

perature for amorphous polystyrene (a), PMMA 

(b), polysulphone (c), FeNiPB (• ), PdCuSi (■), 

and PtNiP (A), (after ref. 33) 
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of tfce testing température, since the glass 
transitions for FeNiPB and PdCuSi are close, 
making the difference T-T for the two alloys 
small. * 

Discussion 

The structural relaxation process described 
above is by ttature a self-retarding mechanism. 
That is, as the atomic structure equilibrates, 
the viscosity of the material increases. This 
viscosity increase is a reflection of the 
decreasing mobility of the atoms (M ~ 1/q). As 
the atomic mobility decreases, the ability of 
the structure to continue relaxing decreases, 
and therefore the structural relaxation rate 
decreases. The large viscosity changes that are 
observed 07 orders of magnitude) are associated 
with relatively small changes in the density and 
radial distribution functions, indicating that 
the process is in fact strongly self-retarding. 

Struik shows that for systems with strong self¬ 
delaying effects, when the system is far from 
equilibrium as is the case for the amorphous 
alloy data presented in this paper, the mobility 
is expected to decrease linearly with the 
reciprocal of time (p-l). Ther, since the 
acceleration factor is proportional to the 
mobility of the material which is in turn 
inversely proportional to the viscosity, one 
obtains: 

p—d(log a)/d(log t )>d(log q)/d(log t ) -1 
6 C 

One then expects the shift rate p determined 
from the acceleration factors to be the same as 
the slope of the log q - log t curves. For the 
PdCuSi alloy, the shift in therelaxation curves 
has previously been explained quantitatively by 
a linear increase in the viscosity during the 
preanneal (23) in agreement with a shift rate p 
of nearly unity as determined in the previous 
section. For the PtNiP and FeNiPB, as well as 
for every other amorphous alloy investigated, 
linear viscosity-time kinetics have also been 
observed. Yet for these alloys p is consider¬ 
ably less than unity. The reason for this 
discrepancy is not clear at this time. 

A linear viscosity-time dependence is not unique 
to amorphous alloys. Several investigators have 
reported linear time kinetics for several inor¬ 
ganic glasses (35-37). In fact, for the inor¬ 
ganic glasses, the true viscosity (35) was mea¬ 
sured as compared to the "apparent" viscosity 
reported for the amorphous alloys. This was 
accomplished by subtracting out the contribu¬ 
tions to the elongation due to the contraction 
associated with the free volume decrease as the 
atomic configurations adopt their equilibrium 
states and the elongation due to anelasticity. 
Unfortunately, we are not aware of corresponding 
preannealing studies on inorganic glasses to 
check for agreement in the value of p calculated 
from viscosities and by the shift technique. 

Conclusions 

Structural relaxation has been shown to have a 
very strong effect on the flow behavior of amor¬ 
phous alloys. Increases in the viscosity of 
more than 7 orders of magnitude are commonly 
observed during isothermal annealing of these 
materials. The kinetics of this process are 
well established and characterized by a linear 
increase in the viscosity with snnealing time. 

This increase in the flow resistance has been 
attributed to the equilibration of the atomic 
structure and is therefore similar in nature to 
the physical aging process exhibited by amor¬ 
phous polymers. That process has been studied 
quite extensively, but the method of analyzing 
the data differs significantly from that used in 
the amorphous alloy literature so that compari¬ 
son between the two systems has been difficult. 

In this paper, the existing data on the effect 
of preannealing on the subsequent stress relaxa¬ 
tion behavior of amorphous alloys was reanalyzed 
by the technique used for amorphous polymers as 
suaimarized by Struik. The data on PdCuSi was 
found to exhibit a shift rate p of approximately 
unity, in agreement with the data for many amor¬ 
phous polymers. This value of p is consistent 
with the linear viscosity-time kinetics found 
previously for this alloy. However, two other 
amorphous alloys were analysed in a similar 
manner, and although they also exhibit linear 
viscosity-time kinetics, the calculated values 
of the shift rate p were significantly less than 
one. The reason for this discrepancy is 
unclear. 

In general, it appears that the evolution of the 
flow resistance of amorphous materials is 
characterized by a linear time relation. The 
shift rate for polymers is about unity below T 
and the viscosity of amorphous alloys and inor¬ 
ganic glasses increases linearly with time. 
TLis linear relation is characteristic of a 
self-retarding process and is therefore con¬ 
sistent with the general model that explains the 
increase in the flow resistance in terms of the 
equilibration of the atomic structure. 
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RECENT EXPERIMENTAL ADVANCES IN SPIN GLASSES 

C. Y. Huang 
Los Alamos National Laboratory 

Los Alamos, NH 87545 

Me present a working definition and a general description of a spin glass. 
A number of different systems. Including metals, semiconductors, and Insulators, 
are discussed. This review presents the current status of experimental spin-glass 
research with special emphasis on the extent to which the results of this research 
yield Information on spin dynamics. We review the salient features of a 
of recent experimental results, published In the past five years, on the suscepti¬ 
bility, magnetization, heat capacity, high-pressure effects, phonon-thermal con¬ 
ductivity, neutron scattering, nuclear, electron, and muon spin resonance. The 
successful applications of the fractional exponential relaxation function to the 
frequency dependence of the susceptibility and the time dependence of the ther¬ 
moremanent magnetization are demonstrated. Concerning the possible existence of 
the phase transition at the susceptibility cusp temperature, we summarize the 
experimental evidences. 

I. INTRODUCTION 

Studies of the magnetic properties of di¬ 
lute transition metal alloys have been a sub¬ 
ject of Interest for half a century. As early 
as 1931, Shlh (1) Investigated the magnetic 
susceptibility x of dilute alloys of Iron In 
gold (AjiFe). With the advent of the Kondo ef¬ 
fect, this one-impurity problem prompted Inten¬ 
sive studies In the 1960's of those alloys with 
•non-interacting" or very dilute 3d-magnet1c 
Impurities dissolved In non-magnetlc metallic 
hosts. In 1971, Cannella, Hydosh, and Bud- 
nick (2) observed rather sharp cusp-like peaks 
In the low-field ac magnetic susceptibility 
x(T) for a series of low-concentration 
(~1 at X) AuFe alloys. This observation has 
stimulated many experimentalists as well as 
theoreticians. Later, this peaking In x(T) 
was used as one of the signatures marking an 
alloy as being a spin glass. 

Conventional spin glasses are dilute mag¬ 
netic alloys such as CuHn. or AgMn or AuFe, In 
which the 3d-magnet1c moments Interact via the 
long-range RKKY Interactions. Because the mag¬ 
netic Impurities are distributed randomly, the 
sign and size of the Interaction Is very sen¬ 
sitive to the 1nter-1mpur1t1es distance. As a 
result, contradictory ordering between two mag¬ 
netic moments depending on two different paths, 
called ■frustration,' (3) takes place. This 
encounter of competing positive and negative 
alignments Is essential to the formation of the 
spin glass state. Spin glasses exhibit rather 
unusual properties (4-17). As pointed out pre¬ 
viously, one observes a sharp cusp In x(T) at 
the "freezing temperature" (conventionally 

denoted as Tf, T«, T0 or TSg). Hössbauer mea¬ 
surements on Fe in AuFe showed a hyperflne 
splitting roughly at Tf, thereby suggesting 
the formation of static or quasl-statlc Inter¬ 
nal fields below Tf owing to frozen-1n 
spins (18). Even though neutron scattering 
studies (19) have shown the absence of long- 
range magnetic order, many authors have at¬ 
tempted to Interpret these anomalies as evi¬ 
dence of a phase transition. The suggestion 
of a possible phase transition at Tf has 
challenged an entire generation of theorists 
In understanding this new but different kind 
of "transition." In the absence of an external 
magnetic field, the magnetic contribution to 
the specific heat C has been observed only as 
a broad maximum (20) well above Tf and there Is 
no anomaly In C around Tf as one would normally 
expect for a phase transition. However, very 
recently anomalies near Tf have been ob¬ 
served (21) In d(C/T)/3T and 8z(C/T)/dTz. 
Nevertheless, some authors have recognized that 
spin glasses are very complex systems, and they 
treat the problem from a dynamic, metastable 
point of view, assuming a "progressive freez¬ 
ing" of spins throughout the sample upon lower¬ 
ing the temperature below Tf. 

In this review, only experiments pertinent 
to dynamics published In the last five years 
will be discussed In detail, and the choice of 
the exoerlments to be reviewed simply results 
from tlw prejudice of the author. Readers who 
wish to obtain more detailed and complete In¬ 
formation on the subject are referred to some 
earlier review papers [Refs. 3-17, 22-27]. 
Also, an expanded version of the present paper 
Is In preparation for publication 1n the 
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II. LOW-FIELD AND LOW-FREQUENCY SUSCEPTIBILITY 

1. Metallic Soin Glasses 

A metallic spin glass Is commonly a dilute 
metallic magnetic alloy In which the dominant 
Interactions are the long-range RKKY Interac¬ 
tions. The first measurements of low-field 
(~5 G) and low-frequency (155 Hz) susceptibil¬ 
ity, x(T), were carried out on metallic AjiFe 
by Cannella et al. (2) Figure 1 shows their 
results of four íu¿Fe alloys. The remarkable 
feature of this low-field measurement 1s the 
occurence of a sharp, cjsp-Hke peak In each 
x(T). This cusp-like peak has been observed 
In many dilute alloys (28). Cannella and 
Mydosh (29) also Investigated the effect of 
applied magnetic fields on the susceptibility. 
Fields of only -100 G destroy the sharp sus¬ 
ceptibility peaks and produce broader maxima 
similar to those observed by Tholence and 
Tournier (30). The occurence of the sharp peak 
has prompted many theorists (31,32) to believe 
that there exists a new kind of phase transition 
at Tf, below which magnetic moments are frozen 
Into thermal equilibrium orientations but with 
no average long-range order, and thus the system 
1s In the so-called spin-glass phase. 

2. Insulating Soin Glasses 

EuS 1s an Insulator and Is well known as an 
Ideal Heisenberg ferromagnet, whose crystallo¬ 
graphic symmetry Is cubic. The localized, spin- 
only moments (7jig) of the Eu2+ Ions (*87/2) are 
coupled to their neighbors via Isotropic ex¬ 
change Interactions. The first-neighbor ferro¬ 
magnetic Interaction (Jj) dominates the In¬ 
direct (via the S Ions) antiferromagnet1c 
second-neighbor exchange Interaction (J2), and 
their ratio Is J2/J1 - -1/2. When EuS Is di¬ 
luted with non-magnetlc. Isostructural SrS, 
magnetic moments grouped Into finite clusters 
are effectively decoupled from the ferromag¬ 
netic alignment within the long-range ferro¬ 
magnetic order. As the dilution proceeds, 
eventually ferromagnetism breaks down and the 
spin glass ■order" sets In, as a result of the 
"frustration* effect. 

Maletta and his co-workers (33-37) have 
Investigated the magnetic properties of Insu¬ 
lating EuxSn_xS alloys. Figure 2 displays the 
ac susceptibility at 117 Hz for four spin glass 
samples of Euxiri_xS. All these curves exhibit 
strong maxima, defining Tf. 

III. SCALING 

Recently, Barbara et al. (38-40) studied 
two spin glasses: polycrystalline 4.6 at t Mn 
1n Cu and amorphous 37X Gd In Al. They have 
used a SQUID magnetometer to measure the dc 
susceptibility, x(H), up to 50 kG. They 
argued that the nonlinear susceptibility x* be¬ 
haves like H2^4 at Tf. Accordingly, they used 
the following scaling relation for the non- 

Flgure 1. Low field susceptibility x(T) for 
alloys of AuFe with Fe concentration « 1, 2, 5, 
and 8 at X. (Ref. 2). 

Figure 2. Temperature dependence of the ac 
susceptibility in EuxSri_xS with different Eu 
concentration x (Ref. 33). 

linear susceptibility: 

xs(H,t) - xo(t) - M/H = H2/4,f(t/H2V) , (l) 

where t = (T-Tf)/Tf, xo ' x(H -* 0), and f(y) 
Is a scaling function, 1n which 

f(y) -* const., y -* 0, 

f(y) » y"*', y - -, 

♦ ' - Y’iVU'-l) = ß'A' . (2) 

As shown In Fig. 3, their data for the case 
T > Tf converge toward a single curve for the 
two samples. They find 
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Y1 = 3.8 ± 0.5, 4' = 8.1 ± 0.2 
*' - 4.0 * 0.5 (37* Gd£L); 
Y1 - 3.4 + 0.4, 4' = 4.1 t 0.2, 
,1 - 5.0 t 0.5, 
p1 ■= 1.1 +0.2 (4.6 X HnÇu) 

For the sake of self-consistency, they also 
employed another parametric form for x In the 
critical region (39): 

x(H.i) = Xp - At*' - [B(tY'/H2) + CH"2/i,r\ 

for t > 0 , (3) 

where xn Is the peak value of x at If. By fit¬ 
ting about 500 data points for 0 < H < 2000 6, 
they got 9' - 93 ♦ 0.04, Ÿ' ■ 2.7 + 0.1, ï' - 
5.7 + 0.2. These scaling results support the 
possibility of a second-order phase transition 

at Tf. 

IV. HEAT CAPACITY 

1. Metallic Soin Glasses 

In the last section, we have assumed that 
there Is a phase transition between spin-glass 
and paramagnetic behavior. The question Is 
whether a phase transition Is observed In the 
thermodynamic sense or just a rapid change In 
the dynamics of the spin system. One of the 

I0'3 I0‘* 

<T-T()25/H ( K2 i/Ot ) 

Figure 3. Scaling fits according to Eq. (1) 
for the non-Hnear susceptibility as a func¬ 
tion of field and temperature above Tf. For 
GdAl and MnCu samples, respectively, large cir¬ 
cles represent data at 16 and 26.5 K; small 
x’s, 16.4 and 27; large x's, 17 and 27.5; 
crosses, 18 and 28; small circles, 20 and 29; 
equals signs, 30 and 30; U's, 40 and 40; and 
(Vs, 50 and 50 (Ref. 38). 

earliest experimental Investigations was by 
Wenger and Keesom (20,41) who measured the 
magnetic heat capacity of AuFe and ÇuMn metal¬ 
lic spin glasses. At Tf, there Is no cusp- 
I1ke peak. In order to Investigate the low- 
temperature behavior, Fogle et al. (21,42) have 
measured the heat capacity down vo -50 mK. 
They subtracted off the lattice and hyperflne 
contributions to obtain the magnetic heat capa¬ 
city. The low-temperature data conform to AC » 
yT + UT2. Fogle et al. (21) concluded that, 
to within experimental error, the leading term 
1n the low temperature heat capacity Is a con¬ 
centration Independent linear term yT, with 
Y « 1.8 mJ/mole-K2. They (42) suggested that 
the T2 term might be due to the presence of a 
finite density of magnon-Hke collective exci¬ 
tations (43-45). Numerical calculations (43) 
on metallic spin glasses have confirmed the 
linear dependence of C(T) on T. 

2. Insulating Soin Glasses 

Meschede et al. (37) have measured the heat 
capacity of Insulating EuxSri_xS with x » 0.40 
and 0.54 from 0.3 to 10 K with fields up to 
1.00 T(10 kG). The x - 0.40 sample Is a spin 
glass with Tf = 1.7 K. Similar to a metallic 
spin glass, the specific heat curve displays a 
broad maximum well above Tf, no singularity at 
Tf, and a linear temperature dependence at low 
temperature. Below 0.45 K, the specific heat 
per Eu ion at zero field can be fitted with the 
relation 

C*(T) - yT + A2r2 , (A) 

where y^b * O « * 0.01 IT1 and A2/kB - 
(2.6 + 0.4)xl0“3 K2. Euo.54Srn.46S becomes fer¬ 
romagnetic at V « 5.0 K and ‘re-enters" from 
a ferromagnetic state Into a spin-glass state 
at Tf' - 2.0 K. At Tc', them Is a broad maxi¬ 
mum. Again there Is no anomaly at Tf'. 

Because the specific heat of both metallic 
and Insulating spin glasses has a linear term 
In C*(T) at low temperature, Neschede 
et al. (37) conjectured that this linear term 
exists Independent of the type of magnetic 
coupling and of the concentration of magnetic 
Ions. Furthermore, In view of the fact that 
both dielectric and metallic glasses have lin¬ 
ear dependencies of C(T), these authors sur¬ 
mised that the yT law of C(T) might be a uni¬ 
versal property of "disordered" solids at low 
temperature. 

For the reentrant Euo.54$i"o.46s sample, 
at 8 - 1.00 T and below 0.65 K, C* fits well 
with the relation 

c* . 4T3/2 + 62t-2, (5) 

which 1s a common relation for a ferromagnet 
In a small field at low temperature. Here 
A/kn = 0.25 i 0.01 IT3'2, which Is much larger 
than the value, A/kB = 0.03 K-3'2, for ferro¬ 
magnetic EuS. One can conclude that a high 
field (B > 1.00 T) suppresses the low- 
temperature spin-glass phase 1n Euo.54Sro.46s 



and induces ferromagnetic ordering. 

3. Phase Boundary 

Recently, de Almeida and Thouless (46) 
showed that the Sherrington-Kirkpatrick (SK) 
model for classical Ising spins exhibits an 
instability for purely random interactions in 
the presence of a magnetic field. This insta¬ 
bility has been Interpreted as a phase transi¬ 
tion line, called an AT line, marking the onset 
of freezing of the spin component longitudinal 
to the field (47). Gabay and Toulouse (48) 
have extended this calculation to obtain the 
phase boundary for classical m-component spins. 
This instability line is called the GT line and 
is given by 

T 1 - Tf(H)/Tf(0) = 0.23(gvBH/J)? , (6) 

for T « 1, where g is the g-factor, the 
Bohr magneton, Tf(H) the critical temperature 
in a field H, and J = kBTf(0). The transverse 
spin ordering considered in the GT line is not 
detectable in susceptibility measurements but 
it is accompanied by a specific-heat anomaly 
of "third-order character." 

Fogle et al. (21) have measured the spe¬ 
cific heat of 2790-at-ppm ÇuMn sample from J.3 
to 30 K at various fields up to 75 kG. Their 
results are displayed in Fig. 4. As shown, 
there is no obvious anomaly in the C/T vs T 
curves at Tf as Indicated by the arrow. How¬ 
ever, there is structure in d(C/T)/dT and 
d2(C/T)/dT2 as exhibited in Figs. 4(b) and (c), 
respectively. The anomaly is shifted to a 
lower temperature in an applied field. Accord¬ 
ingly, it is reasonable to assume that the H-T 
dependence of the anomaly is related to that 
of the phase boundary. The dotted curves in 
Fig. 4 represent the background heat capacity 
obtained by fitting the data to a six-term 
polynomial. The resulting anomaly in AC/T, 
which is the difference between the experimen¬ 
tal points and the background, is shown in 
Fig. 4(d). The anomaly does not show the sharp 
cusp required for a transition of third-order 
character predicted by the theory. This 
"broadening" might be caused by an inhomogen¬ 
eous distribution or clustering of the Hn at¬ 
oms. As exhibited, the amplitude of the anom¬ 
aly decreases with increasing field. This is 
in agreement with the theory because the order 
of the longitudinal components increases with 
decreasing temperature and increasing field, 
thus reducing the entropy change associated 
with the appearance of transverse order. The 
temperature at which this anomaly takes place, 
Th» Is found to be proportional to H2, as shown 
in the inset of Fig. 4. However, the propor¬ 
tionality constant is smaller by a factor of 
2.5 than the theoretical value given in 
Eq. (6). In conclusion, in spite of some quan¬ 
titative discrepancies, the qualitative agree¬ 
ment between mean-field theory and experiment 
is striking and seems to constitute persuasive 
evidence of reality for the transverse ordering 
and the relevance of the mean-field theory to 

ted curves in (a) - (c) represent the back¬ 
ground heat capacity. The anomaly AC, is 
shown in (d), and the locus of its maxima in 
(e). The arrows represent the freezing temp¬ 
erature at H = 0 (Ref. 21). 

real spin glasses. 

V. HIGH PRESSURE EFFECTS 

The magnetic nroperties in a "disordered" 
system are in general very insensitive to pres¬ 
sure. As a result, the high pressure effects 
on a spin glass are expected to be weak. The 
first attempt was made on the effect of pres¬ 
sure on the electrical resistivity, 
p(T) (49-51). In spite of the strong de¬ 
pendence of p on pressure, the absence of the 
anomaly in p(T) at Tf made the results less 
tangible. 

In order to augment the pressure effect, 
it is helpful to use an exchange-enhanced host. 
Pd is such a host. In particular, its conduc¬ 
tion electron density of states at the Fermi 
energy varies very strongly with pressure (52). 
For Pdi_cHnc with c < 3 at ï, giant moment 
(-7.5 wg) ferromagnetism prevails. However, 
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Mn nearest neighbors are coupled, producing 
Mn-Mn antlferromagnetlc exchange. When c > 
4 at X, the probability of having two Mn atoms 
at first, second, and third nearest-neighbor 
site; Increases. Verbeek et al. (53) Investi¬ 
gated the alloys, (Pdo.9965Fe0.0035)l-xNnx* 1n 
which the master alloy, Pdg.9965^0.0035* 8 
strong giant-moment ferromagnet with an effec¬ 
tive moment as high as *10 »b- At a very low 
Mn concentration, the system Is a ferromagnet, 
as demonstrated by the solid curve for x « 0.01 
In Fig. 5. At a high Mn concentration, short- 
range Mn-Mn antlferromagnetlc exchange competes 
with the long-range ferromagnetic Interaction, 
supplying the ■frustration* with the <ppearance 
of the spin-glass phase at Tf, as exhibited In 
Fig. 5. x(T) for x = 0.065 shows a typical 
cusp. However, for 0.03 < x < 0.06, an alloy 
Is a reentrant spin glass, which becomes a fer¬ 
romagnet at Tc', followed by a transition to a 
spin-glass state at Tf'. As an example, x(T) 
for x = 0.05 Is shown In F1g. 5. Figure 6 
shows the magnetic phase diagram (54). The 
three distinct systems with x = 0.01, 0.05, and 
0.065, have been studied ' i) under high pres¬ 
sure P up to 20 kbar. T» pressure effects on 
x(T) are as displayed In Fig. 5. The pres¬ 
sure dependencies of Tc for the x = 0.01 
ferromagnet, Tf for the x = 0.065 spin glass, 
and Tf* and Tc' for the x = 0.05 reentrant spin 
glass are given In Fig. 7. To the accuracy of 
the experiment, all of them are linear In P. 
This linear relationship Is understandable, 
because 20 kbar Is only a small oressure In 
comparison with the Internal atomic forces. 

The results presented above can be under¬ 
stood as follows: the Increase In the Mn con¬ 
centration breaks the Infinite ferromagnetic 
cluster at Its weakest links, giving rise to 
an Increase of the ‘frustration* In magnetic 
Interactions. Therefore, dTc/dx < 0, 
dTc'/dx < 0, dx(Tf)/dx < 0, dTf'/dx > 0, 

Figure 5. Temperature dependence of x of 

(Pd0.9965Fe0.0035 l-xMnx)- The so11d curves 
for samples at 1 bar and dashed curves are at 
20 kbar (Ref. 55). 

Figure 6. Collection of experimental data for 
the magnetic phase diagrams of 

(Pdo.9965Fe0.0035)l-xMnx (ReF- 54)- 

dTf/dx > 0. The application of high pressure 
In effect Increases Mn-Mn short-range Inter¬ 
actions. In consequence, one expects dx(Tf)/dP 
< 0, dTc/dP < 0, dTc'/dP < 0, dTf’/dP > 0, 
and dTf/dP > 0. The pressure effect Is small, 
as expected: dTc/dP --31+1 mK/kbar for x - 
0.01 and dTf/dP -+27 + 2 mK/kbar for x - 
0.065. .lardebusch et äl. (56) have measured 
the dc magnetic susceptibility of a 3 at X AgMn 
spin glass under hydrostatic pressure up to 
15 kbar. They have found dTf/dP » + 42 + 
4 mK/kbar, which 1s comparable with the values 
obtained In PdFeMn discussed above. Similar 
pressure effect In amorphous (Fe'|-xMnx)75Pi6B(Al3 
has been obtained by Chu et al. (57). 

Figure 7. The pressure dependence of Tc, Tc', 
Tf, and Tf' (Ref. 55). 
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VI. PHONON-THERHAL CONDUCTIVITY 

As pointed out In Secs. IV. 1 and 2, a 
linear temperature dependence of the magnetic 
heat capacity similar to the heat capacity In 
disordered solids has been found at low temp¬ 
erature. In analogy to the structural two- 
level systems (TLS) Introduced by Anderson 
et al. (58) and Phillips (59) for understanding 
the properties of disordered, non-magnetlc 
materials, a theory of magnetic two-level sys¬ 
tems (NILS) was proposed to describe the low 
temperature behavior of a spin glass. An MILS 
Is associated with a cluster of spins having 
two equilibrium positions, with the moments 
pointing parallel or antiparallel to an easy 
axis of magnetization. Free rotations of the 
clusters are blocked by anisotropy barriers, 
as shown 1n Fig. 8, and the dynamics of a spin 
glass Is then expected to be dominated by ther¬ 
mal activation processes. A phenomono-loglcal 
description of the non-ergodlc properties of a 
spin glass below Tf utilizing MILS has been 
presented by Souletle and h1s co-workers 
(10,60). 

In order to give direct evidence that the 
MILS does exist, Wassermann and his collabora¬ 
tors (61,62) measured the phonon-thermal con¬ 
ductivity, k(T), of amorphous 
(Pd77>5-xCuxS11(,5)11,( (with H » Mn, Fe, and Co) 
down to -0.3 K at 8 - 0 and 5 T. In an amor¬ 
phous metal, the residual electrical resistance 
Is very high, and hence, the electronic contri¬ 
bution to k(T) Is negligible. Consequently, 
the phonon thermal conduction KPh(T) arises 
from three scattering processes: (a) phonon- 
electron, (b) phonon-structural TLS, and (c) 
phonon-MTLS scatterings. ^(1,8) 1s enhanced 
by -8X for the x ° 10 sample below 4 K and 
-30% for the x = 15 sample at - 0.4 K, when 8 
increases from 0 to 5 T. For the Fe samples, 
kP^(T,B) at 1 K 1s enhanced by about 5 % and 
about 10 % for x ■= 10 and 15, respectively. 
However, for the Mn samples, no enhancement has 
been observed. The orbital contribution to the 
magnetic moment Is zero for Mn (S-State), and 
Increases from Fe to Co. Hence, based on the 
Increasing enhancement of KPh(T,B) from Mn to 

Fe and then to Co, It Is concluded that the 
spin-orbit Interaction Is responsible for the 
coupling of the phonons to the MILS. The en¬ 
chancement of kP" In a high field Is not lim¬ 
ited only to these metallic amorphous spin 
glasses. A similar enhancement has been ob¬ 
served In Insulating single crystalline 
EuxSr|_xS spin glasses (63). 

VII. FREflüEMLT p, PENPENCE pF x(v) 

1. Frequency Dependence of Tf 

One of the first Indications of the unusual 
properties of spin glasses was the unexpected 
observation of the frequency dependence of 
Tf (64-83,14,33,36) In almost all the spin 
glasses studied to date, Including such diverse 
systems as A^Mn (80), AlpMnsSIsO^ (83), small 
Iron partie«es in an amorphous alumina 
matrix (82), granular Fe-A^Oj films (77), and 
others. Figure 9 shows the temperature depend¬ 
ence of the real part of x. x'. for 
EuQ.44SrQ.56s measured at 17, 198, and 
2103 Hz (78). It Is clear that Tf Increases 
with Increasing frequency v. Tf In these In¬ 
sulating spin glasses can be measured at micro- 
wave frequencies. In Fig. 10 data are shown 
for Euo.43Sr,57S taken at 840 MHz. The 9-GHz 
data (7è) aré displayed In Fig. 11. Because 
the Arrhenius law gives unphysical results, 
Tholence Instead employed the empirical Vogel- 
Fulcher law (68): 

v - v0exp[-Ea/kB<Tf-T0)] , (7) 

where v Is the measured frequency. For 
EuxSr]_xS, v0 Is 1013 s“1, and other parame¬ 
ters, T0, Ea, and Tf, are presented as a func¬ 
tion of x In Fig. 12. Strlckman and 
Wolfarth (84) proposed that T0 arises from 
Inter-duster coupling. In some cases, v 
can be extended up to -1011 s-1 using neutron 
scattering (85,86). ÇuMn Is such an example. 
Figure 13 gives the frequency dependence (68) 
of Tf In ÇuMn. However, recent experiments 

Figure 8. An asymmetrical double well poten¬ 
tial. W 1s the height of the barrier and c 
represents the splitting (Ref. 60). 

Figure 9. AC susceptibility of EuxSr|_xS for 
x - 0.44 and v = 17, 198, 2103 Hz. The thermal 
variation Ax* of the imaginary part Is shown 
for v = 17 Hz (Ref. 78). 



on Au-B at % Fe (74) and on PrPo.85 (69) show 
that at very low frequency If reaches a mini¬ 
mum and becomes Independent of v. This dis¬ 
crepancy Is understandable because the free 
volume concept used In obtaining the Vogel- 
Fulcher law for an ordinary glass Is not read¬ 
ily applicable to a spin glass and because the 
energy Involved In a spin glass (l.e., the ex¬ 
change energy) Is of the order of k|}Tt while 
that In an ordinary glass Is much larger than 
koT. 

In a recent paper, Singh et al. (36) re¬ 
ported their *' measurements of EuxSri_xS spin 
glarses from 0.1 to 12 GHz. They found that 
Tf, the peak of x'(T), Increases with * up to 
0.5 GHz but the.) decreases with Increasing v 
for v > 0.5 GHz. However, the maximum In x'(T) 
Is observed only up to ~1 GHz. Moreover, they 
observed a pronounced dip In the x' vs T curve 
Instead of a maximum for their x « 0.43 sample 
at v - 8.3 and 12.2 GHz. They Interpreted 
this anomalous frequency dependence 1n terms 
of the coexistence of both fast and slow spin 
relaxation times In the freezing processes 
associated with small-size ferromagnetic clus¬ 
ters and spin-glass type of order, respectlve- 

Flgure 10. Normalized real part of permeabil¬ 
ity for Eu 43Sr xyS at 840 MHz as a function 
of temperature at 8 - 0 G (Ref. 79). 

i 

T (Kl 

Figure 11. Thermal variation of the ac suscep¬ 
tibility of EUxSn-xS for x = 0.44 and 0.48, 
measured at 9 GHz (Ref. 78). 

ly. They concluded that. In order to under¬ 
stand the phenomenon of spin-glass freezing, 
one should also consider the change of size and 
relaxation time of ferromagnetlcally correlated 
regions with temperature. k’.‘ 

Figure 12. Tf(v « 10 Hz) and the parameters 

T0, Ea/,CB d*(luce<1 iroffl the of Tf by a 
Vogel-Fulcher law: v « v0 exp Ea/kB(Tf - T0) 
ar» <hnun ÍRef. 78). 

Figure 13. Plot of Tf vs l/(ln v0 - In v) for 
- 4.6 at * Mn with v0 - 1013 s"1 (Ref. 68). 

2. Spectral Distribution of Relaxation Tliw* 

In order to explain his neutron scattering 
data, Muranl (87) was the first to propose that 
there Is a wide distribution of relaxation 
times, t. At high (room) temperature, for a 
very dilute alloy, the density of relaxation 
times, N(t), Is represented by a delta- 
function peak, whereas N(t) for a sample with 
a moderate concentration (a few *) of Mn atoms 
Is broadened. With decreasing temperature, the 
spectrum evolves contlnously towards longer 
relaxation times, and the peak In N(t) also 
moves towards longer times. 

Recently, Wenger and his collabora¬ 
tors (14,81) measured both x' and x’ In a num¬ 
ber of spin glasses at various frequencies. 
According to Casimir and du Pré (88,89), 

X1 *= x$ + (xy - X5)/(l + u2x2) , (8a) 

x* = <*>x(Xt ■ xs)/( 1 + <*»2x*) . 

where Xj Is the Isothermal susceptibility In 
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the Unit u -» 0 and Xc the adiabatic one In the 
limit « -» •. At u = T/t, x' will have an 
Inflection point, whereas x" will show a maxi¬ 
mum. This i* mum thus provides a method for 
determlnii average relaxation time constant 
Tav for each tcmoerature. According to 
Eq. (8), x* should follow a sech(tnuT) depend¬ 
ence for a single relaxation time and will be 
considerably broadened If a distribution of 

9(t). Is present. Therefore x‘ could pro¬ 
vide the dynamics of the spin freezing near Tf 
more than x‘. Wenger also found the Argand dia¬ 
grams, x" vs X1. for («0203)0.00(8203)0.92 at 
several temperatures around Tf. The curves 
cannot be described as semicircles (Indicative 
of a single relaxation time) but as arcs of 
semicircles. He followed the analysis of 
Cole's plots for the dielectric susceptibility, 
and found, for all temperatures, g(i) * 
(b//í)exp-(blnt/Tav)2, with b = 0.23 and Tav = 
1.5 x 10-8 exp (4.4/T) s. It Is essentially 
a single Gaussian distribution. As a result, 
the spin freezing 1n this Ho glass can be In¬ 
terpreted within the Néel picture of superpara- 
magnetic relaxation (90). Furthermore, he 
pointed out that Tf In this spin glass fol¬ 
lows an Arrhen1us-11ke kBTf = -E/ln«vTp, with 
E/ko « 6.6 K and t0 = 4.5 x 10-8 s. Figure 14 
exhibits (81) the absorption x* of a 
(Euo.2Sro.8)S spin glass with Tf(10 Hz) a 
640 mK. There Is no clearly observable maximum 
In x" over the frequency range Investigated, 
thus Implying a broad distribution of relaxa¬ 
tion times. The Argand diagram displayed In 
Fig. 15 supports this conclusion, because none 
of these three figures can be described as 
semicircles. From these curves, one can con¬ 
clude that a broad distribution of t Is pres¬ 
ent even for T > Tf. g(x) becomes even broader 
as T approaches Tf and It remains very broad 
for T < Tf. Wenger (14) found a distribution 
function for (Co0)0.4(^203)0.i(S102)0.5. As 
shown In Fig. 16, a dramatic increase of long 
relaxation times for T < 6 K Is visible. 
g(T,T) Is essentially constant over Ikt at T < 
4.2 K so that logarithmic time dependencies can 

be expected for long-time relaxation measure¬ 
ments. 

3. Fractional Exponential Relaxation Function 

In a dielectric crystalline system, a re¬ 
laxation species (an electric dipole) In con¬ 
tact with a heat bath relaxes exponentially as 
♦(t) « exp(-t/T0) after a disturbance. In an 
ordinary glass or a polymer, the Hamiltonian 
of the system Is very complex, leading to a 
distribution of energy level spaclngs, which 
Is linear In energy from a zero energy differ¬ 
ence up to an upper cut-off energy, 1W*, fol¬ 
lowed by a plateau at Intermediate energies 
but an exponential decrease at high energies. 
In Hgal's model(91), relaxation of a relaxation 
species to the heat bath Is accomplished via 
the level spacing excitations. Thus, the 
relaxation function Is modified (91): 

♦(t) * exp-(t/Tp)1-n, (9) 

Tp ” (^0)1^1-11).^¾ »1), (10) 

X' temy/mo EwJ 

Figure 15. Argand diagram for EuQ.jSro.aS at 
three different temperatures. The'llnes are 
computer fit to the data points assuming a 
symmetric diagram (Ref. 81). 

Figure 14. x" as a function of frequency 
for different temperatures. The solid lines 
are a visual guide (Ref. 81). 
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Figure 16. g(T,T) of a cobalt spin glass 
(Ref. 14). 



where O < n < 1, with n = a|V|2 In which V Is 
the coupling between a relaxation species and 
the level spacing excitations, and a 1s a con¬ 
stant. Equations (9) and (10) have been suc¬ 
cessfully applied to dielectric, optical, re¬ 
combination, mechanical, volume, enthapy, con¬ 
ductivity relaxation, and other measurements. 
Independent of the relaxation species, such as 
an electron, 1on, dipole, molecular moiety, 
polymer segment or polymer chain (92). In this 
case, the distribution function of relaxation 
times can be obtained through the Identity 
/g(t)exp (-t/T)dlnT = exp -(t/Tp)'-n. Accord¬ 
ingly, a larger n corresponds to a broader 
spectrum. 

Very recently, Ngal et al. (93) applied 
Eqs. (9) and (10) to spin glasses. In this 
case, the level spacing excitations arise from 
the spin-glass Hamiltonian of the form H = 
-ïljlïjSiSj - ï^HS^. The relaxation scheme Is 
displayed in Fig. 17. n Is a function of T, H, 
thermal and magnetic history, etc. Far above 
If, n Is zero or nearly zero, and the effec¬ 
tive relaxation time, tp, shifts with T 1n an 
Arrhenius way: t„ exp EaAbT, where t» and E* 
are, respectively, the Inverse of the attempt 
frequency and the activation energy. As T ap¬ 
proaches Tf, n Increases, g(i) broadens, and 
td, as well as the mean relaxation time <t> = 
/t g(T)dtHT = [tp/(I-n)] r[l/(l-n)], departs 
from the Arrhenius law. Here r(x) Is the gamma 
function. For a crystalline magnet, Eq. (8) can 
be rewritten as 

uc *= 1010 rad/s, EA/kB = 2.1 K. Here 
(XT - x$) H taken to be C/T and Is the equi¬ 
librium Curie law of a paramagnet. These simu¬ 
lated results resemble those for 
(802()3)0.08(B2°3)0.92 measured by Wenger (14). 
In addition to the similarity of the shapes to 

x*(<*»,T) = *s + (XT-xs)FT(d/dt)exp(-t/T) 

= x- -1x\ (11) 

the measured x'(T, «) and x"(T, «), Eq. (12) 
also predicts correctly the relative sizes of 
x' and x". the Arrhenius relation between Tf 
and V, and the sizable shift of the x" maximum 
to lower temperature than Tf(u) for each of the 
v's considered. In analogy to Its counterpart 
1n ordinary glasses, this Ho glass Is classi¬ 
fied as a type 8 spin glass because n 1s In¬ 
dependent of T and Tf varies with v according 
to the Arrhenius law. 

In a type A glass, n varies with T. Fig¬ 
ure 19 displays a typical variation of n with 
T. x1 and x" have been acquired (93) with 
uj. = lOlO rad/s, = lO'lO s, EA * 2Tf, and 
Tf ■= 800 mK at 16 kHz. The x,(T)/x*(T) ratio 
Is smaller than that for the Ho glass, and the 
relation between Tf and v 1s not Arrhenius but 
resembles the Fulcher-Vogel behavior. These 
results are therefore applicable to CuHn and 
EuxSn_xS spin glasses as discussed In Ref. 93. 
Because n depends on H and thermal history, 
Eq. (12) can explain the field dependence to 
be discussed In the next chapter. Furthermore, 
because n Is much less temperature dependent 
at lower temperature, 1t Is understandable that 
Tf does not obey the Fulcher-Vogel law but 
reaches a minimum at very low frequen¬ 
cy (69,74). In consequence, Eq. (12) Is capa¬ 
ble of Interpreting the frequency, field, and 
temperature dependencies of x' and x"- 

VIII. MAGNETIZATION 

where FT stands for Fourier transform. In 
analogy, Ngal et al. (93) used for spin glasses 1. Remanance and Irreversibilities 

x*(u,T) = xs + (XT - xs) 

x FT [d/dt] exp [-(tAp)1-"]. (12) 

In 1974, Tholence and Tournier (94) dis¬ 
cussed the occurence of a remanent magnetiza¬ 
tion and an Irreversible susceptibility In a 
spin glass below Tf. They measured the 

(3) n(T,h,thermal & magnetic history, 

Figure 17. Relaxation In a spin glass (Ref. 93). 

(see text for parameters) for the purpose of 
simulation of a type 8 spin glass (Ref. 93). 
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Isothermal remanent magnetization (IRN) by 
cycling an external field 0 -* H 0, and then 
measuring the magnetization. The thermorema¬ 
nent magnetization (TRM) was also measured by 
cooling a spin glass from T > Tf to T < Tf 1n 
a field H followed by setting H = 0. These TRH 
and IRM have been Interpreted In terms of the 
magnetic two-level systems (10,60). It Is easy 
to see that these IRM and TRM are responsible 
for the presence of the displaced M-H hyster¬ 
esis loop (4) below Tf. 

Nagata et al. (95) have acquired the sus¬ 
ceptibilities of two ÇuMn spin glasses deduced 
from the magnetization measured at a low static 
field. After cooling the samples In zero field 
(less than 0.05 G), cusp-like peaks were ob¬ 
served at Tf. 

Figure 19. x1 and x" obtained by calculation 
(see text for parameters) for the purpose of 
simulation of a type A spin glass (Ref. 93). 

2. Time Dependence of TRM 

Guy Investigated the time dependence of 
TRM (96). He found that the magnetization 
changes with t according to 

H(t) » M0 - Sint , (13) 

where S 1s a constant. He Interpreted this 
time dependence In terms of Néel's superpara- 
magnetic relaxation. However, Ferré 
et al. (97) found for other spin glasses that 
their data fit better with the power law, 
TRM(t) « t~®, Initially proposed by Binder (98), 
than Eq. (13). This slow response to a change 
In magnetic field Is known as magnetic vis¬ 
cosity. 

In place of the tnt and power laws, one 
can use a fractional exponential relaxation 
function. In this case 

TRM(t) = otRMxt> “ =o e*P [’ (t/tp)l-n]. (14) 

Chamberlin et al. v*9) very recently tried to 
fit the TRM data of their Ag-2.6 at X Mn + 0.46 
at X Sb spin glass sample to Eq. (14). In or¬ 
der to Improve the fitting accuracy, as shown 
1n F1g. 20(a), they plotted log (-d(«>TRi4)/dt] vs 
log(t) at T/Tf = 0.771, 0.856, 0.897, and 

0.966. These authors obtained n >= 0.694, 
0.740, 0.766, and 0.831 for these four tempera¬ 
tures, respectively. To see the accuracy of 
the fitting. In F1g. 20(b) Is plotted 
log(°TRH) a9a1nst tO-"J. As demonstrated, 
the fractional exponential relaxation function 
can properly describe the time dependence of 
TRM(t). The values of n and o0 thus obtained 
are displayed against T/Tf In Fig. 2i(a) and 
(b). The beautiful fit of the fractional ex¬ 
ponential relaxation function to the data as 
presented In Fig. 20 calls for the need of more 
experiments near Tf, above and below, 1n or¬ 
der to acquire tp and thus to understand 
the freezing process near Tf. 

Chamberlin et al. (99) assumed that Tp 
can be written In terms of two temperature- 
independent parameters £. and u as £ul~n « 
(l-n)/iÀ-n. Based on their data, they found 
that log(£tt1_n) Is linear In (1-n) with C « 
0.59 i 0.05 and a «= (3 + 1) x 10*6 s-'. "This 
value of Ç Is close to e~T (y = Euler's con¬ 
stant) based on the Ngal theory (91). However, 
Nga1 and Rajagopal (100) pointed out that 
Chamberlin et al. In obtaining Ç had made an 
additional assumption, namely, uc « l/t0 « u, 
which Is not compatible with the Ngal theory. 

Figure 20. Determination of the time fraction¬ 
al exponent n. (a) Log-log plot of the deriva¬ 
tive of the logarlsm of <>trh as a function of 
time at four temperatures: T/Tf = 0.771, 
0.856, 0.897, and 0.966. The slopes greater 
than 5 seconds given n. (b) Semi-log plot of 
ofR(4 as a function of time raised to the (1-n) 
power. The solid lines are the best fits to 
Eq. (14) to the data (Ref. 99). 

186 



..V. •• 

3. The de Almelda-Thouless (AT) TransHtlon 
Une 

In Sec. IV-3, the 6T Une obtained from the 
heat capacity data (21) was presented. In ad¬ 
dition, many papers based on magnetic measure¬ 
ments have appeared (101-113). One of the 
characteristic magnetic properties of spin- 
glass systems Is the magnetic viscosity. Be¬ 
cause most of the experimental findings related 
to this viscosity have been reproduced by Honte 
Carlo calculations (114-116), Yeshurun 
et al. (102) have utilized this property for 
Identification and characterization of the AT 
Une. They Investigated the time dependence 
of the magnetization In an amorphous 
(Fe0.64Mn0.36)75p16B6A13 *P1n glass (Tf * 41 K) 
at various values of H. From 1 minute to 12 
minutes after a step Increase of the field to 
some value H, their data can be fitted to an 
expression 

M(t) = M0 : Sint . (13) 

The relaxation rate, S(H), Increases with H, 
peaks at Hm(T), then decreases and vanishes 
at HC(T). As a fixed value of H, S Increases 
with T, peaks at !„(«), and then decreases and 
vanishes at TC(H). The magnitude of the peak 
of S, Increases and Its temperature Tm de¬ 
creases with Increasing field. The Unes de¬ 
scribed by T»(H) and TC(H) coincide with the 
HßtT) and HC(T) Unes within experimental 
error. Figure 22 Is the summary of the4r re¬ 
sults. The dashed curve (p) 1s found via para¬ 
bolic extrapolation to a zero value of S(H). 

Figure 21. (a) The temperature dependence of 
n. The dashed lines are guides for the eye. 
(b) The temperature dependence of a0 (Ref. 99). 

Yeshurun et al. (102) found that the parabolic 
dependence of S on H falls at high fields above 
H = Ht, where S levels off and then decreases 
slowly to zero. This ■tall* Is then extrapo¬ 
lated to S = 0 by fitting the high field data 
to a power law, S « (1 - H/Hc)v', where 1 < v' < 
1.5. The solid curve (t) In F1g. 22 describes 
the H-T relation obtained by this vanishing of 
the tall (5=0). Thus, Une (p) Is the border 
Une between two viscous regimes 1n the H-T 
diagram, whereas line (t) separates viscous and 
nonvlscous regimes. Because there are no theo¬ 
retical reasons for a change 1n viscous charac¬ 
teristics between two viscous regimes, these 
authors Identify line (t) as the AT Une. 

They also measured Hm, the field at 
which S Is maximum at a given temperature. In 
terms of the freezing temperature Tg, they 
obtained that Hn, varies as 

Hn, = 1360 (1- T/Tg)1-5^-1 Oe (15a) 

for ÇuHn, and 

1½ = 250 (1- T/Tg)1-8 ± °-2 Oe (15b) 

for FeigWl7oP20- The theoretical AT line46 
Is given by 

HAt(T) - (2kTg/vTp)(l- T/Tg)3/2 

= (10120 Oe)(l-T/Tg)3/2 (15c) 

where v = (2S)pb = 5 vg and Tg = 3.455 K have 
been used for their ÇuHn sample. Aside from a 
factor of 7 In the prefactor, the experimental 
result for ÇuHn, Eq. (15a), agrees reasonably 
with the theoretical equation, Eq. (15c). 

In addition to metallic spin glasses. In¬ 
sulating systems have also been Investigated. 
Paulsen et al. (109) measured *' and *• of a 
spherical Eug^Sro ^S sample from 7 to 5000 Hz 
with a SQUID magnetometer. The midpoint of the 
transition In *• Is chosen as the definition 
for the AT transition because It closely corre¬ 
sponds to the peak of x' at Tf 1n the absence 
of an external field. The transition field at 
low temperature has been found to vary approxi¬ 
mately as (1 - T/Ta0)®, with a = 3/2, where 
T|° Is the zero-field transition temperature. 
This temperature dependence has the same form 
for ÇuHn given by Eq. (15a). Again the ob¬ 
served prefactor was 5-9 times smaller than the 
theoretical prediction given by Eq. (15c). 

Nevertheless, very recently Wenger and 
Hydosh (111) pointed out that the GT line given 
by Eq. (6) and the AT line by Eq. (15c) can be 
obtained from the superparamagnetlc 
model (117). 

IX. NEUTRON SCATTERING 

Hany review papers on the use of neutron 
scattering to study spin glasses have appeared 
(9.10,45,85-87,118-121). In this chapter, only 
some papers with salient features will be dis¬ 
cussed. 
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Figure 22. T-H phase diagram for 
(Fe0.64Mn0.36)75p16B6^3- L1ne (P) the loc1 
of S - 0 found via parabolic extrapolation of 
S(H). The solid line (t) Is the AT line. In¬ 
set describes schematically a field-cooled pro¬ 
cess. At a point b, above the AT line, the 
field Is turned off. A rapid relaxation to c 
Is followed by a logarithmic decay In the spin- 
glass phase (Ref. 102). 

1. Small Angle Neutron Scattering and Other 
Techniques 

Muranl and Heidemann (122) measured tht 
elastic cross-sections of Çu - 8 at X Nn at q * 
0.17, 0.29 and 0.56 A-1 at various values cf 
the elastic energy resolution AE. for a g.ven 
q, the cross-section for AE ~1.5 veV Is r.early 
temperature Independent at high temperatures 
but begins to Increase markedly below about 
47 + 2 K. For AE ~25 weV, the marked Increase 
of the cross-section begins at 55 + 3 K, and 
when AE ~250 yeV, this temperature Increases to 
75 + 5 K. Because the elastic scattering 
cross-section Is proportional to the Edward- 
Anderson (EA) order parameter (122), the temp¬ 
erature around which the marked Increase In the 
elastic scattering cross-sections occurs may 
be regarded as the freezing temperature corre¬ 
sponding to the time constant (l.e., AE) of 
the measuring probe. Thus, the freezing temp¬ 
erature decreases with the decrease of AE or 
the Increase of the measurement time constant. 
Muranl (123) also measured the spin-spin corre¬ 
lation function as a function of energy for q » 
0.08 A-1 at 300 K for several ÇuMn spin 
glasses. He showed that the Lorentzlan spec- 

al function fits well with the data for the 
1.1 and 3.0 X samples, but it does not do as 
well at higher concentrations. In particular 
at the high-energy wings. He (87) Interpreted 
this discrepancy In terms of a wide spectral 
distribution of relaxation times evolving con- 
tlnously with decreasing temperature, devoid 
of any critical behavior, either speeding up 
or slowing down, at any finite temperature In¬ 
cluding Tf. 

2. Neutron Soin Echo (MSE) 

In addition to the ac susceptibility, which 
probes the 10-5 - 102 s time scale at zero wave 
number q = 0, neutron scattering Is another 

«il._.i ni. 

technique which can provide fully model- 
independent Information, because neutrons probe 
directly the Fourier transform S(q,u) of the 
spin-spin correlation function 
< S(r,t) S(0,0)>. In particular, NSE spectro¬ 
scopy allows one to observe directly the evolu¬ 
tion of correlations In the time domain of 
10"12 to 10~B s at wave number ranging from 
0.04 to 0.4 A-1, thus providing both the space 
(momentum) and time variations at the same 
time. 

The neutron scattering cross-section Is 
directly proportional to the spin-spin correla¬ 
tion function S(q,u), where q and u are the 
neutron momentum change and energy change, re¬ 
spectively. In NSE, S(q,t) 1s directly mea¬ 
sured, and It Is related to S(q,u) by the 
cosine Fourier transform 

S(Q.t) = JS(q,w) COS ut du. 

It can be rewritten as 

(16) 

S(q,t) - S(q)s(q,t), (17) 

where S(q) = S(q, t=0) Is the static correla¬ 
tion function or structure factor related to 
the short-range order (SR0), and s(q,t) con¬ 
tains the dynamic Information, with s(q, t = 
0) = 1. The ac susceptibility is related to 
these quantities by 

x(v) 11m 
q-*0 

S(q)[l - s(q,t)]/kBT, (18) 

with t = 0.7/2**. Here [1- s(q,t)] Is the 
fraction of spins, which can respond to an ex¬ 
ternal field within t and thus contributes to 
X. NSE Is capable of measuring both S(q) and 
s(q,t) directly. Hence It allows the Identifi¬ 
cation of both the static and dynamic contri¬ 
butions to X . If the q -► 0 limit can be eval¬ 
uated. In this section we present a summary of 
Mezel's NSE results (85,86). 

For ÇuMn, the s(q,t) spectra are Independ¬ 
ent of q at small q (< 0.4 A~l) and they show 
no singularity. In F1g. 23 are shown the re¬ 
sults for Çu -5 at X Mn. The thick Une repre¬ 
sents the simple exponential decay, exp - yt 

Figure 23. Spin relaxation, s(q,t). In Cu-5 at 
X Nn at various temperatures. Data points for 
t < 10~8 s were ceasued by NSE at q = 0.093A"! 
[Ref. 124], those for t > 10~& s were calcula¬ 
ted from ac susceptibility data [Ref. 68]. Ex¬ 
cept for the Une for 100 K which Is exponen¬ 
tial, all other lines are just guides to the 
eye. 
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dependence. with t“ 0.5 meV. Thus, all the $(q,t) curves 
demonstrate much slower decays than the expo¬ 
nential one, and they are compatible with the 
Honte Carlo result (114), s(q,t) « const - 
1 t. These slow decays suggest that s(q,t) 
arises from a broad distribution of relaxation 
times. Similar results have been found for 
Cu - 1 and 10 at X t«n (125) and 
La0.7Er0.3All2 (126)- 

Mezel et al. (12t) have found that the spin 
relaxation time for T > Tf could be described 
by the Arrhenius relation, t = t0 exp E/kgT, by 
assuming that the broad distribution of x re¬ 
sults from a broad distribution of activation 
energies E via a relation (125) 

s(q.t) » im f mexp[-t/T0exp(E/kBT)]dE. (19) 
Jo 

where a constant distribution of E's In the 
Interval (0,Em) has been assumed. However, at 
T < Tf for CuMn and T < 10 K for Lao.7Ero.3Al2, 
the data dlvlates severely from the Arrhenius 
relation, Eq. (19). Mezel, et al. (126) sug¬ 
gested that this failure of Eq. (19) to fit the 
data might be a consequence of the onset of the 
strong ferromagnetic short-range order, S(q), 
at low temperature. 

As pointed out previously, s(q,t) Is Inde¬ 
pendent of q below the moderate q value of 
about 0.4 A-1, l.e., the spin relaxation does 
not exhibit a ■klnematlcal slowlng-down* (127). 
This Is possible only when the relaxation Is 
due to spin-nonconserving forces (usually spin- 
orbit or dipole Interaction), and the spin dy¬ 
namics In this range of q Is not determined by 
the Heisenberg exchange Interaction, which Is 
a spin-conserving exchange Interaction, as one 
would normally expect. Therefore, the relaxa¬ 
tion process Includes the Korrlnga relaxation 
mechanism (128) serving as an Intermediate step 
In the q -* 0 limit, followed by a spin non¬ 
conserving conduction electron-lattice relaxa¬ 
tion. 

The open circles Illustrated In F1g. 23 
were obtained from the ac susceptibility 
data (68) for Çu - 5 at X Hn by means of 
Eq. (18). These calculated points for t > 
10-5 s join very nicely the NSE results ob¬ 
tained for t < 10-0 s. Conversely, ac suscep¬ 
tibilities can be calculated from Eq. (18) 
using the NSE results. Figure 24 shows the 
calculated susceptibilities at 0.1, 2.5 and 
40 GHz (85,86), along with the measured 10 Hz 
ac susceptibility. Tf at 0.1 GHz Is about 
15X higher than that measured at 10 Hz, In 
agreement with the frequency dependence of the 
Fulcher-Vogel law (68). Based on the above 
discussion. It Is clear that the appearance of 
the susceptibility cusp Is a dynamic phenome¬ 
non resulting from the slow1ng-down of the spin 
relaxation with decreasing temperature. Above 
Tf, this slowlng-down can be described as a 
thermally activated process following the 
Arrhenius law with a broad distribution of 
activation energies, without showing the singu¬ 
lar character of critical fluctuations. The 
slowlng-down continues through and below Tf 
with a faster-than-Arrehnlus-type temperature 

Figure 24. High frequency ac susceptibility 
of £u - 5 at X Mn spin glass calculated from 
the NSE results In Fig. 23. The continuous 
lines are guides to eye, and the dashed line 
shows the directly measured 10 Hz ac suscepti¬ 
bility (Ref. 85. 86). 

In view of the success of the application 
of the fractional exponential relaxation func 
tlon In the susceptibility (Sec. VII-3) and TRM 
(Sec. VIII-2), one Is tempted to fit s(q,t) to 
this function In order to obtain the tempera¬ 
ture- and q-dependence of the fractional expo¬ 
nent, n(q,T). However, the data, as presented 
In these figures, are not precise enough to 
make this fitting procedure meaningful. 

X. NUCLEAR MAGNETIC RESONANCE (NHR) 

1. In an Applied Field 

Host NMR In spin glasses has been investi¬ 
gated by several authors. The first of these 
Investigations was by MacLaughlln and Alloul 
(MA) (129) who studied 63Cu NMR In dilute 
ÇuMn (0.1 - 0.4 at X) alloys at temperatures 
near the freezing temperature Tg. They have 
shown that through Tg there are gradual de¬ 
creases In the longitudinal and transverse NMR 
relaxation times, T^ and T2, respectively, ac¬ 
companied by a progressive diminution in the 
resonance intensity. They also found that the 
relaxation signal varies non exponentially, but 
rather like exp (-t/Ti)1^2. Levitt and Walsted 
(LW) (130) measured the llnewldth AH for 03Cu 
In 0.96 at X Mn at 25.5 MHz. They found that 
AH(T) follows the Brillouin function B5/2(T), 
for T » Tg (10 K), and falls below It at low 
temperature. They Interpreted this decrease 
for T < Tg as arising from short-range order 
effects. Similar broadening of AH below Tg has 
been observed by MA (131). 

From spin-echo decays. LW acquired T2. 
Their data showed that T2 decreases sharply 
Just above Tg followed by a gradual increase 
as T is lowered from 4.2 to 1.6 X. For 
T > Tg, T2 1s believed to arise from the 
rapidly modulated hyperflne-fleid fluctuations, 
which contribute to the spin-echo decay rate, 
t2 “ Y2Hhfic, where y is the gyromagnetic 
ratio, H(,f the hyperflne field, and tc the Mn 
spin-correlation time. tc becomes longer near 
Tg, resulting In shorter T2. Both LW and MA 
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concluded that the lost Intensity near Tg re¬ 
sults from an experimental difficulty that the 
unobserved nuclei possess very short spin-echo 
decay tV-cs T2 so that the echo from those 
nuclei decays before the spectrometer has re¬ 
covered from rf pulse overload. 

T] can yield Information on the trans¬ 
verse fluctuating fields experienced by the 
nuclear spins at the Larmor frequency ur. 
Bloyet et al. (132) measured down to 2 mK the 
shape of the copper nuclear magnetization re¬ 
covery H(t) on Çu - 12, 20 and 43 ppm with 
Tg « 29, 44, and 87 mK, respectively. They 
found that the magnetization recovery shape 
varies from an exponential decay for T » Tg 
to exp [a - (a2 + t/tp)1'2] for T < Tg. 

2. In Zero Applied Field 

For T « Tg, the spin system Is •frozen", 
and the RKKY fields on a given shell of near¬ 
neighbor (nn) nuclei from a Hn Impurity are 
well defined, although randomly distributed In 
direction. Accordingly, Alloul (133,134) was 
able to detect the spin echo signals of the 
first (A) and fourth (B) nn shells In zero 
applied field H0 on a Cu-1 at X Mn spin glass 
at T - 1.25 K « Tg (10 K) after field-cooling 
the sample In a field Hcooi - 10 kG, which es¬ 
tablished the saturated remanent magnetization. 
Here, the local hyperflne fields (134) seen by 
the nuclei on the first and fourth shells are 
Hi * 50 + 5 kG and 10 + 0.2 kG, respectively, 
based on the measurements In the paramagnetic 
regime of dilute ÇuHn. For a given resonance 
with an applied rf field Hj, the effective rf 
field H?" = n-Hi seen by the nuclei Is en¬ 
hanced In zero dc field. He found the enhance¬ 
ment factors to be n ' 38 + 6 and 6 + 1 for 
resonances A and B, respectively. His data 
exhibit that the enhanc ment of rf field and 
signal Intensity depend strongly on the magnet¬ 
ic history of the sample; they Increase with 
the remanent magnetization and vanishes If the 
sample 1s zero-field cooled. 

This enhancement factor Is believed to be 
related to the transverse electronic rf mag¬ 
netization ox = xtHl Induced by the rf field 
H], where xt Is the transverse susceptibility. 
ox In turn Induces an rf local field Hi1 = 
ntHi on the nuclei, ind hence, t) = Int ± II- 
Alloul (133,134) assumed that, like a single 
domain ferro- or ferrl-magnet, Hn spins are 
rigidly bound together and an applied magnetic 
field Induces a collective rotation of the 
electronic magnetization, which Is limited by 
the anisotropy field, H*. Furthermore, 
Alloul and Hlppert (135) Interpreted the dis¬ 
placed H-H hysteresis loop (4) 1n terms of a 
mixture of the unidirectional and uniaxial 
anisotropies. 

Alloul and h1s co-workers (136) also mea¬ 
sured zero field transverse nuclear spin re¬ 
laxation time, T2, for near-neighbor °3Cu 
shells of Hn 1n Cui-xHn alloys with x = 0.1, 
0.2, 0.4, 1.35 and 4.7 at X for T « Tg in a 
temperature range from 25 mK to 1.3 K. Even at 
high temperature, they observed that the decays 

for a given sample were slightly nonexponential 
with a shape Independent of nuclear site and 
temperature. 

XI. ELECTRON SPIN RESONANCE (ESR1 

In order to explain the "spin glass transi¬ 
tion," 1n analogy to the theory of superpara- 
magnetic relaxation (137), Tholence and 
Tounler (94) proposed the superparamagnetlc 
(SPH) model, 1n which a spin glass consists of 
an assembly of ferro- or antlferro-magnetlc 
grains coupled by anisotropy forces arising 
from the dipolar and exchange Interactions be¬ 
tween spins. In this model, the "transition" 
1s not a phase transition but rather a noneqi * 
librium freezing phenomenon In which the grains 
become blocked when their relaxation times are 
longer than the measurement time Tffl, which Is, 
like superparamagnetism, governed by the 
Arrhenius law (94): Tm = t0 exp E/t/k^T, where 

Is the attempt frequency, and E* the acti¬ 
vation energy. Here the freezing temperature 
Tf 1s frequency-dependent. On the contrary. 
In the phase transition picture of the EA 
model, the time correlation function q(t) *= 
< Sa(t)*Sa(0 >, where < ••• > denotes the 
thermal average and the bar slgnfles the aver¬ 
age over the spins, behaves like (138,139) 
q(t) ~ exp - a’t, with a' ~ (T - Tf), for 
T > Tf. In addition, Klnzel and Fischer (140), 
based on their calculations of the dynamical 
susceptibility, were the first to notice that 
a large number of different relaxation times 
results near Tf. They also obtained that 
long relaxation times become more Important as 
T -♦ Tf, and q(t) ~ t-1". Ha and Rudnlck (141) 
employed the time-dependent Glnzburg-Landau 
model, Instead of the replica method, to Inves¬ 
tigate the spin-glass phase. These authors 
found that q(t) has a f1^2 long-time tall 
not only at Tf but also In the spin-glass 
phase, In agreement with the results obtained 
from Honte Carlo simulations by Binder and 
Stauffer (142). By means of Huber's result 
(143) that the correlation function can be 
expressed as q(t) * < S*S > exp - It, with the 
Onsager kinetic coefficient 

L « (1/NS2)y < ¿0(t) • Sa(0) > dt. 

when the decay rate of < S(t) • S(0) > 1s much 
faster than that of q(t), Salamon and Herman 
(144) showed that the relaxation rate I/T2 « 
l/Tx diverges as (T-Tf)-1 near Tf. Recentlv, 
In terms of the mean-field theory, SompolInsky 
(145) assumed that the time-persistent spin- 
spin correlation function does not decay ex¬ 
ponentially with a single relaxation time but 
rather with a distribution of many relaxation 
times, and pointed rut that the order parame¬ 
ters are sums of a large number of contribu¬ 
tions from a broad continuum of time scales 
ranging from the extreme static to the finite 
limits. Sompollnsky and Zlppellus (146) con¬ 
cluded from their calculations that, approach- 
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ing Tf from above, spin fluctuations slow down 
with a relaxation time varying as (T - Tf)'1, 
and that the time correlation function below If 
decays like t~v, with v(T) = 1/2 at Tf but de¬ 
creasing with decreasing T. 

Among many techniques, ESR has been uti¬ 
lized Intensively to Investigate the spin dy¬ 
namics of spin glasses. The first ESR study 
was made by Owen et al. (147) on ÇuMn 1n 1957. 
Their work already comprised many Indications 
of spin glass behavior, even though the broad¬ 
ening and the shift of the resonance line to 
lower fields along with hysteresis and field 
cooling effects below the "ordering* tempera¬ 
ture were attributed to antiferromagnetism . 

The first ESR experiment Investigated from 
the view point of a spin glass was made by 
Salamon and Herman (144,148). They obtained 
the relaxation rate Tp1 for a sphere of 
Cu1sHn25(Tf = 115 K) by measuring the ESR spec- 
tra at 9.4 GHz. To analyze the data, they as¬ 
sumed the exchange-narrowing model that yields 
the Lorentzlan llneshape. As shown In Fig. 25, 
Tjl Increases drastically as T 1s lowered. 
They have shown that the Onsager kinetic coef¬ 
ficient L diverges as (T - Tf)-1 as T ap¬ 
proaches Tf from above, as expected from the 
theory of Ma and Rudnlck (141). The same temp¬ 
erature dependence has also been observed for 
some AaMn spin glasses by Oahlberg et al. (149). 
Very recently, Levy et al. (150) employed the 
Morl-Kawasakl formalism to calculate the line- 
width from the Ozyaloshlnsky-Norlya anisotropy 
Interaction (151), and their results for the 
llnewldth and the g-shlft show the correct 
trend In comparison with the experimental 
curves for Aj[ - 2.6 at % Nn. On the contrary, 
Jamet and Malozemoff (152) Interpreted the 
g-shlft and the broadening on their amorphous 
GdAl spin glasses In terms of the Inhomogeneity 
arising either from a locally Increased Gd con¬ 
centration or from a configurational order. 
They attributed the drastic Increase of the 
llnewldth at low temperature to the partial 
blocking of the local field. Bhagat et al. 
(153), In place of the exchange-narrowing 
model, proposed an empirical formula for the 
llnewldth. 

Figure 25. ESR relaxation rate Tf1 and ac 
susceptibility of quenched Cu75Mn25 (Ref. 144). 

Usually, the exchange-narrowed Lorentzlan 
llneshape develops Into a Gaussian one when the 
spin fluctuations slow down. Several authors 
(154-158) have noted that the llneshape Is 
strongly distorted even well above Tf and It 
Is neither Lorentzlan nor Gaussian, although 
many workers have fitted their observed reso¬ 
nant line to the Lorentzlan llneshape 1n order 
to extract the llnewldth AH and g-shlft Ag. 

When the applied field Is weak compared 
with the local field, or equivalently when 
AH Is comparable with the resonant field, the 
Zeeman energy can no longer be used as the un- 
perturbed energy and the perturbation method 
conventionally employed In analyzing ESR data 
1s no longer appropriate. This problem was In¬ 
vest gated by Kubo and Toyabe (159) using a 
stoc'iastlc model for the local field. Hou and 
his coworkers (155-157) were the first to use 
the Kubo-Toyabe results to account for thier 
distorted spectra. These authors (159) made 
use of the Gausslan-Markoff1an model 1n which 
the correlation function of the Internal 
fields, Hi(1 - X. y. z). takes the form 
< Hi(t)H<(0) > * (A/v)2exp-t/T, where A/y 
Is the width of the Gaussian distribution whose 
mean Is zero, y the gyromagnetlc ratio, and 
t the correlation time. (This exponential 
time dependence may not be applicable to spin 
glasses, because the decay either follows a 
power law (160) or a fractional exponential 
function as discussed In Sec. VII-3 and t 1s 
broadly distributed.) 

Following the method of Hayano et al. 
(161), Hou et al. (156,157) "«de use of the 
strong collision model In which the system 
evolves In time In a random but static field, 
Jumping after a mean time t In a configura¬ 
tion Into a new one, and calculated the reso¬ 
nance shape function In terms of the resonant 
field H0. A, and t. Note that the width and 
the position of this new resonance function are 
In agreement with those obtained 1n the extreme 
narrowing limit when At « 1. a condition 
violated near Tf. 

In an ordinary magnetic resonance experi¬ 
ment, the rf field Is linearly polarized - 
1 e , It can be decomposed Into both positively 
and negatively circularly polarized waves, thus 
giving rise to both resonance and antlreso- 
nance. When the resonant field and llnewldth 
are comparable, both the resonance and anti¬ 
resonance spectra contribute to the llneshape. 
For this purpose, Sugawara et al. (162) used 
the sum of the Bloch equations with the posi¬ 
tive and the negative frequency contributions. 
However, this method 1s not correct near the 
siowing-down region, because the Bloch equa¬ 
tions are correct only for the exchange- 
narrowed region. 

Very recently. Hou et al. (155-157) made 
their ESR measurements on amorphous metallic 
ribbon samples of FexNl0O-xp2O (x “ 8, 10, and 
16) at 1.1 and 9.3 GHz. In order to minimize 
the skin effect giving rise to the mixing of 
the real part of the magnetic susceptibility, 
ji'tw). Into the absorption spectrum, they thin¬ 
ned their samples down to -10 wm, which Is 



about one skin depth. Owing to broad line- 
widths and distorted llneshapes. Hou et al. 
(155-157) measured the absorption spectra di¬ 
rectly, In order to avoid spurious peaks origi¬ 
nating from the usual derivative method with 
low frequency field modulation (157). Figures 
26(a) and (b) Illustrate the ESR absorption 
spectra for Fe0N172P2O at 9.3 GHz and 1.1 GHz 
plotted against the Internal frequency ui,. = 
yHin, where H^n Is the Internal field, which Is 
the external field minus the demagnetization 
field. As displayed, as temperature Is low¬ 
ered, the exchange-narrowed line at T = 2Tf 
broadens, shifts to the lower field, becomes 
asymmetric, and develops an absorption below 
Tf even at zero field. Thus, It Is Incorrect 
to take the field at which the maximum of an 
absorption spectrum takes place as the resonant 
field. In particular, at 1.1 GHz, as demon¬ 
strated in fig. 26(b), the llneshape distorts 
progressively as T Is lowered, and the line- 
width becomes greater than the resonance field. 
It is clear that the negative frequency contri¬ 
bution Is substantial. If one takes the de¬ 
rivative of the 1.1 GHz absorption data at T * 
0.40 Tf with respect to the field, one could 
obtain a shape which looks like a distorted 
absorption llneshape normally expected In the 
derivative method. Hence the “resonant" field 
and linewidth thus acquired would be erroneous. 
ih1s fact points to the need of measuring the 
ESR absorption directly. Instead of the deriva¬ 
tive method conventionally employed. In partic¬ 
ular when the line Is broad and distorted. 

By fitting the absorption spectra to the 
Kubo-loyabe theory. Hou et al. (156,157) ac¬ 
quired the relaxation rate * = 1/T and the nns 
amplitude of the random local fields A. As 
shown by the straight lines In Fig. 27, for 
T > 1.15Tf the relaxation rates for both x = 8 

rate does not diverge as T -» Tf, contradicting 
the theoretical predictions discussed above. 
Instead, for T < 1.15 Tf, the variation of v 
vs temperature 1s very moderate. 

In the spin-glass regime, the resonant 
field is shifted from u/y, and the new 
resonant frequency is given by (163) 

u = [wr + (uf? + 4 o)^)^^]/2, 

where u»r/y Is the resonant field in the absence 
of the anisotropy, o^/y = /1(7^ 1s the aniso¬ 
tropy field. Hou et al. (156) analyzed their 
data and obtained the temperature dependence 
of the anisotropy energy, K(T) = K(0)(1 - 
T/lf) with K(0) = 8.B X 103 and 9.5 x 103 erg/ 
cnr at 9.3 GHz for x = 8 and 10, respectively 
and K(0) = 3.9 x 103 and 4.0 x 103 erg/cm3 at 
1.1 GHz for these two samples. 

Nonod and Berthler (164) measured the ESR 
signals in the derivative mode on Çu - 1.35 
and 4.7 % Nn samples at low and zero field In 
the frequency range from ~1 GHz to ~2 GHz after 
the samples were field cooled down to 1.25 K at 

ana iu can be expressed by ^ = b(T - Tf) with 
b = 9.1 x to9 s-'lH at 9.3 GHz. Similarly, 
at 1.1 GHz, b = 2.95 x 101® s"'*“1. However, 
it is interesting to note that the relaxation 

Hcool ” 13 kG- They found that the resonance 
frequency Is linear In the applied field, H0, 
l.e., u = yH0 + ug, where ua Is 1250 MHz (or* 
equivalently 445 G) for the 1.35 % sample and 
Is 1440 MHz (515 G) for the 4.7 % sample. ua 
was attributed to the macroscopic anisotropy 
field. 

Schultz et al. (165), on the other hand, 
Investigated ESR on Çu - 10 at X Nn cooled to 
1.8 K In the absence of an applied field 
(Hcool ^ °)- In the field range from H0 = 300 
to 800 G, they also found that the resonance 
frequency from 88 to 9.6 GHz Is linear In 
H0, hut the slope, du/dH0, Is only a half of 
that observed by Nonod and Berthler (164) dis¬ 
cussed above. Schultz et al. (165) further 
considered a simple hydrodynamic free energy 
Including uniaxial anisotropy -K(fi . 0)2/?, 
where N and ñ are, respectively, the directions 
of the cooling field Hç00] and the remanent 
magnetization, Mr. This free energy takes the 

Figure 26. (a) Absorption spectra for 
Fe8N172p20 at 9-3 GHz and (b) at 1.1 GHz plot- 
tedf3ga1nst the Internal frequency <^n = yhjn 

192 

V> 

w " * ■ 

'-y.:: 
.->/•>: v\- 
» • » - . 

•.* v.\ vv;.. . -. . 
-., -t. • . -.-k. • • .• .-, •■. -\ -. 

_•' ■- 1- .i'-f- . .1.*, - . ' - 



Figure 27. Relaxation rates vat 9.3 GHz for 
Fe8Ni72P20 (Tf = 18 K) and Fe10Nl7oP20 (Tf ' 
23 K) vs T (Ref. 156). 

following simple form: 

F = (H - Mrn)2/(2xi) + (x«1 - Xj.-1) 

.(H - n - Mr)2/2 - K (M • n}/2 - H • H . (20) 

By linearizing the equations of motion, this 
vector model yields the following two resonant 
frequencies u4: 

u±/T = + [(1+ ï) H/2 - V(2Hx)l 

+ |[(1 - ï)H/2 + ^/(2¾^)]2 + K/Xj^}1^2 , (21) 

where Ç = I - V\l- F19ure 28(a) Illustrates 
the ESR derivative signals observed by Schutlz 
et al. (165) on a Çu - 8 at X Hn. 0.3 at X N1 
sample at 9.37 GHz at 20 K when they Increased 
(solid curve) and decreased (dashed) the exter¬ 
nal field. The structure at ~3.3 kG Is due 
to the DPPH markers. By lowering the tempera¬ 
ture to 1.4 K, they observed the ESR signal at 
9.126 GHz as shown In Fig. 28(b), thus Identi¬ 
fying the new u' mode. According to their 
model, this second resonance mode Is present 
when the anisotropy frequency yA(T)/x exceeds 
the soectrometer frequency. For the w+ mode, 
Eq (21) can be solved for K. They obtained 
K(T) = K(0)(1 - BT/Tg1), where p - 0.67 + 0.07, 
Ta‘ Is the temperature at which the peak of the 
magnetization measured at ~3 kG takes place, and 
K(0) = aCMS + biCunCi. In which CHn and ^ 
are concentration? of Hn and another Impurl 
ties, respectively, » » 115 + 5 and b^ = 3050 + 
300 for nickel. However, these authors were 
not able to explain the angular dependence of 
their new resonance spectrum. Later, 
the phenomenological vector model of Schultz 
et al. (165) was placed on more solid theoreti¬ 
cal foundations by Henley et al. (163) and 
Saslow (166) making use of the triad model of 
Halperin and Saslow (167). In this model, the 
anisotropy energy Is determined by the orienta¬ 
tion of a spin triad relative to a reference 
triad, and the macroscopic Internal degrees of 
freedom associated with the anisotropy are as¬ 
sumed to be represented by an orthonormal triad 

Instead of a unit vector. In addition to CuMn, 
ESR measurements on AgHn spin glasses have been 
made by Machado da Silva et al. (168). They 
have analyzed their results following the 
method used by Schultz et al. (165), and have 
obtained K(T)/K(0) = 1 - PT/Tg, with p = 0.78 + 
0.08. 

Hoekstra et al. (158) also made the ESR 
measurements employing the derivative method 
at 1 and 3 GHz for Çu - 2 and 5 at X Mn sam¬ 
ples. They were not able to observe any signal 
for the zero field-cooled samples. They 
pointed out that the absence of Hi In their 
samples Is not crucial, and that a fixed field 
and variable frequency experiment Is more ap¬ 
propriate to search for the mode than the 
conventional operation In which the spectro¬ 
meter frequency Is kept fixed with a varying 
external field. Very recently, Hoeskra et al. 
(169) observed the ESR derivative signals on 
CuMn with Mn concentrations at 2, 3.5 and 
5 at X at 1.1, 3.4, 4.0 and 9.5 GHz. They 
found that the anisotropy constants K obtained 
from ESR results when the applied field 1s 
parallel to the cooling field are In agreement 
with those determined by the transverse suscep¬ 
tibility and the torque measurements, but the 
K values determined from the remanence reversal 
of dc magnetization are smaller by a factor of 
~2. They Interpreted this discrepancy In 
terms of the breakdown of the rigid-body spin 
rotations assumed by many authors. Further¬ 
more, they have not beçn able to observe the 

mode even though their spectrometers 
were sensitive enough to observe It. 

f-f ■ 9.126 GHi 

_I_I-L_-1 

Figure 28. Traces of the ESR derivative sig¬ 
nals vs the dc field for Çu - 8 at X Mn and 
0.3 at X Ml. The solid curves are for In¬ 
creasing field, and the dashed curves for sub¬ 
sequent decreasing. The structures at 3.3 kG 
Is due to the DPPH markers, (a) The usual 
u+ mode Is observed at T = 20 K. (b) The new 
u" mode Is observed at 1.4 K (Ref. 165). 
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XII. MUON SPIN ROTATION AND RELAXATION fuSttl 

Several meson factories, such as TRIUMF 
(Vancouver), SIN (Zurich), CERN (Geneva), and 
LAHPF (Los Alamos), produce high Intensity 
polarized positive muon beams. A positive muon 
has a mass of about 200 times that of an elec¬ 
tron. Whei 1t Is stopped In an Interstitial 
site 1n a solid, Its spin (1/2) processes with¬ 
in Its lifetime (2.2 ps) about the resultant 
of the external field and Internal fields. 
When the external field 1s perpendicular to 
the beam direction, and hence, the spin direc¬ 
tion, one can observe a coherence precession 
of muon spins. In the presence of random local 
fields, the depolarization of the muon polari¬ 
zation takes place, resulting in a damped pre¬ 
cession. This method is analogous to conven¬ 
tional magnetic resonance. The depolarization 
rate is related to l/Tp 1n magnetic resonance, 
giving rise to a width, W = (Vplj)“1, where y 
is the muon gyromagnetic ratio, 2« x 1.35 x 
10* s/G. This method was first applied to 
CuMn and AuFe spin glasses by Flory and his 
coworkers (170). The Larmor precession fre¬ 
quency of the p* spin owing to the external 
transverse field 1s disturbed by the direct 
magnetic dipolar fields from the magnetic Im¬ 
purities as well as the contact field from 
conduction electrons polarized by the RKKY In¬ 
teractions by means of the s-d exchange Inter¬ 
action JS(j. However, the dipolar field Is 
stronger than the RKKY field by a factor of 
2Ep/JS(], which 1s about 10 for ÇyNn (170). In 
Fig. 29, p+ depolarization width W for Cy - 0.7 
at X Hn Is shown as a function of temperature 
for various values of the transverse applied 
magnetic field. Note the abrupt rise In W near 
T determined from the low field susceptibil¬ 
ity. For conventional magnetic resonance, any 
Inhomegeneity In fields causes a broadening In 
the resonance 11new1dth, and hence the abrupt 
Increase of W 1n pSR near Tg was explained 1n 
terms of the freezing of Mnamoments In random 
directions (170). 

Positive muons are produced nearly 100X 
polarized, and hence an experiment can be car¬ 
ried out even 1n the absence of any external 
magnetic field. This property Is Important 
because an external field disturbs a spin 
glass. For this reason, a zero-field pSR 
technique should be appropriate for the study 
of the spin dynamics In a spin glass. Those 
readers Interested In the details of this tech¬ 
nique are referred to the original papers on 
this subject (161,171-173). This technique Is 
capable of measuring the spin correlation time 
In a range from ~10-11 to ~10-5 s. In contrast 
to the ranges from ~10-13 to ~10_10 $ for neu¬ 
tron scattering, -10-10 to ~1O~0 s for the 
Hössabauer effect, and ~10-5 to ~102 s for the 
ac susceptibility measurement. This time range 
Is essential In studying the critical slowlng- 
down In a spin glass near Tg. 

The first application of this new zero- 
field ySR technique to spin glasses was the 
measurements of the correlation times 1n AuFe 
and CuMn spin glasses (171). In these experl- 

.. V .- 

Figure 29. p+ depolarization rate, expressed 
as a llnewldth, plotted against temperature for 
Cy - 0.7 at X Hn for several values of applied 
transverse magnetic fields. The arrow Indicates 
the position of Tf (Ref. 170). 

ments the muon spin relaxation functions were 
measured as a function of temperature. Figure 
30 Illustrates the time dependence of the muon 
spin elaxatlon functions, iiz(t), for Ay - 1 
at X ■ at various temperatures above and below 
the freezing temperature (Tg = 9.1 K). Owing 
to the absence of an external field, the Kubo- 
Toyabe theory (159) descrloed In Chap. XI was 
employed. In a dilute alloy, magnetic impuri¬ 
ties are radomly distributed. As a result, the 
random fields acting on 114- were assumed to be 
distributed according to the Lorentzlan distri¬ 
bution previously obtained by Walstedt and 
Walker (174). The solid lines In Fig. 30 rep¬ 
resent the fits of this model relaxation func¬ 
tion to the data. This fitting procedure 
yields the correlation time t of Fe (or Hn) 
In AyFe (or £yHn). The results are plotted In 
Fig. 31; clearly t exhibits an abrupt varia¬ 
tion around the freezing temperature Ta, In¬ 
creasing from ~10-'O s at 1.2Tfl to ~10,lb s at 
O.BTg. As shown by the dashed curve, the 
data near Tg do not agree with the theoreti¬ 
cal prediction, t ■ T/(T - TQ), discussed In 
the last chapter. However, they fit well with 
the temperature dependence, t « [T/(T -Ta)]2, 
as Illustrated by the solid curvs. A similar 
temperature dependency has also been observed 
for AyHn (175). In addition to these crystal¬ 
line alloys, recently an amorphous metallic 
spin glass Pd75Fe5Sl20 h« been studied (176). 
Interestingly, the correlation time above Tq = 
15.5 ± 0.3 K, follows the same temperature de¬ 
pendence as that for ÇyHn: t - 1.8 x 10-10 x 
[T/(T - Tg)]2 s. To date, there Is no theory 
to account for this unusual temperature depend¬ 
ence. The data for AyFe and ÇyHn can alter¬ 
nately be fitted to the following Arrhenius 
form: 

h 

*r 

t - t0 exp (Ea/kBT), (22) 

with Ea * 20kBTg and t0 ~ 10-15 s. In addition, 
this Arrhenius Taw can also reasonably describe 
the temperature-data for t of Insulating .*•” 
(CoO)4q(Al2O3)10(5102)50 (177). This ambiguity 
In the temperature dependence points to the need l ‘ 
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of higher quality data In order to have any 
meaningful comparison with theory. 

Below Tg, Demura (173) followed the EA 
model and Introduced an order parameter Q In 
the following way Including both static and 
dynamic local fields: 

< S(t)S(0)/< S(0)2 > 

» 0 + (1 - Q)e*P (-t/t) (23) 

This Is certainly a better approximation than 
the one using only a single exponential func- 

In regard to the successful application of 
the fractional exponential relaxation function 
to account for the frequency dependence of 
x(T) described In Sec. VII-3 and the time de¬ 
pendence of TRM demonstrated In Sec. VIII-2, 
the zero-field ySR relaxation function, Gz(t), 
has been calculated (178) employing the Kubo- 
Toyabe theory with the correlation function 
varying with time as exp - (tA)1"*'1). In 
terms of tho random local field width a, Gz(t) 
can be expressed as the form of the Fourier 
transform as follows: 

Gz(t) - FT f(s), (24) 

where 

f(s) ï [(-l)l/s](l/l!)(v/s)l(1' a) 
1-0 

|r[H 1(1- .))/3 + (2/3) I [(-1)^/2^) 
1 m-0 

x(a/s)2m r [2m + 1(1- •)] 

x[l - (A/s)2(1 -1 + 1. + 2m)(2 + 1-1. 

+ 2»)]}. (25) 

where *(-1/0 Is the relaxation rate. The fit¬ 
ting of the data to this form Is currently In 
progress. , _ , 

In conclusion, uSR, like NHR and ESR, Is 
model-dependent. Furthermore, It Is well known 
that the electronic properties near the site 
of the muon stopped Inside the sample are 
greatly disturbed, accompanied by a lattice 
distortion around the site. In addition, It 
has been shown that (179) v'*’ In Cu Is not at 
rest but hops around below ~7 K. This hopping 
makes any ySR data analysis Impossible, because 
the analysis normally assumes that v* 1* 
rest at a site within Its lifetime. It Is 
likely that y+ hops In Ag and Au as well. 
This suggests that amorphous systems are more 
suitable for the study of the spin dynamics In 
spin glasses. Notwithstanding, In order to have 
any meaningful comparison of ySR data with 
any model, It Is essential to accumulate data 
of high quality as well as high statistics. 

Figure 30. Zero-field muon spin relaxation 
functions Gz(t) for Au - 1 at X Fe. Solid 
curves are the theoretical curves (Ref. 171). 

Figure 31. Correlation times t for ÄsiFe, 
*aMn. and £uHn spl" «lasses (Ref. 171). 

XIII. CONCLUSIONS 

In this paper, we have presented some ex¬ 
perimental results for and some against the 
existence of the phase transition at Tf, and 
the new w~ ESR mode below Tf In a spin glass. 
The situation Is very well described by a para¬ 
graph fromatwenty-six-hundred-year-old Chinese 
classic, called the Tao-te china (Classic of 
the Way and Virtue) translated as follows: 

Is there a difference between yes and no? 
Is there a difference between good and evil? 
Must I fear what others fear? What nonsense! 
Other people are contented, enjoying the 
feast, 
But I alone am drifting, not knowing where 
I am. 
Like a new-born babe before It learns to 
smile, 
I am alone, without a place to gr. 
Oh, I drift like the waves of the sea. 
Without direction, like the restless wind. 
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However, the Tao-te china also says: 

Knowing Ignorance Is strength. 
Ignoring knowledge Is sickness. 
If one Is sick of sickness, he Is not sick. 

The experimental work on spin glasses In 
the past five years has demonstrated to us that 
we are sick of sickness. Therefore, we are 
confident that a more effective understanding 
of the spin glass will soon appear. 

ACKNOWLEDGEMENTS 

I thank A. Arrott, R. J. Borg, J. D. Boyer, 
J. H. Brewer, H. S. Chen, M. K. Hou, 0. L. 
Huber, R. A. Kleran, F. Nezel, A. P. Muranl, J. 
A. Mydosh, K. L. Ngal, N. E. Phillips, A. K. 
Rajagopal, J. J. Rhyne, N. Rlvler, J. Rudnlck, 
M. B. Salamon, J. L. Tholence, Y. Uemura, C. 
E. Violet, E. F. Wassermann, and L. E. Wenger 
for many useful discussions. In particular, I 
would like to thank the late Prof. J. H. Van 
Vleck for stimulating discussions when I 
started to Investigate the relaxation problem 
In the spin glass. I am also grateful to W. 
E. Keller, J. H. Huang, and E. H. Huang for 
their critical reading of the manuscript. This 
work was supported by the U. S. Department of 
Energy. 

REFERENCES 

1. J. W. Shlh, Phys. Rev. 38. 2051 (1931). 
2. V. Cannella, J. A. Mydosh, and J. I. 

Budnlck, J. Appl. Phys. 42, 1689 (1971). 
3. G. Toulouse, Comm, on Phys. 2, 115 (1977). 
4. J. A. Mydosh, A.I.P. Conf. Proc. 24, 131 

(197r); In Amorphous Magnetism II. ed. 
by R. A. Levy and R. Hasegawa (Plenum 
Press. New York, 1977) page 73; J. Magn. 
Magn. Mater. 7, 237(1978); 1n 
Ferromagnetic Materials, ed. by E.P. 
Wohlforth (North-Holland, Amsterdam, 
1980) Vol. I, page 1. 

5. G. Heber, Appl. Phys. Ifi, 101 (1976). 
6. J. Souletle, J. Phys. (Paris) 3Î, C2-3 

(1976). 
7. P.A. Beck, Progr. Mat. Scl. 21, 1 (1978). 
8. A. Blandin, J. Phys. (Paris) 3£. C6-1499 

(1978). 
9. A. P. Muranl, J. Phys. (Paris) 3i, C6-1517 

(1978). 
10. R. Rammal and J. Souletle, In Magnetism 

of Metals and Alloys, ed. by M. Cyrot 
(North-Holland, Amsterdam, 1982) page 
379; J. Souletle, J. Phys. (Paris) 44, 
1095 (1983). 

11. K. H. Fischer, Phys. Stat. Sol. (b) 116. 
357 (1983). 

12. H. Alloul, In Heidelberg Colloquium on 
Spin Glasses (Springer-Verlag, Berlin, 
1983) page 18. 

13. J. A. Mydosh, Ibid, page 38. 
14. L. E. Wenger, Ibid., page 60. 
15. R. Omari, J. J. Prejean, and J. Souletle, 

Ibid., page 70. 
16. R. A. Brand, V. Manns, and W. Keune, 

Ibid., page 79. 
17. H. Maletta, Ibid., page 90. 
18. C. E. Violet and R. J. Borg, Phys. Rev. 

149. 541 (1966). 
19. A. Arrott, J. Appl. Phys. 36, 1093 (1965); 

H. Malletta and W. Felsch, Phys. Rev. 
8 20, 1245 (1979). 

20. L. E. Wenger and P. H. Keesom, Phys. Rev. 
8 U. 3497 (1975). 

21• W. E. Fogle, J.D Boyer, R. A. Fischer, 
and N. E. Phillips, Phys. Rev. Lett. 50, 
1815 (1983); W. E. Fogle, J. 0. Boyer, 
N.E. Phillips, and John Van Curen, Ibid., 
49, 1653 (1982). 

22. K. Binder. J. Phys. (Paris) 3i, C6-1527 
(1978); Festköroerprobleme (Advances In 
Solid State Physics) ed. by J. Treusch 
(Vleweg, Braunschweig, 1977) Vol. XVII, 
page 55; In r-indamental Problems In 
Statistical Mechanics, ed. by E. G. 0. 
Cohen (North-Holland, 1980) Vol. V., 
page 21. 

23. J. Joffrln, In La Matière Mal Condensée, 
ed. by R. Bailan, R. Maynard, and G. 
Toulouse (North-Holland, 1979). 

24. P. W. Anderson, Ibid. 
25. S. Kirkpatrick, Ibid. 
26. Heidelberg Colloqulm on Soin Glasses, ed. 

by J. L. van Hemmen and I. Morgenstern 
(Springer-Verlag, Berlin, 1983). 

27. G. S. Grest, C. M. Soukoulls, and K. 
Levin, In Magnetic Phase Transitions, ed. 
by N. Ausloos and R. J. Elliott (Springer, 
Berlin, 1983) page 183; J. Appl. Phys. 55, 
1634(1984). 

28. V. Cannella and J. A. Mydosh, Proc. Int. 
Conf. Mag.ietlsm, Vol. 2, Moscow, Nauka, 
page 74 (1974). 

29. V. Cannella and J. A. Mydosh, Phys. Rev. 
B 6. 4220 (1972). 

30. J. L. Tholence and R. Tournier, J. Phys. 
(Paris) 32, Cl-211 (1971). 

31. S. F. Edward and P. W. Anderson, J. Phys. 
F 5, 965 (1975). 

32. D. Sherrington and S. Kirkpatrick, Phys. 
Rev. Lett. 35, 1792 (1975); S. 
Kirkpatrick and 0. Sherrington, Phys. 
Rev. B U, 4384 (1978). 

33. H. Maletta and W. Felsh, Phys. Rev. B 20. 
1245 (1979). 

34. H. Malleta and W. Felsch. Z. Physik B 37. 
55 (1980). 

35. H. Malleta, J. Appl. Phys. 53, 2185 
(1982). 

36. G. P. Singh, M. von Schlckfus, and H. 
Malleta, Phys. Rev. Lett. 51. 1791 (1983). 

37. M. Meschede, F. Stegllch, W. Felsch, H. 
Malleta, and W. Zinn, Phys. Rev. Lett. 
44, 102 (1980). 

38. B. Barbara, A. P. Malozemoff, and Y. 
Imry, Phys. Rev. Lett. 47, 1852 (1981). 

39. A. P. Malozemoff, Y. Imry and B. Barbara, 
J. Appl. phys. 53, 7672 (1982). 

40. A. P. Malozemoff, S. E. Barnes, and B. 
Barbara, Phys. Rev. Lett. 51. 1704 (1983); 
B. Barbara, A. P. Malozemoff, and S. E. 
Barnes, J. Appl. Phys. 5£, 1655 (1984). 

41. L. E. Wenger and P. H. Keesom, Phys. Rev. 



B 11. 4053 (1976), AIP Conf. Proc. 2Î, 
233 (1975). 

42. W. E. Fogle, !. C. Ho, and N. E. 
Phillips, J. Phys. (Paris) 2Î. C6-901 
(1978). 

43. L. R. Walker and R. E. Walstedt, Phys. 
Rev. Lett. 31. 514 (1977). 

44. 0. L. Huber, In incitations In Disordered 
Systems. NATO Advanced Study Series, ed. 
by M. F. Thorpe (Plemm Press, 1982) page 
463. 

45. T. Glebultowlcz, 8. Lebech, B. Buras, W. 
Minor, H. Kepa, and R. R. Galazka, 3. 
Appl. Phys. 5£. 2305 (1984). 

46. J. R. L. de Almeida and D. ». Thouless, 
J. Phys. A U, 983 (1978). 

47. M. Gabay and G. Toulouse, Phys. Rev. 
Lett. 47. 201 (1981). 

48. G. Toulouse and M. Gabay, J. Phys. 
(Paris). Lett. 41. L103 (1981); C. 
Toulouse, M. Gabay, T. C. Lubensky, and 
J. Vannlmenus, Ibid. 42, L109 (1982); 0. 
M. Cragg, D. Sherrington, and N. Gabay, 
Phys. Rev. Lett. 4Î. 158 (1982); M. 
Gabay, T. Garei, and C. De Domlnlcls, J. 
Phys. C H. 7165 (1982). 

49. J. S. Schilling, J. Crone, P. J. Ford, S. 
Methfessel, and J. A. Nydosh, J. Phys. 
F 4, L116 (1974); Phys. Rev. B H. *368 
(1976); Europhyslcs Conf. Abstracts, Vol. 
I. 23 (1975). 

50. W. M. Star, Phys. Lett. 2M. 502 (1968); 
J. Ray, G. Chandra, and A. W. Shaikh, 
Proc. LT 15, Vol. II, 912 (1972). 

51. M. P. Tonas and D. Lazarus, Phys. Rev. 
B 11. 1>39 (1979). 

52. E. Fawcett, 0. B. HcWhan, and R. C. 
Sherwood, Sol. Stat. Commun. 1, 509 
(1969). 

53. B. H. Verbeek, G. 3. Gleuwenbuys, H. 
Stocker, and 3. A. Nydosh, Phys, Rev. 
Lett. 4fi, 586 (1978). 

54. 3. A. Nydosh. G. 3. Nleuwenhuys, and B. 
H. Verbeek, Phys. Rev. B 2fi* 1282 (1979). 

55. N. K. Wu, R. G.'Altken, C. H. Chu, C. Y. 
Huang, and C. E. Olsen, 3. Appl. Phys. 

7356 (1979). 
56. U. Hardebusch, W. Gerhardt, and 3. S. 

Schilling, Phys. Rev. Lett. 44, 352 
(1980). 

57. C. W. Chu, N. K. Wu, B. 3. 31n. W. Y. 
Lai, and H. S. Chen, Phys. Rev. Lett, là, 
1643 (1981). 

58. P. W. Anderson, B. I. Halperin, and C. N. 
Varna, Philos. Nag. 25. 1 (1972). 

59. W. A. Phillips, 3. Low Temp. Phys. 1, 351 
(1972). 

60. 3. 3. Prejean and 3. Souletle, 3. Phys. 
(Paris) ü, 1335 (1980). 

61. 0. N. Herlach, E. F. Wasserman, and R. 
Wlllnecker, Phys. Rev. Lett. 5fi, 529 
(1983); Nagn. Magn. Mater. 31-34. 1404 
(1983). 

62. E. F. Wassermann and D. N. Herlach, 3. 
Appl. Phys. 5i. IN» (1984). 

63. C. Arzoumanian, P. A. de Goer, B. Salce, 
and F. Holtzberg, 3. Phys. (Paris), Lett, 
ü. L39 (1983). 

64. 

65. 

66. 

67. 

68. 

69. 

70. 

71. 

72. 

73. 

74. 

75. 

76. 

77. 

78. 

79. 

80. 
81. 

82. 

83. 

84. 

85. 
86. 

87. 

88. 

89. 

90. 
91. 

92. 

93. 

H. V. Löhneysen, 3. L. Tholence, and R. 
Tournier, 3. Phys. (Paris) 2Î. C6-922 
(1978). 
3. L. Tholence, F. Holtzberg, H. Godfrln, 
H. V. Löhneysen, and R. Tounler, Ibid. 
928. 
H. Maletta, W. Felsch, and 3. L. 
Tholence, 3. Nagn, Nagn. Mater, i. 41 
(1978). 
3. L. Tholence, ln Trends In Physics, ed. 
by I, A. Oorobantu, page 747 (1981). 
3. L. Tholence, Sol. Stat. Commun. 
113 (1980), and references therein. 
N. Guyot, S. Foner, S. K. Kasanaln, R. P. 
Guertln, and K. Westerholt, Phys. Lett. 
79A. 339 (1980). 
C. A. N. Mulder, A. 3. van Duyneveldt. 
and 3. A. Nydosh, Phys. Rev. 8 23. 1384 
(1981). 
A. P. Nalozemoff and Y. Imry, Phys. Rev. 
B 21. 489 (1981). 
L. Lundgren, P. Svedllndh, and 0. Beckman, 
3. Magn. Magn. Mater. 2S« 33 (1981). 
L. Lundgren, P. Svedllndh, and 0. Beckman, 
3. Phys. F U. 266? (1982). 
L. Lundgren, P. Svedllndh, and 0. Beckman, 
Phys. Rev. B 2à, 3990 (1982). 
L. Lundgren, P. Svedllndh, P. Nordblad, 
and 0. Beckman, Phys. Rev. Lett. £1. 911 
(1983). 
L. Lundgren, P. Svedllndh, and 0. Beckman, 
31-34. 1349 (1983). 
D. Floranl, 3. L. Tholence. and 3. L. 
Oormann, physlca 1078. 643 (1981). 
F. Holtzberg, T. L. Francavilla, C. Y. 
Huang, and 3. L. Tholence, 3. Appl. Phys. 
£2, 2229 (1982). 
H. F. Hess and K. DeConde, Physlca 1088. 
1285 (1981). 
3. L. Tholence, Ibid 1287. 
D. Hüser, L. E. Wenger, A. 3. van 
Duyneveldt, and 3. A. Nydosh, Phy.. Rev. 
B 21. 3100 (1983). 
3. L. Oormann, D. Floranl, 3. L. 
Tholence, and C. Sella, 3. Magn. Magn. 
Mater. 2i. 1” (1983). 
P. Beauvlllaln, C. Dupas, 3. P. Renard, 
and P. Velllet, 3. Magn. Magn. Mater. 
31-34. 1377 (1983). 
S. Strlckman and E. P. Wohlfarth, Phys. 
Lett. |5â. 467 (1981). 
F. Mezel, 3. Appl. Phys. 51. 7654 (1982). 
F. Mezel, 3. Magn. Magn. Mater. 31-34. 
1327 (1983). 
A. P. Muranl, 3 Magn. Magn. Mater. 21. 
271 (1981). 
H. B. G. Casimir and F. K. du Pré, 
Physlca 5. 507 (1938). 
P. Debye, Polar Molecules (Dover, New 
York, 1945). 
L. Néel, Adv. Phys. 4, 191, (1955). 
K. L. Ngal, Comments Solid State Phys. 2, 
127, 141 (1979). 
K. L. Ngal, In Non-Oebye Relaxations In 
Cond» sed Matter, ed. by T. V. 
Ramakrlshnan (World Scientific, 
Singapore, 1984). 
K. L. Ngal, A. K. Rajgopal and C. Y. 

197 

■'» - , j". 

' . - .T . ■»j.'kj \V.V. 
^ - I. 



Huang, 29th Conf. Magn. Magn. Mater., 
Nov. 8-11, 1983, Pittsburgh, PA, USA; J. 
Appl. Phys. 5i. 1714 (1984). 

94. J. L. Tholence and R. Tournier, J. Phys. 
(Paris) 31, ¢4-229(1974). 

95. S. Nagata, P. H. Keesom, and H. R. 
Harrison, Phys. Rev. 8 ]!. 1*33 (1979). 

96. C. N. Guy, 3. Phys. F 8, 1306 (1978); 
F 7, 1505 (1977); F 5. 1242 (1975). 

97. J. Ferré, J. Rajchenbach, and H. Maletta, 
J. Appl. Phys. 1£. 1697 (1981). 

98. K. Binder, J. Phys. (Paris) 2Î, C6-1527 
(1978). 

99 R. V. Chamberlin, G. Mozurkewlch, R. 
Orbach, Phys. Rev. Lett. 5£, 867 (1984). 

100. N. L. Ngal and A. K. Rajagopal, Phys. 
Rev. Lett. H, 1024 (1984); R. V. 
Chamberlin, G. Mazurkewlch, and R. 
Orbach, Ibid. 1025. 

101. R. V. Chamberlin, M. Hardlman, L. A 
Turkevlch, and R. Orbach, Phys. Rev. B 
21, 6720 (1982). 

102. Y. Yeshurun, L. J. P. Ketelsen, and M. 
8. Salamon, Phys. Rev. 8 21, 1491 (1982). 

103. M. B. Salamon and J. L. Tholence, J. 
Appl. Phys. H, 7684 (1982). 

104. J. L. Tholence, and M. 8. Salamon, J. 
Magn. Magn. Mater. 31-34. 1340 (1983). 

105. M. 8. Salamon and J. L. Tholence, Ibid. 
1375. 

106. I.A. Campbell, 0. Arvantls, and A. Fert, 
Phys. Rev. Lett. H, 57 (1983). 

107. N. Bontemps, J. Rajchenbach, and R. 
Orbach, J. Phys. (Paris), Lett. H, L47 
(1983). 

108. 3. Rajchenbach and N. Bontemps, Ibid. 
L799. 

109. C. Paulsen, J. A. Hamida, S. J. 
Williamson, and H. Maletta, J. Appl. 
Phys. 11. 1652 (1984). 

110. J. Rajchenbach, and N. Bontemps, Ibid 
1649. 

111. L. E. Wenger and 3. A. Mydosh, Phys. Rev. 
8 21. *156 (1984). 

112. P. Monod and H. Bouchlat, J. Phys. 
(Paris), Lett, ü, L45 (1982). 

113. A. Berton, J. Chaussy, J. Odin, R. 
Rammal, and R. Tournier, Ibid. L153. 

114. K. Binder and K. Scröder, Phys. Rev. 8 
U. 21*2 (1976). 

115. W. Klnze! and K. Binder, Phys. Rev. 
8 11. 4595 (1979). 

116. C. Oasgupta, S. K. Ma, and C. K. Hu, 
Phys. Rev. B 20. 3837 (1979). 

117. W. F. Brown, Phys. Rev. Ufi, 1677 (1963). 
118. A. P. Muranl, J. Appl. Phys. 4¾. 1604 

(1978). 
119. G. Aeppll, S. N. Shapiro, H. Maletta, R. 

J. Blrgeneau, and H. S. Chen, J. Appl. 
Phys. 5i, 1628 (1984). 

120. J. J. Rhyne, In Magnetic Phase 
Transitions, ed. by M. Ausloos and R. J. 
Elliott (Springer, Berlin, 1983), 
page 241. 

121. H. Maletta, G. Aeppll. and S. M. 
Shapiro, Phys. Rev. Lett. 4&, 1490 
(1982); J. Magn. Magn. Mater. 31-24. 
1367 (1983). 

122. A. P. Muranl and A. Heidemann, Phys. 
Rev. Lett, il, 1402 (1978). 

123. A. P. Muranl, Ibid. 1406. 
124. F. Mezel and A. P. Muranl, J. Magn. 

Magn. Mater. U, 211 (1979). 
125. A. P, Muranl, F. Mezel, and J. L. 

Tholence, Physlea 1088. 1283 ^981). 
126. F. Mezel, A. P. Muranl, and J. L. 

Tholence, Sol. Stat. Commun. 45, 411 
(1983). 

127. P.G. de Gennes and J. Villain, J. Phys. 
Chem. Solids U, 10 (1960). 

128. A. P. Muranl, J. Magn. Magn. Mater. 2i. 
68 (1981). 

129. 0. E. MacLaughlln and H. Alloul, Phys. 
Rev. Lett. 36. 1158 (1976). 

130. 0. A. Levitt and R. E. Walstedt, Phys. 
Rev. Lett. 38. 1™ (1977). 

131. D. E. MacLaughlln and H. Alloul, Phys. 
Rev. Lett. 38. 18’ (1977). 

132. 0. Bloyet, E. Varoquax, C. Vlbet, 0. 
Avenel, and M. P. Berglund, Phys. Rev. 
Lett., 40. 250 (1978). 

133. H. Alloul, Phys. Rev. Lett. 4£, 603 
(1979). 

134. H. Allot 1, J. Appl. Phys. 5£, 7330 
(1979). 

135. H. Alloul and F. Hlppert, J. Magn. Magn. 
Mater. 31-34. 1321 (1983). 

136. H. Alloul, S. Murayama, and 
M. ChapelHer, Ibid. 1353. 

137. C. P. Bean, 3. Appl. Phys. 2£, 1381 
(1955). 

138. S. F. Edwards and P. W. Anderson, J. 
Phys. F 4, 1927 (1976). 

139. K. H. Fischer, Sol. Stat. Commun. 1&, 
1515 (1976). 

140. W. Klnze! and K. H. Fischer, Sol. Stat. 
Commun. 22, 687 (1977). 

141. S. K. Ma and J. Rudnlck, Phys. Rev. 
Lett. iû. 589 (1978). 

142. K. Binder and D. Stauffer, Phys. Lett. 
57A. 177 (1976). 

143. 0. L. Huber, 3. Phys. Chem. Solids 
2145 (1971). 

144. M. 8. Salamon and R. M. Herman, Phys. 
Rev. Lett. 11. 1506 (1978). 

145. H. Sompollnsky, Phys. Rev. Lett. 12, 895 
(1981). 

146. H. Sompollnsky and A. Zlppellus, Phys. 
Rev. 8 21. 5860 (1982). 

147. J. Owen, M. E. Browne, V. Arp, and A. F. 
Kip. j. Phys. Chem. Solids 2. 85 (1957). 

148. M. 8. Salamon and R. M. Herman, Sol. 
Stat. Commun. 21. 781 (1979). 

149. E. 0. Oahlberg, N. Hardlman, R. Orbach, 
and J. Souletle, Phys. Rev. Lett. 12. 
401 (1979). 

150. P. M. Levy and C. Morgan-Pond and R. 
Raghavan, Phys. Rev. Lett. 5Q, 1160 
(1983). 

151. P. M. Levy and A. Fert, Phys. Rev. 8 23. 
4667 (1981); P. M. Levy, C. Morgan-Pond, 
and A. Fert, J. Appl. Phys. 5¿. 2168 
(1982). 

152. J. P. Jamet and A. P. Malozemoff, Phys. 
Rev. 8 18, 75 (19?8); A. P. Malozemoff 
and J. P. Jamet, Phys. Rev. Lett. 39, 

198 

VV ' 
/V.V. 

V*Vw 
- v - 



"r*1 «1 i V "r'lip “ 1 ■1 

I 

.* 

1293 (1977). 
S. N. Bhagat, M. L. Spare, and J. N. 
Lloyd, Sol. Stat. Coi*mun 2S, 261 (1981). 
0. Floranl, H. Nogues, and S. Vltlcoll, 
Sol. Stat. Conmun. il, 537 (1982). 
M. K. Hou, M. 8. Salamon, and T. A. L. 
Zlman, 3. Appl. Phys. 5i, 1723 (1984). 
H. K. Hou, N. 8. Salamon, and T. A. L. 
Zlman, to be published In Phys. Rev. 8. 
N. K. Hou, Ph. 0. Thesis, University of 
Illinois at Urbana-Champalgn, 1984 
(unpublished). 
F. R. Hoestra, K. Barbeschke, M.Zomack 
and J. Mydosh, Sol. Stat. Commun. 42. 
109 (1982). 
R. Kubo and T. Toyabe, In Hggn^U 
Resonance and Relaxation, ed. by R. 
Bllnc (North-Holland, Amsterdam, 1967) 
page 810. 
K. Binder, Z. Phyi. 8 22. 339 (1977). 
R. S. Hayano, Y. 3. Uemura, 3. Imazato. 
N. Hlshlda, T. Yamazakl, and R. Kubo, 
Phys. Rev. 8 2fi. 850 (1979). 
K. Sugawara, C. Y. Huang, and 8. R. 
Cooper, Phys. Rev. 8 2fi. *855 (1983). 
C. L. Henley, H. SompolInsky, and B. I. 
Halperin, Phys. Rev. 8 2£. 5849 (1982). 
P. Monod and Y. Berthler, 3. Magn. Magn. 
Mater. 15-18. 149 (1980). 
S. Schultz, E. M. Gulllkson, 0. R. 
Fredkln, and M. Tovar, Phys. Rev. Lett. 
Ü, 1508 (1980); 3. Appl. Phys. 52. I77* 
(1981). 
W. Saslow, Phys. Rev. Lett. AJ. 505 
(1982). 
B. I. Halperin and M. M. Saslow, Phys. 
Rev. 8 12. 2154 (1977). 
3. M. Machado da Silva and H. Abe, 3. 
Magn. Mang. Mater. 31-34. 1351 (1983). 
F. R. Hoekstra, G. 3. Gleuwenhuys, K. 
Barbeschke, and S. E. Barnes, Phys. Rev. 
8 21. 1292 (1984). 
A. T. Flory, AIP Conf. Proc. 21. 
(1976); 0. E. Murnlck, A. T. Flroy, ai.û 
W. 3. Kassier, Phys. Rev. Lett. 22, 100 
(1976). 
Y. 3. Uemura, T. Yamazakl, R. S. Hayano, 
R. Nakal, and C. Y. Huang, Phys. Rev. 
Lett. ii. 583 (1980). 
Y. 3. Uemura, Hyp. Int. |, 739 (1981). 
Y. 3. Uemura. Ph.0. thesis. University 
of Tokyo, 1981 (unpublished); Y. 3. 
Uemura and T. Yamazakl, Physlca IQ? 2 
1108. 1915 (1982). 

174. R. E. Malstedt and L. R. Walker, Phys. 
Rev. 8 1, 4857 (1974). 

175. 3. A. Brown, S. A. Dodds, T. L. Estle, 
R. H. Heffner, M. Leon, 0. E. 
MacLaughlln, C. E. Olsen, and M. E. 
Schlllacl, Hyp. Int. 8, 763 (1981). 

176. 3. H. Brewer, D. P. Spencer, C. Y. 
Huang, Y. 3. Uemura, and H. S. Chen, 
Bull. Am. Phys. Soc. 21. 33® (1984). 

177. Y. 3. Uemura, C. Y. Huang, C. W. 
Clawson, 3. H. Brewer, R. F. Klefl, 0. 
p. Spencer, and A. M. de Graff, Hyp. 
Int. 8. 757 (1981). 

178. M. K. Hou and C. Y. Huang, to be 

153. 

154. 

155. 

156. 

157. 

158. 

’.59 

160. 
161. 

162. 

163. 

164. 

165. 

166. 

167. 

168. 

169. 

170. 

171 

172. 
173. 

published. 
179. C. Clawson, K. M. Crowe, S. E. Kohn, S. 

S. Rosenblum, C. Y. Huang, 3. L. Smith, 
and 3. H. Brewer, Phys. Rev. lett. 51. 
114 (1983). 

199 



ELECTRICAL RELAXATIONS IN 

IONIC CONDUCTORS 
I 

-. 

201 

' "V 



RELAXATION BY "FAST" IONS IN VISCOUS LIQUIDS AND GLASSES 

C. A. Angelí 

Department of Chemistry 

Perdue University 

West La ayette, Indiana 47907 

Abstract 

The phenomenology of relaxation of electrical 

and mechanical stress in inorganic amorphous 

phases by a subset of the system's particles, 

the "fast" monovalent cations, is examined. The 

decoupling of monovalent cation motions from 

those of the host quasi-lattice is defined by a 

relaxation time ratio, and the factors determin¬ 

ing its value are examined. The relaxation 

functions for total structure and fast ion re¬ 

laxations are both non-exponential, 

¢(0 - exp - ([t/x]6) . and the departures from 

exponentiality are dependent on temperature 

above TR. Interestingly enough, temperature 

effects the fractional exponents (3 in opposite 

ways. Finally, the component of the total me¬ 

chanical relaxation spectrum due to fast ion 

motion is compared with the electrical relaxa¬ 

tion and the origin of its much greater width is 

discussed. 

Introduction 

Among certain of the glass-forming ionic liquids 

described in the previous set of "comments" by 

the author, are those cases in which a subset 

of the ions have a much higher intrinsic mobil¬ 

ity than the remainder. The distinction between 

subset mobilities becomes greatly exaggerated as 

these liquids approach the glassy state and the 

relative mobilities may differ by as many as 

12 orders of magnitude at the 10° min glass 

transition temperature. Such materials are of 

technological interest as solid electrolytes, 

and are currently being intensively investi¬ 

gated. In this account we discuss some of the 

intrinsic features of interest in these materi¬ 

als, and the chemical factors which permit their 

existence. We will also discoss short and long 

time aspects of the fast ion mu; on and mechani¬ 

cal manifestations of their existence. It will 

be seen that the mechanical relaxations have 

characteristics much in common with those which 

determine the electrical conductance. 

It is a matter of academic interest that the 

Stokes-Einstein equation 

Di = kT/birn^ (D 

in which n is the diffusion coefficient of 

species i, and ^ is its ionic radius, predicts 

that the electrical conductivity due to the 

ionic motion manifested by Di should become very 

small as a glassy state is approached because 

the glassy state is defined by the arrival of 

the viscosity at values of the order 10 -10 

noise. The fact that fast ion conductors exist 

implies that the coupling between species in 

liquids which is at the root of the Stokes- 

Einstein equation has ceased to be important 

in some cases. It is the job of the materials 

scientists to understand and quantify this de¬ 

coupling process. 

The Decoupling Index RT and Its Origin 

In a recent article (1) the author showed how 

the decoupling phenomenon could be quantified 

in simple terms using a decoupling index defined 

by the ratio of the structural relaxation time 

to the electrical relaxation time. Each relaxa¬ 

tion time is defined as a Maxwell relaxation 

time through the ratio of the ordinary linear 

response coefficient, viscosity, or specific re¬ 

sistivity respectively, to the appropriate 

modulus : 

T » n_/G , T - P/M^ (2) 
s s 00 o 

where G„ is the (infinite frequency) shear modu¬ 

lus, and Moo the (infinite frequency) electrical 
modulus, M,^ « (e^o)"1. In a few cases tht data 

necessary to define both relaxation times over 

a considerable range of temperature are avail- 

able, hence the behavior of their ratio can be 

depicted. An example is given in Figure 1. 

Note how the decoupling process develops rapid¬ 

ly with decreasing tfmperature. 

In the general case the decoupling index can at 

least be determined at the glass transition 

temperature since the structural relaxation 

time is known to be of the order 1(K seconds at 

this point and the conductivity relaxation time 

can be determined at the same temperature using 

an extrapolation of conductivi y data which 

have normally been measured as a function of 

temperature over a range of temperatures below 

t The electrical modulus is usually within 
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Figure 1. Relaxation times for shear and electrical stresses and for selected glass-forming liquids. 

Class transition temp, ratures, where the conductivity relaxation time changes its temperature depen¬ 

dence are indicated by vertical dashed lines. The ratio of structural to conductivity relaxation 

times, Rt, shown in the third part of the figure, defines the decoupling index, see ref. 1. 

a factor of 2 of the value 1 x 10^ volt-^- 

coulomb"!, 

The data shown in Figure 1 reveal, see Fig. 1(c), 

that the decoupling index RT can differ by some 

11 orders of magnitude from one glass to another, 

even when the mobile species is the same (Li+). 

To understand the chemical differences which 

lead to these enormous changes in decoupling of 

ionic motions we survey the electrical conduc¬ 

tivities of a variety of glasses of different 

compositions. For a decoupling Index of unity, 

the data used to construct Figure 1 indicate 

that the conductivity at the glass transition 

temperature should be of the order of 10"!^ohm"l 

cm”! at the glass transition temperature. The 

value at some convenient temperature, for exam¬ 

ple room temperature, will depend not only on 

the decoupling index but on the position of the 

comparison temperature, ambient in this case, 

to the glass transition temperature. For most 

of the glasses of Interest, the latter Is above 

room temperature and may vary widely from sys¬ 

tem to system. Thus, the conductivity at room 

temperature is not a reliable index of the de¬ 

coupling appropriate to the system in question. 

However, it is the commonly available quantity, 

and also the quantity of practical interest as 

far as electrochemical applications of fast ion 

conductors are concerned; thus we will examine 

it in Figures 2 and 3 for any trends which may 

be evident. Figure 2 which is taken from J. L. 

Souquet's review paper (2) from the 1981 

(Gatlinburg) Fast Ion Conductor Conference 

shows that for a variety of systems consisting 

of a compound containing a monovalent cation 

and a Lewis acid, the conductivity at fixed 

temperature rises exponentially with the concen¬ 

tration of the monovalent cation containing 

compound mole fraction. Clearly the conductiv¬ 

ity depends on the presence of the low charge 

density cation, but the origin of the observed 

slope remains a matter of some controversy. A 

number of workers (3-5) interpret the 

observation initially made by Ravaine and 

Souquet (3) that log o/log a^o = 

(a„ . ■ activity of M00) in terms of a precon- 

dit ton for mobility based on the dissociation 

of the alkali metal from some trap state on 

the surrounding ligands. The implication is 

that the conductivity is determined primarily 

by a thermodynamic equilibrium effect, the 

mobility of the cations in the "free" or dis¬ 

sociated state being approximately the same for 

all compositions. Figure 2 shows that the con¬ 

ductivity is greater, the less highly charged 

and the more polarizable the surrounding anions 

o 

Figure 2. Silver cationic conductivity as a 

function of Agi content for several glassy sys¬ 

tems, from ref. 2, reprinted by permission. 
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Figure 3. Room temperature conductivity and its 

composition dependence for various Li+ and Ag+ 

conductors, showing highest 00 cases of each 

class. (Adapted from ref. 1.) 

are. Thus the highest conductivities amongst 

the alkali metal-containing glasses are found in 

systems containing large mole fractions of the 

appropriate iodide. In the absence of iodide 

ions, it seems clear that sulfide ions lead to 

higher conductivities than do the corresponding 

oxide ions. Hunter and Ingram argue, however, 

that the conductivity of glass derived from 

different base glasses by addition of halides, 

sulfates, etc. depend more on the final mono¬ 

valent cation fraction than on the anion 

present (6). 

Figure 4, which compares the temperature depen¬ 

dence of conductivities of Na20*3Si02 with that 

of the best alkali metal conducting glass 

57Li^P2S7*43LiI (7), shows that the higher con¬ 

ductivities of the glasses containing the more 

polarizable anions are onl partly due to a 

greater decoupling of cation motions in such 

systems: the conductivities at T_ (t8 « lO^sec) 

in the two cases illustrated, differ by only 

~1 order of magnitude. The other important 

effect is the temperature at which the glass 

transition (which arrests the liquid structure 

and causes the conductivity activation energy to 

adopt a temperature-independent value) occurs. 

Comparing the different monovalent cations, it 

appears that both size and polarizability 

effects play a role. Ll+ and Na+ are both 

mobile compared with the larger alkali metal 

ions, while Ag+ which is of similar size to 

sodium but considerably higher polarizability, 

conducts about an order of magnitude better at 

room temperature. However, since the glass 

transition temperatures are different and higher 

for the alkali metal than for the Ag+ glasses, 

the differences in decoupling indexes are not 

as great as might be judged from Figures 2 and 

3. The same comment may be made for comparisons 

of the two group 1(b) cations Ag+ and Cu+. 

Although Ag+-containing glasses are the better 

conductors at room temperature, this situation 

reverses at higher temperatures at least for 

some compositions (8). 

It is easier, in some ways, to determine what 

facto.-s increase the coupling, hence decrease 

the performance of fast ion conductors, since 

the effects can be dramatic. Some interesting 

recent results in this respect are those of 

E. I. Cooper and the author on high Lil content 

salt mixtures (9). Compositions were devised 

in which all the anions were iodide (hence were 

expected to be favorable to high degrees of de¬ 

coupling according to Figures 2 and 3) while 

70% of the cations were Li+. Contrary to 

initial expectations, this mixture, which had a 

glass transition below room temperature, proved 

to be a very highly coupled system. The reason 

is, evidently, that in this type of system 

where the second cation is a large organic 

cation rather than a small Lewis acid cation, 

the lithium cations are the most competitive in 

the system hence themselves establish the 

"matrix" which determines the fluidity. In 

other words it is the counter polarization of 

the anion matrix by the strong Lewis acid 

cations, p5+, etc. which is primarily re¬ 

sponsible for the decoupling of monovalent 

cations in the systems depicted in Figures 2 

and 3. How this effect is to be quantified 

must remain for future work to determine. 

.(XJ 

WOO MO 400 200 WO SO 

Figure 4. Variation of specific conductivity 

with temperature in liquid and glassy states 

for Na20*2Si02 and 57LÍ4P2S7•43LÍI showing how, 
for equal decoupling at Tg, conductivity at am¬ 

bient temperature depends on Tg. 
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Within a single system, the decoupling Index can 

evidently pass through a maximum value If the 

concentration of monovalent cations is increased 

sufficiently. This is Implied in several cases 

and has been observed clearly and quantified, 

in the case of the Na2Û + B2O3 glasses (10) 
where a maximum decoupling is found at Na20 
(maximum room temperature conductivity is found 

at ~55X Na20). 

Short and Long Time Cation Motions in 

Fast Ion Conductors 

Computer simulation studies of fast ion conduct¬ 

ing glasses show that, as in the case of the 

crystalline materials, ions spend the majority 

of their time oscillating anharmonlcally about 

fixed quasi-lattice positions. The less fre¬ 

quent hopping or, rather, drifting motions 

which carry them from one site to an adjacent 

one, occur in a relatively short period, 

usually in cooperation with the concerted move¬ 

ment of another cation into the vacated site. 

The oscillatory motions give rise to an absorp¬ 

tion in the far infrared which has been observed 

and discussed by a number of workers including 

the author and colleagues (11-15), see Figure 5. 

The far infrared absorption can be related to 

the longer time diffusive motions through an 

absorption vs. frequency log-log plot (13), as 

depicted in Figure 6. The relation between the 

measurements obtained in different frequency 

regimes by different methods is obtained by 

converting the optical absorption coefficient, 

which is related to the energy loss per unit 

length measure, into an energy loss per cycle. 

The loss per cycle e", is related to the conduc¬ 

tivity by 

E"(f) - o(f)/eou> (3) 

Figure 5. Mid and far infrared spectra of 

Na2Û + B2O3 glasses from thin film studies — 
see ref. 15. 

Figure 6. Experimental frequency spectrum for 

Na^ ion motions in Na20*3Si02 glass and liquid 
state at different temperatures. For alkali 

silicate glasses, o(f) ' 1.01 * 10~2a(f) 
(adapted from ref. 13). 

and the final relation is (16) 

a(f) - o(f)/cn(f)e0 (4) 

The plot in Figure 6 shows that the two regimes, 
far infrared absorption and 0-10 MHz conductiv¬ 

ity, are connected by a regime pass'ng the mic¬ 

rowave region with approximately unit slope. 

If the glassy structure contains microphase 

regions of high conductivity, these will be re¬ 

vealed as inflections or even plateau regions 

in this latter regime. However, these have not 

been reported except in deliberately formed 

biphaslc materials (17). 

Figure 4 may be regarded as a sort of density 

of states diagram for fast ion motions in the 

vitreous materials. As the temperature in¬ 

creases, the d.c. conductivity plateau mounts 

higher and higher on the diagram and tends 

(usually only in the mobile liquid state) to 

cover the region up to the far IR peak. The 

latter thus essentially determines the limiting 

high value for ionic conductivity in vitreous 

media. 

Frequency Spectra for Conductivity 

and Longitudinal Relaxations 

The a.c. characteristics of fast ion motion in 

vitreous materials are best displayed using a 

complex electrical modulus M* representation of 

the results of a.c. bridge, or equivalent net¬ 

work analyzer, results. A recent data set on 

the imaginary part M" of a fast silver ion con¬ 

ducting glass (18,19) at various temperatures, 

superimposed to give a master plot.is compared 

with similar but unsuperimposed data (real and 

imaginary parts) for a classical sodium sili¬ 

cate glass (20) in Figure 7. If the conductiv¬ 

ity relaxation process could be described by a 
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Figure 7. Comparison of electrical modulus loss 

spectra for a fast ion conducting glass, silver 

4AgI,Ag3AsO¿( (a master plot for data (18) cover¬ 

ing the -104 to -1570C range) with individual iso¬ 

thermal spectra for a classic alkali ion con¬ 

ducting glass Na20"3Si02 (20). For the latter 

case the real part M' of the modulus is also 

shown. Note that in Eq. (1) £» * 1/Mœ • 

single relaxation time, the loss spectra M 

vs. f would have full width at half height of 

1.12 decades. It is clear that the spectral 

response function is not so described. In fact, 

rather than an exponential decay function, the 

fractional exponential form 

Q(t) * exp - ([t/t]®) (6) 

is required. The value of the coefficient ß is 

typically in the vicinity of 0.5 though consid¬ 

erable variations are possible. Interestingly 

enough, despite the great difference in composi¬ 

tion, the modulus spectra for classical alkali 

silicate and Agl-based fast conducting glasses 

are almost identical. 

Attempts have been made in the recent literature 

to interpret the width of the observed modulus 

spectra in terms of distributions of molecular 

environments (21), though this issue is far 
from clear in view of the latter observation. 

In the extreme dilution limit for alkali cations 

in Lewis acids such as SiC>2 and GeC>2, (which are 

extremely poor conductors) the modulus spectra 

narrow up, and the process can be correctly 

described by a single relaxation time (22,23). 

An interesting situation arises when the tern 

perature is raised above Tg. In the super¬ 

cooled liquid range, the relaxation spectra 

tend to broaden (i.e. ß decreases) with increas¬ 

ing temperature (24), just the opposite effect 

from that observed for the shear relaxation 

process. The two variations are contrasted 

in Figure 8 for the case of bKNOj*4Ca(N03)2 
(which is not a fast ion conductor but is the 

only case for which both relaxation process 

have been fully characterized in the liquid and 

glassy states) . The temperature dependence for 

each process is Arrhenius in character for some 

4U‘C above Tg where the conductivity relaxation 

spectrum is orcadening. The structural relaxa¬ 

tion spectrum seems to be "frozen in this 

region though the data are not of great pre 

cisión . 

Mechanical Relaxation due to Fast Ion Motion 

Mechanical stresses imposed on a vitreous mater¬ 

ial can be relaxed by the localized displace¬ 

ment of ions, and since in a fast ion conducting 

glass there are many such ions, a substantial 

mechanical response may be expected in the fre¬ 

quency regime characteristic of the fast ion 
motion. Representing the electrical conductivity 

of a fast ion conducting glass, for example, 

0.6AgP03*0.4AgI , by its conductivity relaxation 

time defined by Eq. (2), we find that a mechani¬ 

cal relaxation observed using the commonly 

available frequencies of mechanical spectrome¬ 

ters (5-100 Hz) would only be expected at 

ß 0 .6 

3KN02-2Co(N03)2 / ( ®Sq) 

Conductivity \ 
relaxation / ' 

1 
Enthalpy—*?' 

■ relaxation 

Mechanical 
relaxation 

/Ultrasonicx 
V absorption/ 

jTg(DTA) 

40 ' 80 ‘ 120 ' 160 t_2Õ0 

TCC) 

Finuce 0. Comparison of the Eq. (6) exponent 
for relaxation of electrical stresses by mobile 

ions (conductivity relaxation) and mechanical 

stress by bulk viscosity (bulk or structural 

relaxation) for the case of 2Ca(N03)2*3KNO3 
liquid and glass. [Data from refs. 24 and 25.] 
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temperatures of about -150oC (1). Such relaxa¬ 

tions have recently been observed in this labo¬ 

ratory and a representative example rf the tem¬ 

perature scan for the glass 0.6 AgP03-0.4 Agi 
is shown in Figure 9. Compared with the mechan¬ 

ical relaxation is the correspording electrical 

modulus relaxation obtained by taking constant 

frequency cuts from a figure of the type of 
Figure 7 (19). 

One observes that the most probable relaxation 

time for electrical stresses is almost identi¬ 

cal with that of the mechanical relaxation, 

though the curve in temperature is much narrower 

in the latter case. The origin of the increased 

width at low temperatures, which implies an 

increasing spectral width at high frequencies 

for a constant temperature spectrum, is not 

clear. Since the mechanical loss approaches 

zero at the high temperature end, the increased 

width at high temperatures in the mechanical 

relaxation case is not obviously due to residual 

relaxation motions from the principal viscous 

process which is arrested at the (higher) glass 

transition temperature. It is worth noting, 

however, that sub-Tg relaxations observed for 

molecular liquids by dielectric methods are 

characteristically much broader than the pri¬ 

mary relaxation process (26). These broad 

relaxations also have an Arrhenius temperature 

dependence hence may be, in some sense, related 
phenomena. 

It should be obvious that systems in which the 

ionic motions are fully coupled to the viscous 

motions, low temperature mechanical relaxations 

due to alkali motion will not be observed. 

Cases of practical importance to which this 

observation will apply are the polymer solvent 

+ salt "solid electrolytes" now much in focus 

as separators for ambient temperature electro¬ 

chemical cells. In these "solid electrolytes" 

the conductivity occurs within a locally liquid 

electrolyte which obtains its mechanical stabil¬ 

ity from the entanglement of the polymer chains. 

The glass transition temperatures for these 

materials are in fact far below room tempera¬ 

ture and the decoupling index determined at 

the glass transition temperature is of the 

order of 100. It is only by having service 

temperature far above T„ that such materials 

are of any practical utility. 

Summary 

These comments have indicated something of the 

range of behavior available for study in solid 

amorphous materials with mobile ion species. 

Much information on systems containing mixed 

cations and mixed anions, either of which 

may affect the characteristic relaxation spec¬ 

tra and decoupling characteristics, remains 

to be obtained. Interest in these systems con¬ 

tinues to grow and many new insights into 

their behavior may be expected in the future. 

.,. i ■ j.. «. i ■ i -1. . . i . ......... .- .. V- .. . - . 

Figure 9. Comparison of 110 Hz mechanical and 

100 Hz electrical loss vs. temperature curves 

(tan 6 = E"/E', and M” respectively) for 
0.3 Agi*0.7 AgPOj glass, showing broader mechan¬ 

ical response, implying the existence of both 

fast and slow dynamic mechanical processes which 

do not transport charge. The normal character 

of the electrical relaxation is shown in the 

insert (c.f. Fig. 7). [Data taken from ref. 19.] 
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with previous high pressure electrical conductivity studies of PEO. 

Introduction 

Ion conducting polymers represent a class of 
materials of intense current interest. These 
materials are being considered for use as the 
electrolyte in solid state batteries. Battery 
development is, in fact, progressing rapidly.(1) 
Most of the work to date has centered on 
polyethylene oxide) (PEO). The first reports 
of fast ion conduction in PEO were due to Wright 
and co-workers.(2-4) Extensive work, however, 
began after the paper by Armand and co¬ 
workers. (5) Since then, there have been many 
studies of this polymeric solid electolyte(6-39) 
along with reports of others such as 
polypropylene oxide)(5), polyacrylonitrile,(40) 
poly(vinlyidene fluoride),(40) poly(tetra- 
methylene oxide),(41) poly(ethylene succinate), 
(42) and poly(vinyl acetate) (PVAc).(43) 

Dielectric relaxation (DR) and nuclear 
magnetic resonance (NMR) techniques have been 
productively employed in studying fast ion 
processes in "traditional" solid electrolytes 
such as silicates, titanates, or aluminas which 
provide a framework for mobile monocations (e.g. 
Li+, Na+, K+, or Ag+), or those of the heavy 
metal halide type (e.g. PbF2, ZrF4) whose ionic 
conductivity is attributable to a partially 
disordered sublattice above some critical 
temperature. The primary reason is that both 
techniques are powerful tools for probing the 
local environment of ions. Another compelling 
reason for focussing on DR and NMR effects can 
be found in current theories concerning the 
apparent universality of low-frequency 

fluctuations, dissipation, and relaxation 
properties of condensed matter.(44) For 
example, fundamentally different measurements 
such as spin-lattice relaxation times and 
dielectric loss have shown remarkable similarity 
with respect to both temperature and frequency 
dependence for a wide variety of materials.(45) 
Consequently, both techniques have begun to be 
applied to ion-conducting polymers. 

The study of DR in polymers has been going on 
for many years and there are several books on 
the topic.(46-48) Consequently, there already 
exists a considerable body of information on DR 
in "pure" PEO.(49-55) In fact, indications of 
fast ion conduction in PE0 can be found in many 
of the early papers on "pure" PE0. For example, 
Ishida et al. attribute some of their 
observations to ionic conduction.(51) However, 
as is often the case, many questions about the 
origin of the relaxation phenomena remain. For 
example, it is easy to find at least four 
different interpretations of they relaxation 
(47 55-60) not to mention three different nomen¬ 
clatures (6(56), 6a(51). and y(46.47)). 

In the DR section of the present paper, recent 
results by one of the authors concerning DR in 
ion conducting PE0(37-39) will be reviewed and 
new results will be presented. Further, recent 
high pressure electrical conductivity studies in 
PEO(36) will be discussed along with some recent 
new results for polypropylene oxide). There is 
not a great deal of published NMR work on ion 
conducting polymers at the present time. Some 
recent results will be discussed along with 
material drawn from earlier studies. 
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Fig. 1. Arrhenius plot of ^11 linewidth (in Hz) 
in PE0-polyurethane-LiC104 network (from ref. 
32). 

Discussion 

Nuclear Magnetic Resonance 

NMR studies of solid electrolytes have yielded 
important insights into both structural and 
dynamic properties, and several reviews of this 
rapidly growing field are in existence.(61-64) 
The power and versatility of the technique de¬ 
rive from the short-range nature of the nuclear 
quadrupole and dipole-dipole interactions. The 
quadrupole interaction occurs for nuclei with 
nuclear spin I > 1 (e.g. 7L1, 23Na) subject to 
an electric field gradient (efg) generated by a 
surrounding charge distribution of lower than 
tetrahedral symmetry. Quadrupole effects thus 
constitute a sensitive probe of local bonding 
arrangements. For nuclei with spin 1-1/2 (e.g. 
lH, 13C, 19F) the nuclear dipole-dipole 
interaction is the predominant line-broadening 
mechanism since chemical shift effects usually 
provide a negligible contribution to broadening 
in the materials under consideration. The same 
argument applies to nuclei with I>l/2 situated 
in a highly symmetric charge distribution which 
yields a zero efg. 

If atoms or ions can execute thermally 
activated motion, the dipolar fields experienced 
by their nuclei will be modulated with some 
characteristic "jump" frequency, “j. When 
WJ exceeds the rigid dipolar linewidth Wp, 
the nuclei sense a partially averaged dipolar 
field which gives rise to a phenomenon known as 
motional narrowing. Thus linewidth versus 
temperature measurements can yield important 
qualitative information about ionic or atomic 
motion. The nuclear spin-lattice relaxation 
time Ti characterizes the nucleus' return to 
thermal equilibrium following a radio-frequency 
induced NMR transition, and as such, is also an 
effective probe of motional processes. The 
Bloembergen, Purcell, and Pound (BPP) treatment 
of nuclear relaxation(65) predicts a Ti minimum 
in the Ti vs. temperature curve, corresponding 

Fig. 2. Proton NMR lineshape of uncomplexed PEO 
(MW 5x106) at 3500, fo-400 MHz. 

to lux—1 where w is the NMR frequency and 
wjT-l. Another useful feature of Tl measure¬ 
ments is that activation energies for ionic (or 
atomic) motion can be readily extracted from the 
data for simple Arrhenius behavior: 

“J - w0exp(-EA/kT). , 

An important consideration in the context of 
solid electrolyte studies concerns the fact that 
Ti is sensitive to local motion as well as long 
range transport processes and therefore does not 
always yield activation energies consistent with 
those determined by other techniques such as 
electrical conductivity. 

High cationic mobilities in PEO-lithium salt 
complexes have been inferred from the obser¬ 
vation of motional narrowing in 7L1 NMR 
spectra.(5.26) In PE04:I1CF3C00 a single 
absorption line with no apparent quadrupole 
broadening is observed. The line begins to 
narrow at about 15°C and gradually decreases in 
width, becoming liquid-like at about 100°C.(26) 
Similar behavior has been noted in L1CIO4- 
containing complexes.(32) An Arrhenius plot of 
the 7|_1 linewidth temperature dependence is 
shown in Fig. 1 (data taken from ref. 32). The 
high temperature region of the curve yields an 
activation energy of about 11 kcal/mol which is 
somewhat lower than the conductivity activation 
energy of about 21 kcal/mol in the same 
temperature region. This discrepancy may be 
partly attributable to NMR's sensitivity to 
localized motion. 

Proton NMR can shed light on the dynamics of 
the polyether chains just as 7Li NMR can for L1+ 
motion. The lH absorption spectrum of 
uncomplexed PEO at 35°C is shown in Fig. 2 
(fo“400 MHz). The most striking feature of the 
lineshape is its two-component nature, a narrow 
lorentzian superimposed on a broad gaussian. 
The broad component is identified with the 
relatively rigid CH2 segments in the crystalline 
phase while the narrow line arises from flexible 
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Fia. 3. Proton NMR linewidth (in gauss) vs. 
temperature in PEO^LiCFßCOO. Both components 
are shown (from ref. 26). 

CH2 segments in the elastomeric phase. 1H 
spectra of complexed PEO also exhibit two-phase 
behavior, with a somewhat broader crystalline 
component linewidth than that observed in pure 
PEO (approximately 35°C). Fig. 3 demonstrates 
that motional narrowing also occurs for protons 
in PE04:L1CF3C00 (data taken from ref. 24). The 
temperature of the onset of the narrowing 
appears to be the same for both phases 
(approximately 30°C)t with the elastomeric phase 
exhibiting a greater motional effect. 

A plot of 1H Ti vs. 1000/T for PE04.5‘.NaC104 
is shown in Fig. 4. From the local minimum 
occurring at about 65°C, a motional correlation 
time of about 400 ps can be Inferred. It should 
be noted that both the broad and narrow 1H com¬ 
ponents of PE04.5:NaC104 have approximately the 
same Ti value. Indicating the presence of an 
efficient spin-diffusion mechanism.(66) 

Berthier et al.(27) have found that 19F In 
PE08:L1CF3S03 also exhibits an NMR spectrum 
consistent with the presence of both a 
crystalline and an elastomeric phase. The line- 
widths associated with each phase differ 
sufficiently to allow computation of their 
relative concentrations as a function of 
temperature. The temperature dependences of the 
fractions of protons and fluorines In the 
crystalline phase of PE08:HCF3S03 are shown in 
Fig. 5 (data taken from ref. 27). The 
discontinuity in the proton curve at 328 K is 
attributed to the melting of uncomplexed 
crystalline PEO. The absence of a similar 
feature in the fluorine curve indicates that the 
fraction of crystalline complex remaining above 
328 K is salt-rich. It is of interest to note 
that certain PEO complexes such as PE08:LlC104 
exhibit no crystallinity above the melting point 
of pure PEO.(27) 

23Na in PEO4.5:NaC104 produces a single¬ 
component lineshape with no detectable 
quadrupole broadening, even at temperatures as 
low as -100°C. This finding is consistent with 
fourfold coordination of the Na+ ion which has 

also been suggested by other Investigations.(17) 
However, PEOiO'.Nal does yield a quadrupole 
broadened 23Na spectrum (only the central 
1/2,-1/2 transition is observed at low temp- 
erature(27)) which suggests that variations In 
stoichiometry (and/or anion) will affect the 
average coordination of the cation. 

Finally, poly(vinyl acetate) complexed with 
LICIO4 also shows motlonally narrowed 7L1 NMR 
spectra.(43) Fig. 6 displays the temperature 
dependences of the full-width-at-half-maximum 
(FWHM) 7L1 linewidth and 7L1 Ti. The similarity 
between PVAc- and PEO-based complexes (with 
respect to 7L1 linewldths) suggests 
corresponding qualitative similarities of Ion 
mobilities and perhaps transport mechanisms in 
the two different materials. The Ti data points 
yield an activation energy of 0.11 + 0.03 eV, 
about an order of magnitude less than the 
conductivity value which, again, 1s Indicative 
of local motional processes sufficient for 
nuclear relaxation. 

Electrical Relaxation 

DR studies provide an alternative, often 
complementary method of probing the motion of 
ions and their local environments, and has been 
applied to the study of polymers by many 
workers. In the experiments performed by the 
author, values of the conductance, G, and 
capacitance, C, were determined using a fully 
automated micro-processor controlled bridge 
constructed by CGA Associates, Cleveland, Ohio. 
The bridge operates at five audio frequencies 
over the range 100-10,000 Hz in equal 
logarithmic Intervals and is interfaced with an 
Apple lie computer. Some of the measurements 
,-re two terminal while others are three terminal 
using the parallel plate guard ring 
configuration.(67) Aluminum electrodes are 
evaporated onto the faces of the samples. T^e(l 
bridge is usually operated in the "conductance 
mode where G/u and C are read directly 
representing the equivalent parallel conductance 
and capacitance of the material. In general. 
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Fig. 5. Fractions of protons (squares) and 
fluorines (triangles) in the crystalline phase 
of PEOg:LICF3SO3 (from ref. 27). 

Fig. 6. Temperature dependences of ^Li 
linewidth (triangles) and T] (squares) in 
PVAc8:LiC104 (from ref. 43). 

the value of the real part of the dielectric 
constant, e', is determined at 300K and 1000 Hz 
using: 

C-e0e'A/d (1) 

where A is the area of the plates and d is their 
separation. e0 1s the permittivity of free 
space. In the absence of an experimental value 
for the linear thermal expansion coefficient, 
values of e* at all other temperatures and 
frequencies are determined from: 

eT ' e300Ct/C30°- (2) 

Values of e" are then calculated from: 

e"-e’G/Cu) (3) 

and in some cases this is transformed to a 
conductivity via: 

0 - e"e GD (4) 
0 

One important feature of the measurement system 
is that eight samples can be placed in the same 
sample holder which allows careful inter- 
comparison of samples. 

Typical results for£" vs. T(K) at low 
temoeratures for "pure" PEO are shown in Fig. 7. 
(37) Two relaxations are observed in agreement 
with the literature. The first relaxation, aa, 
has been unambiguously associated with the glass 
transition.(46,47) The identification of 
the second relaxation, y, is not so clear from 
the literature. It has been variously 
attributed to a "crankshaft mechanism,"(57,58) 
"3-bond" or "4-bond" motions,(59,60) "chain end 
hydroxyl groups"(47) or the "tg+tî tg-t" trans¬ 
ition.(55) In prev jus papers on dielectric 
relaxation in ion containing PE0(37-39) the data 
were interpreted in terms of the "tg+tj tg-t" 
transition. However, by preparing deuterated 
samples of PEO, the authors have recently 

obtained evidence that the y relaxation in PEO 
is more likely to be due to hydroxyl groups at 
least some of which are probably at chain ends 
as suggested by Hedvig.(47) That data will be 
presented elsewhere. There is, however, one 
feature of the y relaxation which is well 
documented. That is that the y relaxation is 
essentially Independent of the degree of 
crystal11nity.(51) Consequently, in the 
discussion below concerning the y relaxation, it 
is assumed that no distinction can be made 
between crystalline and amorphous phases of a 
given composition. 

Figs. 8 and 9 show the relaxation spectrum for 
PEO4.5:NaSCN and PEO4.5:KSCN. The results for 
PEO4.5:LiSCN are similar to those for 
PEO4.5:NaSCN. There are no traces of 
oa in any of the complexed materials. This 
shows that no amorphous pure PEO exists in any 
of the complexed materials. This is confirmed 
by differential scanning calorimetry studies. 
(68) In most cases, however, a thermal event is 
observed at about 60°C which is usually 
attributed to pure crystalline PEO. These 
materials, of course, are not fully complexed. 

Next, as seen in Fig. 8, the y relaxation for 
PE04.5:NaSCN is very similar to that for "pure" 
PEO. At first sight this would appear to be due 
to pure PEO. However, the materials are not 
very conductive(37) in agreement with the 
literature for highly complexed material. 
Further, the intensity of the peak is not 
diminished over that for "pure" PEO. 
Consequently, it was conduded(37) that the 
structure of the complexed polymer is not 
significantly different from that of "pure" PEO. 
The current interpretation of these results is 
that the sodium ions are smaller than the 
helical tunnel radius,(22) and this, combined 
with the linear configuration of the anion do 
not produce severe distortions in the polymer 
chains. More recent work by the authors show 
that there are, Indeed, small differences 
between the DR spectrum for PE04.5:NaSCN and 

214 
* V, 

V 

.* /•.-- . - 



that for "pure" PEO confirming that the peak 1s 
Indeed attributable to complexed material and 
thus supporting the conclusions of the earlier 
report.(37) The new work will be presented In 
detail elsewhere. 

However, as can be seen In Fig. 9, for 
PE04.5:KSCN, there 1s a drastic change In the 
y relaxation region with at least three peaks 
being observed. Consequently, It was con- 
cluded(37) that the chains contain severe local 
distortions. This trend has recently been con¬ 
firmed by the x-ray work of Hlbma.(28) 

A second example of large changes 1n the 
Y relaxation region 1s shown In Fig. 10 where 
some results for PE04.5:UCF3S03 are plotted. 
At least three relaxations are seen, none^of (( 
which corresponds to the y relaxation 1n pure 
PEO or to those observed 1n PE04.5:KSCN, for 
example. These results are Interesting because 
there has been a great deal of work on this 
material. Careful studies of the variation of 
these relaxations with salt concentration are 
presently being carried out In an attempt to 
better understand the structure of these 
materials and hence gain insight Into the 
origin of the various relaxations. 

A final example of the type of relaxation 
phenomena observed In these materials 1s shown 
1n Fig. 11 where e" vs. T(K) Is plotted for 
PE04 5:NaI. The results are Interesting as the 
temperature variation of the two relaxations Is 
very similar to that observed for those In 
PE04.5:L1CF3S03. Further work 1s necessary 
concerning this result. 

As Is apparent from the discussion thus far, 
the main thrust of the work to date has been to 
use DR to learn about materials. However, work 
has also begun toward using the materials to 
learn about DR. In particular, efforts are 
being made to evaluate the data In the light of 
various recent theories of DR.(44,45,69,70) An 
example of some preliminary results 1n this area 
are given in Fig. 12 via a "universal plot of 
DR for theY relaxation 1n pure PEO. That 

Fig. 8. e" vs. T(K) for PE04.5:NaSCN 
(from ref. 37). The frequencies are: dash, 100 
Hz: solid, 1.000 Hz; chain link, 10,000 Hz. 

plot 1s constructed by best-fitting only five 
frequencies at a variety of temperatures. The 
best-fit curve Is the theoretical form usually 
employed by Jonscher.(69,70) A new, 
fully-automated complex Impedance measuring 
assembly operating at seventeen approximately 
equal logarithmic frequency Intervals over the 
frequency range 10-100,000 Hz Is currently 
operational and will make It easier to obtain 
plots such as Fig. 12. 

High Pressure Electrical Conductivity 

Of primary Importance for these materials Is 
the electrical conductivity. Typical high 
temperature conductivities are shown In F1g. 13. 
In order to gain Information concerning 
electrical transport In these materials, the 
effect of high pressure on the electrical 
conductivity has been studied. The results for 
PE0(36) can be summarized as follows. 

The magnitude of the variation of the 
electrical conductivity with pressure, and 
hence activation volume given by: 

V = -kT(3lnG/3P) (5) 

scale with the size of both the anion and 
cation. The simplest Interpretation of this Is 
that both the anions and cations are mobile. 
This agrees with several recent works concerning 
this material.(9.10.12,13,23) One of the 
ambiguities associated with these results, 
however, 1s that PE0 Is a multiphase system. 
For example, "pure" crystalline PE0 forms easily 
and thus one must be concerned with the effects 
of pressure on the phese equilibrium. In order 
to eliminate this ambiguity, studies have 
recently been carried out on the effects of 
pressure on sodium salts In Paral (Hercules, 
Inc.), a highly elastomeric material consisting 
mostly of poly(propylene oxide) (PP0). The 
effects of pressures up to 0.3 GPa on the 
conductivity 1n this material are shown 1n Fig. 
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r. r r 

T(K) 

Fig. 9. e" vs. T(K) for PE04i5:KSCN 
(from ref. 37). The frequencies are: dash, 100 
Hz; solid, 1,000 Hz; chain link, 10,000 Hz. 

14. It is clear that the activation volume is 
much larger for PP08:NaC104 than for PP08:NaSCN. 
This result is very similar to that observed in 
PEOgsNaClOfl and PE08:NaSCN and thus the 
likelihood that this effect is due to phase 
equilibrium of a pure crystalline phase with the 
conducting phase is eliminated. These results, 
do not, of course rule out the possiblity that 
other phases may be affecting the data. 

Finally, the order of magnitude of the 
pressure dependence of the conductivity in 
PPO-alkali metal salt complexes is very similar 
to that for PEO-alkali metal salt complexes.(36) 
Consequently, these results have the same 
implication concerning the transport mechanism 
in PP0 as in PE0. Specifically, the fact that 
the conductivity decreases with pressure argues 
against a "chain transfer" transport 
mechanism.(71) The reason is that the effect of 
pressure is to decrease the spacing between the 
chains and thus should make jumps between chains 
easier. Further, the magnitude of the decrease 
of conductivity with pressure is too large to be 
consistent with an Intrahelical jumping 
process.(5) Specifically, the motion of the 
ions through the helical tunnels would not be 
expected to be greatly affected by pressure as 
the tunnels, themselves, should not be greatly 
affected. (Further evidence against this trans¬ 
port mechanism has recently been obtained by 
Dupon et al.(20)) This can be made quantitative 
via an approximate mode Gruneisen parameter 
defined by: 

y a » -Olnwa/31nV) (6) 

which can be calculated from: 

v " 2Ya8X (7) 

where g is the Gibb's energy and x is the 
compressibility. Approximate values of X and 
g yield Ya- 2. This is much larger than mode 

T(K) 

Fig. 10. e" vs. T(K) for PE04 5:LiCF3S03. The 
frequencies are: dash, 100 Hz;’solid, 1,000 Hz; 
chain link, 10,000 Hz. 

gammas for Intrachain v1brations(72) which would 
govern the intrahelica! jumping process. 
Consequently, it was concluded that interchain 
fluctuations govern the transport mechanism and 
are the origin of an "interstice-interstice" 
jumping process.(36) In that paper, it 
was postulated that the ions move through the 
spaces between the polymer chains. In support 
of this is the fact that fast ion transport has 
now been observed in a wide variety of polymers 
as mentioned above and thus fast ion transport 
does not seem to require a specific chain 
structure. One final comment is that it appears 
that fast ion motion usually occurs only above 
the glass transition. Consequently, it appears 
that chain mobility also contributes to the con- 
ductivity.(5,17,22) This factor is consistent 
with the "Interstice-interstice" jumping process 
in that it adds chain translation to chain 
vibration as a factor responsible for fast ion 
motion. Of course, there may be still other 
contributions to the decrease of conductivity 
with pressure and, in fact, "association" of the 
ions with the chains or with each other may 
contribute. The extent to which this factor is 
Important has yet to be determined. 

Summary 

While the NMR results for several ion 
conducting polymeric systems reveal 
qualitatively similar features such as "classic" 
motional narrowing behavior common to superionic 
solids, there exist some Important differences 
between specific compositions. For example, 
changing the anion and/or the polymer/salt ratio 
has been observed to affect macroscopic 
properties such as the glass transition and 
microscopic structural arrangements such as the 
average cation coordination. Future Ti 
studies for a greater variety of complexes are 
expected to lead to a better understanding of 
lo:al hopping processes which, ultimately, may 
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Fig. 11. e" vs. T(K) for PE04.5:NaI. 
The frequencies are: dash, 100 Hz; solid, 1,000 
Hz; chain link, 10,000 Hz. 

provide insight into conduction mechanisms. 
Electrical relaxation is well established as a 
very useful tool in studying ion conducting 
polymers. Changes in chain structure can be 
detected in addition to multiphase behavior. 
Finally, the effects of high pressure on the 
electrical conductivity provide useful 
Information concerning the transport mechanism. 
The best picture at the present time is that in 
both PE0 and PP0, both anions and cations move 
via an "interstice-lnterstlci" jumping process. 
It is clear that more study is warranted, 
particularly with regard to systematic 
identification of compositional parameter* which 
result in different kinds of structural or 
dynamic behavior. 
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Abstract 

Electrical relaxations of mobile ions in 
ionic conductors are reviewed. 

1. INTRODUCTION 

Due to its technological importance the 
electrical behavior of common oxide glasses has 
been studied extensively. A large number of 
these studies have been conducted to determine 
the compositional and structural dependence of 
electrical conductivity, but during this course 
basic knowledge of ionic conduction has also 
evolved [1-5]. In recent yars the interest in 
electrical behavior of glasses has increased 
considerably because of their potential use as 
solid electrolytes [6]. The information con¬ 
cerning ionic motion is also useful in the 
development of high leach resistance nuclear 
waste glasses [7]. Because of such enhanced 
interest and improved experimental techniques, 
more accurate and extensive data on better char¬ 
acterized samples are available now, which in 
turn has helped in developing a microscopic pic¬ 
ture of the electrical behavior of glasses. 

The subject of electrical relaxation is a 
description of the time-dependent response of a 
given system (mobile ions in a glass in our 
case) under the application of an electric 
field. With emphasis on the latest develop¬ 
ments, the present paper is an overview of this 
phenomenon as observed in oxide glasses. This 
paper is not meant to be an exhaustive review of 
all the available data; small quantitative dif¬ 
ferences among various glass systems are not 
discussed here in any detail. 

2. EXPERIMENTAL OBSERVATIONS 

The usual method of studying electrical 
relaxation in glasses is to prepare a disc¬ 
shaped specimen with thin film metal electrodes 
deposited on its two parallel faces. An ac 

bridge or similar arrangement is used to measure 
conductance (G) and capacitance (C) of the spec¬ 
imen assembly as a function of frequency (iu=2nf). 
At very low frequencies such information may be 
obtained from the charging and discharging cur¬ 
rent response under an electric field [5). Gen¬ 
erally/ the procedure is repeated to collect 
data at a series of temperatures depending on 
the instrumentation limits. Note that the spec¬ 
imen is represented here as a parallel combina¬ 
tion of a resistor and a capacitor. The applied 
ac signal is sufficiently small so that the 
values of G and C can be treated as field inde¬ 
pendent. 

All the experimental information regarding 
electrical relaxation at a given temperature is 
contained in G(tu) and C(u>). For various rea¬ 
sons, these variables may be transformed into 
complex resistivity (p*), complex modulus (M*), 
complex permittivity (e*) or some other formal¬ 
ism. Considering the confusion generated by the 
frequent interchange of various formalisms in 
literature, it is important to remember that 
such transformations may emphasize and there¬ 
fore, help resolve one particular aspect of the 
relaxation process, but no new information, 
which was not already included in G(uj) and C(in), 
can be extracted. Details of these formalisms 
may be found in recent monographs [8,9]. For a 
specimen of unit thickness and unit area of 
cross section 

p* = p'-ip" 
u)C 

gWc* (1) 

M* = M'+iM" 
ui2C . . wG 

G^+uTC7 1 G'2+u)2C2 (2) 

and 

e* = 1/M* (3) 



^ ^ .1 ,1 .1 J li Li i « .« .1 .« .1 *l| Ml ...I .,.l.p   ._  ,,. '"F'T"1»- 

r. 

a 

% 

_ • 

%• 

Also, complex conductivity 

a* = 1/p* 

and loss tangent 

tan 6 = e"/e' = G/uiC (5) 

From Eqs. (1) and (2) it is clear that a 
plot of p" or M" vs log u) will be a Debye peak 
at u)t=l where x=RC is the time constant (R=l/G 
is the resistance). The p' or M' vs log ui plot 
will give a sigmoidal curve with point of 
inflection at wx=l. On a complex plane p" vs 
p' , or M" vs M' will show a semicircle passing 
through origin. However, the experimental data 
for any system measured over sufficiently large 
frequency range rarely agrees with this descrip¬ 
tion, thus suggesting that the specimen cannot 
be treated simply as a parallel combination of a 
resistive and a capacitive element. An obvious 
reason for this departure from the behavior of 
an ideal capacitor is that a real sample usually 
consists of a discontinuity at the electrode/ 
glass interface which has different polarization 
properties than the bulk of the specimen. In 
many instances this configuration can be approx¬ 
imated to a series combination of two parallel 
R-C elements. 

The electrode interface polarization is a 
highly capacitive phenomenon and, therefore, has 
much larger time constant than the bulk phenom¬ 
ena. Complex resistivity plots (p" vs p') are 
generally used to separate these two effects, 
each appearing as an arc of a semicircle [10-15] 
A typical example of complex impedance data is 
shown in Fig. 1. The bulk conductivity (also 
referred as dc conductivity) is given by the 
intersection of the high frequency semicircle 
with the real axis, as shown by the arrows in 
the figure. Figure 1(b) shows that the bulk 
resistivity obtained in this fashion, as 
expected, varies according to the specimen 
thickness (which is proportional to volume for 
fixed cross section) and is independent of the 
electrode effects. Thus, we can separate the 
surface area dependent electrode phenomena from 
such plots. The arc in Fig. 1(a) or the high 
frequency segments in Fig. 1(b) primarily repi - 
sent the behavior of the bulk of the glass ana 
will therefore be the focus of the present dis¬ 
cussion. In phase separated glasses the elec¬ 
trochemical discontinuity at interphase bound¬ 
ary, or at the hydrated surface of silicate 
glasses [13] can lead to an additional arc, but 
such complex phenomena are not to be included in 
the discussion. 

A close examination of the bulk data such 
as shown in Fig. 1(a) indicates that it does not 
fall on a semicircle as expected from an ideal 
capacitor. Instead, the data can be better 
approximated to an arc of a semicircle whose 
center lies below the real axis. This departure 
from the ideal behavior can also be observed in 

(b) 
202.0 "C 

« 1.75 ; 8R * 1.76 

Fig. 1. Complex impedance plots for two borate 
glasses, (a) Sodium borate glasses at 153.2°C. 
(b) Lithium borate glass of two different thick¬ 
nesses (t), but the same electrode area (A). 
The implicit parameter, frquency, is identified 
for some of the data points. The arrows indi¬ 
cate the value of bulk resistance [15]. 

p" or M" vs log u) plot as shown in Fig. 2 tor a 
lithium borate glass [16]. In this case we find 
that the peaks are asymmetric as well as wider 
than expected from a Debye peak which has the 
full width of 1.144 decades at half the maximum. 
Also note that the positions of M" and Z" (p") 
peaks do not coincide. Almond and West [17] 
have analytically treated this non-ideal fre¬ 
quency dispersion by adding a frequency depen¬ 
dent admittance element to the equivalent cir¬ 
cuit of an ideal dielectric. 

Macedo et al. [18] have proposed that since 
the conduction related phenomena in the present 
context may be considered due to the series 
processes of ionic motion and the highly capaci¬ 
tive phenomena are suppressed in M" vs log ut 
plots, the experimental data should be analyzed 
preferably in the modulus formalism. Figure 3 
shows M" vs log ut plots at seven different tem¬ 
peratures for potassium trisilicate glass 
obtained by Boesch et al. [19] over the fre¬ 
quency range of eight orders of magnitude. From 
such data it is interesting to note that the 
peak frequency in these plots shows the same 
temperature dependence as dc conductivity [20]. 
For this reason the behavior of M" vs log ui has 
been often identified as conductivity relaxa¬ 
tion. 

Traditionally, complex permittivity formal¬ 
ism has been employed to describe the dielectric 
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Fig. 2. Imaginary parts of complex impedance 
Z" and modulus M" vs log frequency (f) at 
132.1°C for lithium borate glass 116]. 

relaxation phenomena [21]. In this formalism 

t* ï e'-ie" = C/Co-iG/u)Cc) (6) 

where C is the equivalent capacitance of the 
free sp$ce. In the ideal case of frequency 
independent conductivity (G=G, ) and dielectric 
constant, e" decreases monotonically as tu . 
Therefore, to study frequency dependent or 
purely ac relaxation effects, it is often 
thought that it is better to subtract the dc 
contribution from the observed value i.e. 

The usefulness of Eq. (7) is realized best where 
G. is negligible such as in the study of 
dipolar relaxation in a quartz crystal at low 
temperatures [22]. Here, e" vs log iu at con¬ 
stant temperature, or e" vs T at a fixed fre¬ 
quency shows a Debye-like peak due to the reori¬ 
entation of dipoles between two equivalent posi¬ 
tions. It does not involve any long-range atom 
movement and usually has lower activation energy 
than does dc conductivity. This kind of local 
motion of alkali ions in alkali trisilicate 
glasses has been studied by Agarval and Day [23] 
using thermally stimulated depolarization cur¬ 
rent technique below room temperature. However 
as noted above nearly the same activation energy 
for dc conductivity and conductivity relaxation 
indicates that both of these phenomena are very 
closely related. It has been, therefore, argued 
that subtraction of dc conductivity (Eq. (7)) 
in the present context may be somewhat artifi¬ 
cial [18]. Moreover, in many cases the determi¬ 
nation of G. may not be trivial. Then, for a 
glass the use of an M" vs log u plot and study 
of its departure from Debye peak are preferred 
methods to understand conductivity relaxation. 

To summarize the experimental observations, 
the electrical relaxation in glass is related to 
the long-range migration of charge carriers. It 
manifests itself as a departure from the ideal 
behavior of frequency independent conductance 

and capacitance. It can be observed in the fre¬ 
quency and temperature region where the elec 
trode, the surface layer, the interphase (in 
phase separated glasses) and the local ion jump 
phenomena are not dominant. Most commonly it is 
described as the peak in t" vs log ui plot or 
non-Debye behavior of M" vs log w plot. 

3. ANALYTICAL EMPIRICAL MODELS 

When an externally applied electric field 
across a solid is turned off, an ideal system 
under thermal equilibrium will respond according 
to 

E(t) = E(0) exp(- ^) W 

where E(t) is the field strength at time t and x 
is the relaxation time. However, in a real 
glass specimen X usually does not have a unique 
va’ue and is usually represented by a "distribu¬ 
tion function" g(x) i.e. 

E(t) = E(0) J^g(t) exp(- ^) dx = E(0) <Kt) (9) 

Clearly, the form of ¢(0 or equivalently 
g(t) is the key factor in describing the experi¬ 
mental observations. Moynihan, Macedo and 
co-workers [18-20, 24-25] have extensively anal¬ 
yzed their electrical modulus data on several 
glasses using this approach where 

M* = Mg J^dt g(t) liu)T/(l+iu»x)] (10) 

where M is the inverse of static dielectric con¬ 
stant. sThey find that the data of alkali sili¬ 
cate glasses and a glass-forming 40% CaiNO-),* 
60% KNO, fused salt mixture can be Best 
describeff by the fractional exponential (Wil- 
liams-Watts [26]) function 

0(t) = expl-(t/xp)P] 0<ßSl ÖD 

where X and ß are relaxation parameters. Wil¬ 
liams aid Watts [26] have proposed the empirical 
function [11] (previously used to describe 
mechanical relaxations by others [27]) for the 
primary dielectric relaxations of fixed dipoles 
in several viscous liquids and a few polymers. 
Its general applicabiliy has been brought out by 
one of us by an exhaustive examination of avail¬ 
able data of many more viscous liquids and 
glasses [28-30]. We have also extended the dis¬ 
covery of Moynihan and Macedo that ionic conduc¬ 
tivity relaxation is also well-described by the 
same empirical function to other ionic conduc¬ 
tors [29,31-34] inrluding concentrated aqueous 
lithium chloride solutions, lithium borate 
glasses, an Ag,I,AsO, glass and Naßalumina; and 
to electronic conductors [35] such as lightly- 
doped polyacetylene. The discovery of Moynihan 
and Macedo is important for anyone who is making 
an attempt to construct a theoretical model to 
explain the empirical relaxation function given 
by Eq. (11). The theoretical model would not be 
any good unless it leads to Eq. (11) naturally 
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for both fixed dipoles and for mobile charged 
carriers. 

As noted earlier, the electrical relaxation 
on complex impedance plane (Fig. 1(a)) is 
observed in terms of an arc of a semicircle with 
center below the real axis. Ravaine and Souquet 
111) have found that for a given glass system 
the centers of such arcs obtained at different 
temperatures fall on a straight line which 
passes through origin making an angle -a with 
the real axis. They analyze their data using 
the Cole-Cole function which gives 

Z* “ -0<a<1 (12) 
l + (iU)T) 

although the data show small but systematic 
departure from theory. The commonly used 

expressions (11), (12), or | (l+iu)t)'P]due to 
Cole -Davidson [26] are described by a single 
distribution parameter (a, ß, etc.). 

4. PHYSICAL MODELS 

The analytical expressions as mentioned in 
the previous section are empirical forms to 
describe experimental data, and do not give any 
physical insight of the relaxation mechanisms. 
In this section we examine the development of 
various physical models with particular refer¬ 
ence to electrical relaxation in glasses. Most 
of these models make use of the non-crystalline 
and random nature inherent to glasses. In the 
latter part of the section, recent approaches to 
the relaxation phenomena as being due to the 
very fundamental nature of condensed matter are 
discussed. 

(a) Distribution of Activation Energies Model 

Stevels [37) and Taylor [38] were the first 
to recognize that the lack of translational sym¬ 
metry in a glass could contribute to electrical 
polarization as an ion moves. In their model an 
ion moving in a glass must overcome energy bar¬ 
riers which are of varying heights due to the 
lack of periodicity. As can be seen in Fig. 1 
of Ref. 18, varying amounts of charges are accu¬ 
mulated against barriers of different heights. 
Thus, the system is polarized and electrical 
conductance and capacitance become frequency 
dependent. In comparison, in an ideal crystal 
all energy barriers are of the same height and 
the charge is uniformly shifted under the influ¬ 
ence of an electric field. Macedo et al. (18) 
have extended this concept of distribution of 
activation energies to the data on aluminosili- 
cate glasses using two log gaussian energy dis¬ 
tribution functions. In this regard, it is 
interesting to note that the distribution of 
activation enthalpy in glasses appears to be 
rather narrow [19,39). Boesch and Moynihan [19) 
from the temperature dependence of relaxation 
spectra of silicate glasses (Fig. 3) show that 
the distribution of electrical relaxation time 

log f CHz) 

Fig. 3. A replot of the data of M" vs log fre¬ 
quency for potass.urn trisilicate glass at seven 
different temperatures [19]. 

arises primarily from the distribution in pre¬ 
exponential factor containing attempt frequency, 
entropy, and structure related factors, rather 
than in activation enthalpy. 

(b) Random Orientation Model 

In analogy to crystals, Charles [40] postu¬ 
lated electrical conduction in glasses due to 
the migration of point defects. For example, in 
a sodium silicate glass several equivalent sites 
for sodium are assumed around each non-bridging 
oxygen. A sodium ion may then move in an inter¬ 
stitial fashion by jumping between empty sites. 
Because of random distribution of non-bridging 
oxygen ions, a sodium ion changes its orienta¬ 
tion randomly. Similar mechanisms have been 
proposed [41,42] assuming that there are only 
two stable sites for each moving ion. DC con¬ 
ductivity is then considered as the long range 
random walk of a charged ion and ac phenomena as 
due to the hopping of "bound" charges between 
nearest neighbor sites. This mechanism can be 
likened to dipolar relaxation except that an ion 
performs continuous reorientations causing dc 
conduction rather than only local jumps of a 
bound pair; the latter may also involve random 
orientations but at the local level and, is not 
considered in the model. The most useful conse¬ 
quence of the random orientation model is that 
it predicts the observed correlation [43] 

°dc = P A£' Wp (13) 

between dc conductivity (o. ) and the peak fre¬ 
quency for dielectric relaxation (utp). Here, p 

is the correlation parameter of the order of 
unity and Ae' is the difference between the 
static and high frequency dielectric constant. 
Otherwise, in this model, no attempt is made to 
explain the shape or other details of the relax¬ 
ation spectra. 
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(c) Microheterogencoiis Structure Model 

It was mentioned earlier that interfacial 
polarization in phase separated glasses gives 
rise to dielectric relaxation. This Maxwell- 
Wagner type polarization arises due to the dis¬ 
continuity in dielectric properties at the 
interface. Isard [44] proposed that similar 
heterogeneities, which exist in all the 
so-called homogeneous glasses although at a much 
finer microscopic scale, cause the observed 
electrical relaxation. He derived analytical 
expressions assuming a glass to consist of lay¬ 
ers of two different dielectric materials pri¬ 
marily differing in their electrical conduc¬ 
tivity. According to his estimates the layers 
of equal width but differing in conductivity by 
a factor of ten provide agreement between theory 
and experiment. 

,-. 
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Recently, Ravaine and co-workers [11,45,46] 
have considered heterogeneity of a glass in 
terms of fluctuations in ionic concentration. 
Since conductivity of a glass system strongly 
depends on alkali concentration (c), the mean 

square fluctuations in concentration, <(Ac) > 
are directly related to those in conductivity. 
Thus, the alkali density fluctuations give rise 
to a distribution of local conductivity; the 
effect on local dielectric constant is assumed 
to be neligible. Their analysis leads to a 
Cole-Cole type distribution function given in 
Eq. (12). The parameter a, which is the angle 
of depression of the arc on complex impedance 

2 
plane, is a measure of <(Ac) >. It is interest¬ 
ing to note [47] that the values of concentra¬ 
tion fluctuation from the complex impedance 
plots of alkali silicate glasses are of the same 
order as obtained from small angle neutron scat¬ 
tering measurements. However, a close examina¬ 
tion of the complex impedance data shows system¬ 
atic departure from the fit to an arc of a semi¬ 
circle, which is also not symmetric [12,47]. 
Abelard and Bouraard [48] have also analyzed the 
frequency dependence of electrical conductivity 
in terras of angle a using continuous time random 
walk formalism for non-interacting ions which 
move by hopping. It is noted [49] that the trap 
sites for an ion have complex structure presum¬ 
ably involving clusters. The jump distance and 
the residence time of an ion on its site are 
distributed due to the random structure of glass 
and are, therefore, treated as stochastic vari¬ 
ables. Essentially, the model assumes a dis¬ 
tribution of jump frequency. 

Tomandl [50] and Aitken and MacCrone [51] 
have proposed that the non-uniformity of conduc¬ 
tion path for the charge carriers in glass leads 
to a distribution of conductivity relaxation 
times. In this mechanism an ion moves along 
open path lengths which have a distribution cor¬ 
responding to the observed spectra. For exam¬ 
ple, Aitken and MacCrone assume a distribution 
of path lengths (chains) which is inversely pro¬ 
portional to the square of chain length. By 
adjusting the maximum chain length (a fitting 
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parameter) complicated dielectric loss spectra 
can be obtained. The basic jump step in these 
models is the same for all ions so that the 
activation energy for migration is unique. 

Boksay and Lengyel [52] have treated the 
heterogeneity of conduction path assuming that 
the conducting species in a glass are ’vacan¬ 
cies" which encounter "impasses" or obstructions 
while moving in an electric field; the distance 
between two impasses is not fixed but has a dis¬ 
tribution. At present these models have been 
tested for a very limited number of glasses and, 
therefore, need further verification. 

(d) Debye-Huckel Atmosphere Relaxation Model 

In contrast to the above-described models 
which depend on the structure of glass, the 
Debye Huckel atmosphere relaxation model empha¬ 
sizes the Coulomb interaction forces among vari¬ 
ous ions. In this case a glass sample is 
treated as consisting of negatively charged cen¬ 
ters (non-bridging oxygen ions) surrounded by a 
uniform distribution of positive (alkali) ions. 
In the absence of electric field the charge dis¬ 
tribution around a negative ion is spherical. 
However, when an electric field is applied the 
charge distribution is polarized as the center 
of gravity of positive and negative charges are 
shifted with respect to each other. Falken- 
hagen [53] considered the relaxation of this 
polarization of Debye-Huckel atmosphere for the 
case of dilute electrolyte solutions. Following 
the suggestiong by Owen [54], Tomozawa [5] has 
adapted the Debye-Falkenhagen theory for a glass 
arguing that it can be treated as a weak solid 
electrolyte. That is, even though the bulk con¬ 
centration of positive charge carriers in a 
glass may be very high, only a small fraction of 
these is assumed to be free to move. This con¬ 
cept is similar to that in ionic crystals where 
electrical conduction occurs due to the migra¬ 
tion of point defects (e.g. interstitials). 
Lesikar et al. [55] have examined the validity 
of Debye-Falkenhagen-Tomozawa (DFÏ) model for a 
borosilicate glass containing 150 ppm sodium and 
silicate glasses with higher alkali concentra¬ 
tions. They find that the model can be fitted 
only for very dilute alkali glasses for which 
approximately 8% of the total alkali concentra¬ 
tion is determined to be freely conducting at a 
given moment. However, in a typical glass, 
although Coulomb forces will contribute to the 
broadening of modulus spectra, the charge car¬ 
rier concentration is too large for DFT theory 
to be applicable. 

(e) Unified Models 

Intuitively an explanation of electrical 
relaxation in glasses based on its vitreous 
nature or presumably heterogeneous structure 
appears attractive, particularly when we note 
[47] that an M" vs log w plot for a quartz crys¬ 
tal shows nearly ideal Debye peak (Fig. 4). 
However, a departure from this ideal behavior in 
many other crystalline materials is sufficient 
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Fig. 4. M" vs log frequency plot for an elec¬ 
tronic grade synthetic quartz crystal at 309°C, 
H. .Jain, unpublished work (1979). 

to suggest that non-crystallinity alone may not 
explain electrical relaxation in glasses. Simi¬ 
larly, if one finds a depressed arc of a semi¬ 
circle on Z* plane for conduction in a single 
crystal, the concept of concentration fluctua¬ 
tions based on the heterogeneity of a glass 
becomes questionable. The basis of asking such 
questions, in fact, comes from the very similar 
experimental observations on a wide variety of 
materials which have structure and other proper¬ 
ties as diverse as glasses, polymers, electro¬ 
lytes, supercooled liquids, amorphous semicon¬ 
ductors, spin glasses, etc. [48]. In fact, Ngai 
in a recent review [29] shovg that the "univer¬ 
sal" behavior is not limited to dielectric 
relaxation only but is common to all kinds of 
relaxation phenomena including creep, internal 
friction, nuclear magnetic resonance, transient 
electronic transport, transient optical lumines¬ 
cence, volume and enthalpy relaxations, noise, 
spin relaxations, etc. The "universal" property 
of relaxations in condensed matter is predicted 
by a model which starts from a physical mecha¬ 
nism for time-dependent relaxation rate in con¬ 
densed matter. A review of the model can be 
found in two review articles by Rajagopal and 
Ngai [50], and by Rendell and Ngai [27] in this 
Volume. Here we merely point out the general 
nature of the model and the additional predic¬ 
tions it makes (called "second universality" in 
Refs. 29, 27 and 56). For conductivity relaxa¬ 
tions, the temperature dependence at tempera¬ 
tures sufficiently above the glass transition 
temperature [29,35,27], and the anomalous iso¬ 
tope mass dependence are beautiful examples of 
the relevance of the second universality rela¬ 
tion. The latter has been verified in several 
other relaxation phenomena and in materials that 
have nothing to do with conductivity relaxation. 
A theoretical model is acceptable oly if it pre¬ 
dicts both Eq. (11), called the first universal¬ 
ity, and the second universality relation. Also 

it must be general enough that it is ópplicable 
to diverse classes of materials and relaxation 
phenomena . 
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ELEMENTARY EXCITATIONS IN GLASSES 

•->] 

U. Strom 
Naval Research Laboratory 
Washington, D.C. 20375 

Abstract 

A review of experimental and theoretical evi¬ 
dence is presented which provides support for 
the concept of elementary excitations in 
glasses. Specifically, the nature of disper¬ 
sion and lifetimes are examined for transverse 
and longitudinal acoustic phonons, as well as 
optic phonons in glasses and other disordered 
solids. Disorder modes are defined as two- 
level tunneling states (TLS) as well as low 
energy "correlated states." The view of such 
modes as elementary excitations is less justi¬ 
fied on the basis energy and lifetime arguments 
than on their universal existence and their 
usefulness in the modelling of much experimen¬ 
tal data which cannot be understood in terms of 
Debye-like phonon excitations. 

Introduction 

Elementary excitations have been a most impor¬ 
tant concept in the study of crystalline 
solids. Pines (1) has defined elementary 
excitations as states which have well-defined 
energies, are long-lived, and interact weakly 
with one another. Phonons, polarons, and 
quasiparticles are some well-known examples of 
excitations in crystals which meet these cri¬ 
teria. Crystalline periodicity is often used 
for the theoretical derivation of many of the 
elementary excitations. Lattice periodicity 
leads to the definition of a Brillouin zone 
(BZ) which in turn defines the properties of 
electronic and lattice quasiparticles. There 
is no general analogue of a BZ for glasses. 
However, there is a question whether lattice 
periodicity is required for the existence of 
phonons. Zwanzig (2) has provided strong 
theoretical arguments that longitudinal and 
transverse phonons are elementary excitations 
in liquids and glasses. Recent molecular 
dynamics calculations for a glass structure by 
Grest, Nagel and Rahman (3) as well as calcula¬ 
tions by Hafner (4) and Heimendahl (5) have 
provided some support for the existence of 
longitudinal acoustic lattice excitations near 
"crystal" momenta which are appropriate for an 
"effective BZ." Such calculations represent an 
encouraging trend in modeling glassy elementary 
excitations. For the most part, however, the 
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approach for glasses has been to postulate the 
existence of excitations in order to explain 
certain experimental observations. For exam¬ 
ple, two-level tunneling states (TLS) were 
proposed by Anderson, Halperin and Varma (6), 
as well as Phillips (7), in order to account 
for the anomalous low temperature thermal 
properties of glasses. Small polarons have 
been invoked by Emin (8) in connection with the 
transport and optical properties of chalcogen 
(0, S, Se, Te) containing glasses. Anderson 
suggested that diamagnetic paired electronic 
states (9) (so-called "negative U centers") 
should be considered in order to understand the 
optical properties of glasses near their funda¬ 
mental band gap. Other postulated glassy 
excitations include lattice modes with frac¬ 
tional dimension (fractals) (10) and extreme 
low frequency "correlated states" which are 
thought to be connected with a wide range of 
low frequency (much less than optical phonon 
frequency) fluctuation and dissipation phenom¬ 
ena (11). This paper will examine a few pos¬ 
sible candidates for elementary excitations in 
insulating and semiconducting glasses as well 
as polymers. Two types of excitations will be 
considered: high frequency phonons and low 
frequency disorder modes. No attempt will be 
made to present an exhaustive summary but to 
highlight recent developments in each of these 
areas. For more detailed reviews of some of 
these topics the reader is referred to the 
articles on vibrational properties of glasses 
by Weaire and Taylor (12), on polarons by 
Emin (8), on TLS by Hunklinger and Schickfus 
(13) as well as other papers in the book edited 
by Phillips (13). The effects of disorder on 
the optical electronic and structural proper¬ 
ties of the disordered ionic conductor Naß 
Alumina have been recently reviewed by this 
author (14). 

Phonons 

Acoustic Phonons 

( 1 ) Low frequency acoustic phonons (ui/2rt < 
450 GHz)~ Acoustic phonons in glasses (15) 
have been shown to be well-defined elementary 
excitations at low temperatures, provided that 
the phonon wavelengths are large compared to 
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microscopie structural variations. Generally, 
longitudinal and transverse excitations can be 
generated in the glass (15). For example, the 
sound velocities measured in glassy SiC^ by 
means of ultrasonic techniques (<1 GHz) are 
5.85xl05cm/sec for longitudinal and 3.75xlOscm/ 
sec for transverse phonons. Brillouin scatter¬ 
ing measurements in SiCL by Love (16) and more 
detailed measurements by Vacher and Pelous (17) 
demonstrated the existence of thermal phonons 
between 1.7 and 300K as well-defined elementary 
excitations in the 10-30 GHz frequency range. 
The phonon velocities determined by Love (16) 
in SiO. were 5.85xl05cm/sec at 23.5 GHz and 
3.68xl0*cm/sec at 14.8 GHz for longitudinal and 
transverse excitations, respectively. These 
results are in good agreement with the lower 
frequency acoustic transport data. Very 
recently, Rothenfusser, Dietsche and Kinder 
(18) have performed transmission measurements 
of monochromatic phonons through a thin film of 
SiO„ which was grown on a Si crystal. The 
phonon source was a PbBi tunnel junction and 
the detector an A£ tunnel junction. The 
authors utilized the phonon focusing properties 
of Si in order to enhance the propagation of LA 
phonons along the [111] and TA phonons along 
the (100] directions of the Si substrate, 
respectively. The results obtained by Rothen¬ 
fusser et al. are reproduced in Fig. 1. The 
respective LA and TA sound velocities are 
5.84xlOscm/sec and 3.7xl0scm/sec, which are 

Fig. 1. Phonon dispersion relations for longi¬ 
tudinal and transverse acoustic modes in vitre¬ 
ous silica (from Ref. 18). 

essentially identical to the Brillouin scatter¬ 
ing and sound propagation measurements. The 
data demonstrate convincingly that acoustic 
phonons are well-defined elementary excitations 
in glassy SiCL up to frequencies of ~450 GHz 
with a linear dispersion upkv^ where k is 
phonon propagation constant hnd v^ the 
respective longitudinal or transveise’ sound 
velocity. 

Additional information about phoron energies 
can be obtained from Raman scattering and 
infrared absorption. Both techniques yield 
experimental quantities which are proportional 
to the product of a coupling coefficient and a 
density of vibrational states g(u)). Thus the 
infrared absorption a(u)) is written in general 
as 

a(w) = M(u))g(iu) (1) 

where M(ui) is a coupling coefficient. For 
Raman scattering it is customary tß define a 
reduced scattering function I (u))sl(u))w/ 
(l+n(iu)), where I(w) is the Raman scattering 
function (all tensor indices are omitted here 
for clarity) and n(u))=l/[expCftui/kT)-!], such 
that 

I^(iu)=c(w)g(u)) (2) 

where c(w) is the Raman coupling coefficient. 
In order to determine g(w) it is necessary to 
determine c(ui) and M(u>). It can be shown that 
for low frequencies, where the glass can be 
considered an elastic continuum (i.e. k=u)/v), 
the coupling coefficients become (19,20) 

M(w)«c(u))<%)2 (low w) (3) 

At sufficiently high frequencies, the excita¬ 
tion of vibrational states is spatially uncor¬ 
related, and in that limit certain models 
predict that (19,20) 

M(ui) « c(w) “ constant (high w) (4) 

The critical angular frequency w , that sepa¬ 
rates the two regions described By eqs. 3 and 
4, is determined by the condition for which the 
wavelength of the optically excited lattice 
modes is comparable to a physical correlation 
length £ in the glass. This relation is gener¬ 
ally written as (20) 

ut = V /£ (5) 
c D 

where v_ is an averaged (Debye) sound velocity. 
From nuclear magnetic resonance and other 
studies one has inferred that there exist 
regions in the glass which reflect remnants of 
crystalline order (21). The average dimension 
of such regions has been estimated to be on the 
order of 10-20 8. Substituting in eq. 5 £=10 A 
and v_=lxl05cm/se_c. it is found that 
~150 cmz (or 5cm *). Given the variations in 
v_ and £ it can be expected thatjthe transition 
region ranges from ~5 to ~50cm , depending on 
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the specific glass. This is actually borne out 
by experiments. 

Nemanich has measured the low frequency Raman 
spectra for vaxious chalcogenide glasses (22). 
The function IK(wJ. is found to be proportional 
to ut4 for u)<15cm . Similar conclusions were 
reached by Lannin (23) on the basis of low 
frequency Raman measurements in a-Si and by 
Winterling (24) for Rninsn rneä su renient s in 
vitreous silica. Combining the Raman results 
with eq. (3), i.e. c(u))~u>2, these experimental 
results provide further evidence that g(w)~iu , 
as expected for a Debye density of states, for 
w/2n <450 GHz. 

Evidence that the absorption coupling constant 
M(uO~u)2 in the correlated regime comes from 
infrared absorption measurements of the crys¬ 
talline, but disordered, ionic conductor Naß 
alumina. This solid exhibits all the anomalous 
low temperature thermal, dielectric and acous¬ 
tic proprties of glasses (14). Its optical 
properties are dominated by the crystalline 
host (A£203) lattice except for the low 

(ciOOcm’1) frequency region, where the vibra¬ 
tional modes of the cation-containing conduc¬ 
tion planes are observed. The 65cm mode 
shown in the absorption spectrum in Fig. 2 is 
due to local cation (Na ) motion. It is 
expected that the conduction plane disorder 
leads to a breakdown of selection rules which 
in turn allows the optical excitation of acous¬ 
tic phonons. The Debye modes in ß-alumina 
reflect those of the crystalline host and thys 
g(u))~ia2 with little dispersion below ~50cm 
The observed absorption in Fig. 2 is found to 

vary as a(ui)~w3’5 below -ÓOcm'1. This suggests 

that M(u))~tu\ with m~1.5. It is quite likely 
that m is effectively reduced due to tunneling 
mode contributions at the lowest frequencies. 
A value of m=2 is expected on the basis of the 
calculated correlation length 2. It is esti- 

WAVENUMBER (cm-1 I 

Fig. 2. Microwave and far infrared conduc¬ 
tivity (or absorption) of nonstoichiometric 
Naß-alumina (from Ref. 14). 

mated that £~5 8 for Naß alumina (14) which 
implies that the critical frequency fc below 

which M(u>)~u)2 is given by fc=(l/2n) 5x10 cm/ 

sec/5xl0"8cm = 1.bxlO^sec"1 (-SOcnf1), which 
is in agreement with the experimental results 
shown in Fig. 2. 

In Fig. 3 are shown absorption measurements (20) 
for a-As,S and a-SiO,. The dashed curves at 
low frequencies approach a quadratic frequency 

dependence. For u)/2rtc<15cm the absorption is 
temperature dependent. The data points at 
~lcni for temperatures of 10 and 25 K repre¬ 
sent an upper bound for a temperature indepen 
dent contribution to the absorption. Although 
the data are very limited, the results are 
nevertheless consistent with a quadratic 
coupling coefficient and a quadratic phonon 
density of states for frequencies below 450 
GHz. 

(2) High frequency "acoustic" phonons (u>/2n 
>450 GHzTT^ With increasing frequency the 
definition of "acoustic" phonons in glasses 
becomes less clear. There is evidence that 
high frequency "acoustic" excitations are 
strongly damped and that the density of states 
deviates from the w2 Debye form. On the other 
hand, there is considerable experimental evi¬ 
dence (for metallic glasses) and theoretical 
argumentation that longitudinal acoustic pho¬ 
nons are well-defined elementary excitations in 
glasses, even for phonon wave vectors which are 
comparable in magnitude to Brillouin zone wave 
vectors in crystals. The following discussion 
will first examine the implications of far 
infrared optical absorption measurements in 
semiconducting and insulating glasses over the 
15-lOOcm"1 frequency range and then focus on 
neutron scattering measurements in metallic 
glasses. 

For "high" frequencies (w/2nc >15cm ) the 
optical absorption a is essentially temperature 
independent but quadratically dependent on 
frequency (20). For a constant coupling coef¬ 
ficient (M(iu)=const. ) this observation leads 
directly to an ui2 phonon density of fcates ■ A 

WAVENUMBER ( cm-1) 

Fit 3. Reduced far infrared absorption for 
vitreous As0Se~ and Si0~ (from Ref. 20). 



simpi® model, in which disorder induced charge 
fluctuations couple the FIR radiation to acous¬ 
tic phonons, leads to the following expression 
for the absorption coefficient (25): 

K (1iu))2 
ci(u>) = - [l-l/(l+u)2/ut2)] (6) 

where Kq is a constant, n is the index of 
refraction, and w is the critical angular 
frequency as defined in eq. (5). This form of 
a(tu) was first derived by Vinogradov (26) and 
Schlömann (27) for defect induced optical 
absorption in crystals. This model was later 
applied by Stolen (28) and subsequently Strom 
and Taylor (25) to the FIR absorption in 
glasses. An w2 phonon density of states fol¬ 
lows from these results only if it is assumed 
that M(ui)=constant. If M(w) is frequency 
dependent, then the FIR absorption measurement 
leads to the relation 

M(ui)g(u))/w2 ~ constant (7) 

for u»/2nc between ~15 and 100cm , where g(u>) 
may deviate from a Debye-like in2 density of 
states. 

It has been recently suggested that the prob¬ 
lem of high frequency lattice excitations in 
glasses should be examined in terms of "fractal" 
theory (29). Within such a framework the ele¬ 
mentary lattice excitations are defined as 
"fractons" with a density of states given by 

N(iu)~u)^ \ where 3 is the so-called "spectral 
dimension" as defined by Alexander et al. (10). 
Within their model, the FIR results can be 
interpreted as a coupling coefficient 

M(w)~U)3 ^ (8) 

and a density of states 

g(w) ~ u,3 1 (9) 

where 3á3. Further experimental and theoreti¬ 
cal work is required in order to determine 
whether fractons, if they exist, can be con¬ 
sidered elementary excitations in glasses. 

Regardless of the physical interpretation of 

the modes observed near and above ~15cm 
there is circumstantial evidence that these 
modes are making the dominant contribution to 
the T3 term of the specific heat (c,). In 
Fig. 4 is shown a comparison between K and c,. 
There is apparently a good correlation between 
K and c^ which suggests a common contribution 
of low energy excitations to these diverse 
physical quantities. It is of interest to 
speculate on the relationship of the FIR 
absorption to the peak near ~10 K in the low 
temperature thermal conductivity observed in 
most glasses (30). It has been previously sug¬ 
gested that this peak was due to an increased 

Fig. 4. Comparison between leveed far infra¬ 
red optical absorption (K /k2) (where K = 
l/3(n2+2)) and coefficients °of cubic term in 
specific heat (c_) for various disordered 
solids. 

density of Debye phonons (31). However, such 
an increase in the density of acoustic modes 
would be reflected in a reduction of the sound 
velocity above ~300 GHz, which is contrary to 
the observations of Rothenfusser et al. (18). 
Consequently, it has been suggested (18) that 
phonon scattering from non-Debye-like vibra¬ 
tional modes are responsible for the thermal 
conductivity near T~10 K. 

Detailed fits to the thermal conductivity data, 
which are based on the scattering of thermal 
phonons by two-level tunneling systems (TLS), 
have been presented (30). The required density 
of TLS is found to be comparable to ohe number 
of charged defects that have been postulated to 
explain the FIR absorption. The magnitudes of 
K and c, are also related to the magnitude of 
the glass transition temperature T as shown in 
Figs. 5 and 6. These correlation^ may reflect 
no more than a modified version of the Linde- 
mann melting criterion for crystals, which 
states that a solid melts when the thermal 
motion of the atoms becomes a significant 
fraction of a lattice constant. For our 
purpose, Figs. 5 and 6 represent additional 
confirmation that Kq is proportional to c^. 

The above results point to interesting correla¬ 
tions between the thermal and optical proper¬ 
ties of glasses. However, they provide only 
indirect information about the energy-momentum 
relations of the high frequency vibrational 
excitations in these materials. Uubbard and 
Beeby (32) presented a theory o: collective 
motion in liquids. This theory was suggested 
to apply also to amorphous sol’ds. Their 
conclusions were qualitatively similar to the 
later work of Takeno and Goda (33) who con¬ 
sidered theoretically the problem of dispersion 
of elementary lattice excitations in disordered 
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solids. Takeno and Goda applied their theory 
to calculate the phonon eigenfrequencies of a 
one-dimensional model system with local devia¬ 
tions from the lattice spacing as a disorder 
parameter. Their most significant finding for 
a disordered solid was a phonon-roton-like dis¬ 
persion curve with a deep minimum near k=2n/a, 
where "a" was the average atomic spacing. A 
well defined peak appears near k=n/a, as would 
be expected for the BZ boundary of a crystal. 

Later studies were aimed at understanding the 
vibrational properties of amorphous metals. 
Rehr and Alben (34) calculated the vibrational 
and electronic properties of a glass which was 
modelled as a 500 atom unit cell model, as had 
previously been used by Rahman et al. (35). 
They deduced a neutron scattering function 
S(Q,u)) where Q and u) are respectively propor¬ 
tional to the momentum transfer and energy loss 
of the neutrons, which exhibits the same roton- 
like behavior found by Takeno and Goda, but 
also includes additional lifetime information 
in the width of S(Q,u>). 

Subsequently, von Heimendahl (5) used an 
improved "relaxed model structure" with peri¬ 
odic boundary conditions and realistic atomic 
pair potentials in order to calculate the 
dynamical structure factor S(k,tu) for a two- 
component metallic glass. From S(k,u)) he 
determined the dispersion relations for longi¬ 
tudinal and transverse waves, as shown in 
Fig. 7. These results clearly showed that 
longitudinal phonons have a well-defined k 
versus m relation extending to an effective BZ 
edge, whereas transverse waves are increasingly 
less well-defined with higher frequencies with 
no evidence for "repeated zone" behavior. 

A further advance in this area is represented 
by the work of Hafner (4). His most recent 

Fig. 6. Comparison between coefficient of 
cubic term in specific heat (c.) and glass 
transition temperature T for various dis¬ 
ordered solids. “ 

Fig. 7. Theoretical dispersion relation for a 
two-component metallic glass (Mg^Zn^Q) (from 

Ref. 5). Circles - LA, squares - TA. 
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calculations of the vibrational properties of 
the metallic glass Ca^Mg^g lead him to the 

following conclusions: (a) Longitudinal col¬ 
lective excitations are well-defined up to 
momenta k~2Q , whose Q is the wavevector 

P P 
corresponding to the first peak in the struc¬ 
ture factor. (b) The transverse excitations 
are well-defined for small k only-already for 
k ~ Q /2, the transverse phonon spectrum is 
identical with the total density of vibrational 
states (VDOS) (i.e. there are no more momentum 
conserving selection rules). The softening of 
the transverse modes is thought to be due to 
the effective relaxation of shear strains by 
internal displacements. Furthermore, long 
wavelength transverse modes are coupled to 
short wavelength collective excitations with 
k~Q via a "diffuse Unklapp" scattering mecha¬ 
nism (36). (c) Additional low and high energy 
modes appearing in the calculated total VDOS 
are possibly related to localized "defect" 
regions. It may be interesting to speculate on 
the relationship of some of these conclusions 
to the anomalous low temperature thermal, 
dielectric and acoustic properties of solids. 
In particular, there may be a close association 
between the softening of the transverse modes 
and the appearance of the postulated TLS. 

Some of the conclusions contained in (a) and 
(b) of the above discussion were also obtained 
on the basis of the molecular dynamics calcula¬ 
tions of Crest, Nagel and Rahman (3), who cal¬ 
culated the normal vibrational modes of a 
"Lennard-Jones glass." They found dispersion 
relations which were very much as those found 
earlier by Heimendahl. Most recently, these 
authors examined the effect of varying the 
degree of disorder on the calculated scattering 
functions (37). 

The conclusions arrived by these various theo¬ 
retical studies are well borne out by neutron 
scattering experiments on metallic glasses (38, 
39). There have also been a limited number of 
experimental neutron scattering experiments 
performed on semiconducting and insulating 
glasses (40-42) which exhibit some of the same 
features which were observed for metallic 
glasses. This suggests that the various con¬ 
clusions drawn for the nature of high frequency 
lattice excitations in metallic glasses are 
likely to be applicable to conventional glass 
systems. 

(3) Phonon Lifetimes. In order for phonons to 
be defined as elementary excitations they must 
be sufficiently long-lived. In general, this 
requires that the inverse of the lifetime of a 
given state must be small compared to the 
energy of the state. This discussion will 
focus on the lifetimes of acoustic modes. 
Information about acoustic phonon lifetimes (in 
glasses) is derived primarily from coherent 
phonon transport (18,43), Brillouin scattering 
(16,17) and thermal conductivity measurements 
(44). In Fig. 8 is shown a compendium of 

phonon lifetime measurements for vitreous 
silica obtained from several sources. The 
results are expressed as the phonon mean free 
path A versus phonon frequency. Also shown 
in Fig. 8 are the phonon wavelengths reproduced 
from Fig. 1. Details about how A is obtained 
from thermal conductivity have been discussed 
by Zaitlin and Anderson (44). The region where 
A ~ lAxJ is ascribed to phonon scattering from 
TLS (44). A rapid drop in A is apparent above 
~250 GHz. If this drop is expressed as 

A(w)~Ura then the best fits to the thermal 
conductivity are obtained for m > 4. On the 
other hand, the coherent phonon transport data 
by Dietsche and Kinder (43) suggest that m~3, 
at least between 100 and 300 GHz. The curve 
drawn in Fig. 8 represents a compromise to 
accommodate tuese diverse predictions. A 
qualitatively similar curve for A(u>) was 
obtained by Kelham and Rosenberg (45) in order 
to fit thermal conductivity data for epoxy 
resins. These data were used by Alexander et 
al. (10) as evidence for the validity of the 
fractal concept in the far infrared absorption 
of glasses and polymers. 

Fig. 8. Phonon mean free path A obtained from 
thermal conductivity (Ref. 44) and phonon 
transport (Ref. 43). Phonon wavelength A 
obtained from phonon transport (Ref. 18), 
dotted lines extrapolate to low frequency sound 
velocities (Refs. 16, 17). 
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For f >450 GHz the phonon m.f.p. is estimated 
to be on the order of a few interatomic spac- 
ings (44). The inhibited phonon transport 
above f -450 GHz is contrasted by the far 
infraredCabsorption, which was interpreted in 
terms of the disorder induced absorption to 
acoustic modes (20). Strong phonon damping 
occurs for phonon wavelengths ~100 A. The 
reason for this phenomenon has been variously 
interpreted as due to phonon scattering from 
structural defects or from TLS. It is inter¬ 
esting that molecular dynamics calculations for 
a model glass yield an intermediate frequency 
range in which acoustic phonons are severely 
damped (3). At higher frequencies LA phonons 
are well-defined elementary excitations, 
whereas TA phonons are strongly damped (3-5). 
Thus, it is plausible that the far infrared 
absorption in glasses observed above ~450 GHz 
is primarily due to the excitation of LA pho¬ 
nons which are sufficiently long lived to exist 
for several oscillatory periods, but which do 
not contribute significantly to long-range 
thermal transport. 

OpticPhonons 

Optic phonons in glasses have been studied 
extensively by means of Raman and infrared 
spectroscopy. The interpretation of these 
spectra in terms of the microscopic glass 
structure is very much a topic of current 
interest. Only very recently has there been an 
attempt to understand to what extent crystal¬ 
line-like momentum conservation rules play a 
role in the interpretation of the spectra. 

In their classic work concerning Raman scatter¬ 
ing in glasses, Shuker and Gammon (46) proposed 
that the coherence length of the normal vibra¬ 
tional modes of the glass is very much shorter 
than the wavelength of light used in the Raman 
scattering experiment (~5000 A). This assump¬ 
tion was shown to lead to a breakdown of momen¬ 
tum conservation so that nearly all the normal 
vibrational modes contribute to the Raman 
scattering lineshape. The Raman spectra, in 
fact, are expected to reflect closely the 
vibrational density of states. Recent in-depth 
comparisons of neutron scattering, Raman scat¬ 
tering and the infrared reflectivity of glasses 
and their crystalline modifications have veri¬ 
fied the close relationship of the VDOS to the 
HH polarized Raman spectra (47). These IR and 
Raman spectra also supported previous reports 
of L0-T0 mode splittings (48) which are thought 
to be due to the effects of long range cou- 
lombic forces. 

However, there is some recent evidence that 
models based on a complete breakdown of crys¬ 
talline selection rules are incomplete. Hyper 
Raman (2 photon) scattering measurements in 
fused quartz convincingly show that the spatial 
coherence length of optical vibrational modes 
can be as large as ~1 pm (49). This conclusion 
was based on the observation of polariton 
effects (i.e. sensitive dependence of the 

coupled phonon-photon mode on Raman scattering 
angle) in fused quartz (49). From the angular 
dependence of the polariton frequency it is 
possible to derive an w(k) relation for the 
polariton. The measured polariton frequency 
approaches the TO phonon frequency for large k 
and the photon dispersion curve for lov^k.^The 
values of measured k range from 6x10 cm to 
20x10 cm , which translate into spatial coher¬ 
ence lengths of 1.6 pm and 500 X, respectively. 
The apparent contrasting information that is 
obtained from the Raman and hyper Raman scat¬ 
tering data has lead Denisov et al. (49) to 
propose a susceptibility which includes 
crystal-like (subject to selection rules) and 
disordered contributions. This model does not 
envision microcrystallinity but may be related 
to models which are based on "intermediate 
range order" in glasses. Clearly, any compre¬ 
hensive model for the vibrationl properties of 
glasses must address the two most important 
experimental findings: (1) The nearly identi¬ 
cal VDOS obtained by neutron scattering for 
crystal and glass and, (2) the existence of 
polar modes with well-defined dispersion rela¬ 
tions in glasses. 

Disorder Modes 

Introduction 

By "disorder modes" are loosely meant those 
lattice excitations which have energies that 
art lower than typical phonon energies and 
which cannot be described in terms of classical 
phonon excitations. These modes have not been 
derived in terms of structural models for 
glasses. Instead, their existence has been 
postulated. The associated mathematical models 
based on the disorder modes have shown to be 
extremely useful for the description of diverse 
low frequency properties of disordered solids. 

The most celebrated disorder mode is the two- 
level tunneling system (TLS) proposed by Ander¬ 
son, Halperin and Varma (6), and Phillips (7). 
As will be discussed in detail, such modes are 
generally strongly coupled to the lattice, but 
nevertheless have well defined energies and 
long lifetimes (at sufficiently low tempera¬ 
tures) to be considered as elementary excita¬ 
tions. However, TLS provide only a partial 
description of the wide range of anomalous 
(non-Debye-like) low frequency fluctuation- 
dissipation phenomena observed in glasses, 
polymers, amorphous metals, etc. In the fol¬ 
lowing section are summarized the experimental 
results which have been interpreted in terms of 
TLS, and in th» subsequent section are 
described those experimental observations which 
can be understood in terms of other postulated 
very low frequency excitations. 

Two Level Systems 

A listing of properties which have been inter¬ 
preted in terms of TLS are presented in the 
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following set of figures. Wherever possible 
the disordered crystalline solid Naß alumina 
has been used as a model to illustrate a par¬ 
ticular phenomenon. This material was chosen 
in no small part because of personal bias, but 
also because Naß alumina exhibits most of the 
low frequency and low temperature properties 
observed in glasses (14), and often in a more 
spectacular fashion. However, this does not 
imply that the structural basis for disorder 
modes in Naß alumina is identical or even 
related to that in glasses such as vitreous 
quartz. Instead, the disorder induced anoma¬ 
lous properties of this solid can serve as a 
test case for the mathematical models which 
have been proposed to describe conventional 
glasses. The exhibited properties can be 
divided into thermal, dielectric, acoustic and 
resonance properties. 

The low temperature thermal properties for 
Naß alumina are shown in Figs. 9 and 10. The 
specific heat (50,51) (Fig. 9) is seen to vary 
approximately linear in temperature. This is 
typical for most glasses (52). The "linear" 
contribution to the specific can be expressed 

as c. ~ aT01, where a = 1.18 for Naß alumina. 
For vitreous silica, Lasjaunias et al. (53) 
found a = 1.3. For a constant density of 
states of TLS the specific heat is epected to 
be exactly proportional to T, i.e. a = 1. The 
observation of a > 1 has been interpreted as 
evidence for the existence of a low energy gap 
in the TLS tensity of states (53). Figure 9 
also shows T contributions above K which 
are significantly enhanced over what is 
expected on the basis of Debye theory (51). 
This anomalous observation is not well under- 

3 
stood. Interpretation of the T excess spe¬ 
cific heat in terms of an increased phonon 
density of states is not borne out by the lack 
of phonon dispersion (18), as shown in Fig. 1. 
The added contribution of TLS or other local¬ 
ized excitations has been considered (18,44), 
but then a satisfactory agreement with time 
dependent specific heat studies (54) must be 
reached. Similar arguments can be applied to 
the plateau region (near 10 K) in the thermal 
conductivity as shown in Fig. 10. The solid 
lines are theoretical fits which assume that 
the low temperature thermal transport is domi¬ 
nated by phonon-TLS scattering (55). 

The dielectric properties, which have been 
interpreted in terms of TLS, are shown in 
Figs. 11-14. The most striking feature of the 
loss data (56,14) in Fig. 11 is the minimum in 
the conductivity observed near 5 K and the 
subsequent increasing dielectric loss with 
decreasing temperature. A comparable observa¬ 
tion of acoustic loss in a-Si02 provided the 
first evidence for the existence of two-level 
excitations in glasses (57,58). The loss at 
the lowest temperatures is due to the resonant 
excitation of TLS, whereas the loss above ~5 K 
is due to the so-called "relaxation" absorption 
in which the applied electric field couples via 

T (K) 
Fig. 9. Specific heat of ß-alumina (from Ref. 
50). Data above 1 K from Ref. 51. 

T(K ) 

Fig. 10. Thermal conductivity of ß-alumina 
(from Ref. 55). Symbols as in Fig. 9. 

a strain field to perturb the level spacing of 
a TLS and the perturbed TLS return to thermal 
equilibrium via coupling to phonons (59). At 
T > 50 K in Fig. 11 dielectric loss mechanisms 
which are not related to TLS begin to dominate 
(14). The solid curve near the data points is 
a theoretical fit based on the tunneling model 
and an empirical expression for the highest 
temperature loss data: 

or(ui,T) = a (TLS) + BTP (10) 

where ß~2.1 and where a(TLS) is as given in 
Ref. 14. The relatively good fit to the data 
is indicative of the power of the TLS model 
description. In fact, the small deviations 
between theory and experiment near 5 and 20K 
can be accounted for by higher order phonon-TLS 
relaxation processes (56,60). These higher 
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Fig. lí. Microwave dielectric loss of Na 
ß-alumina (from Refs. 56 and 14). 

order processes have a particularly strong 
effect on the occurrence of the minimum in the 
temperature variation of the real part of the 
dielectric constant as shown in Figs. 12 and 
13. The best fit of the low frequency data 
(61) in Fig. 13 predicts a minimum in At/e at 
11.5 GHz at a much higher temperature than is 
actually observed (56) in Fig. 12. This appar¬ 
ent discrepancy in the TLS model is qualita¬ 
tively accounted for by a higher order one- 
phonon Raman process (56,60). 

At sufficiently low temperatures the phase 
memory times of TLS become longer than the 
duration of an applied rf field pulse. As a 
consequence, coherent pulse echo phenomena can 
be observed. Coherent acoustic echo phenomena 
in glasses have been extensively investigated 
by Graebner and Golding (62) as well as Arnold 
et al. (63). Dielectric echoes have been 
observed for glasses (64) and Naß alumina (65). 
The results in Fig. 14 exhibit the variation of 
the two-pulse echo magnitude as a function of 
time ano temperature. The solid lines do not 
represent model fits. However, the data can 
be understood qualitatively in terms of the 
effects of spectral diffusion (65). For the 
present discussion, the observation of coherent 
echo phenomena underscores the validity of the 
TLS model with phase memory times (T£) on the 
order of psec and longitudinal relaxation times 
(T.) on the order of msec at temperatures in 
the mK regime. 

The low temperature acoustic properties exhibit 
generally temperature and frequency dependences 
which are analogous to the low temperature 
dielectric properties. The acoustic absorption 
measurements by Doussineau et al. (60) for Naß- 

Fig. 12. Temperature dependence of variation of 
dielectric constant at 11.5 GHz (from Ref. 56). 

0.01 0.1 1.0 10 
T(K) 

Fig. 13. Low frequency variation of dielectric 
constant of Naß-alumina (from Ref.^1). Lower 
solid curve: extrapolation to 10* Hz; dashed 
curve: data from Fig. 12. 
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Fig. 14. Spontaneous echo amplitude as func¬ 
tion of pulse separation T,2 and temperature. 
Curves are displaced vertically for clarity 
(from Ref. 65). 

alumina shown in Fig. 15 are particularly 
interesting since they display a broad tempera¬ 
ture independent plateau which is predicted by 
the TLS model for the case of a broad distribu¬ 
tion of TLS relaxation times. Such a distribu¬ 
tion is expected on the basis of a wide varia¬ 
tion of microscopic tunneling mode parameters. 
This distribution in turn is expected to lead 
to a time-dependent specific heat which has 
been observed for glasses (54) and for Naß- 
alumina (66). Doussineau et al. have been able 

E 
0 
m 
•o 

1 OF 

5 

2 

I 

5 0.5 

H 0.2 

5 0, 

0.05 

a ® ••• «•**•••• • 

A 

& 

A* 
A.* 

LONGITUD. 
kic 

A 1950 MHz 
• 1110 MHz 
• 720 MHz 

-I_L. 

10 20 50 100 
T(K) 

Fig. 15. Relaxation absorption of high fre¬ 
quency ultra sound of Naß-alumina (from 
Ref. 60). 

to fit the data in Fig. 15 accurately with tie 
TLS model and the assumption of a higher order 
Raman-TLS relaxation process which becomes 
important for higher temperatures. 

Nuclear or electronic spins can relax by trans¬ 
ferring their energy to nearby TLS via 0» ^ of 
various coupling mechanisms (67,68). The 
observation is that for many glasses the tem¬ 
perature dependence of the sp_in relaxation rate 
below T~100 K is given by T. ~Tnl where l£m£2. 
In Fig. 16 this behavior is illustrated in 
terms of the data for “Na and L M NMR in the 
MHz regime for Naß-alumina (69,70). The slope 
of the straight line is given by m=1.2. Again, 
although a detailed theoretical understanding 
is lacking, it is generally agreed that TLS are 
responsible for the observed anomalous spin 
relaxation rates. 

In summary, there exists a large body of low 
temperature thermal, dielectric, acoustic and 
resonance data for glasses which cannot be 
interpreted in terms of the vibrational elemen¬ 
tary excitations of a Debye solid. These 
varied anomalous properties, illustrated for 
the disordered solid Naß-alumina, can be under¬ 
stood if a new type of excitation is intro¬ 
duced. This excitation represents the ability 
of the glass to exist in various energetically 
nearly equivalent configurational states. 
These are chosen to be modelled according to 
the double well potential shown in Fig. 17. At 
low temperatures the solid can change from one 
configuration to another only by tunneling. 
Even for two equal symmetric wells (A=0) the 
degenerate energy levels are split by the 
wavefunction overlap energy A . For harmonic 
oscillator wells separated by potential barrier 

V and distance d it is found that A =hfle 
2 k 0 

where A=d(2mV/fi ) with m the mass of the mass 
of the atom or group of atoms. For assymetric 
wells (A^O) the energy levels are further split 
such that energy splitting between the two 
normal modes of the system is given by 

E = (A2 + A2)^ (11) 
0 

Much of the experimental evidence points to the 
conclusion that the density of states n(E) is 
very slowly varying, in agreement with the 
initial proposition of the model. In fact, 
excellent agreement with experiment is obtained 
with the assumption that n(E)=constant. How¬ 
ever, cutoffs have been sugges'.ed for both 
small and large E. A low energy limit has been 
related to the plausible existence of a maximum 
barrier height V. Typical proposals place a 

-3 
minimum energy E . at ~10 K in equivalent 
temperature units. A high energy cutoff is 
proposed to be the glass transition temperature 
T . The coupling of these modes to the lattice 
i§ generally strong for glasses (deformation 
potential ~l-2 eV) but is relativly weak for 
Naß-alumina (deformation potential ~0.3 eV). 
Nevertheless, at low temperatures there is 
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Fig. 17. Configuration diagram for tunneling 
mode (TLS). 

generally a subset of modes which have energies 
E/fi which are large compared to relaxation 

rates l’1 and T"1 and hence can be defined as 
elementary excitations of the system. 

The TLS excitations discussed in this section 
have,characteristic energies in the range from 
~10'3K to T (i.e. ~100-1000K). These thermal 
energies ar* large compared to Hu) for u>/2n< 

lO^sec”1. Can disorder modes exist with ener¬ 
gies much less than 10 K? Such small split¬ 
tings might be the consequence of the tunnel¬ 
ing motion of configurational states which con¬ 
sist of large groups of atoms. It has been 
proposed that the existence of very low energy 

i<10"3K) modes is consistent with the observa- 
9 -i 

tion of various low frequency (<10 sec ) 
relaxation phenomena. These will be discussed 
briefly in the next section. 

Correlated States 

There exist a number of experimental observa¬ 
tions which are not explained in terms of the 
tunneling motion of "standard" TLS. These 
observations include: (i) A low temperature 
conductivity which is approximately linear in 
frequency. This type of conductivity is shown 
for Na ß-alumina in Fig. 18 for T<0.05 K. Such 
a behavior is also observed in other dielectric 

solids, (ii) At "high" frequencies (~10 sec ) 
the conductivity reaches a frequency indegen- 
dent plateau. This is shown for Naß-alumina in 
FlgT 19. (iii) At higher temperatures, many 
glasses exhibit dielectric and mechanical loss 
peaks which cannot be fitted by Debye theory 
with a single relaxation rate. Again for Naß- 
alumina, the dielectric loss peak (expressed 
as M"slm(l/e))is shown in Fig. 20, the mechani¬ 
cal loss is shown in Fig. 21, and the Tj mini¬ 

mum vs 1/T for 23Na NMR is shown in Fig. 22. 
Qualitatively, these results reflect the ther¬ 
mally activated motion of Na ions over local 
potential barriers. For a single barrier 
height V and relaxation time x=toexp(V/kT), the 
response to an oscillating electric field is 
described by the susceptibility x~l/(l+iu,T) 
which leads to a symmetric peak for x" at 
u> =1/T. The susceptibility can also be 
expressed as the Fourier transform of the 
response function f (t)=exp(-tu t). It has been 
known for some time that few*dielectric solids 
exhibit a dielectric response which can be 
described in terms of the exp(-u) t) response 
function (71). Instead an empirital function 

f(t) = t-n U2) 

which is known as the Curie-von Schweidler 
law (72,73), provides a better fit to the 
experimental results. Ngai and coworkers have 
made theoretical arguments which lead to the 

derivation of the t n response function. Their 
proposal rests on the assumption that there 
exist certain low energy excitations which 
interact with the particular relaxing species 
(such as hopping ions) and thereby alter the 
measured dielectric response from the non¬ 
interacting Debye behavior. The proposed low 
energy excitations are thought to arise from 
the correlated motion of large numbers of 
atoms, hence the name correlated states. The 
parameter 0Sn<l appearing in eq. (12) deter¬ 
mines the shape of the lose peak. The model is 
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Fig. 18. Conduction plane conductivity of Naß- 

aluminajo 10 Hz data (actual frequency 
1.15x10 Hz) from Ref. 56. Low frequency data: 
solid lines from Ref. 61; symbols from Ref. 1U. 

based on the following points (11): (a) the 
density of energy level spacings of the corre¬ 
lated states is proportional to their energy 
i.e. N(E)~E, as E->0; (b) ti interaction 
between correlated states and dipolar species 
(e.g. hopping ion) ia "infrared divergent," 
i.e. the relation V N(E)=nE holds, where V 
is a sudden potential associated with the 
relaxing species. These assumptions lead to a 
condition where the number of excitations 
diverges logarithmically as E+0, but that all 
observables are finite. The postulated corre¬ 
lated states are characterized by n and the 
energy E , which is the upper limit for which 
the relation n(E)~E holds. A best fit to the 
dielectric loss data for Naß-alumina such as in 

Fig. 19 yields n?0.6 and E ~10"3K (in thermal 

Fig. 19. Ionic conductivity of Naß-alumina as a 

nîî^10n 0f fre<Juency and temperature. Data at 
0.03K from Ref. 61. Data at 77K from Ref. 74 
Data at 200 and 300K from Ref. 14. 

e ee 

0 06 

0 04 
M- 

0 02 

Na 0-0 I urn i na CT-121 K> 

Almond & W«st 

So I i d Cur V. 

n>0 625 

f (Hz) 

Ü¿8; 3°\ imaginary part of electric modulus -J / 1 ^ - mo - iV. IIIUUU1US 

-im(.e*7 for Naß-alumina as a function of fre¬ 
quency for T=121K. Crosses - data (ref 76) 
Solid curves - theoretical fit (see ref.’ 77).’ 

units). This implies that the spectrum of cor- 
related states can be considered as the low --—--- — XVIcru aa LUC IO 

energy complement to the higher eïï^TfTS 
spectrum. The power of the model is well 
illustrated by the model fits in Figs. 20-22 
for three quite different relaxation experi¬ 
ments. Nearly identical values for n provide 
surprisingly good fits to the data. Further 
details concerning these fits are discussed in 
Ref. 14. 
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Fig. 21. Internai friction versus temperature 
for Naß-alumina. Squares - data (ref. 78); 
solid curve - theory (ref. 79). 

Fig. 22. Log Tj versus for 23Na NMR in 

Naß-alumina. Solid line - theory (ref. 79) 

Dissado and Hill (75) have also examined the 
problem of non-Debye-1 ike relaxation behavior. 
They have proposed a similar physical model to 
that discussed above for correlated states 
which envisions thermal activation as well as 
tunneling processes. In contrast to the work 
of Ngai et al., their model proposed two expo¬ 
nents which characterize the relaxation 
response for times which are short and long, 
respectively, compared to the relaxation peak 

position t~uj 
-1 

Although the arguments for low energy corre¬ 
lated states are convincing, proof of their 
existence is difficult, particularly because 
their energies cannot be easily measured 
directly. Direct resonant excitation (fiu)>kT) 
is improbable because_^the highest estimated 
energy splittings (~10 K) are smaller than the 
typically lowest available experimental temper¬ 
atures. In addition, the roture of the inter¬ 
action between these states and the rapid 
dipolar transitions is not well understood. 
Finally, the correlated states are expected to 
involve the motion of large numbers of atoms. 
This requ’res considerable stretching of the 
concept of a single particle elementary excita¬ 
tion. The "proof" of the existence of corre¬ 
lated states must remain in their role in 
defining the apparent universal low frequency 
response of many diverse disordered materials. 

Conclusion 

A conr .derable body of experimental and theo¬ 
retical work points to the existence of well- 
defined phonon excitations in glasses. In par¬ 
ticular, LA phonons appear to retain much of 
the characteristic dispersion expected for 
periodic structures, including the existence oí 
a pseudo "Brillouin Zone." These conclusions 
support the interpretation of the ~ut2 far 
infra.ed absorption observed in glasses and 
polymers as due to disorder induced optical 
coupling to acoustic excitations. The sud¬ 
den drop of the phonon mean free path above 
~450 GHz, inferred from thermal conductivity, 
should then be interpreted in terms of struc¬ 
tural units in the glass which have dimensions 
considerably larger than a single molecular 
unit. Longitudinal acoustic phonons with 
shorter wavelengths are possibly well-defined 
but would not contribute to heat transport. In 
contrast to LA phonons, TA phonons do not 
exhibit crystalline dispersion and are increas¬ 
ingly damped with decreasing wavelength. 

The existence of disorder modes had been 
invoked in order to concep.ualize well- 
documented mathematical descriptions of glass 
properties. The low temperature properties of 
glasses are extremely well-described by the 
pseudo-spin ^ formalism (see the paper by 
S. Hunklinger (81) for recent developments), 
whereas higher temperature fluctuation- 
dissipation phenomena are well-described in 
terms of the t n Curie von Schweidler law. 
However, the interpretation of tunneling and 
correlated states as elementary excitations of 
a glass is made difficult by the lack of struc¬ 
tural models. A possible a, proach toward such 
models is to explore the connection between the 
inability of a glass to support high frequency 
TA shear waves and the existence of low energy 
disorder modes. 
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FIRST PRINCIPLES MICROSCOPIC UNDERSTANDING OF GLASSES AND GLASS TRANSITIONS 

Siu-Tat Chui 
Bartol Research Foundation of The Franklin Institute 

University of Delaware 
Newark, Delaware 19716 

Abstract 

This paper is an attempt at a first principles 
quantitative understanding of the physical prop¬ 
erties of glasses and the glass transition. The 
basic philosophy is to describe glasses with 
respect to a reference system, the fluid before 
the quench. A specific example for a very 
simple case is worked out. Reasonable agree¬ 
ment with results on Lennard-Jones computer 
glasses is found. It is hoped that this examp e 
can be generalized to metallic glasses. In t^ie 
example discussed, the effect of quench rate has 
not been treated quantitatively. These anc many 
other open questions beg for further explora¬ 

tion. 

I. Introduction 

The physics of glasses is one of the fundamental 
problems in condensed-matter physics which 
remain relatively unexplored. A major obstacle 
to a clear picture of glasses is the lack of an 
analytical formulation of the structure of the 
glassy state and the glass transition. 

Glasses can be prepared in many different ways. 
A common view is to rapidly quench a fluid to 
below its melting temperature. As a fluid is 
quenched, it is generally thought that a kind 
of "jamming" takes place as a range of tempera¬ 
ture, the glass transition temperature, is 
approached. 

The particles in the glassy phase in general has 
not moved very far away from 
position in the fluid phase right before the 
quench. The philosophy of our approach is to 
regard the fluid phase as a reference system 
and to describe the glassy state with respect 
to this reference system. Since the displace¬ 
ments after the quench is small, the de®cr]P‘. 
tion in terms of the reference system should be 

simpler. 

This philosophy is reminiscent to the Van der 
Walls idea of the fluid, which describes a 
general fluid with respect to a reference sys¬ 
tem the hard core fluid. Recent perturbation 
theories of fluid exploiting this technique has 

led to a simple and successful quantitative 
description of simple fluids.1 

Glasses in general can be made from many 
different molecules. The program that we want 
to follow is quite complicated. In order to 
qet some understanding of what is involved, we 
want to test it on the simplest possible system. 

A more detailed understanding of the nature of 
glasses and the glass transition has motivated 
much recent computer work on those glasses ob¬ 
tained by quenching particles interacting 
through simple model potentials. This includes 
the works of Alder and Wainwright,¿ Rahman, 
Mandel, and McTague,3 stillinger and Weber,“ 
Wendt and Abraham,5 Angel, Clarke and 
Woodcock,® Raveche,7 Hudson and Anderson, 
Nagel, Rahman, and Grest,9 and Steinhardt, 
Nelson, and Ronchetti.10 It is generally ob¬ 
served that, within the time scale of the 
simulation, a metastable phase is obtained if 
the high temperature fluid phase is quenched 
sufficiently rapidly to a low enough tempera¬ 

ture. 

Many of the properties of this glassy state 
have now been computed, Including the pair cor¬ 
relation function, the diffusion constant, and 
phonon structure factors. While experimental 
systems are in general more complicated than 
this, it is hoped that a detailed understanding 
of such simple systems will provide insight 
into the technologically more important real 

glasses. 

There have been other attempts at understanding 
glasses.2-1® Notable among these is.t^e free 
volume theory of Turnbull and Cohen and Cohen 
and Grest,14 theories of topological defects 
due to Rivier and Duffy,1® by Klaman, Sadoc and 
Mosseri,1® and by Phillips,1® and a theory by 
Vitek, Egami, and coworkers.10 These ap¬ 
proaches are complementary to ours. 

In the next section, we will first recapitulate 
the essential idea of our approach. Next, 
possible avenues and methods of further 
research will be discussed. 
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II. Basic ideas and possible avenues 
of further research 

Most of our ideas are spelled out in two recent 
papers.11 Atomic movements in fluids usually 
exhibit two time scales. There is a short time 
scale on the order of 10'12 sec that describes 
motion on the scale of atomic distances, and 
there is the much longer time scale of a dif¬ 
fusive "collective" motion over much longer 
distances. After a fluid is quenched from a 
high temperature, there is an initial relaxation 
over atomic-scale distances. If a glass is 
formed, then no further motion would take place 
It is the properties of this relaxed low-temper¬ 
ature "state"and not those of the high-tempera- 
ture fluid phase which govern the nature of 
glass transitions and glassy states. 

Our model differs from previous approaches in 
that it focuses on this low-temperature relaxed 
state. For simplicity, assume that the quench¬ 
ing is infinitely fast. Immediately after the 
quenching,oeach atom relaxes from an initial 
position ri to a final position rj, a point of 
the order of an atomic distance away from the 
initial position. These atoms are then momen¬ 
tarily stopped as they run against other par¬ 
ticles. To relax further, an atom must move 
around another particle to seek a new saddle 
point in the potential energy barrier.17 

In the fluid, this latter motion presumably 
involves many other particles, each moving by a 
small amount, so that a "channel" is opened up 
at essentially zero cost in free energy.18 as 
this diffusive motion takes place, the direc¬ 
tions of the vectors 6r4=r-j-r^ must rotate. If 
there is a cooperative interaction effect among 
the directions of these vectors such that they 
are "frozen" and are no longer free to rotate, 
the above motion will be impeded and we inter¬ 
pret this as a glassy state. The glass transi¬ 
tion then corresponds to a kind of transition 
in which the orientations of these vectors are 
frozen. The probability for this relaxed state 
is then the same as that of the glassy state. 

In principle, one must solve Newton's equation 
of motion to determine the relaxation and so 
determine the probability distribution. Just 
as is done in the formulation of statistical 
mechanics, we shall bypass this by proposing a 
probability measure for the relaxed state. 

There are essentially three ingredients that 
enter into the formulation of statistical 
mechanics and thus determine the measure in 
probability space. In addition to the ergodic 
hypothesis that arbitrarily small neighborhoods 
of all points in phase space are visited, the 
necessary conditions for the determination of 
phase space measure are the existence of a con¬ 
served quantity and the validity of Liouville's 
theorem. For most statistical-mechanical prob¬ 
lems, energy plays the role of the conserved 
quantity and the phase-space measure is an 
invariant of the motion. From this, one may 
derive the canonical distribution. y 

For a general dynamical system described by 
nonlinear differential equations, Kernerl9 has 
discussed a recipe by means of which the proba¬ 
bility measure can be obtained, with the 
proviso that the dynamical system be ergodic. 
For glasses, the equation of motion remains 
Newton's equation, energy is a conserved 
quantity, and Liouville's equation is satis¬ 
fied. We now make the additional restricted 
ergodic hypothesis that, within the region of 
phase space that a glass can sample immec<acely 
after the quench, all states are visited. 

We thus propose that the probability P of find¬ 
ing a particle at site r is given by the proba¬ 
bility of its being at some initial site r° 
multiplied by the conditional probability of a 
particle relaxing from r° to r. The condition¬ 
al probability is determined from the restrict¬ 
ed canonical distribution we have introduced 
above. The initial probability is determined 
by the liquid distribution function. Hence 

P = 

Here ß “l/kßT (kg is the Boltzmann constant) 
and 0 (x) is a Heaviside unit step function. 
Zf is the partition function for the final 
liquid distribution, taken over the restricted 
phase space. The e function embodies the 
restriction that immediately after the quench 
particles cannot relax by more than an atomic 
distance c from their positions prior to the 
quench. Using P, one can investigate a 
possible transition involving the orientations 
of the vectors 6r^. 

P can also be interpreted as the distribution 
of a liquid of fictitious diatomic molecules 
with atoms at rj and r^ and an intramolecular 
interaction in the form of a hard-perimeter 
attractive potential. It is known that there 
can be long-range orientational positional 
order of such molecules. In fact, much effort 
has been devoted to understanding the nematic 
liquid crystals where such ordering occurs. 

We have performed a self consistent calculation 
to investigate this orientational transition. 
The details of this are given in Appendix A. 
It employs the approximations used in the soin 
glass problem. Randomness and frustration’® 
are generally thought to be key ingredients of 
the spin glass. The same features appear in 
the present problem. Randomness comes about 
because we have to do an ensemble average over 
the initial distribution before the quench. 
Frustration comes about because of the 
following. To lowest order in the displacement 
of the particles from their initial positions, 
the particles like to move in the same 
direction after the quench. This corresponds 
to a net motion of the center of mass and 
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hence is not of much interest. In the next 
order, the particles like to move perpendicular 
to each other; in the language of our fictious 
molecules this corresponds to an "anti-nematic" 
interaction. For most arrangement of these 
"molecules", it is not possible to have all the 
nearest neighbor anti-nematic bonds satisfied. 
We have determined the short range order of the 
fluid21 and find that it is f.c.c. like. 
Frustration effects certainly exist in that 
case. With <6r> obtained directly f -om a com¬ 
puter simulation, we obtain transition tempera¬ 
tures comparable to those obtained by Monte- 
Carlo simulations. At a reduced density 
p* = 0.95, simulations indicate that 
0.25 < T*q < 0.34,5 while our estimate indicates 
that T*g . 0.37. Since our calculation is mean- 
field like, we have not really addressed the 
question of the existence of a true thermodynr- 
mic singularity. Our calculation only suggests 
when relaxation rates become extremely long. 

There has been some interest in whether the 
repulsive part of the interaction potential 
plays an important role in the glass transition. 
Our anti-nematic interaction is dominated by the 
repulsive part of the Lennard-Jones potential. 
Indeed, the attractive part of the potential 
provides a nematic rather than an anti-nematic 
contribution. It is interesting to note the 
dependence of Tq on the softness of a potential 
of the form V = er-m- Roughly speaking, Tgp-m/3 
depends on the fourth derivative of the po¬ 
tential, and hence depends on m4. On the other 
hand, according to Lindemann's criterion, the 
melting temperature Tm depends on the second 
derivative of the potential and hence m^. If 
<6r4>(p2/2)2/3 does not change appreciably as m 
is changed, we then expect that as the potential 
becomes softer Tg/T,,, will decrease; it would 
thus be more difficult to form a glass. This is 
consistent with the conjectures of Angelí, et 
al.;2 our reason''ng, however, differs from 
theirs. 

Based on the analogy to molecules22 and using 
the "replica" approximation used in spin 
glasses, we have derived a set of integral equa¬ 
tion for the pair correlation function in the 
glassy state. This equation corresponds to that 
of a molecular fluid of (m+1) atomic molecules 
in the limit m approaching zero. We have 
previously looked at the pair correlation 
function of glasses with a cruder approximation 
but the same general philosophy. We find that 
the first peak can be reasonably reproduced but 
fail to find a split second peak observed in 
computer simulations when the final quenching 
temperature is low enough. It would be inter¬ 
esting to see if the present approach provides 
for an improvement. 

Finally, let us turn our attention to the dif¬ 
fusion coefficient. The diffusion coefficient 
0 is related to the Fourier transfonn çU] of 
the memory function ç(t) by D = T/mç(0).23 it 
has been proposed that23 

ç(t) = n2exp (-^B0t2) +A0t4exp(-o0t). (2) 

The first term in this expression arises from 
the short time effect, 

n2 = P /drg(r)v2v(r). (3) 
o 3m • 

The second term is a consequence of the caging 
effect of neighboring atoms and is chosen so 
that the first term will produce the correct 
time dependence to order t2. In fact, due to 
these backscattering effects, the velocity auto¬ 
correlation function becomes negative at long 
times and high densities. With the physical 
interpretation of the second term given here, 
we expect aQ to be inversely proportional to 
the relaxation time t of our quadrupolar system. 
Close to Tg, we expect t « (T-Tg)_z, where z is 
the dynamic critical exponent. From equation 
(2) one obtains » (T-Tg)"5z when a0 is 
small (x large).15 Even though this is not of 
the Doolittle form, exp (-const./(T-Tg)), it is 
rather difficult to distinguish between the two 
forms for z of the order of unity. In fact, 
Levesque and Verlet23 have fitted their compu¬ 
ter data for LJ particles for density p up to 
0.85 and temperature T down to 0.76 by the form 
aQ = 4.12-2.61p » 2.61(p o-p), where p0 = 1-6. 
If we follow the common practice of replacing 
p-p0 with T-Tg, we then obtain a dynamic criti¬ 
cal exponent z = 1. It is amusing to note that 
a mean field treatment of spin glasses provides 
the same exponent. We have also replotted the 
data of Woodcock and Angelí6 for the diffusivi- 
ties of hard-sphere liquids and find that they 
can also be fitted with a dependence of the 
form (p-p0)x with x around four. Our argument 
that a0 « (T-Tq)z should, however, apply only 
in the "critical region." It is not clear how 
wide this region is. 

Appendix A 

Our calculation is based on the similarity of 
the present problem to that in the spin glass 
transition. To bring this similarity into 
focus, let us write the logarithm of the parti¬ 
tion function (the free energy) as 

[inZ] = [In ndri ne (Isr^tc) exp - 

Bf z V(r.j) ] 
i.j 

(Al) 

Here the square bracket indicates an average 
with respect to the initial distribution of the 
particle positions, viz. 

[f(r°)] 5 

• i £ V<rÿ 

• »J 

n dr- f(r°) exp - 

(A2) 
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In the spin glass problem, disorder is intro¬ 
duced via a distribution in the exchange 
constants. In the calculation of the free 
energy, one has to do an average over such 
exchange constants. This averaging over the 
exchange constants is anologous to the averag¬ 
ing over the r9 indicated by the square bracket 
above. 

An approximation known as the replica method 
has been extensively studied in the spin 
glass problem. In the simplest version without 
what is known as replica symmetry breaking25t 
this approximation leads to a reasonable esti¬ 
mate of when things begin slowing down. This 
approximation breaks down at very low tempera¬ 
tures. We shall apply this approximation to a 
calculation of the "transition" temperature and 
the pair correlation function in the glassy 
phase. Let us formulate our ideas more 
precisely. 

First we derive a formula for the pair correla¬ 
tion function N(12). We follow tradition by 
Introducing external potentials ¢(1) acting on 
particle i. The partition function now looks 
like 

Z * n dr., e (6ri <c) exp (-ßf i V(ij) - 

I 1 ) ) 
i T 

It is straightforward to show that 

In general, the average [InZ] is very difficult 
to do. We now follow the spin glass idea24 and 
rewrite InZ as 

InZ 
lim ^.1)^ 
m-+o 

and 

N(12) 
1 «2 

«VT)’ 5*72) (A4) 

Kote that [Zm] corresponds to the partition 
unction of a fluid of molecules each composing 

of n+1 atoms, viz. 

[z"1] n 9 (|r“ - r°|<c) n n=1 dr“ dr? 

exp (-ßf T.i.j V(r?.) - 

V(r°j)) (A5) 

An approximate method to calculate the pair 
correlation function of molecular fluids have 
been discussed by Chandler“ and collaborators. 
This can be generalized to the present problem 
to any integer m. One gets 

haa = Caa + W C W + I Waß Cßß Wßa + 
° ß^c.,0 

p Caa haa + pW Co hOa + 

ï Waß Cßß hßa 
ßT'a.O 

haO = WOa Caa + Co WaO + 

E Woß Cßß Wßa + P Wn;y C^ h 
ß^a.O 

p CO haa + 

hßa = Wßa Caa + 

Cßß Wßa + 

pCßß "hßa 

p E Wßa' 
a'/ ß,a,0 

Here haß = gaß-1 
gaß= Naß/p2; p is 
The "hat's" indicate Fourier transforms. Caß 
are the direct correlation functions. Waß are 
the infra-molecular correlation function. We 
have used the notation of Chandler et al. We 
shall assume that the subscripts a is indistin¬ 
guishable from each other, viz. 

WOa = W for all a 
Wßa = R for all aß 
Caa = C2 for all ato haa = h2 for all a / 0 

It is then straightforward to take the hho 
1imit and one obtains 

"haa (1 -p Co) = W C2 + CoW - W ¿2 W + 

p W C2 h22 - p W C2 hßa 

hßa = W Co + W CoW + C? R + 
¿ (A6) 

p R C2haa + p C2 hßa + p W Co hca 

K. B. Ma and myself are attempting to solve 
these equations numerically at the moment and 
hopefully results will be forthcoming. 

We now turn our attention to an estimate of 
the transition temperature. 

The philosophy behind our approach is to 
express physical quantities in terms of its 
deviation from the reference system, the 

p E Woß Cßß haß 
ßj'o.a 

Wßo Co Woa + 

p Wßa Caa haa + 

+ p WßO Co "hoa + 

Ca'a'ha'a 

the density of the fluid. 

.-. 

; 
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fluid before the quench. We hence rewrite Zm temperature Tg = 0.37. 

as 

zm 
m 
n dr? exp - Sf v„(ij) ‘ 
i,a=o a.ij 

ßi 1 V(rij) + m ßf ^ v(ri°) 

where IA = t (V (r “) - V (r.?)) 
ij ij 1J 1J 

We now proceed to do the averaging with respect 
to r° in a cumulant expansion with respect to 
AV. 1This is the crucial approximation behind 
the present approach. If the particles have 
not moved far away from the original position 
before the quench aV should be small in some 
sense. 

We hence have 

[zm ] 
m 
n 

i ,a=l 
dr? exp - ([SfïAV]) + 

[i(AV2 - V2)] 

It is possible to write aV in an angular momen¬ 
tum expansion as aV(12) = t Y (o.,) Y 
(n6r?) Y-, (n°) .1, 1, ]\m\ 6rl ]ZmZ '1 ij‘ <'l '2 

m j 1TI2 m>vr 

The above form is dictated by rotation invari¬ 
ance. In general, it is unlikely that all angu¬ 
lar momentum components become important at the 
same time. Hence we shall focus on only a 

1 2' 
Note that single component 1 

U»] - i (¾) « 

In general, this will induce a periodic order 
in the system. This is rot what we are inter¬ 
ested in and hence will be discarded. [aV¿ ] 
is even in Ar,. Hence the smallest 10 is 2. 
The self-consistent equation for the order 
parameter Xma.mb = <Y2ma(n“) Y2mb(n^)> 

can be easily written down and one gets 

Xma.mb 
2 

<-ma 
2 i 
m21 

1 
> 

m 

2 
<-mb rt' «."W»3 

Where n is the number of nearest neighbors. We 
have been able to find a solution given by 

Xma.mb = íma,_mb X with X satisfying the 
equation 

X = 7 t V2 ((21+1)/5) X/(4ïï)3 (A7) 
¿ 1 ,m ' 
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Abstract 

The breakdown of conventional infinite-time- 

average statistical mechanics is discussed for 

glass and other examples. To obtain physical 

results the usual theory must be modified by 

the addition of constraints which limit the 

system to the part of phase space in which it 

becomes frozen. Some general thermodynamic 

consequences are considered, including a dis¬ 

cussion of the residual entropy, and a concep¬ 

tual theory of anomalous relaxation is pre¬ 

sented. 

Introduction 

We generally regard a firm grounding in equili¬ 

brium statistical mechanics as a prerequisite 

for the study of condensed matter physics. We 

come to think of computing a partition function 

as the central task in obtaining macroscopic 

predictions from microscopic descriptions. And 

yet in most cases of real interest, the canoni¬ 

cal (partition function) prescription, if fol¬ 

lowed faithfully, does not yield acceptable 

macroscopic results. The trouble, of course, 

is that the canonical prescription involves 

summing over all accessible parts of phase (or 

configuration) space, whereas real systems tend 

to become stuck, or frozen, in some one sub- 

region thereof. A particularly familiar cate¬ 

gory of such behavior is the broken eyrmetry 

observed in most phase transitions, where the 

system picks one of two or more symmetry equi¬ 

valent macrostates that have the symmetry of 

the Hamiltonian only when taken together, not 

individually. We generally define an order 

parameter £ (not necessarily a 3-vector) whose 

norm <)> is a measure of the degree of frozeness 

and whose (generalized) direction $/$ labels 

he possible alternative macrostates. The un¬ 

modified canonical prescription, using a symé¬ 

trie Hamiltonian 3(, automatically gives <¿>=0. 
We have learned, of course, to circumvent this 

problem in many ways, such as adding a conju¬ 

gate field term -h.¿ to X (thus breaking its 

symmetry), or using an approximate method 

(e.g. mean field theory) that allows us to 

insert a non-zero <£>. 

There are two possible mechanisms underlying 

broken symmetry. If the order parameter is a 

constant of the motion, then the dynamics 

never allows escape from a given macrostate; 

the system is not ergodic. The standard ex¬ 

ample is the Heisenberg ferromagnet, where 

[m,h]“0. On the other liand, many broken sym¬ 

metry systems are described by an order para¬ 

meter that is not a constant of the motion, 

but where a transition from one macrostate to 

another is overwhelmingly improbable. Here 

the system is effectively not ergodic, even 

though ergodic behaviour may reappear in the 

infinite time limit for a finite system. In 

most such broken symmetry cases the time to 

reach ergodic behaviour (and thus restore sym¬ 

metry) diverges in the thermodynamic limit. 

A good example is an Ising ferromagnet below 

the critical temperature, where a transition 

from the predominantly up state to the predo¬ 

minantly down state requires the creation of a 

defect wall across the samp’e, costing a free 

energy of order N^ for n spins in d 

dimensions. 

With glass in mind, it is important to realize 

that this failure of ergodicity can occur 

without the presence of a symmetry to be bro¬ 

ken. The general case may be called broken 

ergodicity (1). Without symmetry the first 

mechanism (an additional constant of the mo¬ 

tion) cannot be expected, but the second can. 

Of course, in the absence of symmetry, there 

is no reason for different macrostates to be 

degenerate, so one of them will have the abso¬ 

lute lowest free energy (defined with a re¬ 

stricted partition function) at any tempera- 
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ture, and the others will be only metastable. 

In practice, however, there can be such a high 

density of macrostates near the lowest one 

that the difference has little importance. If 

a high density of macrostates occurs away from 

an isolated lowest one, as is probably the case 

for most glasses with a low-lying crystalline 

state, the lowest one may actually be irrele¬ 

vant in many circumstances. In either case 

the relevant macrostates must differ only sub- 

extensively (i.e. not in order N) in their 

i>ee energy if they are to be relevant in in¬ 

finite-time equilibrium (2), but it is often 

not infinite time equilibrium that is of physi¬ 

cal interest. Many sustems display a success¬ 

ion of (quasi-) equilibria on increasingly 

long timescales. In each equilibrium domain 

some degrees of freedom have essentially come 

to equilibrium (with a heat bath) while others 

are still frozen. In such cases the physically 

relevant macrostates in a given context may 

have much higher free energy (e.g. order N) 

than the lowest, even though they are thus ef¬ 

fectively omitted from the unmodified canonical 

prescription. 

Some examples will provide illustrations and 

raise further points. In Figure 1 are shown 

schematically relevant timescales for various 

systems, with a particular observation time 

Tobs picked out- 

COffll-CIIAM TtMPIIATVM VAKXI« 
lOUKIHIUM lOtT.IMIUM MUmlflU 

o) —mm-1-mm m»- 
Tob. 

to take T . -*■ " if one wishes to study hot 
obs 

coffee-cream mixtures. Instead, one must keep 

Tobs appropriate domain, as in Fig. la. 

It is however easy (and less perverse) to re¬ 

define the Hamiltonian to ignore the degrees 

of freedom for evaporation and to introduce a 

heat bath to inhibit cooling. Fig. la then 

becomes lb and the usual methods of statisti¬ 

cal mechanics (x . -*• =° ) may be used with 
obs 

impunity. The example is only trivial because 

we understand how to separate the fast and 

slow degrees of freedom, or how to define an 

appropriately idealized Hamiltonian. We have 

not reached that understanding for glass. 

Ising ferromagnet: Figs. 1c and Id illustrate 

this simple broken symmetry system, assuming 

free boundary conditions and a Glauber dynamic, 

For T >T (Fig. 1c) the time-averaged magneti- 
c 

ration <M> is zero (in order N) beyond some 

short relaxation time, whatever the initial 

state. For T<T (Fig. Id) there is a wide 

time domain in which there are two possible 

frozen states with <M> ■ ±M (T). In a finite 
o 

system there is a long relaxation time 

for crossing the barrier between these states, 

and for x . >>x., . one finds <M> « 0, the 
obs flip 

true X ^ -*■ »> result. However, the time x., , 
obs flip 

diverges with N and is thus impassible in the 

thermodynamic limit N-*-®. The limits lim lim 
N-M» t"*® 

and therefore lead to very different 

COMCI-CMAM 
KOUlilNIUM 

r V ^ 

-í-.v.wy 

b) —mm-1— 
rob, 

T > Tg 
c) —mm-1— 

Tob, 

d) 

T < Tc 
—mm 

<M>■ t M 

-1- 
Tob. 

0 

•t 

<«> •» 

<M> >0 

mm- 
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t 

mm h-mm- 
Tob, xor 

f) 

Ol ASS LIQUID 

Fig. 1: Time-lines (logarithmic scale) 

for several systems. Shaded regions are 

characteristic system timescales. 

Coffee and cream: Fig. la illustrates the pro¬ 

cess of adding cream (or milk) to an uncovered 

cup of hot coffee. There are relaxational 

timescales for mixing, cooling to room tempera¬ 

ture, and evaporation, separating relatively 

wide domains of equilibrium. In each equili¬ 

brium domain "all the fast things have happen¬ 

ed and all the slow things have not" (3) with 

the meaning of "fast" and "slow" dependent on 

the domain considered. Given a system whose 

microscopic description (Hamiltonian) includes 

the whole room, it is clearly not appropriate 

• - «*-*«•-'«f 
•*. -■ 
a .y.v.v 

results. The first is the conventional (ergo- 

dic) order of limits in statistical mechanics, 

whereas the second is the order appropriate 

for the study of ferromagnetism. Since the 

broken ergodicity is understood here, it is 

relatively easy to modify the system to eli¬ 

minate the equlibirum beyond as in 

Fig. la-*-lb. Application of an infinitesimal 

field (h *1/N ) is the best-known method. 

Ortho/para hydrogen: Fig. le applies to mole¬ 

cular hydrogen, with ortho and para species. 
The ortho/para conversion time x^ is of the 

order of years in the absence of a catalyst. 

The x . -*•“ result corresponds to ortho-para 
obs 

equilibrium, which disagrees totally with 

practical experiments. Even purely thermal 

quantities, such as the specific heat, are 

miscalculated if full equilibrium is used,- 

the problems are not limited to quantities 
like order parameters which take different 

values in different components. Again, it is 

easy to rectify the problem, by imposing 

AJ = even, because we understand the nature of 

the frozen states. Note that this example 

displays broken ergodicity without broken 

symmetry. 

Glass: Fig. If is a suggestion for glass, 

shown at a temperature somewhat below the 
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freezing temperature T . There is a quasi- 

continuuir. of relevant timescales, stretching 

over many decades of time. This is to be ex¬ 
pected from the anomalous relaxation observed, 

with non-exponential decay of response and cor¬ 

relation functions also extending over many 

decades. The upper limit of the continuum, 

t , is strongly temperature dependent, obey 
max 
ing a Vogel-Fulcher law near Tg. Fig. 2 shows 

the domains in the T-t plane. 

Fiq. 2; Temperature dependence of system 

timescales for glass. 

The system should be called a liquid if 

Tobs >">Tmax(T) and a 9laSS i£ Tobs 5 ' 

thus defining an approximate Tg(Tobs); this 

criterion is essentially equivalent to one 
14 

based on viscosity (e.g. glass if n >10 poise) 

since n(T) and t (T) behave similarly. If 
max 

(T) really diverges to infinity (or be- 
max 
comes order N , x>0, perhaps) at the Kauzmann 

temperature Tq then there is no liquid phase 

observable for T<Tq. However, most materials 

seem to show a crossover below Tg back to an 

Arrhenius law for t^IT) , in which case a liq¬ 

uid would be seen in principle for long enough 

obs’ 
There is of course also the possibility 

of a crystal phase for many materials below a 

melting temperature T . To reach the crystal 

one must wait a time longer than t^tT), as 

shown by tcryst in Fi9s- lf and 2- The crystal 

phase itself is an alternative, more stable, 

phase in the whole region of Fig. 2 below T 

(beyond crystal relaxation times of order pho¬ 

non frequencies) but is only accessible from 

the liquid through the crystal barrier. 

X > t . Sufficiently rapid cooling 
obs cryst 
avoids the crystal altogether. Note that the 

crystal is not accessible at all for T < T0 

X (T) really diverges at T . 
max u 

Note also that 

the unmodified canonical prescription is ex- 
■» _—a. m s <V 

pected to give the crystal phase at T < T or 

if that is somehow excluded, the liquid phase. 

The most important feature that makes glass 

different from the other examples is the con 

tinuum of relevant system timescales. At a 

given t . , some degrees of freedom (with 
^ obs D5 , 

X < X ) are active, or even in equilibrium 
obs 

(x<< X ) whereas others (T J Tr,h_) are sti11 
obs ODS 

frozen. Which are which depends critically 

and continuously on x^. Of course the clas¬ 

ses are not sharp, but a sensible first approx¬ 

imation may be to define them sharply. To 

treat such a system with a modified canonical 

prescription we must clearly find some way of 

introducing x^-dependent constraints (or 

ordering fields, or boundary conditions, etc.) 

that ensures that the sum over accessible 

states includes only the fast (x S Tobg) de_ 

grees of freedom, not the frozen ones. This 

has not yet been done satisfactorily. In gen¬ 

eral the crucial step in solving nontrivial 

condensed matter problems has been the charac¬ 

terization of the relevant macrostates (e.g. by 

definition of an order parameter) followed by 

a statistical mechanical calculation (e.g. 

mean field theory) that is somehow restricted 

to a part of phase or configuration space re¬ 

presenting just one macrostate (e.g. fixed 

order parameter). The problem in glass is 

that we do not know how to characterize the 

macrostates, particularly as they are 

dependent. 

Without a detailed theory preceding from micro¬ 

scopic to macroscopic there are at least two 

things we may do. We may attempt to find gen¬ 
eral properties of uystems displaying broken 
ergodicity, and we luy try to build models of 

possible sets of ma<_rostates and their rela¬ 

tions (as a function of time, temperature, 

etc.). Neither is very satisfying, but both 

may shed light on the problems surrounding the 

construction of a complete theory. The follow¬ 

ing two sections are devoted to these two 

tasks. 

Component Averaging 

The general properties of systems displaying 

broken ergodicity are discussed at length in 

ref. (4), which also contains applications to 

spin glasses; see also (5). The broken sym¬ 

metry case involves many further symmetry- 

related phenomena; see (6). Ref. (4) begins, 

in effect, by making the aneatz that given 
X , phase space F can be divided into dis- 
obs Q 
joint componente r“ (with F«Ur ) such that 

A) the probability of escape from F within 
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Tobs (avera9ed over initial states within 

F , and over possible evolutions) is negli¬ 
gible, and 

B) within P one may use the techniques of 
equilibrium statistical mechanics, restric¬ 

ted to ra. 

B amounts to assuming that the components are 

effectively ergodic. The components defined 

here are the macrostates discussed in the in¬ 

troduction, and the net effect of the ansatz 

is to make an artificially sharp division in¬ 

to slow (frozen) and fast (active) degrees of 

freedom. In condition A it is essential that 

"negligible" be used in place of "zero", which 

would make any finite free energy barrier in¬ 

effective. One could demand Prob(escape from 

r“ < P0, a small significance level, say 

10 (4). Given a firm—though not operation¬ 

al— definition of components, we are interes¬ 

ted in comparing the properties of components 

with canonical predictions, which are (in 

principle) calculable without characterizing 

the broken erogodicity. We normally compare 

the canonical prediction for a quantity 

Q with a component average 

— _ ora 
e = £p o d) 

of its value Qa in each component F0. In prin¬ 

ciple component averaging is undesirable since 

the physical system remains stuck in a single 

component. It may nevertheless (a) prove 

practical where specification of a single com¬ 

ponent is impractical or unsolved, and (b) 

yield a typical result when the distribution 

of Qa's is narrow, as frequently seems to occur. 

Indeed, the motivation for component averaging 

is analogous to that for using statistical me¬ 

chanics rather than microscopic dynamics. The 

information required to specify a single com¬ 

ponent may be impossibly large (probably diver¬ 

ging with N) in a glass, like that required to 

specify a particular microstate in any macro¬ 

scopic system. 

The canonical prediction Q can be computed as 
an expectation value 

Qc * <Q(x)> =Tr[x€F] Q(x) exp(-ßJC(x) )/z (2) 

if Q is an observable with a value Q(x) in each 

microstate x. In other cases (e.g., free en¬ 

ergy, specific heat, compressibility), Q must 

be computed from the partition function Z or 

its derivatives. Similarly, Qa is computed 

from the restricted expectation value 

Qa = iQfx)»01» Tr[x€r“] Q(x) exp(-ß3f(x) )/z“, (3) 

whe re 

Za = Tr[xira] exp(-ß3C(x) ) , (4) 

for an observable, or from Z0 otherwise. 

The probability p“ provides a weight for 

component F0. The real system is described by 

pa= 1 for a * aQ, pa= 0 otherwise, but we are 

averagihg in order to replace such specific 

knowledge of aQ and its history and parameter 

dependence. A natural choice is the Gibbs 

weight 

p“ = exp(BFa)/Z = Za/Z, (5) 

which is correctly normalized because £ za= Z 

from F = U r . This is also the least biased 

choice in an information theoretic sense (4). 

It is certainly not always appropriate since, 

for example, history dependence is eliminated, 

but serves as a sensible first guess. An al¬ 

ternative, discussed by Jackie (7), is to eval¬ 

uate Eqn. (5) at a fixed temperature near T 
g 

where the components first become isolated. 

This procedure has the advantage that p“ is 

not T dependent, but does not easily account 

for components that only become defined well 

below Tg. Consistent with the continuum of 

timescales at fixed T (Fig. 2), we expect a 

sequence of divisions of F into more and more 

components Fa as either Tobg or T is reduced. 

We may think of the system being trapped in a 

"valley" of a complex free energy surface, as 

shown schematically in Fig. 3. 

The horizontal axis represents (poorly) many 

appropriate configurational coordinates 

F(£) is in reality a very high dimensional 

surface. For small t or low T the system 

will be frozen in one of many local valleys 

such as A. With increased t or T the lower 
obs 

free energy barriers become passable and the 

system is only confined in a larger region B, 

then C, and so on. Clearly there ore more 

alternative A's then there are B's, etc.; 

ideally, of course, we would redefine che set 

of ip^'s by integrating our tne fast degrees 

of freedom as TQbs or T is increased, proceed¬ 

ing from a full microscopic energy surface 

E(x) (i.e. , $ H x) at very short T . to a 
— obs 

free energy function of a few microscopic vari- 
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ables for ^obs» Tmax(T)' 

From Eqns. (1)-(5) it_is easy to derive rela¬ 

tions between and Q for particular Q s. 

Some results are (4) : 

(i) Q= Q if Q is an observable. This applies, 

for example, to the energy. 

S(T )+ I (Tr) , not jjst S. Secondly, 

C ^ T3S/3T in general. If only the first 

reason were present, as in Jäckle s approach 

(7) with ^independent p“, we would expect 

S (T) = S(T) + I (T ) , and in particular 
exp r 

S (0) = 1(T ) for the residual entropy, 
exp r 

since S(0) is surely zero. 

► “ 

l 

' 

-: 

■. 

(ii) F = F + TI and S= S - I for the free ener- 
v ' c c 
gy and entropy, where 

I = -k E pain p0 (fe) 

is the intercomponent entropy, or complexity. 

Note that S V - 3F/3T in general, because deri¬ 

vatives of I enter. K* = exp(I/k) is a useful 

measure of the effective number of components. 

K* is less than or equal to the actual number 

of components, with equality only when the 

pa,s are identical. F and S are only modified 

appreciably (i.e. in order N) if K* is order 

cN. The existence of frozen states without 
long range order implies that I grows with N, 

since otherwise a fixed amount of information 

would suffice to describe the frozen order 

everywhere, amounting to long range order. 

(iii) The specific heat obeys 

C = C+o2(Ea)/kT2 
c 

(7) 

where a2 means an intercomponent variance com- 

putedjwith the weight p“. The difference 

C - C is necessarily positive, and can be 
c 

of macroscopic significance (order N) when the 

spread of Ea is unobservable (order N ). The 

difference C - C comes essentially from the 
c 

fact that the canonical partitition function 

includes all components weighted by pa , and 

the temperature derivatives in Cc involve de¬ 

rivatives of p , whereas in the more physi 

cal component average pa is kept fixed during 

dif ferentiation. 

Neither is S (T) equal to the canonical 
exp 

value S (T) except at (and probably above) Tr> 

C . — 

It is obvious from the relation Cc^ C that 

equation (8) with Cp= C gives Sexp> Sc. In¬ 

deed, assuming Sc(0) = 0, the residual entropy 

S (0) is just the integrated specific heat 
exp _ 
difference C.-C. This difference is, of 

course, observed experimentally when Cp (-C) 

drops below the extrapolated liquid value. 

This occurs at a temperature that decreases 

with increased tobs' 50 the measured c ^n_ 

creases with x , as would be expected from 

having fewer larger components. 

A useful analogy is again ortho/para hydrogen. 

As is well known the measured specific heat 

(C for equilibrium mixtures) is much less than 

the equilibrium value Cc (calculable, and meas¬ 

urable with a catalyst present) over a wüe T 

range. This system also has a residual entro¬ 

py S (0) if computed with eqn. (8). This 
exp — 

applies whether Cp(T) is taken as C(T), using 

mixtures in ortho-para equilibrium for each T, 

or as Cj.^T), using the high temperature 75% 

ortho mixture. It is also worth noting that at 

high temp rature C * C3;i * C;' but 

7 « s ^ S - A , where A = -Nk(0.75 In 0.75 
3 * X c ^ 

+ 0.25 In 0.25) is a high temperature mixing 

entropy that corresponds to I(T^) for the 

glass. 

In applying these results to glass we assume 

that the component average quantities (F,S,C) 

correspond to typical values for a real system. 

F and S are not directly measurable however, 

and we should not expect S to equal the "exper¬ 

imental" entropy Sexp, defined by 

S 
exp 

(T) = S (T ) 
exp r 

(T')dinT’ . (8) 

; (T ) at the reference temperature T 
exp r 
T > T ) is determined by calorimetry from 

1 r m 

he crystal phase. 

(8) , S 
exp 

firstly S 

Although Cp= C in eqn. 

g\ g differs from S for two reasons. 
' exp 

(T ) is the full canonical value, 
“exp r 

Without a detailed model, or characterization 

of the components, this sort of discussion is 

all that can be hoped for. We can. for exam¬ 

ple, understand the residual entropy concep¬ 

tually, but cannot predict its value. Other 

quantities (e.g. , compressibility, Prigogine- 

DeFay ratio) can also be discussed at the 

same level (4,7). In the spin glass problem 

the approach succeeds in explaining the fail¬ 

ure of linear response theory and the various 

observed susceptibilities (4,5). In any case, 

an understanding of the limitations and modi¬ 

fications of standard equilibrium theory seems 

an essential first step, especially when I is 

of order N. 
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Anomalous Relaxation 

Non-exponential relaxation of the approximate 
form 

f(t) = f(0) expMt/T)6), 0 < ß < 1 (9) 

has been observed for many response and corre¬ 

lation functions (mechanical, thermal, and 

dielect_ic) of a wide variety of glassy liquids 

(8). In this section we present a simple the¬ 

ory of this effect for any system exhibiting 

broken ergodicity with a continuum of relevant 

timescales (Figs. If and 2). The theory is 

quite general, needing one scaling assumption 

in addition to the general pfinciples espoused 

here. Generality is both an advantage—the 

phenomenon is suprising ubiquitous—and a dis¬ 

advantage in that the theory is barely concrete 

enough to be falsifiable. A more specific mo¬ 

del is under development (9). 

F (<¡0 which is a function of the remaining 

degrees of freedom ¢. By definition the 

largest (containing! barriers of this surface 

will be of size AF . The relaxation process 
max 

will depend on other barriers within this sur¬ 

face , say AF , . We may think of the relaxa- 
relax 

tion as corresponding to "longitudinal" motion 

on this surface, in the presence of typically 

far more "transverse" motion. In principle 

the transverse degrees of freedom could also 

be integrated out as far as the relaxation 

process is concerned; they would then contri¬ 

bute to the entropy part of Af . 
relax 

Our scaling assumption for glass is that the 

free energy surface F(£) has only one free 

energy scale, set by AF . Then 
■* mil V 

AF , - aAF 
relax max (11) 

Given a continuum of relevant timescales (Figs. 

If and 2, for Tobs < TlnaxtT) ) the system finds 

itself effectively stuck in some component (or 

"valley") in phase space for any given t . 
obs 

We may think of the system as moving on a mul¬ 

tidimensional free energy surface (cf. Fig. 3) 

in which (given x . ) some barriers are easily 

crossed, and cculd even be integrated out, 

others are effectively impassible, and an in¬ 

termediate class governs the current evolution. 

The dividing line AF (not related tc x ) 
max max 

is given by 

with 0< a< 1. Loosely stated, the free energy 

surface is self similar (or "fractal"), but 

re illy it is a different surface, obtained by 

freezing/integrating different degrees of free¬ 

dom, as T0j3r is changed. Without a more con¬ 

crete model the assumption can only be justi¬ 

fied on the basis of its simplicity, its 

reasonableness, and its a posteriori predic¬ 

tions. 

The relaxation process may be represented by 

f(t) - f(0) exP(_t/Trelax) (12) 

Tobs"TleXp(AFmaxAT) (10) 

where x^ is a microscopic attempt frequency; 

the crossing rate for barriers appreciably 

larger that ÛFmax is small compared to 

1Aobs' ÛFmax dePends continuously on the ob¬ 

servation time xoks because the system escapes 

from inner components into larger and larger 

outer components as x^ increases, as repre¬ 

sented by A-*-B-*-C in Fig. 3. Correspondingly, 

the number of possible alternate components 

decreases as XQks increases, and we may expect 

in general a hierarchical tree in which several 

components at level n are effectively combined 

into one at level n 1 (4). 

Now consider the relaxation of some chosen ma¬ 

croscopic quantity. The relaxing variable will 

in general depend only on some of the system's 
degrees of freedom, not all of those involved 

in the growth of the components with x . . To 
obs 

treat the problem in principle, we should 

freeze the slow degrees of freedom (x > x , ), 
obs 

integrate out the fastest one (x << t . ), and 
obs 

thus construct an effective free energy surface 

where 1/Trelax is a current relaxation rate 

given by 

relax 
X, exp(AF , /kT) 
2 relax 

(13) 

with x2 another microscopic attempt frequency. 

Equations (10) - (13) immediately give 

f(t) = f(0) exp(-tx“/x xa ) (14) 
1 2 obs 

or 

f(t) = f(0) expt-Ct1 “) (15) 

with C = on substituting the current time 

t for the observation time x . . This is the 
obs 

required eqi . (9) with ß = 1-g. The limit 

a = 0 ( ß = l) gives Debye relaxation when x 
relax 

is independent of x . . The opposite limit 

o = l ( ß = o) gives logarithmic relaxation when 

all the relevant degrees of freedom are longi¬ 
tudinal , AF , = AF 

relax max 

The derivation presented here is necessarily 

crude, but we believe it correctly emphasizes 

the central role of a succession of free energy 
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barriers that are surmounted sequentially. In 

contrast we reject the "distribution of free 

energy barriers" picture with many independent 

degrees of freedom relaxing in parallel. Our 

specific models (9) involve ordered classes of 

degrees of freedom such that a member of a 

given class is constrained not to change unless 

those in lower classes take particular values. 

This represents the real structural constraints 

on rearranging atoms, groups of atoms, groups 

of groups of atoms, and so on. We can obtain 

power-law or exp(-t/Tß) relaxation depending 

on the detailed assumptions. We also find 

that T has Vogel-Fulcher behaviour in a limit¬ 

ed temperature range, outside of which it 

crosses over to Arrhenius behaviour, as is 

often found experimentally. 
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ABSTRACT 

Pova^-lavs in tranaport propertiea of disorderad glaaaes are interpreted 

as evidence for dynamical aoaling, and modeled naing morentleaa (Ldvy atable) 

denaitiea which exhibit hierarchical elnstering on all time acalea (fractal 

time strnctnre). The Williame-fatte dielectric relaxation fonction ia not 
stable, bnt ia ahown to be snbordinated to a stable procesa, defact diffnslon 

to a froxen dipole. This generalises the Glanm model, in which the defects 

move with a constant renewal rate. Activation energy effects are diaenased 

using a Kramera escape model with diaperaion in the barrier heights. Disper¬ 

sion in barrier heights reanlta in a stable waiting-time density, with fractal 

(Ranadorff) dimension equal to the ratio of the thermal energy divided by mag¬ 

nitude of the diaperaion. If the dispersion ia small, normal non-fractal 

motion occurs. When the dispersion ia greater than kT. event times occur in 

self- similar clnatera and in an average sense form a Cantor set. Low- 

temperature backbone motions of a polymer molecule are anggeated as defect 

candidates, whose motion to a large conformer defect leads to Tg ralaxation. 

Megahertx motions of low-temperature ß processes can generate diaperaion in 

the saddle-point region of the Tg process. 

Introduction 

Dynamic modeling for complex 

disordered materials faces experi¬ 

mental and theoretical nncertalnty. 

Simulation techniques including 

Monte Carlo, molecular dynamics. 

etc. are applied to small-molecule 

ayatema, yet progress toward long¬ 

time/low temperature behavior ia 

alow. Larger and faster computers 

are likely, but an Investment in 

hardware and software is needed to 

cope with viscous polymers and 

glassy solids. New electronic, 



optical and an|inaaring application* 
of aaorphous «olida fócate* experi- 
■ental attention on tine-dependent 
tramport properties which control 
physical aging, fatigue and frac- 
tare . Though a coherent phenomenol¬ 
ogy has yet to energe, it is clear 
that nechanical and thermal history 
influence bulk properties (1,2). 

On theoretical grounds one 
anticipates that long-time behavior 
of complicated materials may be 
described by a diffusion equation 
obtained by averaging Liouville's 
equation over momenta. This reason¬ 
able expectation ia difficult to 
teat since a many-body problem in 
coordinate space still separates 
theory and experiment. Guided by 
intuition and available experimental 
data (eg., dielectric, NHt), a con¬ 
tracted model la often arrived at 
and the task of comparing its pred¬ 
ictions with experiment remains. (In 
some eases this is nearly impossible 
because of computational problems, 
unknown model parameters, unavail¬ 
able experimental data, etc.) When 
predictions and data are able to be 
compared, a successful fit does not 
prove the correctness of the model 
and lack of agreement can have many 
origins; velocity averaging, coordi¬ 
nate separation and/or Identifica¬ 
tion, or systematic experimental 
error. 

From the empirical side, 
interest in viscous polymeric and 
non-polymeric melts and glasses has 
resulted in renewed use of ad-hoc 
relaxation functions such as the one 
proposed by Williams and Watts (3) 
for the fitting of dielectric lost 
and dispersion; 

Wa(T) - e T 0 < a i 1 (1) 

This two-parameter form hat been 

shown by Williams and co-workers 
(3,4) to provide an excellent 
description of the complex dielec¬ 
tric constant of many polymers in 
the vicinity of the glass transition 
temperature T . It it found for 
most polymers*that 0.3 1 a 0.7 
near T . In addition 0a(t) it useful 
or thl analyeit of dynamic light 

scattering (3), NMR (6,7), and 
mechanical relaxation data (1,8,9). 
Generalizations of the two-parameter 
form have been used to describe path 
dependencies for volume and enthalpy 
relaxation and recovery (10,11). 
One of the earliest appearances of 
fa(t) in the physical literature it 
Rudolf Kohlrautch't application to 
polarization decay in a Leyden jar 
(1854) (8,12,13). At about the same 
time (1853) Cauchy Introduced it to 
diaeuss a generalized theory of 
errors, and it was later used by 
Rudolf's son Friedrich (1863) to 
describe mechanical relaxation of 
silk and glass fibers (12). 

This article concerns a recent 
continuous time random-walk (CTKW) 
model for dielectric relaxation near 
T (14) which is a generalization of 
Glarum’t defect-diffusion theory 
(15) and which leads to a fractional 
exponential form ( equation 1). The 
novel aapact of this description of 
relaxation ie the introduction and 
use of momentless waiting-time pro¬ 
bability densities (WTD), in turn 
limiting cates of Levy stable densi¬ 
ties equivalent to the Williams- 
Watts distribution of relaxation 
timet (16). Empirically these are 
evident from the power-law spectral 
densities displayed by glass-forming 
materials around Tg. Theoretically 
such power-laws imply self¬ 
similarity and the absente of a 
time-scale beyond a shortest time. 
Mandelbrot emphasizet that scaling 
behavior is characteristic of frac¬ 
tal structures (17). Fractal sets 
are highly irregular and clustered 
and their component parts are 
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variants of tha «hole. 

In the next section «e discuta 
■oaentlesa-tiM processes by intro- 

useful to consider events generated 
by a nearest-neighbor randon walker 
on a periodic one—dimensional lat¬ 
tice (18). 

due mg a familiar example, the pro¬ 
bability density (PD) for first pas¬ 
sage times (FPT) in a homogeneous ID 
lattice random walk. Some Intuition 
about the resulting fractal sat of 
passage times is gained by consider¬ 
ing the collection of generating Figure 1. One dimensional lattice for 
walks. A second, more direct example homogeneous random walka. 
of a scaling WTD is then found by 

Consider a walksr on the lattice of 
Fig. 1 who steps to the right with a 
probability p and to the left with a 
probability * - 1-p. The probability 
that the walker is at a after n 

summing a series of Poisson PD's 
each of which contains longer and 
longer pauses, though with ever 
diminishing probabilities. The 
resulting PD may generate, on the 
average, a Cantor set of time events steps is 
provided the coefficients and dura¬ 
tion times fall below a critical 
ratio. A defect diffusion deriva¬ 
tion of the lilliams-Watts relaxa¬ 
tion function is then given. Treat¬ 
ment of activation energy problems 

(2) 
temperature dependence and a WTD 
starting from Kramers barrier escape 
problem is given. Conformer defects 
associated with the glassy-state 0 
process are identified possible 
sources of the a relaxation. Self¬ 
similarity la possible if the bar¬ 
rier height for P defect motion la 
treated as a Poisson variable. A 
critical value of the barrier flue (3) 
tuation causes the WTD to become 
fractal. Other possible sources of 
activation energy effects are dis¬ 
cussed. Consider the behavior of Pn(s) for 

large n; 

log(cos x) = Moment lest Dcntl-tl«L» (EB) 
and Fractal Time ill)• 

The prominent feature of 
fractal-time processes is a self¬ 
similar clustering of events on all 
scales beyond a smallest cutoff¬ 
time. To develop a concrete example 
and practical experience, it is 

~ e (5) 



and to when n>>l 

P„(.) - (2m»)- («) 
II 

If • i• the lattice apaoinf and t la 
the tiaie between atepa, then the 
eontlaana warlablea t ■ nr and 
a - aa are enetoaarr 

(2nn) 

_ 2 

- % 2n 
da “ 

2 
-a 

(4xDt)-%e4Dt dx (7) 

ao that 

P(x.t) (4nDt)-%e4,,t (8) 

2 
where dx • a da and D - -t—, Eq 8 la 
the Oanaaian tranaltlon probability 
for nnblaaed ID dlffnalon away froa 
the origin on an unbounded apatlal 
doaaln. In thia continúan Halt, the 
flrat paaaage tine (FPT) dlatrlbu- 
tlon V(y,T) for a tranaltlon froa 0 
to y In tlae T obey* the convolution 
equation 

PÍXj-Xj.t) 

Jp(x2-x,t-T) Kx-Xj.DdT (9) 

which atatea that every paaaage 

XjB>x, la tlae t occura by flrat 
proceeding to x-x. In tlae T and 
then coapletlng the reaalalng dla- 
tanee Xj-x In the tlae left t-T. 
Solving the convolution by Laplace 
tranaforaa and Inverting 

'.K -,. V V > ’.• *, 
.-- 

, ^(x.-x-.u) 
tix-Xj.T) - L *[-=—i-] (10) 

Kxj-*»®) 

To apply eq 10 to the Oanaaian traa- 
altlon probability of eq 8, the 
Laplace tranafora la needed; 

2 

P(x.u) - J[(4*Dt)"\4Dt)dt 

0 

.u, ^ 

- (4uD) "e D (11) 

.u. ^ 
- 

ao that W(y,u) « e 
Inverting 

and 

f(y.t) 

(4iiDt3) * 
(12) 

with t > 0. ( f(y,t)»0 for t < 0. ) 
Thia la the FPT deaaity for a tran- 
altlon 0 -> y in tlae t. For large t 
it dlaplaya a long-tlae tail 

f(y.t) ~ 
.-1.5 

(4xD) % 
(13) 

and the aayaptotie diatrlbution la 
hyperbolic, which Mandelbrot (17) 
atreaaea la the hallaark of a frac¬ 
tal proceae. V(y,t) itaelf haa no 
noaenta. The nean FPT would be 

<t> - Jtf(y,t)dt 

0 

-Ha je-,,t»(y.t)dt 
UF>0 
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by l»te-co»«rt. - lia 
u->0 

du 

■ H a [(-^) 
u->0 

(14) 

Thus the men FPT doe» not exist, 
though event» do occur »nd each 
point 1» visited with probability 1 
since 

The FPT density V(y t) belongs 
to the class of PDs teraed stable or 
Levy stable by Mandelbrot because 
they describe randoa prooessee which 
are invariant under addition 
(K.17,18). As with the aost faaous 
exsaple, the Gaussian, they aatisfy 
the chain equation; 

P(y2_yl't)“ 

T 

fw(y,t)dt - 1- erfl-(15) 
¿ (4DT) % 

where erf is the error function. The 
aediaa tine T for reaching any y is 
finite; 

T. 

Jf(y,t)dt- % (16) 

0 

» 1 - erfl-^-] 
UDT^) * 

and given by the solution to 

erfl-^^ 
(4DTb) 

An interesting point is that the 
acaentless FPT density V(y,t) 
results froa a well-behaved randoa- 
walk with a Gaussian transition pro¬ 
bability on a discrete (unbounded) 
ID lattice. The aediaa tiae T for a 
walker to reech y»l starting xrca 
the origin for a diffusion constant 
D-l/sce is 1.04 sec, but the average 
tiae is infinltel The reason is that 
walkers who head off in the wrong 
direction take a long tiae to return 
and the acaents are heavily weighted 

Jp(y2~y'ti)p(y~yi,t-ti)dy (17) 

where tranalatlonal invariance has 
been assuaed. The atable densities 
are derived froa 

G(x;u,|t) ” 

m 

•ije- * cosin'«- 8uBa(u,«)]du (18) 

0 

where 

a(u,a) “ tsn( %na) for a / 1 

2 
and —log u for o “ 1 

a 

The solutions to eq 17 are then 

-a-1 -a'1 
P(y.t) - (bt) a Qly(bt) ° ] 

A special ease of eq 18 is 

0(x; 1A.-1) - 
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1 x-l.i #-<2*) 

rû (19) 

•ad th* FFT density of «q 11 
correspondi to 

in eq 19. The stable densities (SD) 
of eq 18 were first studied by Cau¬ 
chy for the sysuMtric case 0-0. 
The ease a " 2 is the Gaussian and 
a ■ 1 *s the Cauchy distribution. 
For mall a, if alog y << 1, the SD 
is aiaieked by the lognoraal (Id). 
For 0 < a £ 1, the SD display a 
long-tiae Pareto tail 

- r1“0 

which results in interesting scaling 
behavior. Mandelbrot refera to the 
distribution a-* as hyperbolic, and 
an iaportant property of this dis¬ 
tribution is its non-uniforaity and 
clustering behavior. For ezaaple. ia 
the ease of the FFT density, if it 
is known that two events have 
occurred and the second takes place 
at tine x. then the conditional PD 
for tha first event is 

w(y.t;t) - *(v-t)t(t) (20) 

Jf(T-t)f(t)dt 

0 

and froa the aayaptotic fora 

~ (t(T-t)]-1_a 

the conditional probability is seen 
to peak at 0 and at t, with the 
leaat likely tlae being in the aid- 
dle. The hyperbolic distribution is 

the only one which scales under 
truncation. Consider again the FFT 
distribution of eq 12 for y~l and 
D-l/see; 

WU.t) 1 #-<4t) 

J 4wt3 

(21) 

At <0 seconda this ia near to the 
hyperbolic fora for 

1.004 

and 

id.t) - (^)14 r1-5 

Consider the distribution tlaes on 
the seule of hours Instead of 
seconds; 

y(lth) (2a> 

so that on the scale of hours, or 
days or years the distribution has 
the saae fora. It has the saae fora 
on all scalea greater than 1 alante 
or so. Qualitatively the bursts and 
gaps in the arrival tiae distribu¬ 
tion V(y,t) nay be thought of ia 
teras of the nuaber of walks of a 
fixed length. The shortest passage 
tiae in the nodel T. » nt results 
froa that single walk which proceeds 
directly ia n steps to the finish 
line at y-na. A nuaber of walks have 
a single digression and a passage 
tiae T. “ (n+2)t, and so forth. The 
arrival tiae clustering reflects the 
length distribution in the collec¬ 
tion of all walks which start at the 
origin and end at y. 

The laportance of the stable 
densities of eq 18 for relaxation 
theory ia that they are solutions of 
the chain equation 17 and therefore 
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candidatas for ooaatruetlai lamoral- 
isad dlffnalon nodsls In systons 
with intsrrnptions, bursts and gaps 
of avants, and salf-alailarlty on 
■any tins aoalaa. To Introduoa such 
a nodal for dlalaatrla relaxation, 
va follow Montroll and Volss (19) 
and oonaldar a oontlnuous-tlaa ran¬ 
dom walk (CTO) In wklak randoa 
interval a of tine ooeur between auo- 
eesalve steps of the walker. The 
waltlng-tine density (VXD) of the 
walker la P(t) (Independent of lat¬ 
tice alte ) so tkat the probability 
of a step taking plaee between t-0 
and t Is 

t 

jV(t)dt (21) 

0 
If consecutive events ooeur without 
■eaory, then P(t) is.a Poisson dis¬ 
tribution fit) “ Xe and the 
walker novas at regular Intervala, 
equal to the naan waiting tine X-1. 
In the case of a nonentleas WTD all 
tine scales appear beyond a shortest 
tine and events are rare. Shlesinger 
and Hughes (20) presented a scaling 
VXD by beginning with a Poisson den¬ 
sity and then proceeding to add 
longer and longer durations with 
smaller and snallsr probabilities; 

fit) ~ pXe"Xt + 

The spaelngs between events gen¬ 
erated by Wt) are the a ana on aver¬ 
age as those which occur in a Cantor 
set, Laplaee transfomlng 

fit) 
9 nil Xa + a 

fit) - 1 V s# K(s) ♦ 

where v - J and o < 1. Thus 

<*> ■ ■ * <27) 

where K(s) is an oscillatory func¬ 
tion periodic in log a with period 
log X . fit) behaves as t 1 * at 
long tine and the appearance of 
self-sinilarlty and the fractal 
dinension arc clearly identifiable 
in this example. 

2.2 -X2t . 3.3 -X3t .,.. pXe + p X • +... (24) 

so that an order of magnitude longer 
duration X11*1 is an Ofder of nagni- 
tude lass probable pa 1, where 
X < p < 1. Summing eq 24 over all 
positive integer powers and normal- 
ising; 

fit) • (-i^t) ) XnpVX * (25) 
P 

Q£l«£l Dlffujian ind 
Dielectric frlgxgt.ias (11)- 

A CTO generalisation of 
Glarum’s defect diffusion model (IS) 
has been found fron which one «an 
derive the Villisns-Vatts ton tor 
dipole relaxation function iu limit¬ 
ing oases (14). Ignoring parallel 
mechanisns for decay, one considers 
a frozen dipole at the origin of a 
regular lattice of V sites, which is 
only able to move when a mobile 
defect located on another site is 
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mee* (tfal Ib dlffBtlBf to It for.* 
tho first tiM. Ths N dsfsets srs 
distribBtsd orsr ths rsasinini 1st- 
tlos sitss with s salform probabil¬ 
ity e, so that e*N/V. Expsriasa- 
tally, ths rsiszatioa spsetrna of 
polyasr glsssos szhibits seals 
lavariaaes with frental diasasioa a 
to bo idsatifisd with 

froa ths diseassloa of sq 23. Ths 
larger the probability of fiadiag 
loagor rslsxstioa tiass. the saallsr 
tho expoaeat a. As p *> 0 .a **> 1 
for fixed X. Ths eoassqaoaess of 
eoafigarstioaal bottlsaseks Issdiag 
to seallag dsasitios are eoatalaod 
ia tho VID P(t) for dsfset aotioa. 
Defias F(l..t) as the FPT deasity 
for a walker who bagias at 1Q at 
tiaa t-0 to reaeh the origiaufor the 
first t 1m at t. Tho probability 
that a walker atartiag at 1. does 
aot raaeh ths origla by tiM t is 

t 

1 - fF(l0,t)dt (28) 

0 
sad amltialyiag this by tho proba¬ 
bility V-1 that a aiagle walker is 
foaad oa site 1. sad aaaaiag over 
all sites gives the dipole aarvlval 
probaoility ia the preseaee of a 
aiagle defeet; 

V t 

V1 0 

V*) ■ 

V t 

[1- V-1 5 [F(ln.t)dt ]N (30) 
1 »1 J u 
x0 1 0 

Flxiag the eoaeextratioa of defeets 
o-N/V while allowiag N sad V to 
beooae vary large, gives 

f(t> - 

V 

lia [1 - 
*■>» 

t 

jF(l0.t)dt ]N 

0 

t 

-ejl(t)dt 

~ a 0 (31) 

where 

l(t) J F(1 t) 

V1 

la the flax of defeets lato the ori- 
gia. Noatroll aad Velas deteraiMd 
the FPT deasity for a CTBV. Froa 
their paper (19); 

1(b) 

V1 

5 Vm(l0)Mnnm (32) 

V t 

- tl - V“1 J |F(l0,t)dtl (29) 

V1 0 

For Boa-iBteraetiBg defeets. the 
dipole sarvival probability 9N(t) la 
ths proasace of N defeets ia 

where F (1.) la tho probability that 
a walker orlgiaally at site 1Q 
arrives at the origia for theufirst 
tiM at the a th atop sad ?(w) is 
the Laplae« traasfora of the VTD 
^(t). Lettlag F(l0>t) be the gan- 
sratiag faaetioa of the set ( 

'.«O» J 
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[ 

F(l0.«) - } Fn(l0),“ (33) 
n-1 

and 

ÏU) - 5 Ftl0.f»(*)l (34) 

V1 

If P.Ua) i* the probability that a 
walker orisinally at the ori|in ia 
at 1. after a atepa (mot neeeaaarily 
for the firat tiae), then the gen¬ 
erating function of the (P^Oq)) 

Pdo-«) - } Pn(l0)*B (35) 
n-0 

ia related to the generating func¬ 
tion F(1q,x) by 

P(10*l) " 61 .0 

F(l0*l) ’ P(0.t) <36) 

but 

Iw ■1 
■o-1 

aince after the n th atep the walker 
ia acaewhere, and ao 

ï(u) +1 - 

[(1 -í»(u))P(0.»»(u))] 
-1 

(37) 

(The Kronecker delta in Fd^.a) 

doean't contribute aince the an in 
the eua in the flux exclude a IqH); 

the aite-vicitation generating func¬ 
tion Pd ,i> ia over all aitea, and 
the 1 correcta for thia.) The gen¬ 
erating function P(0,x) ia known for 

a alaple onbic 3D lattice and the 

,., . mi. .'i-. i i . 

linear chain. For a Polaaon waiting- 

tine denaity 

u+X 

and the long-tiae behavior of the 
flux ia readily found; 

I(t) - 0.6S9X (3D) 

and 

I(t) - 1¾ * (ID) (38) 

Integrating the flux fron 0 to t and 
eubatituting into eq 31 givea 

-c t 

f(t) - e (3D) 

and 

-02t 
f(t) - a (ID) (39) 

which la identical in fom to 
Bordewijk’a reaulta (21). (The 
ahort-tine behavior will be reported 
aeparately.) In the.caae of a 
nonentleaa WTO, ~t * ” , the long- 
tine behavior of the aurvival proba¬ 
bility ia: 

9(t) - e 3 (3D) 

and 

-° t 
a 4 (ID) (40) 

ao that the 3D behavior ia Villlana- 
Vatta like while the ID caae haa a 
naxinun exponent of , 
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Actuation Bair it Bííiet». 

Ralaaatlon klutloa naar Tg ara 
oftan non-Arrkanlna (22,23) and ona 
goal of nodalIng la to offar Inalght 
Into ■olaonlar naakanlana. Slnea tha 
WTDi diaamaaad ao far vara intro- 
dnaad in an ad-hoa faaklon ao aa to 
ganarata tlna-aeala Invarlanaa, ao 
dlaenaalon of toaparatnra boharlor 
la poaalbla vltkont a klaatlo nodal 
for f(t) Itaalf. In thla aaetloa va 
Introdnaa a prlnltlva nodal ralatad 
to tka bañara barrlar aaoapa prob- 
lan (24,25), gnldad nov bp tka 
kaovladga tkat va nnat Introdnaa 
naakanlana to ganarata aalf-alnllar 
olnatara of tino aealaa. In foot, 
tka raaaonlng anployad to arriva at 
tha Cantor fnnotlon of ag 25 la nov 
appllad In ravaraa. Introdvolag tka 
anparpoaltlon axpraaalon; 

f(t) - J Xa"Up(X)dX (41) 

0 

-•o 

vhara tha potontlal in tka vall.at A 
la approzlnatad by U(a) • , 
tka aorraapondlng axpraaalon fn tha 
aaddla raglon C la , 
D(x) ~ «a " (*-x )a, and 0 la 
tka friction oonataat. Bolld-atata 
NUR, dlalaotrle, and naehanleal 
relaxation atndlaa ravoal tkat hlgh- 
fraquanay naln-okaln notlona paralat 
to vary lov tenperaturea ( alao aaa 
dlaenaalon ) in tka glaaay atata, ao 
va anggaat that tha aaddla raglon 
paranatara m and a- ara rand on 
varlablaa vhoaa dlaparalon la con¬ 
trolled by tka rata and anplltnde of 
tha lor- tanparatnra notlona. Aa tka 
rata la aq 42 la nora aenaltlve to 
a. than to w , only a dlatrlbntlon 
ox barriera fía) la latrodaaed; 

vhlek daaerlbaa V(t) aa being oon- 
poaad of Polaaon VTDa vlth char- 
oatarlatlc ratea X Integrated over 
tka danalty of ratea. A quantita¬ 
tively reliable rate eonataat can ba 
calculated for tha bañara problan 
of particle aacapa fron a potential 
veil in the high-friction Unit when 
the barrier height a exceed! the 
themal energy kT (25). Ike activa¬ 
tion enérgica and viaeoaitica of 
polyner glaaa-fornera at high ten- 
paratnrea above Tg appear large 
enough to aatlafy theae criteria. 
The difficult acaunptlon to juatify 
la treating tha glaaa tranaition 
proeaaa aa a aingla, thermally- 
activatcd local-node tranaition, 
though for polynera thla idea haa 
the nerlt of both precedent and aim- 
pi icity. From the ateady-atate flux 
aaaunption, the rate of barrier- 
junping la (25) 

f(a) *0 for * < *o 

and 

-q( •-•<,) 
qc for * > *0 (A3) 

vitk a. the nlninun aaddle-point 
barrier and q the inveraa of the 
barrier fluctuation. Tka denaity of 
relaxation rates p(X) due to f(e) 
ia*. 

p(X) - ^l<A)kT1 
K Ag 

for 

0 i k i X0 (44) 

Introducing a » XTq, the long-time 
behavior of the VXD of eq 41 ia 



a - kT<i (50) 
f(t) - 

aKa+l) t-«-l (45) 

where Weteon’e lewie It »ted for 
t “> The Teuberle» theore* then 
glvet the Lepltce trantfota for 
tatll »; 

»*(») - 

1 - 
na 

tla nd+qJ 
, -a 

+ .. 

~ - 1 - An® +... (46) 

froa 

ni+a)R-q) ■ tln«n+qT 

With eq 46 in the fins eaprettion. 
eq 37 tfv«* 

Eqt 48-50 give the flllltat- 
Wettt partaetert for the aiaple 
kinetic waitIng-tiae aodel dentlty 
of eq 45, aad thowt teveral explicit 
temperature effectt. The original 
Kraaert defect-hopping rate X« 
tppeart under the exponent o to that 
itt activation energy e0 appear! in 
t of eq 1. The exponent 

q - kTq 

contain! an explicit linear tempéra¬ 
ture dependence plut that of the 
barrier fluctuation 
q"1 - (<t - e0>). r in eq 50 it 
temperature dependent through o and 
renoraalixet the activation energy. 
If the defect denaity changea with 
temperature, thla addt a further 
activation-energy con ribution. 
Finally, the CTHW model attumee that 
all dipole-defect "collitiont" are 
tucoettful in bringing about relaxa¬ 
tion. If a threahold energy exiata, 
thia adda yet another term. 

I(u) - (47) 
An“ 

for a aimple cubic 3D lattice. Thu a 

#(t) ~ e 
-crtXjjt) 

(48) 

where 

■ 639n 
tin n(l+q)l»ï\®51 

(49) 

c ia the denaity of defect!, and 

Diacuaaion. 

The primitive model toaling WTD 
of eq 45 auggeata teveral mechanlama 
for temperature-dependent relaxation 
exponente a and activation energiea, 
and numerical eompariaona will be 
reported aeparately. The algnifleant 
fact la that the filliama-fatta 
function emerge» rather directly 
from a defeet-dlffuaion picture if 
the defect waiting time» obey the 
atable hyperbolic form, which con¬ 
tain! aelf-aimllar cluatera of pant¬ 
ing tlmea on all acalea beyond a 
ahorteat time. Of courte the 
Williama-Watta function itaelf ia , 
not acaling (except at early tinea ) 



since its aoaents exist. For prob¬ 

lems such as creep, the early time 

behavior is important, and it ia 

interesting that the Andrade-Veber 

creep expressions are self-aimilar 

(17). One has to subordinate the 

relaxation event ( dipole, or a Tg 

process ) to another process, here 

modeled as defect diffusion, to 

recover Williams-Watts. 

Of course, it is useful to 

identify glass relaxation processea 

with scaling fractals. Cantor sets, 

and stable distributiona, but in 

practice one needs to discover vhat 

the defects are and hov the fractal 

dimension a is calculated. The Kra¬ 

mers escape model with diaperalon in 

the barrier height makes a step 

toward that goal. In the case of a 

polymer near its glass transition, a 

mechanism for mechanical or dielec¬ 

tric loss is monomer/dimer or tri¬ 

mer motions involving the backbone 

(26). In a crude sense, this 

thermally-activated conformer tran¬ 

sition might be modeled by Kramers 

particle escape method, where the 

particle is the local-mode center- 

of-masa (24). In this instance, 

though, the co-existence of the low- 

temperature ß motion in the backbone 

should be considered (7,26). Such 

backbone motions occur at megahertx 

frequencies near Tg, and persist to 

low temperatures in the solid. The 

conformational rearrangements which 

accompany the low-temperature pro¬ 

cess may themselves act aa defects, 

and could cause barrier diaperalon 

in the saddle region for the "high" 

temperature glass event. 

The ratio of the thermal energy 

to the barrier dispersion, eq 50, 

corresponds to the Hausdorff dimen¬ 

sion a of the stable density of eq 

45. The character of the random pro¬ 

cess changes drastically when this 

ratio falls below 1. When the 

dispersion is small and a > 1 the 

first moment exists and there is a 

characteristic time, a relaxation 

time, in the problem. The motion is 

not fractal or transient, and the 

set of occurrence times ia dense. 

Then the dispersion gets larger that 

kT, no average time exists, the set 

of occurrence times is a Cantor set, 

on the average, and motions are rare 

and occur in self-similar bursts and 

gaps. Some model calculations to 

estimate barrier dispersion are 

underway. 
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Abstract 

The purpose of this paper is to give a 
comprehensive review of the work on non-Debye 
relaxation which should serve as a useful 
account of the present understanding of the 
subject. We have reviewed several models of 
stretched exponential decay in time of many 
physical relaxation properties such as st’^ss 
relaxation in polymers, dielectric relaxation, 
thermoremenant magnetization in spin glasses, 
etc. It is found experimentally that not only 
the time-dependence is a fractional exponen¬ 
tial, but also the observed time scale of the 
fractional exponential is related to some fun¬ 
damental time constant associated with an expo¬ 
nential decay via another universal relation¬ 
ship. Many of the models give the first rela¬ 
tionship (we call these Type A theories) and 
they either do not or have not been suffi 
ciently examined to give the second universal¬ 
ity relation mentioned above. The models which 
give rise to both the features are called 
Type B. We have further classified Types A and 
B theories into subclasses: (Aa) Distribution 
of relaxation times, (Ab) Mathematical Analogy 
theories, (Ac) Stochastic processes and 
(Ad) Other schemes, (Ba) Original Model of 
Ngai, and (Bb) Evolution of Entropy theory for 
correlated states. Three special cases: 
(i) spin glasses, (ii) polymers, and (m) 
electron glasses are briefly discussed. We end 
the paper with a few concluding remarks. A 
commentary on four papers which appeared after 
the manuscript was essentially completed is 
also given at the end. 

1. Introduction 

It has been known for quite some time now 
that the long time relaxation of many proper¬ 
ties of condensed matter systems is slower than 
exponential and is of the stretched exponential 

form 

¢(1) = exp-(t/tp) 
1-n 

0<n<l (1) 

where n is an index of slowness and t is a 

characteristic tirae.1’^ Here ¢1 stands for tne 
normalized relaxation function appropriate to 
the physical property whose time dependence is 
being considered. It may stand for stress 

relaxation function or dielectric relaxation 
function, or thermo-remenant magnetization in 
spin glasses and so on. Historically, this 
function, Eq. (1), gives a good fit to the 
experimental results on a wide variety of phys- 

Ngai1 ical quantities in different contexts, 
has given a model which delivers Eq. (1) as 
well as a second relationship connecting T 
with the "fundamental" relaxation time To assoK 
ciated with the system: 

[(l-n)exp(nY)u)"Tol1^1 (2) 

X here, in principle, can be measured also 
experimentally independent of the relationship 
(1). u) is another characteristic of the sys¬ 
tem anif.is a measure of the lower cutoff in 
time, u> , below which Eq. (1) is not expected 
to holdf y is the Euler constant, 0.577 ... . 
Since X depends on a variety of physical prop¬ 
erties of the system such as temperature, iso¬ 
topic mass, molecular weight, etc., in differ¬ 
ent circumstances in a simple way, the charac¬ 
teristic time X that is required to fit the 
experimental tifie dependence via Eq. (1) is 
found to display an appropriately scaled depen¬ 
dence on these quantities as required by 

Eq. (2). This observation ’ is so overwhelm¬ 
ing that this has been called the "second uni- 
versality relationship" whereas the stretched 
time-dependence in Eq. (1) is called the first 
universality." These two observations, even 
apart from any physical model upon which its 
derivation is based, are indeed remarkable and 
that an understanding of basis of these expres¬ 
sions is expected from quite general, universal 
considerations. 

In this paper, we shall present in more 
detail (some of which has not been published 
before) a variety of models proposed in the 
literature over the last few years, much of 
which is concerned with a derivation of Eq. (1) 
partly because this relation ^as historically 
been known for a long time. Most of these 
models in their present form will be shown to 
be incapable of giving the second relation, 
Eq. (2) and hence they do not provide a com¬ 
plete explanation of the long time relaxation 
processes in condensed matter physics. In view 
of this, we have broadly classified the models 
into two large groups, A type, which give only 
Eq. (1) as f?r as the present interpretation of 
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them is concerned, and B type, which give both 
Eq. (1) and (2). These large groups of models 
furthermore fall into finer types. We will 
give here a brief description of these. 

(Aa) Distribution of Relaxation Times: 
There are several theories proposed by diverse 
groups which fall into this class. The basic 
idea here is that the expression (1) is funda¬ 
mentally a superposition of a large number of 
exponentially decaying functions, exp(-t/t.), 
where T.'s are relaxation times associated with 
the constituents of the system. More expli¬ 
citly one writes 

<Kt) = /“ g(t)exp(-t/T)dt (3) 

where g(t) is some distribution function of 
relaxation times. We may then try to invert 
this relationship by inverse Laplace transfor¬ 
mation to obtain g(t) if we assume <)>(t) to be 
of the form given by Eq. (1). Only for n=ij 
this inversion can be done analytically. How¬ 
ever, one may use approximate methods to infer 
g(t), such as the "method of steepest descents. 
For 0<n<l, the result is 

o(T) s I l*5 I P.~n)T /2n ^ 
' 1 271^0 1 1 I J 

exp[-n( ÜI5H )( " )] 

P 
(4) 

It is not clear on physical grounds what g(t) 
really means. There are physical mechanisms 
that one may concieve of which essentially lead 
to forms of "effective" g(t), such as Majum- 

3 A 
dar's diffusion model, ’ Crest and Cohen's 

free volume model,^ and models based on Glau- 
6 7 8 

ber's kinetic-Ising model of Dhar, ’ Skinner, 
and McMillan. 

(Ab) Mathematical Analogy Theories: In 
some circles it is fashionable to recognize the 
structure displayed by Eq. (1) with some known 
mathematical result. Invariably these observa¬ 
tions are interesting in themselves but do not 
shed any light on the physics of the problem. 
Several such efforts will be mentioned and a 
few have no physical implication at all. Frac¬ 
tional Brownian motion studied by Mandelbrot 

and van Ness^ and examined for the purpose of 

studying relaxation by Rajagopal and Rendell^* 
is an example of this which could not be 
related to physics of condensed matter systems 
for which Eq. (1) is known to hold experimen¬ 
tally. Another mathematical result known for 
some time is the superposable, stable distribu¬ 
tions due to Lévy. It was first realized by 

12 
Tunaley that if the frequency distributions 
in metallic films are superposable in the sense 
of Lévy, then the observed noise characteris¬ 
tics in them may be understood. Hughes, Shle- 

13 
singer, and Montroll and Montroll and Shie¬ 

ld 
singer examined random walks with self simi¬ 
lar clusters leading to "Lévy flights" and "1/f 
noise." 

(Ac) Stochastic Processes: Under this 
class, we shall examine theories based on con¬ 

tinuous time random walk1^ (CTRW) and the gen¬ 
eralized master equation (there is a recent 
review article on this subject by Weiss and 

Rubin^). Here the probability density func¬ 
tion for the time betweer arrival oi a walker 
at a given lattice point and the initiation of 
the next step to another site, denoted by iii(t), 
is the basic entity, upon whose structure the 
time-dependence of the relaxation function of 
interest depends. If we take for iMt) the 
negative of the time derivative of function of 
the form given by Eq. (1), then the CTRW frame¬ 
work can j^e applied to disc iss the relaxation 
problems. But in Ref. 19, it was pointed out 
that when the moments p of iji(t) are all 
finite, the Markovian master equation is an 
appropriate description for times which are 

large compared to T = Sup(p /m!)1 . For it»(t) 
given by minus the derivative of an expression 
o| the form given by Eq. (1) it is found that 
T iSjgfinite for -l<n<0 and infinite for 
0<n<l. Thus a non-Markovian description is 
always needed for relaxation functions of the 

form Eq. (1). In most CTRW applications,^ ^ 
the physical picture afsu'ed is an inhomogene¬ 
ous distribution of waiting times and in order 
to have a t|»(t) which is universal for all 
sites, one has to perform an average over all 
possible configurations of the walkers. In 
condensed matter one commonly has short-range 
order and this precludes such a picture of ran¬ 
dom walk with an inhomogeneous distribution of 
waiting times. For example, in a-SiO., holes 
in the 2p lone pair orbitals of oxygen being 
small polarons hop from one oxygen to one of 
its nearest neighbor oxygens. In a-SiO , the 
short range order is preserved and the nearest 
neighbor oxygen-oxygen distance remains invari¬ 
ant. It is difficult to see how an inhomogene¬ 
ous distribution of waiting times will arise. 
Another classic model employed in statistical 
mechanics for describing exponential decay of 
time correlations in a chain of coupled har¬ 
monic oscillators serving as a heat bath to a 

21 
Brownian particle. For arbitrary oscillator 
interactions, the Brownian particle obeys a 
generalized Langevin equation with time- 
dependent friction coefficient, and a Gaussian 
random force determined solely by the Hamil¬ 
tonian of the coupled harmonic oscillators and 
the canonical distribution of the initial coor- 

21 
dinates and momenta. In the original work, 
the semiboundedness of the spectrum of the 
Hamiltonian of the bath oscillators was ignored 
in deriving the usual exponential decay. The 
Paley-Wiener theorem can be applied to this 

19 
problem. This then leads to a bound for 
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relaxation function of the form Eq. (1). It 
was also noted that the covariance of the ran 
dom force of the same form is obtained in the 
long time limit from fractional Brownian 

motion.11 But this connection is tenuous 
because the form of the noise does not uniquely 
specify the stochastic equation of motion. 

(Ad) Other Schemes: In this subsection we 
shall discuss the incapacity of a direct appli¬ 
cation of the Kubo formula to obtain Eq. (1) 
for an important physical reason, missed by 

Young who claimed to arrive at Eq. (1) by the 
use of the Kubo formula. He obtained something 
like Eq. (1) but the coefficients had the 
incorrect temperature and other dependences. 

24 
Another approach is due to Palmer using 
models of broken ergodicity. This seems as yet 
not definitive. 

As pointed out earlier, none of these 
models are really satisfactory not only because 
they seem to lead to Eq. (1) for reasons which 
cannot be given a universal physical basis 
(since Eq. (1) is found to be applicable to a 
wide class of systems which do not fit the phy¬ 
sical model that may be adduced to the specific 
mathematical program discussed here) but also 
because they do not give rise to the second 
universality, Eq. (2). There have been several 
attempts by our group (Ngai and coworkers) in 
the recent past to obtain such a general deri¬ 
vation, applicable under a wide set of assump¬ 
tions, but relevant to the condensed matter 
systems of interest. We call these Type B 
models and we describe there here under two 
subclasses . 

(Ba) Original Model of Ngai1: This model 
employed the Wigner random matrix Hamiltonian 
scheme to describe the complex condensed matter 
systems such as polymers, glasses, spin glasses 
etc., and considers the interaction of a relax¬ 
ing species with such a comnlex background sys¬ 
tem. The original version has been re-examined 

recently and we describe it here. It has 
26 

also been shown recently that a chaotic 

Hamiltonian may replace the Wigner scheme. 

(Bb) Evolution of Entropy Theory for Cor¬ 

related States: The original mode^j 
has been recently recast in another form. 
This model involves time dependent transition 
rates which are obtained from time independent 
ones. The time dependence is due to an envi¬ 
ronment that provides a time dependent entropy 
contribution to the free energy which controls 
the transitions. We present this theory in a 
slightly different form so as to relax some 
mathematically simplifying assumptions made in 
the original version. 

We also discuss three systems of current 
interest to condensed matter physicists: (1) 

spin glasses, (ii) polymers, and (iii) electron 
glasses. Tn the last section of the paper, we 
give a summary of the results obtained thus far 
and also outline some of the open problems for 
future investigations. We also open the dis¬ 
cussion of what stringent tests besides Eq. (1) 
and (2) for a proper relaxation theory in con¬ 
densed matter system ought to obey. After this 
manuscript was completed, four articles of 
relevance to this review appeared. We have 
given a conmentary on these works at the end. 

2. Type A Theories 

(Aa) Distribution of Relaxation Times 

Majurndar'1’^ is perhaps the first to try to 
give a physical basis of Eq. (1) which appeared 
in a description of stress relaxation in 
glasses. He proposed to understand the stress 
relaxation in glasses as microbrownian motion 
of its molecular constituents. This leads to 
a consideration of diffusion equation as the 
underlying equation for the stress relaxation 
phenomena. It is assumed that the stress field 
S(x,t) at any given point in the glass is made 
up of "elementary stress relaxation modes" 
which are solutions of the diffusion equation 

= u(x,t) . (6) 
ot 

Each mode decays exponentially with a relaxa¬ 
tion time X, so that 

u(x,t) = <|i(x)e t^T , O) 

and 

DV2<Kx) + i <|i(x) = 0 . (8) 

The elementary modes {((^(x)} associated with 
Eq. (8) hav 

i = D|k|2 (9) 

where Î is the usual wave-vector determined by 
suitable boundary conditions. The diffusion 
coefficient D for glasses is assumed to be 
inversely proportional to the viscosity, n> 
the glass (Einstein relation). Thus, each 
relaxation time in (4) is proportional to H- 
It is important to stress that Eq. (6) is a 
postulate for the elastic stress field. This 
implies that for large viscosities, the Navier- 
Stokes equation contains the reciprocal of the 
viscosity whereas for small viscosities it con¬ 
tains the viscosity itself. In glasses, the 
viscosity is large and hence such a modifica¬ 
tion of the Navier-Stokes equation is sugges¬ 
tive in view of the Einstein relation. Thus, 
with the postulate <js above, we may calculate 
the stress field S(x,t) in terms of the com¬ 
plete set of functions given by Eq. (8): 
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S(x,t) = I a^<^(x)e 
k k k 

-D|î l2t (10) 

Following Majumdar, by considering how each 
class of nodes in different time regimes con¬ 
tributed to relaxation, one may derive Eq. (1) 
with some special values of n. Effectively 
this scheme is formally equivalent to distribu¬ 
tion of relaxation times because Eq. (10) is 
rewritten in the form 

S(x,t) = / e'D,k|2t <t^(x) P(k) ^3 (11) 

where P(k) is the distribution in k-space of 
the dominating specific mode íj(x) whi^h is 
picked from physical considerations. P(k) is 
such that 

JpU0 j2np = 1 (12) 
In particlar, Majumdar points out that one may 
take 

P(k) = A exp(-(l£|/k)"ra] (13) 

Here k is a parameter and A is such that (12) 
is obeyed and 

m=l for short times t << X where a 
s 

linear scale dominates the relaxation 
modes ; 

m=2 where surface dominated relaxation 
modes occur; 

and 

m=3 for volume dominated relaxation modes 
controlling S. 

He obtains in these cases respectively 

S|(x,t) S exp-U/x,) 

Xj = 4/27Dk2 
(14a) 

S2(x,t) £ exp-(t/x2)^ 

x2 = m 
(14b) 

and 

S3(x,t) S exp-(t/x3) 3/5 

:3 = f <Í>W3/»í2 (14c) 

At asymptotically large times, the largest mode 
dominates and then 

P(î) ~ 6(l£|-k ) 
max 

and 

S4(x,t) 5 exp-(t/x^) 

with 

1/Dk2 
max 

(14d) 

Observing that the various time scales X. dif¬ 
fer from each other only by numerical1 pre¬ 
factors of order unity, he takes 

ll 
x3 = X^ = X = l/4Dk 

,-2 

= = 105sec 
4kTk 

(15) 

for g typical glass and the experimental x is 
4x10 sec, and so (15) is a fair estimate! 
Clearly there is no second universality in such 
a scheme. 

Cohen and Crest employ the free-volume 
theory to discuss the observed dispersion of 
relaxation times in dense liquids and glasses 
and show that it is simply related to the dis¬ 
persion of the total surface-to-volume ratio of 
the liquid clusters. Without going into too 
many details of the free volume theory, we 
point out here that this is, like Majumdar's 
theory, an average over relaxation times scheme 
with a physical basis for the distribution 
function given via the free volume theory. In 
particular, they write for the relaxation func¬ 
tion 

4»(t) = /“PM exp(-Wt) dW (16) 

where P(W) is the probability distribution 
associated with the inverse relaxation time, 
W . They then argue based on percolation 
theory that 

W = W (17) 

where v is the fragment size, and W is a 
parameter depending on temperature, molecular 
weight, etc., x is an index. Changing vari¬ 
ables from W to » and assuming that the new 
distribution function g(i'), which is now the 
probability of cluster sizes, to be of the form 
given by percolation theory, 

g(0 = A exp(-C^) (18) 

where C is a constant, A is slowly varying 
function of they perform the steepest descent 
calculation of the form in obtaining Eq. (4) 
and deduce for long times 

4>(t) = exp-C (WQt)s (19) 

where 

z = y/(x+y) 

They then argue using percolation theory esti¬ 
mates that 

2/3 < z < 1 (20) 

Here again there is no second universality 
and the percolation model and free volume 
schemes are of infrequent occurrence in con¬ 
densed matter systems than even diffusion proc- 
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esses and inapplicable to spin glasses, elec¬ 
tron glasses, secondary relaxations of amor¬ 
phous polymers far below T , terminal relaxa¬ 
tion of entangled polymer Belts, for example. 
Moreover, the singular distribution functions 
for the cluster sizes themselves need a physi¬ 
cal basisl 

There is a third class of theories in this 
framework which attempts to arrive at Eq. (1) 

by kinetic Ising model approach. Dhar ^ pro¬ 
poses to explain this behavior in terms of 
Lifshitz states near the band edges in a dis¬ 
ordered material. As an illustration of this 
scheme, he considered a one-dimensional kinetic 

8 
Ising model with bond disorder. Skinner also 
considers such a model to study cooperative 
dynamics of linear chain molecules, and basi¬ 
cally the problem is recast in the form of 

Eq. (3). McMillan^ considers a Monte Carlo 
simulation of the two-dimensional random (±J) 
Ising model. He finds that the correlation 
function scales and the equilibration time 
obeys an Arrhenius law at low temperatures. He 
gives a simple cluster model as a means of 
understanding these Monte Carlo studies. We 

outline here briefly Dhar's scheme^’^ as it is 
the earliest and perhaps the clearest of the 
descriptions based on the kinetic Ising model. 
Dhar shows that the kinetic Ising model equa¬ 
tion may be written in the form 

j-|S(t)> = -AIS(t)> (21) 

existence of very large clusters determines the 
long time relaxation of magnetization in a 
kinetic Ising model. Further, he suggests that 
the Lifshitz states in the vicinity of the band 
edge as ideal candidates for producing exp(;t*) 
because this corresponds to D(\) ~ exp(-\ ). 

(cf-Majumdar^’S 

(Ab) Mathematical Analogy Theories: 

In (Aa), we described one o' the ways of 
arriving at Eq. (1) by considérât.on of diffu¬ 
sion. From stochastic processes point of view, 
diffusion is a manifestation of Brownian motion 
of a particle under the influence of random 
forces exerted on it by the environment. We 
will first, by way of introduction, ahow 
briefly this relationship as it will be a basis 
for discussion later on also. Explicitly 
stated, the ordinary Brownian motion is s real 
Gaussian process. Consider time t, -*<t<». 
The Brownian motion is described by a random 
variable B(t) with the following properties: 

<B(t)> = 0 (25*) 

«(Bitp - B(t2))2> = Itj - t2| . (25b) 

or equivalently, the autocorrelation 

RB(trt2) 5 
= min (tj,t2) (25c) 

and the derivative B'(t) is such that 

where A is a NxN tridiagonal matrix, indepen¬ 
dent of time, but contains the random exchange 
constants of the random Ising model. The aver¬ 
age magnetization M(t) is then expressed in the 
form (compare Eq. (3)) 

M(t) = d\ exp(-\t) D(\) (22) 

with 

D(X)dX = \ <S(0)l A'XX' IS(0)»c (23) 

where |A’> and <\'l are the right- and left- 
eigenvectors of A with eigenvalues A' and 
<...> denotes the configuration average over 
the random exchange constants. Dhar then uses 
the arguments of Lifshitz to show that D(A) is 

semibounded and behaves as exp[-(A-Ao) ^c] as 
A-»A , where c is a known constant and Aq is 
given by (l-tanh(2pJo)), with 2ßJ , a typical 
exchange constant in the distribution of J's, 
scaled by the temperature (ß=l/kT). This leads 
to 

M(t) 5 exp(-Aot - at1/3), t - » . (24) 

1/3 
This model gives exp(-at ' ) always with a tem= 
perature independent exponent n=2/3 (in our 
notation). In higher dimensions, Dhar gives an 
argument based on percolation theory. In con¬ 
clusion, Dhar tries to illustrate that the 

' w * - - . 1 

1..-.-% --...I 

RB' (tl,t2) s = • <25d) 

The first order density of B(t) is obtained by 
using (25c) with t^=t2=t, 

RB(t,t) = <B2(t)> = t , (26) 

and 

fB(t)(x)= (2n<B2(t)>)”^ exp(-x2/2<B2(t)>) 

= (2nRB(t,t))’^ exp(-x2/2RB(t,t)) . (27) 

This is just the solution of traditional diffu¬ 
sion equation! The second order density of 
B(t) is a two-variable Gaussian density with 
auto-correlation function 8g(ti>^2^: 

fB(t1) ,B(t2)(x,y)s: 2 

i RB(t2,t2)x2'2RB(tl’t2)xytRB(tl’tl)y > 

exp - ’S I ^^l^l^B^ 2^2^^1^1^2^ ~i 

2n(RB(t1,t1)RB(t2,t2) - 

and so on. 

Mandelbrot and van Ness10 considered a 
more general class of stochastic processes 
which they called fractional brownian motion 
(fbm) with parameter H and starting value b0 at 

r 

4\ 
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t=0. They defined B„(t) as the moving average 
“ U_3L 

of dB(t) weighted by a kernel, (t-s) *: 

BH(t) = î^hïÇJ (t-s)H"^dB(s), (-»<t<») (29) 

with 

29 
and Mandelbrot pointed this out without giv¬ 

ing details and Rajagopal and Rendell^ had 
also noticed the error and had worked out 
details of this model with the hope of using it 
in relation to the relaxation process. They 
found that 

bh(0) = nm . no) 

r(H-iy) is the gamma function of argument (11+½). 
Here dB(s) = B'(s)ds where B'(s) is the deriva¬ 
tive of the ordinary Brownian process with its 
associated correlation (25d). This fbm is also 
a Gaussian process determined by its autocorre¬ 
lation function iBjjttj) BH(t2)>. Note that for 

11=½. (29), 131^(0=8(0 > the ordinary Brownian 

motion. Denote 

bH(0 5 bh(0 - bh(0) . (31) 

Clearly 

(W <BLH(tl)BLHit2>> = 

(o o) 
-r—Õ- {t n(t2-t ) ,f (^,i; 
[r(H+|)r(H+|)i 1 ¿ 1 ¿ 1 

3 bl 
H+¿; rj + t2n(trt2) 2Fl("H+^’1’ 

i4r)> • ¿ i 
(36) 

and for tj=t2 ^(tj)» = tjH/2H[r(H+^J2 .(37) 

<bH(t)> = 0 (32) 

And, after some algebra, using (25d), for tj^t2 

<bH(ti)bH(t2)> = 

It -t l2H-t 2H-t 2H 
I 1 1 2' 1 2 , 
1 (ronw ! 

(-s)H‘^[ (l-s^-í-sí^lds) . 

Or, equivalently after some manipulation of 
the integral, 

[tf+tf-lt,-^2«] 2 '-1 -21 
2(r(H+^)* 

l^dsK-s^-d-s)«^)2 + y . (33) 

This is valid for t =t. also. This has an 
interesting self-similarity property: 

In (36), r)(t) is positive unit step function, 
n(t) = 0 if t<0, and 1 |f t>0. From (36), if 
we take tj+t2 or t2+tj , and use 2Fj(-11+4,1; 

H+3/2;l) = we obtain (37). These relations 
2n 2g 

were missed by Maccone because of an error in 
the evaluation of <Bjj((tj) Bm(t2)> ab°ve where 

he missed the hypergeometric function appearing 
in (36) above. For H=^ this result goes over 
to (25c). It can be shown that B.„(t) is a 
gaussian process by actual computation of say 

BLH(t2) BLH(t3) BLH(t4)> etc- Now* 
consider the first order density associated 
with Bj((t) as in Eq. (27): 

fB (t)(x)=(2n<BjH(t)>)‘!iexp(-x2/2<BjH(t)>) (38) 
LH 

which coincides with Maccone's result but his 
second order density is wrong because of his 
error in Eq. (36). 

<bH(\t1)bH(At2)>=\2H<bH(t1)bH(t2)>, (\>0). (34) 

Mandelbrot and van Ness^ suggested many appli¬ 
cations of this new process to several physical 
and other phenomena. 

28 
Maccone suggested an alternative class of 

non-stationary Gaussian Stochastic processes 
which are a variant of the above fractional 
Brownian motion, which were originally suggested 
by Lévy, and mentioned in the wo-k of Mandelbrot 

and van Ness.^® This has the forn 

BLH(t) 
ft (t-s) 

r(H+y B'(s)d¡; (tèO) (35) 

For H=^, B^^(t)=B(t), the usual Brownian motion 

given by (25a-d). Maccone erred in his algebra 

It is important to realize that the self¬ 
similarity property 

BjjjUt) = \H BjjjU), A>0 (39) 

is preserved. Discussions based on one- 
variable distribution function are all correct 
in Maccone's work but n others are wrong as 
well as his discussion ... stochastic indepen¬ 
dence of the increments because the correla¬ 
tions are not as in the ordinary diffusion 
process. 

Our interest in this process was exactly 
in Eq. (38) and (37). In explaining the exper¬ 
imentally observed dispersive diffusion in 
amorphous semiconductors, one finds Eq. (1) 
leading to a time-dependent diffusion coeffi¬ 

cient. From (27) we see that <x2(t)>=<B2(t)>=t 
or had we introduced a diffusion coefficient D 
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(t1^ 
in the usual way D = --- , we would have D 
independent of t in the usual diffusion theory. 
Experimentally, D is found to be time-depen- 

23 -n 
dent and depends on t for long times as t , 
with 0<n<l, as in Eq. (1). From (38), we note 
that the diffusion constant in this case is 

^D. u(s)ds=<x^(t)>«t^^. For 0<H<*j, we may 
o Ln 
identify n=(l-2H) so that 0<n<l and in this 
case, the fractional Brownian motion as dis¬ 
cussed by Lévy and Maccone serve as a model for 
anomalous dispersion in amorphous semiconduc¬ 
tors. Under subsection (Ac) we shall return to 
this sort of model again when we discuss Lange- 
vin theory, which is a little more physical, 
but leads to results of this type also. 
Clearly, if we have to identify the physical 
process with the fractional Brownian motion 
defined by Eq. (35) and not by Eq. (29), the 
former is valid for 0<t<® whereas the latter 
for -oo<t«», nature must have a physical basis 
for this choice and we must understand this 
from some basic physical principle. Also, as 
pointed out earlier, not all physical entities 
which give rise to time-dependence of the form 
Eq. (1) can be described in terms of diffusion! 

The theory of infinitely divisible proc¬ 
esses have been known for some time. (See for 

30 
example, Feller. ) The most general form of 
probability density which when convoluted any 
number of times preserves its form was derived 
by Lévy. The well-known cases of Gaussian and 
Cauchy distributions were thus extended and an 
immediate consequence of this generalization 
was that these functions had long tails unlike 
the Gaussian. Since in the physical observa¬ 
tions one has the concept of energy or fre¬ 
quency distributions whose fourier transform 
gives the nature of time-dependence, it seems a 
form of time-dependence given by Eq. (1) 
requires low energy (or frequency) tails in its 
distribution. The question of superposable 
energy or frequency distribution is not hard to 
invoke because superposability in physics is a 
natural occurrence. The Gaussian distribution 
and the law of large numbers are central to 
many of our statistical mechanical thinking and 
a generalization of this to cover instances 
where the second energy or frequency moment may 
not exist is only a slight generalization. It 

12 
appears that Tunaley was the first to invoke 
such notions to explain 1/f noise in thin 
metallic films from such physical processes. 
Tunaley noted that if we restrict ourselves to 
very low frequencies, mean and variance may be 
infinite on some long time scale and on a local 
time scale the envelope of these processes may 
have a normal distribution with finite mean and 
variance. Furthrmore, he considered the stable 
densities as attractive because of their scal¬ 
ing properties, which seem to be consistent 
with the idea of homogeneouc fluctuation gener¬ 
ation in a semiconductor. He stressed that the 
possibility of infinite mean and variance in 

the traversal time should be given careful con¬ 
sideration in any stochastic model where it is 
likely to have profound effect on the predic¬ 
tions. Hughes et al. J considered random walks 
with self-similar clusters but with no apparen^ 
physical application. Montroll and Shlesinger 
reported on examples of distribution functions 
with long tails. These same authors have 

31 32 33 
recently written three articles ’ ’ where 
many diverse physical phenomena are shown to 
display close analogy with systems having long 
tail distribution in their wave length and fre¬ 
quency properties. They do not offer any 
detailed physical processes that would derive 
these distributions in some plausible way. 
Also, there is no prediction made, after having 
made this analogy. We should point out that 
all these authors use a symmetric form of the 
distribution for mathematical convenience only 
and do not offer any physical reasoning for the 
parameters appearing in the Lévy distribution. 

12 13 1A 
Tunaley, Montroll and his coworkers ’ had 
noted that Lévy distributions lead to functions 
of the form (1) with -l<n<l for symmetric dis¬ 
tributions (more general form is of no concern 
to us here), which were employed by these 
authors without explanation except to state 
that the choice is dictated by simplicity. 
n=-l corresponds to the Gaussian spectrum p(e), 

2 2-1 
and n=0 to the Cauchy p(e)=(a +e ) , both of 
which are unbounded from below. This point was 
never realized by these authors. It was Raja- 

gopal et al.^ who imposed the boundedness from 
below condition via tie Paley-Wiener theorem 
and restricted the n values to 0<n<l. We 
stress again that the mathematical analogies 
while useful and point to the correct direc¬ 
tion, they did not ive all the required 
results without the car ful use of general phy¬ 
sical requirements whic are model independent. 

Rajagopal et al.^ wer ■ groping for the full 
use of the general requ remeuts of semibounded- 
ness and superposabili y of the spectrum and 
they went for square integrability of the spec¬ 
trum as an additional requirement so as to 
employ the PW theorem and hence they called 
their result as a bound and PW criterion. 

(Ac) Stochastic Processes 

An alternate scheme to the one given in 
§ Ab is the stochastic process or master equa¬ 
tion approach. Here again, the linear time 
proportional probabilities play a crucial role 
in setting up the equations. This framework 
goes under the name of continuous time random 

walk (CTRW)15 and the associated master equa¬ 

tion (GME)16 for studying time-dependent prob¬ 
lems (see also the review. Ref. 17). Montroll 
and coworkers popularized this model by their 

, • .V 31,32,33 pioneering work in tlis area. taee 
also Ref. 34.) The approach popularized by 
this school is the so-called generalized 
Glarum model which we shall describe here in 

281 



some detail, in which defects move with a con¬ 
stant renewal rate. This theory deduces Eq. (1) 
from such considerations. Implicit in this 
model are the concepts of a "site" and of a 
"defect." It is then assumed that the defects 
move through the system by a random walk proc¬ 
ess and at any site relaxation cannot occur 
until a defect arrives. The Montroll school 
suggests that the Lévy tails must be introduced 
with the waiting time probability densities, 

<)<_(t) “t ^ n so that Eq. (1) ensues. Ngai and 
^ 18 Liu have argued that the weighting time dis¬ 

tribution in carrier hopping transport, the 
hopping time distribution is negative of the 

derivative of Eq.(l) and hence t)»jj^(t)ot(l-n)at n 

expi-at1 n) which enters the CTRW equations. 
Thus there is a controversy as to the correct 
form of i)i(t) to be used in CTRW formalism. 
There are two points of interest to note with 
the choice of Another important out¬ 

come of the NL scheme is that in the final 
result the time dependence is always of the 

form expC-at1 n) where a depends on the physi¬ 
cal dimension of the lattice in which the ran¬ 
dom walker is walking, whereas in the M scheme, 
besides a depending on the physical dimension, 
the exponent (1-n) is halved as we go from 3-D 
to 1-D. When the moments p of the waiting 
time distributions function"1 ifit) are all 
finite, the Markovian master equation is an 
appropriate description for times which are 

large compared to t* = sup(|J /m!)* . For 

t|»jj^(t), it is found that t* is finite for 

-l<n<0 and infinite for 0<n<l. Thus, a non- 
Markovian description is always required for 
relaxation functions of the form given by Eq. 
(1). The second point is that the memory func¬ 
tion of the GME is related to the i)i(t) of CTRW. 
If the GME is to defcribe a time-dependent sta¬ 
tistical mechanica’ phenomenon, it must obey 
the H-theorem, wh, ch is a statement of the 
second law of thermodynamics. Only for 4^(0 

one can demonstrate the validity of the H- 
theorem. There are several other important 
differences between the outcomes of 4^(1) vs ■ 

^^(t). The most important consequence of the 

NL theory is that the form of Eq. (1) for the 
relaxation function follows whereas the i))^- 

scheme does give Eq. (1) for long times. The 
bimolecular reaction rates in ik.. scheme are 

very different from the <k. theory and experi¬ 
mental results seem to need a bimolecular setup 
with NL approach. The number of molecu’es at a 
long time t in the unimolecular reactio i theory 

in the NL theory is N^(t) = exp(-t* n) whereas 

in the bimolecular case N^(t) ~ t n+*. This 

important difference is not given by the M 
theory. The most important criticism of CTRW 
is that not all physical properties giving rise 

to Eq. (1) can be reasonably modelled as a ran¬ 
dom walk process, whereas (1) seems too ubiqui¬ 
tous! 

There is another important approach to 
relaxation problems, via the Langevin equation. 
Here the relaxing entity moves in an effective 
medium and obeys a Langevin equation with a 
friction coefficient due to the medium and a 
random force also due to the medium. Ford, 

21 
Kac, and Mazur (FKM) in their classic work 
describe a Brownian particle imbedded in a heat 
bath of harmonic oscillators. The equation of 
motion for the Brownian particle velocity u(t) 
(we consider a one-dimensional case for simpli¬ 

city) can be written as21’^ 

+ Y(t)u(t) = E(t) . (40) 

If the velocity auto-correlation function of 
the oscillator bath system is 

c(t) = <u(0)u(t)> = kT[eos aV)oo = 

kT]^ g(ut)exp(iu)t)dw (41) 

where g(ui) is the frequency distribution func¬ 
tion associated with the eigenvalue spectrum of 
the interaction matrix A of the harmonic oscil¬ 
lators. T is the temperature of the bath sys¬ 
tem, etc. Then the friction sufficient y(t) is 
given by 

Y(t) = - ^ log c(t) (42) 

and E(t), which represents the force due to all 
other oscillators making up the heat bath has a 

22 
covariance written in the form 

d2 
<E(t)E(t+x)> =- ^ c(t) + Y(t)Y(t+*)c(t) 

+ lY(t)-Y(t+T)] . (43) 

It is important to stress that this is an exact 
result for a bath of harmonic oscillators with 
which the relaxing harmonic oscillator is in 
contact. <...> in the above denotes average 
over the initial coordinates and velocities of 
the harmonic oscillators as usual. Moreover 
the friction coefficient y(t) and the covari¬ 
ance of the random force E(t) are related in 

21 this definite way. FKM assumed c(t) in 
Eq. (41) to be exponentially decaying 

c(t) = kT exp(-Y(t|) (44) 

so that from (42), one obtains a time-dependent 
constant friction coefficient 

Y(t) = Y (45) 

and from (43), we obtain white noise spectrum 
for the random force: 

<E(t)E(tn)> = 2ykTô(t) (46) 
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Thus one obtains exponentially decaying 
solutions for the relaxing particle. From 
Doob's theorem, (44) ensures a Gaussian Markoff 
process as the underlying stochastic process 
and we can only get exponential decay in such a 
scheme. From (41), this implies that g(iu) is 

2 „2 -1 
Lorentzian, ~ (iu +y ) which is unbounded from 
below, a physically unacceptable spectrum! If 
we employ a Paley-Wiener structure for c(t) or 
better still a Lévy structure, we may then work 
out the long time behavior quite easily, 
because then 

c(t) = kT exp[-Yan(l-n) ^Tl1 n] (47) 

with 0<n<l. Then y(t) is the long time limit 
is given by 

Y(t) 5 Ÿant‘n . (48) 

The bath noise covariance (43) evaluated for 
long times, takes the form 

<E(t)E(t’)> = 2kTY(t)6(t-t’) . (49) 

At long times, the motion of the Brownian par¬ 
ticle appears to be that of a classical white- 
noise Brownian motion if a clock is used which 
measures time 6, given by 

0(t) = an(l-n)‘1 t1"“ (50) 

where a ->1 as n-*0. In the 0-frame, Eq. (40) 
becomes 

+ y S(0) = E(0) (51) 

where 

u(0)=u(t), Y=Y(t)/(^) , E(0)=E(t)/(^) . (52) 

Equation (51) can be solved in a standard way 
and the results may then be transformed back to 
t-clock. This again leads to Eqs. (40), (48), 
and (49). We note here in passing that the 
modified white noise of Eqs. (49) and (48) also 
results at long times from the covariance of 

the fractional Brownian motion^’** discussed 
in §Ab. However, the connection of the present 
results to this fractional Brownian motion is 
rather tenuous. The autocorrelation of the 
Lévy form, Eq. (47), uniquely specifies the low 
frequency eigenvalue spectrum and the equations 
of motion, whereas the form of the bath noise 
does not. Autocorrelations which are power 
laws in time, t , also lead to ncise covari¬ 

ance of the form t n6(t-t') at long times but 
result in rather different equations of motion. 
This is because, in the FKM framework, the spe¬ 
cification of c(t) determines the covariance of 
E(t) and not vice versa. The device of using 
the 0(t) clock at long times is a convenient 
way to carry out all the manipulations. For 
example, the conditional probability distribu¬ 
tion for the occurrence of velocity u at time t 
given that u=u at t=o, W(u,t;uo) can be found 

by requiring that, by the 0(t)-clock, a Max¬ 
wellian distribution is obtained at long times. 
This is a required result of the classical 

Langevin treatmenti.e. 

W(u, 6; uo) -» (Y/2irq)^ expt-ÿlù-ûM2/2q] 

as 0-«“, where q = y^T. But since u(0) = u(t), 
a Maxwellian distribution is also found in the 
t-clock and equipartition holds for our modi¬ 
fied Brownian motion. The approach to a Max¬ 
wellian however will be slower than in the 
Langevin case. On the other hand, t^he proba¬ 
bility distribution for position W(r,t;ro,uo) 

is altered in form as t-*®. By the 0(t)-clock, 

W(r,0;ro,uo) = (ÿ2/4nq0)^ exp-[y2 Ir-rol2/4q0] 

as 0-*«. This predicts the classical diffusion 
by means of the equation 

32W 
0F (53) 

with constant diffusion coefficient D=q/y . 
Transforming (53) back to t-clock, we find a 
diffusion equation with a t-dependent diffusion 
coefficient D(t) given by 

D(t) = Da t n 
-n (54) 

The form of W by the t-clock then becomes 

(because the use of 0(t)=/^D(t')dt' will con¬ 

nect this diffusion equation in 0-space to one 
with constant D as in Eq. (53)) 

W(?,t; ?0,u0) = 

[4nfh)(t' )df ]"*exp(- \t-ro\ 2/4/ÿ(t' )dt’ ), (55) 

as t-*«. Note that both the friction coeffi¬ 
cient and the diffusion coefficient are 
decreasing functions of time, and for consis- 

2 
tency this requires D(t) = q(t)/y (t) where 

q(t)=q(d0/dt)3. The result q/y = kT is a con¬ 
sequence of the requirement that the velocity 
distribution function asymptotically approach 
the Maxwellian distribution function with a 
given temperature T of the bath. In the t- 
dependent case, this is found to be q(t)/y(t)= 

2 
kT(d0/dt) . What is remarkable is the conse¬ 
quence that the result (54) is in conformity 
with the observed dispersive diffusion in amor¬ 
phous semiconductors. The result D(t) obtained 
in this way coincides with the Ngai-Liu 

theory*® who obtain D(t) = DQe n^t n and their 

mobility is given by MpU) = M00-n) e n< 
We should point out that in our model Langevin 
theory, non-stationary Gaussian processes can¬ 
not be fully implemented except for asymptoti¬ 

cally long-times by the 0-transformation.*^’3® 
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(Ad) Other Schemes 

There is a traditional approach to relaxa¬ 
tion functions in a general setting due to Kubo 
which is kiiown as the linear response theory. 
At long tines or equivalently for low frequen¬ 
cies, this formula simplifies because for fre- 

,10, quencies less than 10 Hz which is a typical 
low frequency regine where Eq. (1) is observed 
experimentally, which corresponds to a tempera¬ 
ture of y(, essentially the classical limit of 
the Kubo linear response suffices. Thus the 
frequency response may be written in the form 

XKubo ~ F T- of dt 
(56) 

where ¢(1) obeys a master equation in general, 
of the form 

^)>(t) = -W(t) ¢(1) (57) 

where W(t) is the time dependent transition 
rate induced by the heat bath at such long 
times. If instead of (57), one employs the 
leading order perturbation expansion as in the 
Kubo formalism, one obtains 

¢(1) = <>(2)(t) (58) 

23 Young has used this perturbation approach to 
a solvable model consisting of a charge hopping 
between sites and which is in contact with a 
heat bath of harmonic lattice vibrations. Then 

.(2), the computation of ¢^^(1) for this model gives 
also the exact answer in his case, and one gets 

*(2)(t) = * l coth (^) 
w. 

(1-cosuKt) (59) 

where A(w.) is the coupling between the flip¬ 
ping dipole and the phonon field. Hence for 

,10, low frequencies when u>/kT<<! (for iu=10 Hz at 
-3 

room temperature 3000K, this ratio is 10 !) 
one obtains 

<)>^(t) = kT J* dm n(m) (l-coswt) (60) 

where n(w) is the density of states of the bath 
system. Here a continuum of frequencies is 
assumed instead of a discrete set as in Eq. 
(59). Assuming \(u))=A a constant at low fre¬ 
quencies, and assuming n(ui) may be expanded in 

a po^er series, Young1 23 

n2 u) + ...) 

.(2) 

obtained (n(u>) = n^ u> + 

(t) = at + ß£n(wot) + y + 0(l/t) (61) 

where 

« = H V ß = \>n2T ’ 

and 

A .V A . 
v.vtV, V.V. 

■* .-'‘-AV ■ -* Am 

Y = Euler's constant = 0.577 . . . (62) 

The final result obtained is then of the form 
which has a temperature dependence which makes 
the answer irrelevant unlike in the expression 
(1). The important ingredient missing in the 
above model is the absence <jf an appropriate 
heat bath. Observe that 1 he first term in 
Eq. (61) gives the usual exponential decay and 
the heat bath correlations in this scheme gives 
the residual <)> (t). Another way of stating 
this is that this theory would give a relaxing 
species the usual nominal exponential decay, 

e 0 and then the low frequency correlated bath 
excitations would modify this to e e ^rl . 
In a proper theory, this is not what happens, 

but rather exp[-J W(t')dt']. For W(t') one 
makes a cumulant expansion and observes that 
the temperature factors such as appear in 
Young's calculation do not enter because at 
high temperatures all the states are all 
equally occupied etc. If we take W(t') = a, 
the constant transition rate, we obtain the 
exponential decay but the low frequency excita¬ 
tions of the bath modify this constant rate in 
an entirely different way than a careless 
application of Kubo formula would suggest. 
This will be discussed in more detail in §Ba. 

23 
The derivation of Young gives a form of 
Eq. (1) but with vanishing coefficients at such 
"high temperatures" and hence Young's calcula¬ 
tion misses the point entirely and is irrele¬ 
vant to a proper derivation of Eq. (1). 

24 Palmer has attributed the non-exponen¬ 
tial decay to boken ergodicity on such large 
time scales. He tries to argue based on rele¬ 
vant time scales invoked in long time relaxa¬ 
tion in condensed matter systems such as 
glasses, polymers etc., that there is a self¬ 
similar set of free energy surfaces at such 
long time scales and the system readjusts to 
this new situation by altering the time- 

independent transition rate, T * appearing in 
the traditional exponential decay exp(-t/t), to 
a time-dependent one in the form 

t ~ c*(t/To)n , 0<n<l 

and hence 

exp(-t/t) -» exp-A(t/to)1 n 

He then tries to connect this T with the 
entropy change induced for such situations in 
an argumentative way but not based on any theo¬ 
retical model or scheme. See however the notes 
added at the end of the paper. 

We now develop a language for discussing 
time-dependent transition rates (TDTR) that 
arise from time-independent transition rates 
(TITR) which seem to be so common in long time 
relaxation processes in condensed matter. In 
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this fashion, wc give here a description of 
simple relaxation which is the ultimate 
approach to equilibrium, in a model-independent 
way which gives the result (1) of the Introduc¬ 
tion. Also, we make contact with the language 
of stochastic processes which has been one of 
the phenomenological ways of discussing the 
relaxation phenomena. 

« 

From Refs. 1 and 2, it seems clear that 
the time-dependent transition rates that deter¬ 
mine relaxation phenomena in condensed matter 
may be viewed as one with time-independent 

36 
transition rates on a different time scale. 
Then the original process in the experimentally 
measured time t with TDTR may be viewed as 
derivable from a process with TITR by means of 
a time-scale transformation. A time scale or 
development parameter is taken to be positive, 
cumulatiie function that increases from an ori¬ 
gin mcnotonically. Consider two continuous 
time scales 0 and t where 0 may be expressed as 
a function of the experimentally measured time 
t. Without loss of generality, we may take 0 
and t to be aligned such that their origins 
coincide: 

0 = 0(t) , 0(0) = 0 . (63) 

Let us specify fur .her that d0/dt is positive, 
and finite everywhere except possibly at iso¬ 
lated points. Such a 0-t relationship is thus 
nonlinear. 

Suppose now that the transition rates on 
the 0 time scale, W(0) are stationary (con¬ 
stant). Then 

W(0) = Wg . (64) 

On the t-scale, the transition rates 

W(t) = ft Ws (65) 

are time-dependent since d0/dt is a nontrivial 
function of t. If W represents the matrix of 
transition rates, the matrix is time- 
independent on the 0-scale and all components 
of the matrix are subjected to the same time- 
scale transformations. 

Several features of such time scale trans¬ 
formations must be noted. Causality is main¬ 
tained because the time scale does not alter 
the order of events. The mechanism of transi¬ 
tions are not affected by the time scale but 
only the way the transitions are counted. Thus 
a Markoff process remains a Markoff process and 
non-Markoff process retains its character under 
such time scale transformations. 

To illustrate the effects of TDTR in sto¬ 
chastic processes, we consider for simplicity 
the most coimonly discussed Gaussian Markoff 
process with only a single, scalar transition 

rate. We start with a description of the proc¬ 
ess on a time scale for which the transition 
rate is a constant. Let a be a random variable 
representing deviations from equilibrium. We 
discuss a Langevin type approach. 

The fluctuation process may be represented 
by a linear regression or Langevin equation 

= - Wsa(0) + e(0) (66) 

where we have employed an effective linear 
decay interaction (i.e., -W.a) and e(0) is 
assumed to be Gaussian with moments 

<e(0)> = 0 , (67a) 

<e(01)e(02)> = 2X6(0^02) . (67b) 

The angular brackets represent stochastic aver¬ 
aging. Although the introduction of the 
6-function (negligibly short correlations for 
the stochastic driving term) here is not for- 

37 mally correct, its use in a straightforward 
way does lead to the same results as in a rig- 

38 
orous development. This is a phenomenologi¬ 
cal equation since it describes a system 
already decoupled from its environment with 
both reactive forces and fluctuation sources 
represented as effective interactions within 
the system. It appears that on a phenomenolog¬ 
ical level, such an equation may provide a 
satisfactory description of a physical process, 
at least in some time regime where reference is 
made to an apparent origin. The success of the 
Langevin equation on the t-scale is indeed well 
known and hence the usefulness of the equation 
is borne out. We have here generalized this 
customary description, (66), to be valid on the 
0 time scale. However, one would expect the 0 
and t scales to coincide at the earliest times 
since the physical mechanisms that lead to TDTR 
must first be established before there is a 
difference between the two time scales. Simi¬ 
larly at very long times, when regression is 
completed, time differences must coincide so 
that d0/dt must become unity. 

As usual, the equilibrium distribution is 
taken to be Gaussian and may be viewed as 
resulting from an expansion of the entropy with 

39 
retention only of quadratic terms 

P(<*) = (g/nk)^ exp(-ga2/k) (68) 

where k is a Boltzmann constant. Also, since 

the restoring force X = 8 is a linear 

force coefficient expressed in entropy units. 
It can be converted into energy units by multi¬ 
plication by the absolute temperature T. The 
usual results for equilibrium fluctuations fol¬ 
low, e.g., assuming Cf(0=O) = a(0), we have 
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a(0) = a(O)exp-Ws0 + exp(-Ws0)J® 

exp(0'W JtiO’idO' (69) 
S 

<a(0)> = a(0) exp-Ws 0 , (70) 

{<a(0)>) = 0 , (71) 

<a(01)a(02)> = g- exp(-l01-02\Ws) 
S 

+ (a2(0)-Ws1A.) exp-(01+02)Ws , (72) 

and 

{<-a(01)a(02)>} = ^ exp(-|01-02lWs) 
s 

+ (k(2g)‘1-W¡1\) exp-(01+02)Ws , (73) 

where the curly brackets {...} represent an 
average over the equilibrium distribution (68). 
In deriving (70) and (72), the equations 
(67a ,b) were used along with the fact that 
<ot(0) e(0)> = 0. The requirement that the 
autocorrelation function (73) should be or the 
form 

{«»(Oj)^)»} = Mf1 exp-|ei-e2|Ws (74) 

37 so that Doob's theorem would give us a Gaus¬ 
sian Markoff process for 0(0), leads to the 
relationship 

\ = kWg(2g)‘1 (75) 

Another way of stating this is that the equi¬ 
librium distribution is independent of 8 so 
that from (73), taking we should have 

{<o2(0)>} = {<o2(0)>}. (Note a factor \ in 
(75) is different from that given in Ref. 36, 
due to a misprint), and hence we would obtain 
(74) and Doob's theorem would lead us to con¬ 
clude that 0(0) obeys a stationary Gaussian 
Markoff process Thus TDTR introduced here 
leads to familiar results on a 8-scale by vir¬ 
tue of general physical considerations only. 

Consider_now the dynamics of a macroscopic 
perturbation a caused by an external force X to 
be represented on the 0 time scale by 

i = “ • <»> 

Again a linear approximation is made for X when 
õ is undergoing decay and it is assumed that 
the path of decay is the same as that for a 
regression of a fluctuation a in the stochastic 
process-Langevin theory discussion given above. 
In energy units, 

X = -gT5 (77) 

where T is the absolute temperature. Then the 
following identity holds: 

Wc = LgT . (78) s 

It follows that 

0(0) = -(gTf1 exp(-0Ws)X(O) . (79) 

On the basis of (79), one may define a time- 
dependent response function Z(0) as 

Z(0) = (ZgT)*1 exp(-0Ws) . (80) 

Then from Eq. (74), it follows that 

Z(0) = (kT)'1 {<of(0)ct(O)>5 (81) 

This formula for the relaxation function may be 
immediately recognized as being of the Kubo- 

40 Green type in the classical regime. 

We shall now apply this general framework 
to the relaxation problem. First we note that 

W'1 may be identified as a relaxation time T 
aSd the response function (80) is dependent 
only on the ratio 8/i • In other words a 
natural unit of time ifl 0 space is x . Now 
define, in general, a proper relaxation process 
to be one for which the time dependence is con¬ 
trolled by a function only of the ratio of the 
time t to a relaxation time x. This relaxation 
property does not in general hold on the t time 
scale for arbitrary TDTR. However, suppose 
there is a time regime for which this relaxa¬ 
tion property holds on the t scale and such 
that 0 and t scales are aligned at the apparent 
origin. Moreover, suppose there is a self- 
consistency in the definition of relaxation 
times so that they are related by the same time 
transformation that relates the two time 
scales, i.e., 

0(T) = X8 S w;1 . (82) 

The macroscopic relaxation equation (76) in 
this representation is 

dã 
d0 

(83) 

in the 0-jcale and in view of the definition of 
the proper relaxation process, we may express 
the same process in the t-scale in the form 

^ = - i f(t/x)5 (84) 

where f is some function of the dimensionless 
ratio t/x. Comparing (84) with (83) we obtain 

ï wo = r a? (85) 
s 

in order to be able to describe ':he same phe¬ 
nomena. Using (82), we observe that 

ï = K < IS > ■ (S6) 
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I Upon integration of this equation, since at 
h t=0, 0(0)=0, we get 

jL idt'f(t7T) = e(t)/0(T) 
O T 

I 

which may be recast in the form 

J^/T dyf(y) = 6(1)/6(1) , (87) 

upon a change of variable, t'/t = y- The left 
hand side of (87) is a function of the ratio 
t/x and hence in order for 0(t)/0(l) to be a 
function of t/t, it is necessary that 0(t) be 
a monomial: 

0(t) - atb (88) 

where a has the dimensions of time to the 
(l-b)-th power and b>0 so that d0/dt is posi¬ 
tive and 0 satisfies (63). Thus one obtains 
from such general phenomenological, model inde¬ 
pendent considerations, relaxation functions of 
the form of Eq. (1), on the t-scale. 

We have thus reviewed a large class of 
models all of which try to derive Eq. (1) based 
on models for special physical events. No one 
theory has a generic character that Eq. (1) 
seems to have. Moreover, the second relation 
(2) does not appear in any of these theories. 
In the next section we shall give an account of 
a set of ideas that Ngai and his group have put 
forward in recent times which goes out of spe¬ 
cificity of models as in Type A theories but 
based on general physical considerations only. 
Both universalities are deduced in this 
approach. 

3. Type B Theories 

(Ba) Original Model of Ngai 

i 

We will now describe the original model of 

Ngai1 in a slightly different form,25 as this 
may be pedagogically clearer than the original 
version. The evolution of a system is given by 
the Liouville operator once the initial btate 
of the system is specified. The only thing 
known about the evolution is that the system 
evolves into an equilibrium state. No comment 
can be made as to the nature of time depen¬ 
dence, except that for long times the system 
approaches the equilibrium state. In the dis¬ 
cussion of "relaxation" in a condensed matter 
system, this question is the same as the time 
dependence of a physical property such as elec¬ 
tric or magnetic or thermodynamic or structural 
property. These properties may be thought of 
as being a reflection of the time evolution of 
a "species" such as dipoles for dielectric 
relaxation, spins for magnetic relaxation etc., 

whose evolution at long times (>10 sec) is 
the regime of interest in condensed matter 
problems. For such times, one is probing 
energy levels of the systems of order 

■fi/(10**0sec) or 10-1 °K. For shorter time 

. 

-13 
scales such as 10 sec., the corresponding 
energy levels probed are of order 300°K; these 
may correspond to excitations of the system 
such as phonons, etc. But at energies of order 

li ' °K, no known excitations of the system can 
be invoked and a new low energy mechanism must 
be sought for understanding the relaxation 
pr":ess. Since the equilibrium thermal ener¬ 
gies at which experiments are usually conducted 

a>e much larger than the 10*1 °K, we must ask 
ourselves what these new excitations could be 
and how should these be described? Another 
feature that must be incorporated in any such 
theory is that the new long time regime must be 
incorporated smoothly over the higher energy 
processes such as phonons, magnons, etc., of 
the shorter time regime. In other words, a 
smooth modification of the processes must come 
about as one probes these new excitations as 
the system relaxes at longer and longer time 
scales. Thus the second universality relation¬ 
ship, Eq. (2), is a manifestation of this 
alteration in time scales. Thus, ordinary 
quantum statistical mechanical description must 
accommodate these low energy processes in such 
a way the time dependence of the form, Eq. (1) 
follows. From the thermodynamic stability con¬ 
sideration, the Hamiltonian of the system must ' 

be bounded from below and from many arguments 
we know that pure exponential decay has to be 
ruled out as this wuu’d violate the the: mo- 

19 
dynamic stability requirement. The relaxa¬ 
tion mechanism is a coupling of the relaxing 
"species" with the low energy excitations of 
the Heat Bath in which the given system is 
immersed. The heat bath is assumed to be a 
much larger system which is itself unaffected 
by the presence of the relaxing system under 
study. When the relaxing system ultimately 
relaxes to equilibrium, its temperature becomes 
the same as that of the heat bath. The inter¬ 
action between the system and the bath is such 
that nothing happens to the heat bath itself. 
Conventional relaxation theory contains only 
the average of the heat bath hamiltonian which 
is needed to specify the temperature of the 
system and the energy spectrum of the bath 
hamiltonian is continuous with no apparent dis¬ 
crete energy scale. It is thus clear that the 
bath Hamiltonian cannot be specified in detail 
but yet in determining the long time relaxation 
phenomena, small energy-level spacings of the 

order of 10*^ eV or lower (corresponding to 

Íq °K) of the spectrum of the heat bath seems 
essential. 

Thus, the use of a non-specific large sys¬ 
tem whose average spectral properties are 
required in a proper theory of relaxation phe^ 
nomena in condensed matter systems. Ngai 
invoked for this reason, the use of the Wigner 
random matrix hamiltonian theory for this pur- 

26 
pose. Onlv recently it is pointed out that a 
chaotic hamiltonian also meets the same speci- 

vV 
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fications. We now proceed to outline this 
25 

theory in some detail. There are three basic 
steps in the theory each of which incorporates 
the various physical facts involved in the long 
time relaxation phenomena. They are: (i) deri¬ 
vation of the relaxation function; (ii) intro¬ 
duction of the jump rate of transition; and 
(iii) calculation of the jump rate. To facili¬ 
tate understanding this scheme, an elementary 
model is pictured. The relaxation process 
pertains to some actors. They flip between 
equivalent energy states (energy degenerate = 
equivalent) and are thought to be immersed in a 
heat bath which is described by the Wigner 
random matrix hamiltonian. We use the Gaussian 
Orthogonal Random Matrix Hamiltonian (COE) 
because the heat bath is considered time- 
reversal invariant and also that it has a defi¬ 
nite average energy so that one may employ a 
canonical picture to describe it with a fixed 
temperature T, associated with it. In equi¬ 
librium then, the actors acquire this same tem¬ 
perature, T. 

Step (i): Let 1 and 2 represent the two equiv¬ 
alent system states with Pj(t) and P2(t) as 

their occupancies at an instant, t. For sim¬ 
plicity we have here considered a system of 
two-equivalent-states. The interaction of 
these system states with the heat bath induces 
transitions between these two states. We are 
interested in computing the relaxation of this 
system which is merely the correlation of 
P(t) = p.iO-p (t) at two different times. 
Thus 1 ¿ 

•Ht) = -«P(to)P(t-to)>> , (89) 

<<...>> is the quantum statistical thermal 
average^ver the entire bath plus system Hamil¬ 
tonian. Here t is some initial time. We 
are interested here in the long time (t-*») 
behavior of this function. Thus, for frequen¬ 

cies less than lO^Hz which is equivalent to a 
temperature of 1/10°K and below, we may make 
the approximation kT>>hu> and so only the clas¬ 
sical limit of Eq. (89) suffices. In this 

41 
limit, Eq. (89) becomes 

<Kt) = -ß <P(to)P(t-to)>o (90) 

where <...> is the classical average over the 
equilibrium distribution function and ß=l/kT. 
P here is the time derivative. It is important 
to stress here that in the long time limit, the 
classical limit of (89) suffices, because then 
kT»hw. 

Step (ii): in this limit, it suffices to con¬ 
sider rate equations for the populations p^(t) 

and P2(t) and deduce a form for the relaxation 

function, (90). Define W(t) as the general 
time-dependent jump transition rate for going 
from state 1 to 2 and vice versa. Then we have 
the rate equations 

PjU) = -W(t) (Pjd) - p2(t)) 

P2(t) = -W(t) (p2(t) - Pj(t)) (91) 

where we have taken into account the fact that 
the flipping occurs between the two equivalent 
states only and that there is no loss of spe¬ 
cies in the process i.e., p +p.-0. Thus, we 
obtain 

P(t) = -2W(t)P(t) (92) 

where P(t) = p. (t)-p2(t) introduced in step 
(i). Thus we obtain 

P(t) = PQ exp(-2J^W(t’)dt') . (93) 

where we have chosen t =0 for con enience. The 
relaxation function $0) then takes the form 

Ht) = 2ßP^ W(t)exp(-2J^ W(t')dt') . (94) 

It should be noted that if W(t) is taken as a 
constant, independent of time, say W , then we 
obtain the classical result of Debye:0 

*Debye(t) ~ 2pPo Wo ^P^t) , (95) 

and the relaxation time is x = 1/2 W (compare 
this ith §(Ad)). In obtaining the0 rate (or 
master) equation, (91), one often goes through 
a detailed analysis of the density matrix with 
Markovian assumptions concerning the process 
and the constant Wq is the time-independent 

transition rate (TITR) given by the Golden rule 
42 

of Quantum Mechanics (see also §Bb). It 
should therefore be stressed that the steps (i) 
and (ii) above are really stemming from more 
fundamental considerations even though we have 
presented them here in a simple, physical way. 
The question then is to consider the evaluation 
of W(t) in greater detail than was done before. 

Step (iii): The mechanism that gives rise to 
W(t) is the interaction of the equivalent 
states introduced in step (i) with low lying 
many body states with energies less than 

lO^Hz, say, in order to determine the long 
time decay phenomena. This calculation is very 
similar to the phonon side band calculation 
except that here we worjt.with the Wigner system 
instead of the phonons. The result is 

W(t) = Woexp(-Ht)) (96) 

where ¢(1) is the time response of the heat 
bath, taking care to remember that the energies 
involved here, hw, are all much less than kT, 
the thermal energy, so that the associated 
occupation probabilities for both emission and 
absorption of excitations are just constants, 
and here a factor of 1/2. Also, ¢(1) is real 
with no threshold effects. To derive (96), we 
consider a relaxing system. The system is said 
to be in a relaxing state after a certain induc¬ 
tion time, X. Given such a X, we define 
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destruction and creation operators R and 
associated with relaxation states such that 

RI> = 0 in the relaxing state (97) 

where l> refers to a pseudo "vacuum" of the 
relaxing state and the heat bath with which the 

system is in contact. The R^(o)l> i.' the given 
relaxing state at an initial reference time 
(this is the time the system had oegun to 
relax!) .hich we denote here as the zero of our 
reckoning of time. We now ask how this state 
evolves in time. This is given by the usual 
time evolution 

R^(t)'> = eiHt R^(o)eiHtl> (98) 

where H is the Hamiltonian describing the 
relaxing system, the heat bath with which it is 
in contact, and tae interaction between them. 
This we denote by Hq+V. We are thus led to 
calculate 

b(t) = <IR(t) R*(o)l> 

= <teiHtR(o)elHt Rt(o)l> (99) 

Since R*(o) > represents the given relaxing 
state, 

èlHt R^(o)l> = R^(o) exp-i(Ho+V)Rtl> 

where (H +V)D stands for that part of the 
o K 

Hamiltonian associated with the relaxing state 
under study. Since we are here considering 
only one relaxing state, for simplicity, R(o) 
t i(H +V)t iH t 

R'(o) = 1, and moreover <te o - <le o 
because < 1 by virtue of its definition contains 
no interaction between the relaxing state and 
the heat bath. Thus 

b(t) = <lexp(iHQt) exp(-i(Ho+V)Rt)l > . (100) 

The relaxing state R in the above does not con¬ 
tain any index because we will invoke the 
"randomness" of the heat bath Hamiltonian to 
eliminate reference to any special state. With 
this understanding, we drop the subscript P in 
Eq. (100) and compute 

U(t) = exp(iHot) exp(-i(Ho+V)t) (101) 

by using standard cluster expression tech¬ 
niques. The result is 

b(t) = exp{<t>(t)} , (102) 

where 

¢(0 - Jn OJO , (103*) 

with 

(^(t) = -ij^dt] <>V(t1)l> , (103b) 

4>2(0 = -½ ^dt1^dt2l<IT(V(t1)V(t2)l> 

- OVitj)»» <IV(t2)l>] etc. (103c) 

We have thus reduced the problem to con¬ 
sideration of the bath states only. Remember¬ 
ing that the bath states are treated in a 
canonical ensemble framework, and since 4^(0 

involves expectation value of the interaction 
between the system and the bath, it may be 
dropped from further consideration and consider 
<t»2(t) only. The other higher order terms may 

be dropped, partly because of the weak coupling 
between the bath and the system and partly 
because they would involve the multiple energy 
level distributions which may be expected to be 
of smaller significance compared with the first 
nontrivial contribution, 4^. Thus, 

IV..12 

♦2(t> = -111¾ ttHtp 
i*j J 

it(Ei-V) 

+ ^(l-e"it(Ei"Ej))} • (104) 

The factors ^ in {...} appear from equal occu¬ 
pancies of states , E^ of the bath. The sum 

over i,j can be written as 

*2(t) 
-ï 

H I»,/ ( » (105) 

2 
We now argue that ^ is independent 

E.-E(¿£ j 
i J 

2 
of £ because IV^I is a random quantity, 

uncorrelated with £ except perhaps when there 
are strong correlations which may occur when 
the energies are high such that the modes are 
well localized. This is the basic strength of 
the approach presented here because the 
"randomness" now has been separated out of the 
main problem so that a universal result is 
nhtainoH without the knowledse of the random 

distribution of |V^-l^ with E^-Ej=£. Thus, 
introducing 

I (¾ I IV. .|2) -» f dt|V|2 Hie) , 
t l*J E --£ ° 

i J 

we obtain 

4>2(t) = /%£ N(e)IV|2 ( ) ■ (106) 

The cutoff £ (=1010Hz) is introduced here such 
that C 

|V|2 N(£) = en , 0<n<l (107) 

is violated beyond £=£ . Here we have invoked 
the Wigner result conceSrning the level-spacings 
distribution of a GOE. This final result then 
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leads to the universal form of relaxation form 
given in Eq. (1). The spacings distribution 
(107) also appears for chaotic Hamiltonians 
which have the same features that make them 
prime candidates for describing a heat bath in 
the same way a COE random matrix hamiltonian 

26 
fits the requirement. Thus we obtain in this 
model, the TDTR of Eq. (96) in the form 

W(t) (1-n) , t_ 
I v T 
P P 

) (108) 

with T given by Eq. (2) where T = 1/W . . 
P oo ihis 

W(t) is substituted into Eq. (94) and finally 
one obtains Eq. (1). 

At this point, we may compare this 
23 

approach with Young's approach described in 
§Ad. Young's expression for x is the same as 
ours except that 0(t) in Eq. (56) was calcu¬ 
lated using the linked cluster expansion for it 
using only the nominal coupling of the system 
to the noirinal bath. In our picture, the 
nominal coupling leads to the basic relaxation 

time I (=W _1) 
o o and not to The relaxing 

species then interacts with the finer spectral 
characteristics of the heat bath which modifies 
W to W(t) for which one ought to consider 
Eq. (57). At this point, the level structure 
occupancies involve equally likely occupancy 
because of high temperature regime applicable 
to th. s system and hence in the linked cluster 
expansion, (103), the appropriate occupation 
factors are introduced. Thus the modification 
of VIo, the nominal time independent transition 
rate to a time dependent transition rate W(t) 
due to coupling with the low frequency excita¬ 
tions of the system as the relaxation proceeds 
to longer and longer times is the central point 
of issue which is missed in a calculation such 

23 
as that of Young's. We are thus pointing out 
an essential difference in the use of the Kubo 
formula at low frequencies. In the next sec¬ 
tion, we shall give another derivation of W(t) 
which traces the three steps given above in a 
more basic framework of the density matrix 
theory of long time relaxation phenomena. This 
derivation makes explicit the appearance of the 
transition rates in the theory in a logical 
fashion whereas in the description given here, 
as was originally done in Ref. 1, these steps 
may appear to have been taken in a phenomeno¬ 
logical fashion. Thus, a firm foundation is 
laid to this framework in the next section. 

(Bb) Evolution of Entropy Theory for the 
Correlated States of the Heat Bath 

The development to be given here is a gen¬ 
eralization of the density matrix method to 
derive the long time decay equations with 
appropriate TDTR. We will give here a more 
complete account of the theory than was given 

..'7' ' « V 1 . - - . ■ 

27 
earlier by us. The model of relaxation con¬ 
structed in §Ba is consistent with the occur¬ 
rence of low energy excitations of glasses and 
polymers revealed by experiment almost over a 

44 
decade ago by Zeller and Pohl. These low 
energy excitations are now known as two-level- 

systems (TLS). The exact identity of 
these TLS are not known but they seem to be 
invariably present in glasses, polymers, amor¬ 
phous metals, and even spin glasses. These TLS 
seem to appear only in a limited energy range 

9 1 
(E = 0),11 = 1) 10 <U)<10 radians/sec by specific 
heat, thermal conductivity, and ultrasonic 
experiments. In the proposed model, it is con¬ 
sidered that these are indeed part of an 
expanded low energy excitation scheme. The 
origin of this scheme according to the model, 
is in the distribution of eigenvalues of the 
very complex hamiltonians that describe glasses 
and polymers. Because the eigenvalues have an 
apparently statistical character, they were 
considered to be derived from a random matrix 

hamiltonian,^ in particular, by a Gaussian 
Orthogonal Ensemble (GOE). The distribution of 
energy level spacings for this is linear from 
zero energy difference up to an upper cut-off 
energy E=u) , level off to a plateau at inter¬ 
mediate enlrgies, and vanish exponentially at 
high energies. The plateau region, which has 
approximately constant density, was identified 
in the model with the TLS that are responsible 
for the low temperature properties of glasses 
and polymers cited above. The relaxation of a 
given primary species (PS) was treated by a 
generalization of the usual models of relaxa¬ 
tion that only involve a direct interaction of 
a PS with a heat bath (HB) by incorporating the 
coupling of the PS with the level spacing exci¬ 
tations whose spectrum is determined by that of 
the GOE. Coupling of the primary species to 
the level structure generates the LS excita¬ 
tions and modifies the interaction of the pri¬ 
mary species with the heat bath. The dynamics 
of the displaced PS as controlled by the direct 
interaction with the HB is described in terms 
of a master equation, to be defined here. For 
a PS that itself consists of two levels, the 
master equation reduces to a simple rate equa¬ 
tion with a constant transition rate, W . We 

o 

emphasize that when the PS is itself a 2-state 
system, its 2-states' character is not related 
to, and is therefore distinct from the two- 
level description used to model the LS excita¬ 
tions. A more general multilevel scheme 
involves carrying many more indices etc., which 
do not alter the final conclusions in any sig¬ 
nificant way. The algebra involved in the two- 
level scheme described herein is simple enough 
to follow and the complications of multilevel 
schemes do not seem necessary at this stage. 

After the PS is itself driven away from 
equilibrium by an external agent, its interac¬ 
tion with the LS drives the latter away from 
equilibrium. Since the energies involved in 



the pertinent LS excitations are very small 
(corresponding to temperature less than \ °K), 
in equilibrium the LS excitations are typically 
in the high temperature limit so that all the 
states are equally populated. The interaction 
of the displaced PS decreases the entropy of 
the LS excitations. Thus, in condensed matter 
that is endowed with a significant density in 
LS excitations and non-negligible coupling 
strength between the LS excitation and the 
relaxing PS, the relaxation rate is modified by 
operating in an environment with decreased 
entropy causeo by the PS-LS interaction. At a 
fixed temperature, T, the decreased entropy in 
the environment i.e., of the LS excitations, is 
the only time-dependent contribution to the 
free energy controlling the behavior of the 
relaxation rate. In analogy with the reaction 

rate theory (Glasstone et al. and Laidler ) 
we may write 

W(t) = Wq exp[-ASLS(t)/k] (109) 

where ASTQ(t) is the magnitude of the time- 

dependent decrease in the entropy of the LS 
excitations. From this viewpoint, the random¬ 
ness of the environment as represented by the 
LS excitations leads to a time-dependent relax¬ 
ation rate. 

It is eviuent that the introduction of 
this environmental modification always serves 
to delay the relaxation process since the LS 
excitations have maximum entropy at equilibrium 
and can only lose entropy by its interaction 
with an already displaced PS. The overall 
entropy increases since it is dominated by the 
increase in the entropy of the PS as it relaxes 
to equilibrium. This increase in entropy is 
only slowed by the presence of the environment 
that can have its entropy decreased by its 
interaction with a displaced PS. The key 
ingredient in the second part of the present 
procedure is therefore the calculation of the 
entropy evolution of the LS excitations. 

We first develop the theory of the domi¬ 
nant relaxation pocess for the perturbed pri¬ 
mary species (PS) that is caused by the direct 
interaction of the PS with a heat bath (HB) in 
the absence of level spacing (LS). In general 
a relaxation process for some measurable quan¬ 
tity may be considered to be the trace average 
of an operator over a density matrix that is 

A9 
relaxing to equilibrium. Thus this latter 
motion may be considered as a surrogate for the 
relaxation of the quantity of interest. The 
relaxation of the density matrix with only the 
direct PS-HB interaction taken into account is 
very often described by means of a master equa¬ 
tion. This equation is a result of many 
approximations in which a von Neumann equation 
which is microscopically reversible is turned 
into an irreversible equation with only diago¬ 

nal components (Blum,Fano, and Fain ). 
To provide a context for, and contrast with the 

treatment of the effect of the LS described in 
the next few paragraphs, we find it helpful 
here to specify a typical set of approximations 
and to adduce the master equation. 

The PS interacting with the HB is 
described by means of a duplex system density 
matrix p(t) whose dynamics is controlled by the 
duplex hamiltonian H = + Hg + V. Here H^ 

and Hr are the hamiltonians for the uncoupled 
systems PS and HB respectively, and V repre¬ 
sents their interaction. It is assumed that 
the HB has such a large thermal inertia that it 
retains its thermal equilibrium distribution at 
constant temperature at all times despite the 
interaction V. The duplex density matrix is 
then of the form 

p(t) = pp(t)pB(0) (HO) 

where 

pB(0) = exp(-ßHB)/ZB , ß = 1/kT . (111) 

While of course Pg(0) is an ensemble density 

matrix, we consider Pp(t) t0 be the density 

mat *ix of a member of an ensemble. This will 
be important later. 

The equation for P„(t) may be written in 
P 42 

the interaction representation: 

Ppi(t) = -itrglVjit), Pp(0)PB(0)l 

dftrglVjit), [VjU’), PpI(t’)PB(0)]] (112) 

Here tr„ represents the .race over the states 

of HB, and an operator 0(t) in the interaction 
representation is 

Ojlt) = exp[i(Hp+HB)t]0(t)exp[-i(Hp+HB)t] (113) 

so that 0^1=0) = 0(t=0). We make the addi¬ 

tional assumption that V.(t) is non-diagonal in 
states belonging to Hg. This means that the 

first term on the right hand side of Eq. (112) 
vanishes. Another assumption to be made is the 

so-called Markoff assumption which allows the 

replacement of Ppji1') ^pl^ t^e t^me 

integral in Eq. (112). 

We now make explicit the phase factors 
that are associated with each matrix element of 
p T(t) because thi-. part of the density matrix 
rpl 
represents only a member of an ensemble. Thus 
we expect closure with states belonging to Hp 

to introduce member-dependent phases. In addi¬ 
tion we expect distinct member dependent phase 
factors to arise in the matrix element projec¬ 
tions of V for states, ls>, belonging to Hp. 

On the other hand, we do not expect any phase 
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factors to be associated with matrix element 
projections of V with states, b>, belonging 
to Hg since Pg(o) already represents an ensem¬ 
ble. Thus, we write 

<s|ppI(t)|s'> = 

expi(<|>s-(f>s,)'slppz(t)ls'> , (114) 

<sb|Vj(t)Is’b1> = 

exPifi)<sblVj(t)Is'b’> , (115) 

where Ò, are respective member dependent 
phase factors, and the bar over an operator 
means that member dependent phase factors have 
been factored out. 

Now an ensemble sum can be carried out by 
means of a double phase average over the two 
independent phase factors introduced in (114) 
and (115). We assume a principle of uncompen¬ 
sated phases; namely, for random phases, terms 
which heve uncompensated phases vanish in the 
ensemble average. Then the resulting ensemble 
average of Eq. (112) (with V taken as non¬ 
diagonal in HB states and for the liarkoff 
assumption) yields, after several algebraic 
steps, the usual master equation: 

<slppI(t)l s> = 

i^lPpI^'V 

Wss1(t)-<slPpl(t)ls>Ws1s(t)l • 

Here 

B..1<t),2»1<sbl'i'!ibi>2 

(116) 

(117) 

is the usual rate of transition, which in the 
long time limit, (E -E +E,-E. )t »1, becomes 

s ^ b q 
independent of time. The Eg.Eg are the respec¬ 

tive energy eigenvalu“s of H and HD. It 
P o 

should be pointed out that this rate of transi¬ 
tion obeys the usual detailed balance condition 
and hence we have a H-theorem guaranteeing the 
approach to equilibrium. This scheme gives the 
usual exponential decay with the relaxation 
time related to the inverse of the time inde¬ 
pendent transition rate arising from (117) in 
the long time limit. 

We now turn to the interaction of the per¬ 
turbed primary species (PS) with the level 
spacing (LS) which serves to slow down the 
above relaxation process. Our basic interest 
is in the measured relaxation of PS. If the PS 

did not interact with LS, the description of 
the relaxation given in the preceding paragraph, 
Eqs. (116,117) would suffice. We now quantify 
the nature of the time dependence in transition 
rates arising out of the PS-LS interaction. We 
assume that this time dependence arises from 
the entropy of the LS which provides a time 
dependent contribution of the free energy that 
modifies the transition rates in analogy to 
reaction rate theory, Eq. (109). We consider 
the PS-LS interaction that generates LS excita¬ 
tions to be expressible as a landom external 
potential for the LS decoupled from the PS 
The coupling loop is closed by means of th< 
modification of the PS transition rates through 
the entropy of the LS excitations as just 
described. In the non-equilibrium situation, 
the LS is driven away from equilibrium by its 
interaction with the perturbed PS. We maintain 
focus on the relaxation of the PS so our inter¬ 
est is in a time regime during which the PS is 
relaxing, but during which the LS is driven 
away from equilibrium. Thus, we are assuming 
that the PS-LS interaction dominates the inter¬ 
action of the LS with the heat bath which 
serves to equilibrate the LS after the PS has 
completed its relaxation. 

The excitation arising from the PS-LS 
interaction are assumed to be describable in 
terms of a stochastic two-level system. (This 
two-level structure is for mathematical con¬ 
venience only!) The stochasticity reflects the 
random nature of level structure arising from 
the complexity of the underlying system. The 
PS-LS interaction results in an assembly of 
such excitations. In carrying out our calcula¬ 
tion of the entropy of the excitations, we 
start by considering the dynamics of a member 
density matrix of a two-level system. We then 
consider the ensemble average over the members, 
and afterwards the assembly of the ensemble- 
averaged two-level systems. We then calculate 
the entropy of the assembly. In the following, 
we shall deal with quantities that are member- 
dependent for members of an ensemble au well as 
assembly-dependent for ensemble constituents of 
the assembly. 

We start then with a two-by-two Hamil¬ 
tonian for an assembly of two-level systems 
which have level spacings corresponding to that 
of a random matrix Hamiltonian discussed ear¬ 
lier. Thus, the spectrum of the LS excitations 
will be expressed in terms of the energy dif¬ 
ference of the two levels which correspond to 
the level spacing variable entering into the 
Gaussian Orthogonal Ensemble (GOE): 

( "ll, \ 

\ »22, / 

(118) 

Here m stands for member of the ensemble and a 
for the assembly. The diagonal part is 
assembly-dependent only. The off-diagonal ele¬ 

ment K2= in a random external potential that 
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provides the phenomenological driving force on 
the LS caused by the perturbed PS. Here X is a 
dimensionless strength parameter whose value 
varies from 0 to 1, and is introduced here so 
that as one reaches the full strength of the 
LS-PS interaction for which X = 1, the effects 
of the interactions are properly taken account 
of in an appropriate adiabatic perturbation 
theory which does not violate any of the 
requirements of the underlying GOE. In this 

manner, all sn,all 50 that the LS 

still retain their relationship to a GOE random 
matrix for all pertinent level spacings. Fur¬ 

ther XH1!1» will be consistently small in the 
12a 

sense that they are not directly included in 
the PS Hamiltonian but only affect the transi¬ 
tion rates of the PS by controlling the entropy 
in the surrounding environment. The use of the 
X-trick here is reminiscent of the Pauli trick 
elsewhere in dealing with cumulative perturba¬ 
tions which at each stage is "small" but upon 
appropriate adiabatic superposition leads to 
nontrivial answers for the effect one is look¬ 
ing for at full strength of the perturbation. 
The member density matrix of this subcomplex 
depends on X, which can be calculated exactly 
in terms of the initial states whose elements 
have phases in them. Also note that we may 
write 

K2a = ^la = XlH12a>expi,>12aX (119) 

where é™ , is both a member and assembly 
12a\ 

dependent phase. The corresponding density 
matrix associated with (118) is 

?>>s 

(m 
», 

»; 

llaX(t) °Î2aX(t) 

’21aX(t) a22aX(t) 
) (120) 

with 

tr°>} 
1 = om llaXv (t) + °22aX(t) • a20a) 

This is obtained by solving the member states 
in the usual way: 

.9 Yc7.A(t>\ 

‘8t ' 

The initial states are given by 

/C?aX<°>\ „ / C 

Vc2aX<°V V C 

laX(°) expiO^ , 

: . (0) expi*^ / 

(121) 

(122) 

Since ^.'s (i=l ,2) are initial state phases, 
for convenience we have taken them to be only 
member dependent but may in general depend on 

X. The associated density matrix aj^(t) given 
in (120) is expressed as 

m* ,.s m 
claX(t) c 

^aX^ c2aX^ 

2aX 

V2aX^»: 

(t) 

) (123) 

It is enough to provide only the expressions 

for °nax(t) and °T2aX(t) b\CaUse 022aX(t) = 
l-0™iax(t) ando“lax(t) =o“2ax(t). 

0' 
,2 m 
12aX °llaX 

(t) 

= PaX0nax(°) P!x + P-'°ra aX“l2ax(°^fx 

* P!x^lax(°<X - C 022ax(°) (12A) 

4aX - P.^-(0)Qn 

+ PaX°12aX 

aX 1laXv 

f.m m 

a\ 

(°)PaX * MlaX^^aX 

- C022ax(°>PaX 
(125) 

Here 

^12aX - 4a + ^2'H12a'2 

Ä12a = Hlla ’ H21a 

(126a) 

(126b) 

PaX = fii2aX cos(fi12aXt/2) 

- iA12a sin(fi12aXt/2) , (126c) 

QaX = - 2lM1Î2a Sin (fi12aXt/2) ' (126d) 

We now want to obtain the ensemble average of 

it). As before, we accomplish this by means 
—a\ 
of a phase average over members of the ensemble. 
We expect this random phase average to elimi¬ 

nate a®, , (and O®. ,) but also leave an 
12aX 21aX m 

assembly-dependent residue in an<1 °22aX 

that may be attributed to the correlation among 
the ensembles of the assembly. We accomplish 

both purposes by assuming that the phase ^2aX 

associated with as in Eq. (119) is equal 
to a sum of a member-dependent part and an 
assembly-dependent part such that the member- 
dependent phase is equal and opposite to the 
member-dependent phase of 0j2aX' ^us 

(127) ^m 
*12aX 

.ID .ID . . 
- 0»2X + ¢- »IX 12aX 

This assumption appears to provide a unique 
decomposition of the phases, 4,a^> modulo the 

convenient choices of phases of cIax(t=0)- 

Thus, we obtain the ensemble averaged diagonal 
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density matrix by application of the principle 
of uncompensated phases in a phase average over 
the member-dependent phases. 

aila\(t) = Olla(0) ■ Aa*(t) 
(128) 

and 

°22a\(t) = °22a(0) + Aa\(t) 
(129) 

where 2 

A.A(l'=“2 T1r.(5lUl0)-S22«(0»sl''‘ 1 2 
ni2a\t. 

12a\ 

- 4\ 
lH 12al 

12a\ 
(511.<0>522.(0»'! 

|!>12aAsi"*12aH cos 
fl12a\t 

2 

+ A12a C0SW 
sin -r— ] (130) 

The entropy of the LS ensemble for a fixed 
strength A of the LS-PS interaction is 

SLSaA(t) 
= {(5lla(o) 

- in(Olla(0) - AaA(t)) + (CJ22a(0) 

+ AaX(t)) £n(022a(0) + AaX(t))} (131) 

The LS structure is initially in thermal equi¬ 
librium with the HB and hence is in a state of 
maximum entropy. The maximization of S^ga(0)/k 

gives us the usual result for 0,, (0) and 
lia 

(0): 

-1 
22av 

11a 
(0) = (1+exp ßA12a) 

¿22a(0) = d+«p-ßA12a) 
-1 

(132) 

It will turn out that the LS excitations of 
most pertinent interest will be those in which 
-i 

In that case we have from 
(132), 

12s ' 

Olla(0) - O22a(0) " ^ 
(133) 

We can now compute for each value of A, 
the total time-dependent entropy associated 
with the LS excitations. This entropy is 
obtained by summing the ensemble entropy given 
by Eq. (131) over the assembly for each A with 
A < 1, and then finally integrating over A from 
0 to 1. This sum is written as follow:.-: 

d<|> 
J^dA jL.-^dAJ271 
Jo (aj Jo Jo 2n 

J>û12a' NA(|A12a><dlH12a' ^'«Ua^ (13A) 

•J* 

In this way, at each stage of the perturbation 
theory in A|Hj2a|, we can maintain the G0E 

structure as will be evident in the following 
computation. The 0j2aA inte8rati°n provides an 

average over the assembly phases which are not 
random but are instead correlated. N,(|A1;) |) 
is the energy level spacings distribution of 
the GOE random matrix. This is A-dependent 
because even though |A . |'s do not depend on 
the A|H10^|, the GOE structure of a general 

|fi10 a), the ener8y 
12a1 

2x2 matrix would involve 
difference of the GOE 2x2 matrixAitself. Since 

A < 1, - I^i2al + ^ t^le actua^ 

level spacings distribution N.QA.« ]) which is 
' ' ve' a measure of the number of level spacings for a 

given l^i2aAl coul<* depend on A more signifi¬ 
cantly than' |fi,~ ,| on A. For consistency in cantly thañ"|Qj2aX| on A. For consistency 
signs for expressions in which the first power 

of û12a arises* we specify the A12¡j =|A12a| 

i.e., that the energy of the levels labelled 1 
is greater than or equal to those labelled 2. 
P(IHi2a|), which is assumed to be independent 

of IA12a\ is the probability distribution of 

the magnitude of the phenomenological random 
external potential representing the PS-LS 
interaction effect on the LS. 

In applying (134) to (131), we note that 
Il2a I small. Or, we may specify that 

(135) MH12al « “LA 

where 1^, 3 |A12a| for Aj2a * u^, and 

U»,, is a time much greater than the time of 
iñ£e terest in the relaxation process so that 

uij^t « 1 . (136) 

Carrying out the phase integral and retaining 
only lowest order terms in MHj2a), which is 

justified in view of the smallness of A at any 
stage of A-calculation, we obt.in the LS 
entropy 

(sLS(t) - sLS(o))/k 5 

= - 2/JdA A2j^dlH12lP(|H12l) |H12|2 

j^Nx(|A12i) (1-cos |A^2|t) ^ 

|A12* 

“LA 
» t 

12‘ ’ 

(137) 

Now recall that ) is linear up to a cut 

off frequency, ui , for the GOE random matrix 
being modeled. We write 

Nx(|A12|) = C(A)1A12| , 0SlA12|á u>c (138) 

where C(A), the slope of the linear law will 
depend on A in general. It is clear that the 
lower limit of the |Aj2| integral can be 
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extended to zero, not only because there is a 
vanishing contribution for Jû^l <u,jA ^ut a*S0 
because the X-trick allows one to make as 

small as we please. Then using formula 3.782-1 

in Gradsteyn and Ryzhik^1 and the fact that for 

t » uf1 an integral with bounded integrand and 

a cos|A12\t factor over the ran8e (“'(.i®) 

is negligibly small, we obtain 

(SLS(t) - SLS(0))/k = n2n(u>ct) 

- ny - S>/k , t » uf1 . (139) 

Here 

n = ;Jd\2X2C(\)J^lH12l2 POH12|) d|H12l , (140) 

y is the Euler constant (0.577), and S>/k is a 
time independent term. 

We choose the origin of 0 to coincide with the 
origin of t so we may write, 

0(t) = uf1 (l-n)’1exp(-S>/k) exp(-ny) (u^t)1 n, 

t » uf1 . (144) c 

If 0 is a good order parameter i.e., 0 
increases monotonically with increasing t, the 
arguments that lead to a Boltzmann H-theorem 
which ensure approach to equilibrium for phe¬ 
nomena described using an ordinary master equa¬ 
tion apply equally as well when a master equa¬ 
tion with transition rates given by Eq. (142) 
is appropriate. We require then that 0 be a 
good order parameter on the physical grounds 
that we are dealing with relaxation phenomena. 
It follows immediately from Eq. (144) that n<l. 
But we have already established that n>0 by its 
definition, Eq. (140), where all the quantities 
entering are positive. We find then that 

0 S n < 1 . (145) 
S>/k = 

2jJdxx2j^ih12\ 2p( ih12i )d ih12i Oy i a12 I ) 

dIA 
12' 

I* 12' 

(141) 

For such a general n, it is clear from the 
definition of 0 that the effect of the PS-LS 
interaction on the ordinary master equation may 
be viewed as just a dilation of time for the PS 
relaxation. The approach of the PS to equi¬ 
librium still proceeds albeit at a slower pace 
than that of an approach characterized by the 
ordinary master equation. 

The time regime of relaxation described by the 
present model is specified by the upper cut off 
frequency ujc only. 

Thus as a consequence of the PS-LS cou¬ 
pling, relaxation of the PS is accompanied by a 
decrease in the entropy of the LS, and that 
decrease is a logarithmic function of time. 
With this negative LS entropy contribution in 
hand, we use Eq. (119) to obtain the modifica¬ 
tion of the transition rates Wsg, of Eq. (116) 
to 

Wss,(0 = Wsg,exp(-S>/k)exp(-ny)(u»ct) n , 

t » uf1 . (142) c 

The master equation (116) when modified to 
incorporate the Wgg,(t) given in Eq. (142) 

leads to a description of relaxation charac¬ 
terized by th<! coupled (they have the same key 
parameter n) equation (1) and (2). In the lat¬ 
ter case, the exact agreement is only modulo a 
factor exp(S>/k). 

We note now that all Wsg,(t) are modified 

by the same factor. Thus the master equation 
(116) can be restored to its original form if 
we define a new order parameter 0 such that 

d0 = exp(-S>/k) exp(-ny)(ioct)_ndt 

t » uf1 . (143) c 

Tnis derivation differs that that in §Ba 
in several aspects as well as that given in 
Ref. 27. In §Ba, the new master equation was 
not derived from basic considerations such as 
that given here. The present derivation per¬ 
haps gives a theoretical basis for step (ii) of 
§Ba. In step (iii) of §Ba, the TDTR was 
derived by analogy with phonon side band calcu¬ 
lation. Here a more physical, entropy based 
argument is given for its derivation. In the 
process, a new derivation of the parameter n is 
given, Eq. (140), in contrast to a simpler form 
given by Eq. (107). The extra factor exp(-S>/k 
in Eq. (142) is also a new feature which Ngai 
has exploited in interpreting experimental data 

elsewhere.2 In contrast to Ref. 27, a cumula¬ 
tive perturbation theory is given which relaxes 
some of the simplifying assumptions made ear- 

27 lier in obtaining n. 

4. Some New Applications 

We will now briefly discuss specific 
problems of current interest in condensed mat¬ 
ter physics in the new way of handling relaxa¬ 
tion problems. 

(i) Spin Glasses: Materials such as 
Cu:Mn, Pd:Mn metallic systems, metglasses, the 
Er Sr. S system and others are called spin- 
glass Systems. A basic feature of these sys¬ 
tems is that they are all complex alloy systems 
with magnetic ions in them which begin to 



behave "cooperatively" at some point. Specifi¬ 
cally, the existence of a cusp in the suscep¬ 
tibility vs. temperature curve is a common 
characteristic of spin glasses. The relaxation 
phenomena associated with this bear some degree 
of resemblance to those in ordinary glasses and 

52 polymers. In a recent paper, we have exam¬ 
ined to what extent these analogies and simi¬ 
larities exist and we present here some of that 
discussion. Also, we try here to relate the 
basic entities in spin glasses with the mathe¬ 
matical entities needed in our formalism out¬ 
lined in earlier sections. 

Relaxations in glasses remarkably conform 
to Eq. (1). The primary relaxation responsible 
for the glass transition conforms to Eq. (1) 
near, below, and above the glass transition 
temperature, T^, although n can be a function 

of T . Far above T , generally for nonpoly- 
o 8 

meric glass, the exponent n is zero or approxi¬ 
mately zero and the effective relaxation time, 
Tp, shifts with temperature T in an Arrhenius 

way: 

Tp = Too expvEA/kT) • 

Here and E^ are, respectively, the inverse 

of the attempt frequency and the activation 
energy for an activated process. As T » T^, n 

increases and the "spectrum" broadens. By 
"spectrum" we mean that if we formally inter¬ 
pret a "spectrum of relaxation times/frequen¬ 
cies" through the identity 

/g(x)exp(-t/T) d(log T) = exp(-(t/Xp)1-n] (146) 

larger n corresponds to a broader "spectrum." 
At the same time, Xp as well as the mean 

<-i> = /xg(x)d(logx) = Tp/(l-n) r(l/(l-n)) (147) 

depart : om the Arrhenius behavior, increasing 
more rapidly for a glass. Such relaxation 
properties near T^ will be called type A behav¬ 

ior. They are generally observed for many 
glasses and polymers though not always. For 
example, SiO^ and GeC^ glasses have constant n 

and for which X shifts in an Arrhenius manner 
throughout the p temperature range near T^ 

studied. These can be classified as Type B 
glasses. There is a third class which we call 
Type C, e.g., alcohols, which exhibit non- 
Arrhenius behavior near T^ with no significant 

T dependence of n. In Ref. 2, extensive data 
displaying these are given. In all these 
glasses, the second universality relation, 
Eq. (2), is obeyed. For type A glasses, at 
high T, we have n -» 0 and from Eq. (2), we find 
X X . Hence x can be identified with p o o 
Xœexp(EA/kT), at all T. n increases as T 
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approaches T^ above, then from Eq. (2) it fol¬ 

lows that X becomes non-Arrheuius even though 
Xo is. For^a smooth monotonie increase of n, 

X will have qualitative features of the empir- 
P 53 
ical WLF behavior, and the viscosity r|=G <T> 
may well be described by the empirical Vogel- 

53 
Tamann-Fulcher (VTF) equation. Very near T^, 

H deviates from VTF equation and reverts back 
to a steep Arrhenius behavior. In this regime, 
the relaxation time is often so long that data 
on the exponent n for the relaxation process 
responsible for viscous flow are not available. 
Below T , n depends on thermal history. 

T 
8 

The relaxation properties of glasses near 
can be quite adequately parameterized by 

variations of n with T determined from experi¬ 
ments in the simple manner described above. 
This success motivated us to simulate the 
relaxation properties of spin glasses near spin 
freezing temperature, T^., by the variations of 

n with T determined from experiment. From 
such analyses, we find Cu:Mn 5% and EuxSr^_xS 

spin glasses of Type A, holmium borate spin 
glass is of Type B, and we have not come across 
any spin glass which resembles Type C. Similar 
analysis of the data on spin glasses in the 
presence of a magnetic field H by simulating n 
as a function of H and T, shows that relaxation 
behavior of the spin glass Fe^Ni^j^g has also 

been made. 
54 

It should be mentioned that Chamberlin et 

al. have recently published data and their 
own analysis of time-decay of remanent magneti¬ 
zation in spin glasses using Eqs. (1) and (2) 
but making an unnecessary assumption ui = 
1/X « u), and concluded that the Ngai scheme is 
not directly applicable to spin glasses. We 

haye3 shown that no relation between u>c and 
X exists nor has been suggested by the model 
and they are independent physical quantities. 

We have moreover shown5** that no difficulty 
arises in interpreting their data if only the 
model is properly used and the controversy men¬ 

tioned by Chamberlin et al.55’5^ does not exist. 

From this discussion, several things 
emerge. First of all, the phenomenon is due to 
spins which are randomly oriented in a host 
medium and their relaxation properties are 
exhibited by measuring magnetization and spin 
susceptibility as a function of frequency at 
various temperatures. Quite often, in the 
literature, spin glass phenomenon is modelled 
by means of spin Hamiltonians such as Ising or 
Heisenberg form or even Ruderman-Kittel- 
Korringa-Yosida interaction with random 
exchange constants. These models have not 
been successfully developed to address the 
relaxation properties of these systems as yet. 
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We may therefore take the viewpoint that as 
models go, the only feature to take account of 
in our picture is the existence of interacting 
spins whose mutual interactions are random and 
may have long range also. The next main con¬ 
clusion from our description in the paragraph 
above describing the phenomenon is that Eqs. 
(1) and (2) can be used to understand the 
observed data on spin glasses with the exponent 
n treated as a function of the temperature, T, 
and the external field, H. We will now try to 
make a case for employing our theoretical 
framework for justifying this last statement by 
drawing the correspondence between our physical 
process and the mathematical structure which 
gives Eqs. (1) and (2). 

In our view, the interacting spins in the 
spin glass form the truly many particle relax¬ 
ing system which is imbedded in the host mate¬ 
rial composed of the rest of the chemical 
environment that makes up the spin glass. In 
the "subdynamics" picture, one then examines 
the evolution of the spin structure in contact 
with the rest of the spin glass system acting 
as heat bath. The boundedness of the spectrum 
from below is then easy to accept. Since the 
index, n, may be interpreted as the new charac¬ 
teristic of the heat bath for describing the 
relaxation properties and the temperature as 
well as the external fields are equilibrium 
parameters of the heat bath, the index, n, can 
indeed reflect these parameters by being a 
function of these. In the original language of 
the random matrix picture of Ngai, one may 
think of this as arising from the random many- 
spin system, whose energy spacings distribu¬ 
tions in a GOE scheme is linear for small 
energy separations. Our theory then makes it 
possible to arrive at Eqs. (1) and (2) with the 
picture of the spin glass relaxation phenomena 
as painted above. The mathematics suggests 
that using the parameters n and the arising 

from general principles, one may understand 
these phenomena. 

A basic feature of most theoretical 
approaches has been to recognize and incorpo¬ 
rate in some measure the random spin interac¬ 
tions as well as incorporate the complicated 
nature of competing interactions ("frustration" 
or in RKKY, the alternating signs of exchange 
with long range). In our scheme, these appear 
as the spacings distribution of the level 
structure excitation spectra. 

(ii) Electron Glass: The metal-insulator 
transition in systems such as Si:P is due to 
both the randomness and the long range Coulomb 

C ~J c o 
interactions. ’ The low frequency elec¬ 
tronic relaxation properties of this system 
seem to resemble those of glasses and spin 

glasses.Because of these features, the 
electron system on the localized (insulator) 
side near the transition is often called an 

"electron glass.The analogy with the 

glassy state arises from a competition between 
the long range Coulomb interactions and the 
randomness of site energies. Experimentally 
the slow relaxation behavior in the a.c. con- 

59 ductivity bears a strong resemblance to mag¬ 
netization relaxation in spin glasses and die¬ 
lectric and mechanical relaxations in 

1 2 52 
glasses. ’ ’ In our view, if Ito.cckT, as is 

59 
the case in all low frequency measurements, a 
relaxation description of the entire assembly 
is more appropriate, particularly in the criti¬ 
cal region. Before leading to the mathematical 
scheme, let us first give a physical approach 

to this complex phenomena.**' We first note 
that the random interactions and correlation 
among electrons give rise to an assembly of 
near degenerate levels. Relaxation of a single 
elctron is necessarily followed by sequential 
relaxation of other electrons because of its 

1 2 
correlation with the others. ’ An effective 
way of accounting for these complex multipar¬ 
ticle processes is to compute the evolution of 

27 entropy of the level structure with time 
caused by the sequential transitions of the 
multiparticles. The spectrum of these excita¬ 
tions is determined by the level spacings dis- 

1 2 tribution ’ of a Gaussian orthogonal ensemble 
of random matrix hamiltonian which mimics these 
interactions. Coupling of an electron to these 
level spacings generates the level spacing 
excitations and modifies the interaction of the 
electron with the nominal heat bath. This is 
best understood in terms of the environmental 
modification which serves to delay the relaxa¬ 
tion process since the level structure excita¬ 
tions have maximum entropy and can lose entropy 
by its interaction with an already displaced 
electron. The overall entropy increases since 
it is dominated by the increase in entropy of 
the electron as it relaxes to equilibrium. 
This increase in entropy is only slowed by the 
presence of the environment that can have its 
entropy decreased by its interaction with dis¬ 
placed electrons. The calculation of the 
entropy evolution of the level structure exci¬ 
tations is the key to our procedure. The 
decrease of this entropy -As(t) is logarithmic 
in time As(t)/kB = n 2n(u)ct), where wc is an 

upper cut-off frequency and n is a measure of 
the effective coupling to these low lying modes. 
In analogy with absolute reaction rate theory, 
the transition rate is 

W(t) = Wq exp|-As(t)/kgl = Wo(wct) " 

The master equation for relaxation with this 
transition rate leads to a description of 
relaxation characterized by the coupled (they 
have the same key parameter n) equations, (1) 

and (2), where t = W^. 

The relaxation function given by Eq. (1) 
when differentiated w-r-t t and then Fourier 
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transformed with frequency variable w gives us 
(to within a numerical factor) the frequency 

1 2 
dependent susceptibility, ’ x(u>)=x'(w)-ix'(w) • 
The conductance G(u>) is proportional to lux" and 
the donor capacitance C(u>) is related to X'(ti>)- 
It is interesting to noce that a sample calcu¬ 
lation with n=0.9 of x' and X" and o(iu) are 
found to be in accord with experimental mea¬ 
surements obtained over three decades of fre- 

59 
quency. It is interesting also to note that 
the value of nS0.9 for the electron glass in 
the critical region at. 13 rak is comparable with 
the n value for magnetic relaxations in spin 
glasses near T . It is between 0.7 and 0.9 for 

62 ^ S2 
Cu:Mn and for Eu Sr, S. The large value 

x 1-x 6 
of n in the electron glass is a reflection of 
the importance of many electron correlation 
effects in the critical region. The results 
obtained so far are independent of the specific 
nature of the relaxation process. Although the 
relaxation function is predicted to have the 
form of Eq. (1), the value of n cannot be pre¬ 
dicted or calculated exactly. In fact the com¬ 
plexity of the system is such that the actual 
experiment can be considered as the best ana¬ 
logue computer for the estimation of n. In 
many other relaxation phenomena, after taking n 
directly from experimental data, Eq. (2) per¬ 
mits another stringent test of the relation 
between the dependences of the observed and 

the fundamental Xo on some parameters such as 

temperature, isotope mass, molecular weight, 
etc. 

The cooperative relaxation model for an 
electron-glass leads to isoenergetic multi¬ 
particle collective relaxation with time- 
dependent relaxation rate, stretching the fun¬ 
damental time scale X to a much longer effec- 

0 

and (2). The Austin-Mott hopping conductivity 
59 

has been rejected by experiment. We do not 
find the ac conductivity calculated by Efros 

63 
and Shklovskii can explain the data either. 
Since fttoCikgT, finite temperature formula 

(Eq. (4.1) of Ref. 63) has to be used which 

gives o(u»)~iu in contrast to the experimental 
0 9 

tu ' . These latest developments indicate that 
the understanding of low frequency dielectric 
relaxation is still incomplete. 

(iii) Polymers : In polymers one has 
molecules that are arranged along long chains 
and these chains form the constituents of the 
system. This conglomerate of long chain 
molecules exhibit very interesting properties 
quite similar to glassy state. The equilibrium 
statistical mechanics of the polymer system is 
best handled by the general methods developed 
by Khinchine and is explained in detail in a 

6 A 
recent book by Weiner. The problem involves 

unusual geometrical constraints because of the 
long chain system will in general have many 
possible complicated conformations. One of the 
principle methods of handling this complicated 
system is to use the superposability principle 
with given mean square distance between the end 
to end distance of a polymer chain as a c n- 
straint, for example. This leads to the usual 
Gaussian distribution for the ensemble of such 
polymer chains. Several models of this sort 
are discussed in Weiner’s book. The time- 
dependent properties of this system in is vis¬ 
coelastic properties etc., has been shown by 
Ngai and co-workers (see Ref. 2 for example) to 
fit Eqs. (1) and (2). The complicated nature 
of interactions and the many-chain complex of 
molecules in a polymer lends itself to an anal¬ 
ysis of the type we have been examining in 
other similar systems. For a detailed discus¬ 
sion of this topic, see the companion article 

by Rendeil and Ngai,in this volume. 

In conclusion, the purpose of this review 
was to present a variety of different models of 
nonexponential decay in condensed matter phy¬ 
sics. The basic requirement for any successful 
model is that it must satisfy the two empiri¬ 
cally verified "universal" relationships that 
are found in the slow relaxation process. Most 
of the models are of type A, giving only the 
nonexponential decay so that they do not yield 
the second universal relation. Hence in our 
opinion they do not constitute a complete 
theory of the phenomena. It has been noted 
that Ngai's model, by incorporating general 
features of the systems in a random matrix 
hamiltonian scheme is of type B. It provides 
the observed non-Debye relaxation and leads to 
the second universality as a prediction. In 
the future there may be other models invoking 
some other general features that may lead to 
the empirical relationships as well. Also 
there may be newer aspects of slow relaxation 
not yet fully explored or even known at present 
which may call for different requirements for a 
successful model besides the two universalities 
which we used here. It is clear that the sub¬ 
ject of slow relaxation in condensed matter is 
a new challenge to theoretical physicists. It 
is hoped that the present review gives the 
reader a flavor of this exciting area of 
research. A glance at the variety of mathemat¬ 
ical tools used in the models discussed in this 
work clearly displays the challenging difficul¬ 
ties in arriving at a satisfactory model of the 
phenomena. 

298 



3 

.% 
/«■ 

tv 

>-■ 

Acknowledgements 

AKR was supported in part by ONR contract 
number N00014-K-0A77 and KLN in part by ONR 
under task NR 600-021. We both thank 
Drs. S. Teitler and R.W. Rendell for their con¬ 
tinuous valuable discussions and collaborations 
on the subject. 

Notes Added on October 1, 198A 

Since completing the work, four papers 

have appeared^ which are relevant to the 
present discussion. We give here an account of 
these along with our commentary on each in the 
spirit of this article. We may point out at 
the outset that all these works focus attention 
on deriving Eq. (1) and pay no attention to 
Eq. (2). 

66 
1. Palmer et al.“” suggest a class of 

models, called "hierarchically constrained 
models" for relaxation in strongly interacting 
glassy materials. In the process of developing 
their model, these authors stress that theories 
based on "distribution of relaxation time" and 
variations thereof, are describing the relaxa¬ 
tion function, Eq. (1), based on a picture of 
"parallel relaxation" which is not universal 
and microscopically arbitrary, in conformity 
with our view of such models as well, expressed 
in Sec. 2 of this review. They go on to sug¬ 
gest that any theory which tries to arrive at 
the universal law, Eq. (1), must be based on 
(a) dynamics, not just statistics, (b) with 
constraints, and, (c) involve a hierarchy of 
degrees of freedom so that a "series" interpre¬ 
tation is more appropriate. These authors then 
go on to discuss a variety of scenarios, some 
of which do give Eq. (1), but they do not yet 
have a clear physical model of relaxation. We 
should draw attention of the reader to the 
model described by us in Sec. 3 where it is 
clear from the development given there that the 
Ngai theory is a "series" model and that the 

iV'.V'.V .V .% .V .V -. ,N .V .-. ,-. .V .-. .-. . •• .-- .-- . 

constrained dynamics is exhibited by the scheme 
of the special PS-LS phase averaging. (Palmer 

et alstate that the Ngai model is not a 
hierarchically constrained model but as 
described in Sec. 3, it is clear it is.) More 
importantly, the second universality is a con¬ 
sequence of this "series scheme" which is not 

addressed by Palmer et al. ^ It is important 
to point out that this work for the first time 
sets down conditions that any model is likely 
to obtain the universal relaxation of the form 
given by Eq. (1). To this, we must add that 
Eq. (2) must also be obtained in such a scheme. 

67 2. Brawer”' presents a theory of relaxa¬ 
tion of nonpolymeric viscous liquids and glasses. 
It is clearly a "distribution of relaxation 
times" type theory as his final answer is 
obtained in that form. It is therefore a 
"parallel relaxation" scheme in the sense of 

Palmer et al.^6 and does not possess any aspect 
of sequential processes. He describes the 
fluid by a set of quasi-equilibrium structures 
and sets up a master equation that gives tran¬ 
sitions among these structures. In his subse¬ 
quent manipulation of the master equation, he 
makes assumptions that lead to a "parallel 
relaxation" scheme in which each of the quasi¬ 
equilibrium structures relaxes independently 
with characteristic decay time of its own. To 
make a "series" scheme, he would require a 
more sophisticated scheme than what he has 

67 
given in this paper. Brawerul also compares 
his theory with other existing theories and 
comes to the conclusion that his theory is 
similar to the free-volume model of Cohen and 

Crest,J which as we have pointed out in Sec. 2 
is also a "parallel relaxation" model. In 
describing the Ngai theory in comparison with 
his own, he unfortunately does not fully com¬ 
prehend the Ngai theory and goes on to present 
his own version of it. In so doing, he finds 
his version of the Ngai model gives only expo¬ 
nential decay! It is clear from his own work, 
that an attempt to understand a "series theory" 
such as Ngai’s in terms of a "parallel model" 
is doomed to failure and his allegations of 
"improper averaging out the heat bath," etc. 
in his version of the Ngai model are inappro¬ 
priate. A detailed rebuttal of Brawer's ver- 

70 
sion of the Ngai scheme is given elsewhere. 

In an interesting paper, Shlesinger 
,68 and Montroll““ have proposed a derivation of 

Eq. (1) based on a model of diffusion of 
defects with a waiting time distribution func¬ 
tion with long tail 

4»(t) ~ t 
-1-a (148) 

The model considers a frozen dipole at the 
origin of a periodic lattice and defects lie 
initially (at t=0) with equal probability at 
any lattice point. Diffusion of the defects on 
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the periodic lattice are described by the con¬ 
tinuous time random walk formation described 
in Sec. 2 with a waiting time distribution 
function given by Eq. (148). The relaxation of 
the dipole at the origin is supposed to take 
place whenever a defect reaches it. The 
defects are treated as independent and each has 
the same waiting time distribution function, 
(148), and may arrive at the origin indepen¬ 
dently. The problem thus reduces to a calcula¬ 
tion of the statistics of first time arrival of 
the defects at the origin from all the lattice 
sites. It is clear from this Shlesinger- 
Montroll picture of the relaxation that it is 
also a "parallel model" with just a statistical 

basis In terms of the Palmer et al. 
description, this model cannot give the result, 
Eq. (1). But the Shlesinger-Montroll model 
does give Eq. (1)! It therefore appears that 
we have here a counter-example to the criterion 

setup by Palmer et al.Upon more careful 
analysis of this model, it is found that it is 
hard to understand the origin of the long time 
tail in Eq. (148). First of all, it is essen¬ 
tial for ijKt) to be normalizable in t(0,®) and 
so (148) is really valid for t greater than 
some long time cutoff, te. The question then 

arises as to the nature of ^(t) for 0<t<t#. 
Shlesinger and Montroll note that the same long 
tail arises from a stable Lévy distribution 
that is defined for (0,®) and normalizable. If 
we take this Lévy distribution seriously in 
place of just the long tail in (148) one finds 
that Eq. (1) obtains truthfully for t>t 
whereas Eq. (1) is really found to hold for 
0<t<®. The use of Lévy distribution for 4i(t) 
raises a question as to the microscopic origin 
of the independent random variables that should 
be superposed in order to lead to the Lévy 

30 
stable distribution. By examining the Lévy 
distribution for some special cases, it is 
found that the tail region really occurs for 
times when a significant fraction of the 
dipoles would have already relaxed! 

4. In another paper, Montroll and 
69 

Bendler observe that the form Eq. (1) is 
mathematically the same as the Laplace trans¬ 
form of a one-sided stable Lévy distribution of 
the "relaxation times." This leads to the con- 

30 
elusion, using Feller, that the relaxation 
times ought to be independent random variables 
of a special type such that 

Ti1+-T¡ . r1 
N 
1/a 

(149) 

Note that the limit of the sum of N T'.s for 
i 

large N has to be defined in a definite way, 
unlike the usual mean value of t's, because the 
one-sided Lévy distribution has no moments! 

•1/a 
The normalization N needs to be explained 
on plausible physical terms in order to provide 

an insight to the universality of Eq. (1). 
These authors themselves realized the lack of 
physical content of this observaion (see p. 151 

69 
of their paper ). From this description, it 
is clear that the use of Lévy distribution in 
this way is indeed a "parallel mechanism" with 
as yet unknown physical meaning. In closing, 
the parallel mechanisms that lead to Eq. (1) 
seem to have physically hard to understand 
basic processes underlying them which are dif¬ 
ficult to test experimentally. It should again 
be pointed out that none of these schemes have 
obtained the Second Universality, Eq. (2). 

2. 

3. 

4. 

6. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 
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ABSTRACT 

After a brief survey of the characteristics 
of a heat bath and Its role In relaxation 
phenomena leading to the familiar exponent a 
decay. It Is argued that the nonexponential 
form found commonly In many condensed matter 
systems Indicates that the energy spectrum of 
the heat bath plays a crucial part In these 
phenomena. In equilibrium ** 
mechanics, the mean energy of a heat bath 
determines the temperature of a system placed 
In contact with n. « show that the 
relaxation of a system placed In contact with 
this Reith bath Is determined by the 
distribution of the energy level spaclngs for 
level spaclngs small as compared to the mean 
spacing. After presenting arguments In favor 
of a linear behavior of this distribution, we 
show. In a somewhat heuristic way, that the 
resulting relaxation function has a 
nonexponentlal form. 

I. INTRODUCTION 

Experimental data on relaxation phenomena In 
diverse erees of condensed wetter physics ere 
quite genere!1y found to exhibit slower then 
exponential decay for long times In, U>e form 
(see ref. 1. and references therein) 

exp[-(t/Tp)*'n], o<n<l U) 

where tn Is a characteristic time In the 
system. p This Is called the first 
universality relationship by Ngal. 
References 4,5,6 are representative set 
selected at random out of a large number of 
papers on this subject. Sw.ref. 1 for more 
citations. Traditionally**3 the residual 
part of relaxing quantities are discussed In 
terms of a pure exponential decay 

expt-t/t ] (2) 

where t Is the "relaxation time" which Is 
related to the time-Independent transition 
rate given by the Golden Rule. The physical 

r- ar * tT* •' 
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picture of relaxation here Is that the system 
which Is relaxing and which Is described by a 
Hamiltonian, He, Is In contact with a heat 
bath which Is a much larger system described 
by a Hamiltonian, Hg, and which Is not 
affected by the Interaction (Hgj) with the 
relaxing system. This Interaction Is 
supposed to be "weak" and leads to 
relaxation. The equilibrium properties of 
the given system In contact with the heat 
bath are determined by the temperature of the 
bath, which In turn Is Just the mean energy 
associated with the bath. * An alternative 
scheme to derive (2) Is th* equ*^l°" 
approach (sea for example Ref. 8). Here 
again the time-Independent transition rate Is 
employed In setting up the master equation. 
The physical model for relaxation Is however 
still the same - system, heat bath, and their 
mutual (weak) Interaction. An elementary 
disci; slon of the exponential decay In 
stochastic processes and In quantum mechanics 
may be found In Menbacher's book,* and an 
extensive discussion of the role of time 
Independent transition rates Is found In 
Tolman . Now, since exponential decay 1* "0* 
observed, and the decay law given by (1) Is 
more a rule than an exception. It Is natural 
to seek an explanation for this behavior by 
exmalnlng In more detail the origin of the 
time-independent transition rate. 
(Historically1 one sought to obtain Equ. (1) 
by a superposition of Equ. (2) with a 
distribution of t.) This shift «"Pb«** 
from time Independent transition rate (T1TR) 
to time oependent transition rate (TDTR) In 
order to arrive at (1) has been amphaslied 
recently by Teltler et.al. from 
phenomenological considerations of rate 
equations, and from general considerations 
based ,qn the Paley-Wlener theorem by Noal 
et.al.13 It was found that t In Equ. (1) 
and t In Equ. (2) are not Indebendent and a 
definite relationship between them exists: 

[(1-n) exp(nv) T]1/(l_n) (3) 
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where y 3 0.577 1s the Euler constant 
and w is an upper cut off frequency to be 
specified presently. If W. Is the time- 
indeyendent transition rate, then 2W0 
= t'1 and the behaviour given by Equ. (1) is 
governed by a time-dependent transition rate 

Q(t) 3 Wo exp(-nr) -n 

o * n < 1, w.t» 1. (4) 

The relatioi tioqship (3) is cal 
ity1 by Ngai which 1 

led the second 
universality1 by Ngai which is not derivable 
from the superposition of t's by means of a 
distribution of relaxation times. The 
relations (1) and (3) are called universal 
because they are found to be obeyed by a very 
large number of systems undergoing 
relaxations. We may think of Q(t) as a 
modification of the background T1TR induced 
by the heat bath due to Interaction of the 
system with the finer levels of the heat bath 
at larger times, u> t » 1. u> then is a 
characteristic frequency (or energy) scale 
when the time-dependence sets in or 
equivalently, when the low-energy excitations 
of the "heat bath" begin to play an Important 
role. The purpose of the present paper is to 
suggest that the heat bath be described by a 
chaotic quantum system. The reasons for this 
suggestion are given in Sec. II. In Sec. 
Ill, we set up the calculational scheme for 
computing TOTR and obtain the required time- 
dependence in terms of the slope and cut off 
of the level spacings distribution at "small 
spacings” of this heat bath. In Sec. IV a 
direct summary of the results obtained is 
given. 

11. SPECTRAL CHARACTERISTICS OF THE HEAT 
bâtît 

We are primarily Interested in the long time 
relaxation of any physical property of a 
system, for example a dielectric or a 
mechanical property. In general terms, the 
system that is undergoing relaxation is 
described by a Hamiltonian H$, and it is 
supposed to be in contact with a much larger 
system describ'd Eÿ i Bath (or reservoir) 
hamiltonian Hg. The interaction between the 
two, whose hamiltonian is Ho^, is assumed to 
be weak and is supposed to induce the process 
of relaxation in the physical quantity of 
interest in the system. It is Important to 
realize that the bath system is large 
compared to the system that is under 
investigation so that while the bath is not 
affected by the interaction with the system, 
its effect on the system is paramount. The 
precise nature of the heat bath is left 
unspecified except for stating that the 
system in contact with it acquires its 
temperature after thermal equilibrium has 
been established. In the conventional 
approach, the details of the bath hamiltonian 
are not Important even though it is 

recognized to have an almost continuous 
energy spectrum, by virtue of its enormous 
size/ Also, in the final analysis, the bath 
variables do not occur in the description of 
the system so that one averages over these 
variables in computing properties of the 
system. Since only the temperature of the 
bath enters the picture the only relevant 
entity appearing in this picture is the mean 
energy of the bath system, which is kept 
fixed, thus determining the temperature. It 
is clear from this description of the heat 
bath that a detailed knowledge of Hg is not 
required, except for its temperature and the 
obvious observation that Hd has an almost 
continuous spectrum bounded from below with a 
finite mean. One of the approaches to the 
theory of relaxation is to construct the 
density matrix associated with the system 
plus bath in the presence of Ngs and 
Integrate out the bath variables by tracing 
over all the states of the bath, leaving 
behind a residual density matrix for the 
system, which can be used to compute any 
property, Pit), of the system, by calculating 
the appropriate average of the operator 
representing P(t) over the residual density 
matrix. Feynman and Vernon“ have given a 
formal path Integral représentation for this 
density matrix and Fano1'**14 has given an 
expression in the interaction 
represemation.lt may not be out of place 
here to point out that there are 
circumstances when the nature of the heat 
bath is known purely from the physical 
consideration of the energy or time domain 
one is examining. For certain electronic 
properties, phonons (the motion of the 
crystal lattice) are the relevant heat bath 
system and so for excitations ^involving 
frequencies of the order of lO1’’ Hz and 
above, the phonon excitations determine the 
relaxation properties upto times of order 
10-1,1 sec and here the relaxation rate is 
essentially exponential... When one waits for 
longer times, say 10*10 sec, the phonon 
excitations provide only a background rate of 
transition and the relevant bath system which 
leads to slower than exponental rate must be 
something else. It must be pointed out 
however, that the phonon system is Itself 
Imbedded in the new bath system which we are 
proposing so that there is a common 
temperature for all the entitles making up 
the system. Thus we may picture a hierarchy 
of heat baths, each Imbedded in the other, so 
that they all have a common temperature and 
each contributes to the relaxation in the 
appropriate time regime. What we are 
interested in for the present work 1i the 
relatively long time domain such as 10_ro sec 
and longer, where the usual known excitations 
must be replaced by new, low-energy 
excitations. In the present paper we are 
concerned only with this regime. It must be 
stressed that the theoretical formalism given 
by Fano1'3»14 is applicable quite generally to 
all these situations. In the traditional 
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description^ no mention of the nature of the 
heat bath energy spectrum Is made except for 
It being continuous. Thus we describe the 
system undergoing relaxation by means of the 
Hamiltonian 

H =■ Hs > HB ♦ Hbs (5) 

It is assumed here that the background time- 
independent transition rate, W0, 1s also 
Induced by HBS which In the long time regime 
Is modified oy Interaction with the finer 
level spacings of the heat bath. One may 
then compute the density matrix of the entire 
system, given that at time t*0 the system and 
the bath are not Interacting, and have been 
prepared such .hat the system is In some 
preassigned state and the bath Is In thermal 
equilibrium. As a model for the heath bath 
we shall adopt any large quantum system whose 
classical motion Is Irregular. For such 
systems Berry Jiai shown In a series of 
elegant papers15-1* that the quantum levels 
are fairly regularly distributed and that the 
probability density P(S) for the spacings 
between neighboring levels has the asymptotic 
form 

t, 
* 
.* 
* 

P(S)* oß 

(0<S««) (6) 

provided S Is small as compared to the 
average spacing « . For larger values of S 
the spacings distribution P(S) goes through a 
maximum to decay to zero at large values of 
S. These details depend on the precise 
choice of the quantum system, but the linear 
behavior of the spacings distribution appears 
to be universal, l.e. It holds for a 
"generic* chaotic quantum system. It Is 
remarkable that the same linear behavior (6) 
of the spacings distribution Is found If the 
heat bath Is described by means of a random 
matrix hmlltonlan. The hamlltonlan for the 
heat bath Is very complex so that we may 
replace It by a statistical cescrlptlon. For 
the determination of equlllorium properties 
of a system In contact with the heat bath, 
only the average of the bath hamlltonlan Is 
needed. Hence one can try to use a "Gaussian 
Orthogonal Ensemble* (GOE) for the random 
matrix for describing the heat bath because 
we take the bath system as being time 
reversal Invariant. Since only the mean 
value of the bath Hamiltonian Is required for 
equilibrium properties, we use a "canonical 
ensemble" In setting up Us density matrix. 
We now observe that the GOE has known average 
spectral properties, which we employ In our 
analysis of the Golden Rule In determining 
the TDTR Induced by the bath In the system. 
For a description of the philosophy and the 
theory of random matrix hamlltonlans one may 
refer to Porter's collection of .capers and 
his clear Introductory surnnary^, Hehta's 
book, , and a more recent review by Brody et. 
al. . It Is remarkable that both models for 

the heat bath which we have considered in 
this section, (a) an irregular quantum system 
and (b) a random matrix hamlltonlan, lead to 
the same linear behavior of the spacings 
distribution. We feel that (a) Is the 
physically correct model for a heat bath and 
that the random matrix Is Just a convenient 
way to simulate an Irregular quantum 
system. It may not be out of place here to 
conjecture that the random matrix hamlltonlan 
may Indeed be a very accurate model for a 
generic Irregular quantum system If one 
coarse grains the energy spectrum. A hint of 
this equivalence may be found when one 
compares the average density of states for 
the quantum version of Sinai's billiard 
with the middle part of the semi-circular law 
appropriate for the density of states of a 
random matrix.20-22 It seems that the 
possibility of a connection between the 
statistical theory of spectra and 
nonlntegrable quantum systems was first 
clearly noticed by Casatl, Valz-Grls and 
Guarnlerl2^ only three years ago. This paper 
does two things: (1) It clearly states the 
problem; (2) For a quantum particle In a 
■stadium* the authors calculate the first 170 
eigenvalues with a numerical, finite element 
method and represent P(S) by an expression of 
the form 

P(S) * A Sv exp(- » S¿) (7) 

where A, v and v are positive constants. 
They found that 

0.2 < v < 0.5 (8) 

This Is not consistent with a linear take¬ 
off, but as the statistics Is quessed from 
only 170 levels the estimate (8) Is very 
Inaccurate. It Is noteworthy that the 
Gaussian tall exp(-M S¿) In 17) Is of the 
sane form as the tall of the level 
distribution of a random matrix. Quite 
recently, Bohlgas et.al. have found that 
the level fluctuations of the quantum Sinai's 
billiard are consistent with the predictions 
of the Gaussian orthogonal ensemble of random 
matrices. This Is an attempt to put In close 
contact the random matrix theory and the 
study of chaotic motion. These authors 
suggest that tlvt methods developed In random 
matrix theory22 to study fluctutatlons 
provide a way of characterising chaotic 
spectra and that the generality of GOE 
fluctuations Is found In properties of 
chaotic systems. 

III. CALCULATION OF THE TIME DEPENDENT 
traSSTTion rATT 

The calculation proceeds in three steps: (1) 
set up a rate equation for the physical 
quantity that Is undergoing relaxation In 
terms of a TOTR; (11) compute the TDTR; and 
(111) solve the rate equation once the TDTR 
Is determined. Our goal Is to examine the 
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long time limit of the time dependence and so 
there Is much simplification that can be made 
right from the start. A formal justification 
of step (1) Is given elsewhere“. We are 
concerned here mainly with step (11) and 
calculate the transition rate using the 
Golden Rule with proper attention paid to the 
types of Interactions that could be suggested 
for Hgj. Having done this, we then .invoke 
the cumulant expansion technique1,3 or 
equivalently the linked cluster scheme to 
calculate the TDTR essentially to all orders 
in Hgj. This Is in the same spirit as In the 
binary correlation approximation.“ We are 
thus led to consider the survival probability 
of a state of the system when It Interacts 
with the bath. Let the heat bath have states 
|b> and the relaxing system two 
representative states |1> and |2>. At t*o, 
the combined system (S ♦ B) Is In a state 
¡s,b> where |b> Is some state with Its energy 
in the range E -a<E^<E ♦A. . For a "good" 
heat bath. In generar, one does not know the 
state |b> apart from the fact that It has an 
energy £.. in some energy region (E- A, 
E+ a). Tne standard Golden Rule result* for 
the probability that the total system Is In 
the state |s'b'> at time t given the Initial 
state is |sb> Is 

|csV(t)|2 ■ i2 |vsb>5.„'|2 

(1-cos 

and to bring the constant Vs s> outside the 
summation sign In (10). Secondly, we note 
that the resulting sum over b‘ will be 
Independent of the choice of b. Hence the 
average over b is trivial and (10) can be 
written as the sum 

(t)-f?|Vs,s'12 

(1"cos“sb,s,b,t) “sb.s'b" (12) 

In a relaxation process, the transition 
occurs from a state of the system to another 
state of the system which Is essentially 
degenerate with it and so sih> * Eb. - 
E(j. The sum (7) can now be Ärliten as an 
Integral 

(t) * 2 |VSiS,|2 

(1-COS et/K) e"2 p(e) dc. (13) 
o 

where p(e) dc denotes the average number of 
heat-bath quantum states with energies in 

(Eb* c, Ew* c+de)given a heat-bath level at 
Eb. For “elarge as compared to Xhe average 
level spacing fione has pU); 4 • On the 
other hand, for e < 6 we can use the result 
(5) for the distribution of level spacings of 
an Irregular quantum system and put 
p(e)~ a c. Thirdly, we use the following 
qualitative form for p suggested by the 
preceeding remarks 

E« - Eb, with where tf usb s.b. « Es.+ Eb. - 
E,, the system energy. The matrix element of 
the system-bath coupling Hamiltonian Hg 
between the states |sb> and |sV> Is denoted 
by V. V In order obtain the total 
iranaikiuii yr vjvau i i i ij v c, (t) within the 
Golden Rule for the sysnm to go from state 
transVWjn" probability Q( to 

|s> to state |s'> Irrespective of the state 
of the heat bath we sum over |b‘> and average 
over jb>, noting that the bath states are all 
equally likely to be occupied with 
probability, w, because they are In a state 
of maximum At ropy. This gives for the 
probability to find the system In state |s'> 
at time t 

¿At. .vi' 
(i-cos •*'sbf$.b.t) “sb.sV* 

Qiu¿,(t) 

(10) 

where B denotes the number of heat bath 
states ln (E-A.E+A). In, order to express 
the relaxation function Qi“(t) In terms of 
the spectral characteristics of the heat bath 
one now proceeds. In a somewhat heuristic 
fashion, as follows. Firstly, as the system- 
bath coupling will depend only on the global 
properties of the heat bath the matrix 
element Vsb sib.t will be practically 
Independent of the choice of |b> and |b'> In 
the energy range (E-a, E*A). This enables 
us to put 

p(e) ■ a e 0<e<Jl4ic, (Wa) 

p (c) • 6'1 < e < «, (14b) 
with , c 

K«c- («6) . (14c) 

The calculation of the Integral (13) Is now 
straightforward, and leads to the asymptotic 
behavior 

2 «|VS|S,|2 in (wcteT) 

♦ . (wct»l) , (15) 

The dots In (15) denote terms that vanish for 
t ♦«, and the constant y“0.577 Is Euler's 
constant. Of/course, for small values of t 
the quantity Q, ,i(t) will be proportional to 
tz. The calculation outlined above amounts 
to lowest ordec perturbation theory. It was 
shown by F ano13 that when one proceeds in a 
rigorous fashion one obtains a cumulant 
expansion for the transition probability, 
which essentially leads to an exponentiation 
of the Golden Rule result (15) 

Qs.s.U) 1 W0 exp(-nv) (wct)'n 

0<n<l, wct»l, (16a) 

n “ 2 a|V ,|2. (16b) 

^sb.s'b' (11) Here W0 Is the residual transition 



probability which would normally lead to 
exponential decay, Equ. (2). With a time 
dependent transition rate of this form the 
solution of a rate equation will lead to 
terms of the form (1), with 0<n<l, for 
otherwise, with n>l, one has faster than 
exponential decay. 

IV. CONCLUDING REMARKS 

We have shown, In a somewhat heuristic way, 
how the fine-grained spectral characteristics 
of the heath bath determine the form of the 
relaxation function. It Is remarkable that 
the only quantities which enter are the 
average spacing «, or equivalently the cut 
off frequency w , the average system-bath 
matrix element Vj s., and the slope a of the 
spacing distribution at small spaclngs. The 
linear behavior of this distribution at small 
spaclngs Is a generjc feature of irregular 
quantum systems15*1’, hence an irregular 
(chaotic) quantum system Is a universal model 
for a heath bath. Our considerations also 
show that one can use the Gaussian orthogonal 
ensemble of random matrices to simulate a 
chaotic quantum system, and hence o model a 
heath bath. This might also explain the 
success of random matrix theory In nuclear 
physics and other branches of physics. The 
main motivation of the work reported In this 
paper was to make the concept of the heat 
bath, which up till now Inhabited the 
literature on statistical physics as an 
almost featureless entity, more specific and 
to determine which of Us properties enter 
Into the physics of relaxation. 
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A Fundamental Relation Between Microscopic and Macroscopie 
Relaxation Times: Evidence in Relaxation Data 

f 

I 

R. W. Rendell and K. L. Ngai 
Naval Research Laboratory 

Washington, D.C. 20375*5000 

Abstract Contents 

6 

In recent years it has become clear from 
empirical results that the time dependence of 
various relaxations in a wide range of condensed 
matter has a fractional exponential form. For 
mechanical relaxations the fractional exponen* 
tial can be traced back to Kohlrausch and 
Pierce; for Hpolar primary dielectric relaxa¬ 
tions, to Williams-Watts ; for ionic conductivity 
relaxations, to Moynihan and Macedo. But for 
other relaxations including spin-lattice, lumi¬ 
nescence, electronic hopping, magnetization, 
dipolar secondary, entangled polymer melt termi¬ 
nal, nonlinear viscoelastic recombinations or 
reactions, etc., the connections between the 
fractional exponential form and observed phenom¬ 
ena were first made by our group at NRL. Even 
in mechanical and dielectric relaxations, we 
have enhanced the credibility of the fractional 
exponential form by an exhaustive examination of 
available data. The widespread adherence of 
relaxation data to the fractional exponential is 
referred to as the first universality. We have 
also developed a model which provides a basis 
for the fractional exponential form and also 
predicts a relationship between the measured 
macroscopic effective relaxation time and an 
underlying microscopic fundamental relaxation 
time. This relationship between relaxation 
times is quite new but it is widely observed and 
it is referred to as the second universality. 
The second universality involves the same frac¬ 
tional exponent as in the fractional exponential 
function and leads to renormalization relations 
that have been repeatedly verified. In several 
cases they provide an explanation for previously 
puzzling phenomena. This article gives an over¬ 
vie of the first universality and the realm of 
its validity, the physical meaning of relaxation 
in complex systems, and the second universality 
and examples of its predictions in several 
fields of relaxation. 

Sachs/Freeman Associates. 
Supported in part by ONR-NRL Contract No. 
N00014-84-WR2-4054. 

Introduction 
First Universality 
Physics of Slow Relaxation 
Second Universality 
Perspective on Relaxation 

Introduction 

There has been a recent dramatic increase 
in the general recognition that relaxation data 
exhibit similar regularities across many differ¬ 
ent relaxation processes and materials. This 
can be seen by the appearance of more and more 
papers presented in polymer, glass, and physics 
meetings which r*fer to fractional exponential 
decaying processes. These are relaxation proc¬ 
esses which are well-described by the empirical 
fractional exponential function: 

♦(t) = ^expl-U/lp)1’") . (1.1) 

Experimentally, the values of n cover nearly the 
entire range between 0 and 1 depending on the 
particular relaxation process and material. 

Most of these recent papers only address 
the functional form of (1.1), either by its use 
for fitting some particular data or by consider¬ 
ing possible mathematical formalisms which might 
include these functions. The specific form 
(1.1) has by no means been shown to be a unique 
description of the time dependence of relaxa¬ 
tion. Aside from convenience, does (1.1) have 
further physical significance? In order to 
answer this question, deeper problems concerning 
the nature of relaxation in disordered systems 
must be investigated and solved. These problems 
are not currently being generally addressed and 
the full significance of the relaxation problem 
is usually not appreciated. The observation 
that (1.1) is consistent with a large amount of 
relaxation data is significant, but does not in 
itself lead to insight into any underlying, more 
fundamental physics. However, there does exist 
a second class of empirical observations which 
is able to relate the observed time scale (i.e. 
T in (1.1)) of the relaxation process to the 
microscopic time scale. The relation between 
these two time scales involves the fractional 
exponent n in (1.1). This second class of 



observations is not nearly as well known as the 
first class (i.e. applicability of (1.1)) but 
there is clear evidence of its widespread 
appearance. The existence of both types of 
observation has far-reaching implications. We 
believe this second class of observations begins 
to cut to the real heart of the relaxation prob¬ 
lem. 

The purpose of this paper is to illustrate 
these aspects of relaxation. It is not at all 
meant to be a complete review of the data or a 
detailed treatment of relaxation models which 
describe the data. Rather, it will be a more 
informal discussion of the physical questions 
ili.ii must be addressed in order to resolve the 
relaxation problem. This discussion will be 
supported by presenting a sufficient amount of 
experimental data so that the reader can get a 
feeling for the quantitative relationships which 
are exhibited by the relaxation data. Further 
details will be found in the references. We 
feel that this type of presentation is useful 
because the relaxation problem cuts across a 
large number of different disciplines and 
because a physical understanding of the relaxa¬ 
tion data requires some new approaches to the 
problem. It is useful to have an informal dis¬ 
cussion which presents a broad view of the situ¬ 
ation. 

The first class of empirical relaxation 
observations mentioned above, namely that the 
fractional exponential (1.1) . a nearly univer¬ 
sal description of the tis» decay across the 
entire range of relaxation phenomena, will be 
referred as the "first universality." The 
extent of even this first universality was not 
appreciated until a recent exhaustive examina- 

1 2 tion of the data was carried out. ’ The first 
universality will be discussed in the next sec¬ 
tion. The physical issues that must be con¬ 
fronted if the first universality is taken seri¬ 
ously will be discussed in the section after 
that. One of these issues is the question of 
how the relaxation time scale is affected by the 
interaction of a relaxation mode with its envi¬ 
ronment. A second class of empirical observa¬ 
tions indicates that the relaxation time X on 
the microscopic level is "stretched" by this 
interaction up to the macroscopically observed 
time scale x All relaxation experiments to 
date are consistent with the following expres¬ 
sion for this stretching: 

xp = l(l-n)^x0)1/(1‘n) . (1.2) 

Here, n and Xp are the same parameters that 

appear in (1.1). The frequency ui is required 
at least for dimensional reasons, but it must be 
related to some new physics in the problem which 
determines this characteristic stretching. Most 
current models of relaxation do not even attempt 
to address this question of the relaxation time, 
but we shall briefly describe a model, and its 
accompanying physics, in the third section which 
predicts both (1.1) and (1.2). The data indi- 
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cate that (1.2) is as widespread as (1.1) and we 
shall refer to (1.2) as the "second universal¬ 
ity." The second universality is not as well- 
known as the first, but it is clearly exhibited 
by the data. The fourth section describes the 
second universality for a variety of relaxation 
processes and how it can often resolve long 
standing problems. We then close with a per¬ 
spective summary of the present situation. 

First Universality 

The fractional exponential function (1.1) 
has appeared from time to time over the past 
century as an empirical description of data from 
mechanical, dielectric and other relaxation 
experiments on glasses, polymers and other mate- 

3 
rials. This includes the work of Kohlrausch in 
1847 who used the inverse of ,(1.1) to describe 
the creep of glass, and Pierce in 1923 who used 
(1.1) to describe the stress relaxation of 

fibrous materials. In 1925, Stotts^ and later 

Jones** found their data for creep in glasses to 
be consistent with (1.1) for n=0.5. De Bast and 

7 8 coworkers, and also Kruithof and Zijlstra in 
1954 used (1.1) for stress relaxation. In 1963 

Hopkins^ and Kurkjian,^ and DeBast and Gilard^ 
again confirmed that stress relaxation is frac¬ 
tional exponential, this time in inorganic 

glasses. In 1970 Williams and Watts^ found the 
fractional exponential decay function also 
applicable to the dipolar dielectric relaxation 
of a number of polymers and supercooled liquids. 

In the 1970's, Moynihan and Macedo^’^ found it 
to be applicable to describe ionic conductivity 
relaxations in glasses and viscous liquids. It 
was shown applicable to photon correlation spec¬ 
troscopy of glasses by Búcaro, Dardy and Cor- 

14 15 saro, and also Lai, Macedo and Montrose in 
1975 and later in polymers just above the glass 

transition by Patterson, Lindsey and Stevens^ 

and alto Lee, Jamieson and Simha17 in 1979. In 
18 1984 Chamberlin, Mozurkewich, and Orbach found 

that the thermoremanent magnetization of Cu:Mn 
and Ag:Mn spin glasses obeys the fractional 
exponential. 21any other historical examples 
could be given and some of these will be men¬ 
tioned below. However these uses of the frac¬ 
tional exponential are either isolated cases or 
at least restricted to one field of relaxation 
phenomena. In addition, the specific form of 
(1.1) is not taken seriously but only as a con¬ 
venient two parameter representation which can 
be fit to time dependent data well. After all, 
(1.1) is a very versatile and flexible function 
and its widespread utility may have no more sig¬ 
nificance than this. Alternative forms can cer¬ 
tainly be devised which, while perhaps not being 
as succinct in form, will fit the time or fre¬ 
quency dependence of relaxation as well. 
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In order to determine whether the frac¬ 
tional exponential has any real physical signif¬ 
icance, additional questions must be addressed. 
These will be discussed in the next section. 
However, the consistency of (1.1) with relaxa¬ 
tion data is significant and it is truly wide¬ 
spread and covers nearly the entire scope of 
relaxation processes. The extent of this simi¬ 
larity was not known to most workers because of 
the traditional separation of research fields. 
Appreciating this requires becoming familiar 
with the experimental measurements and the phy¬ 
sical mechanisms of relaxation in phenomena as 
dissimilar as physical aging in glasses, elec¬ 
tronic transport in semiconductors, polymer melt 
rheology, and thermoremanent magnetization in 
spin glasses. That the fractional exponentia1 
has a large degree of universality in relaxation 
was first demonstrated in a program carried out 

by one us (K.L.N.) beginning in 1978. ’ This 
involved an exhaustive search and analysis of 
dielectric, mechanical, and conductivity relaxa¬ 
tion data and the demonstration of the general 
applicability of (1.1) to an even wider class of 
materials than previously thought. In addition, 
its application was extended to include fluctua¬ 
tion phenomena including NMR spin-lattice relax¬ 
ations and noise, and to electronic and optical 
relaxation processes. This program has since 
been continued and extended, along with various 
collaborators, to include systems as diverse as 
amorphous polymers, conducting polymers, polymer 
melts, spin glasses, electron glasses, ionic 
conductors and very large scale integrated cir¬ 

cuits (VLSI).19"53 Furthermore, it has been 
shown that (1.1) can continue to be valid when 
the material structure is modified and the 
fractional exponent n is structure depen¬ 

dent.43* ^-5° 

As mentioned in the introduction, the con¬ 
formation of relaxation data from diverse relax¬ 
ation processes and materials to the fractional 
exponential (1.1) will be referred to as the 
first universality. The evidence at present is 
overwhelming and involves analyzed data on thou¬ 
sands of condensed matter samples and tens of 

2 
different relaxation phenomena. Relaxation 
phenomena which exhibit the first universality 
include dielectric relaxation, AC conductivity, 
creep, stress relaxation, internal friction, 
relaxations observed through photon correlation 
spectroscopy, nuclear magnetic resonance (NMR) 
relaxations, spin-echo measurements, transient 
capacitance, transient (i.e. time-resolved) 
electrical transport, transient optical lumines¬ 
cence, volume and enthalpy recovery, differen¬ 
tial scanning calorimetry (DSC), steady flow 
viscosity, stress-strain relationship and its 
dependence on strain-rate, ultrasonic attenua¬ 
tion, noise, diffusion, diffusion controlled 
chemical reactions, electronic recombinations, 
magnetic relaxation, etc. Materials involved 
include liquids, supercooled liquids, liquid 
crystals, inorganic glasses, electrolytes, ionic 
conductors, insulators, dielectrics, gate insu¬ 

lators of electronic devices, electrets, semi¬ 
conductors, amorphous semiconductors, xero¬ 
graphic materials, polymer melts and solutions, 
amorphous polymers, rubbers, plastics, epoxies, 
metals, amorphous metals, metallic glasses, 
lubricants, ceramics, piezoelectrics, pyroelec¬ 
trics, ferrelectrics, bio.iolymers, coal, oil 
shales, spin glasses, electron glasses, very 
large scale integrated circuits (VLSI), etc. 

These applications represent an enormous 
diversity of physical phenomena and material 
composition. The materials vary from rather 
small molecules quenched into glasses to long 
chains of molecules forming entangled polymer 
melts to the dilute concentrations of magnetic 
impurities in insulating, semiconducting, or 
metallic hosts which are spin glasses. The phy¬ 
sical entity which takes part in the relaxation 
can be as different as charge carriers (i.e. 
electrons, ions) hopping through a semiconductor 
or glass, the motion of long flexible polymer 
chains, or the magnetization of a quenched spin 
glass. The first universality result is that in 
spite of the enormous differences in the physi¬ 
cal properties of these systems and the experi¬ 
mental techniques used in the relaxation mea¬ 
surements, the time dependences are all consist¬ 
ent with the fractional exponential form (1.1). 
Equation (1.1) has a very characteristic shape 
and skewness for a given value of n and it is 
possible that the data would not have had these 
features. The first universality is thus sig¬ 
nificant and interesting. 

A decay described by (1.1) can be trans¬ 
formed into different representations corre¬ 
sponding to the variety of displays of data from 
different measurement techniques. For instance 
in a dipolar dielectric experiment, an electric 
field is applied to polarize the dipoles and the 
decay of the polarization or dielectric dis¬ 
placement is observed. The dielectric displace¬ 
ment decays according to (1.1) and the corre¬ 
sponding complex dielectric function is: 

e"(u>) = J^dt exp(-iwt)(-d<>/dt) (2.1) 

The imaginary part of this, e"(u>), exhibits the 
familiar low frequency dielectric loss peaks as 
measured by low frequency techniques. By con¬ 
trast, for ionic conduction in a glass, it is 
the electric field that decays according to 
(1.1). For this situation, a complex electric 
,,.. . 12,13 

modulus is given by: 

M (u))=MŒ|l-J^dt exp(-iu»t)(-d$/dt) ] , (2.2) 

which is related to the dielectric function by: 

e*(ui) = 1/M (ui) , (2.3) 

and the corresponding conductivity is: 

o (tu) = iiueoe (tu) 

The electric modulus for the conductivity of 
lithium ions in a lithium borate glass is shown 
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in Figs. 1 and 2. For viscoelastic relaxation 
in polyaers, the response to a constant applied 
strain is a relaxation Modulus described by 
(1.1) (e.g. shear Modulus G(t) or Young's Modu¬ 
lus E(t)). An exaaple is shown in Fig. 3 for 
the long tiae relaxation of high Molecular 
•eight polymer melts. A corresponding complex 
modulus is related to this by: 

G (w) J^dt exp(-iu.‘)(-d$/dt) (2. A) 

In the coapleaentary viscoelastic experiment, a 
constant applied stress gives rise to a time 

3 4 

Log fCHz) 

Fig. 1. laaginary part of the electric modulus 
vs. frequency at a range of temperatures for a 

LiO3B„0, glass containing predominantly **Li 2 3 
alkali species. Solid curves are theoretical 
fits from (1.1) and (2.1) with n values indi¬ 
cated. (a) T=108.9°C; (b) 1=131.0°C; (c) T= 
153.8°C; (d) 1=177.5°C; (e) T=200.5°C; (f) T= 
222.2°C (data of H. Jain et al., replotted. 
See Refs. 127, 45). 

Fig. 2. 
responding to Fig 

2 3 4 S 6 
Loe fCHz) 

Real part of the electric modulus cor- 
1. 

Fig. 3. Relaxation modulus data for 4-armed 
star-s'nped polystyrenes (data of Isono et al., 
replot ,.ed). 

response called the creep compliance, J(t). For 
linear viscoelasticity, the compliance is 
related to the relaxation modulus by a convolu- 

54 tion expression: 

j‘dTG(t-T)J(i) (2.5) 

This can be solved numerically for J(t) given 
the form (1.1) for G(t). An example of this is 
shown in Fig. 4 for a glassy polystyrene at dif¬ 
ferent periods of annealing. This is only a 
small sample of relaxing quantities and their 
representations. Figures 1-4 will not be dis¬ 
cussed in detail here, although some of them 
will be mentioned again in the section on the 
second universality. They are shown here as 
representative examples of the first universal¬ 
ity in various representations. More detailed 
discussions can be found in a recent review of 

2 
the data. Note that the values of n in Figs. 
1-4 are significantly different from zero. The 
case n=0 corresponds to Debye relaxation and 
exponential decay with a single power of time. 
Values of n near zero are definitely measured in 
some systems, such as in liquids at high temper¬ 
atures, but it is important to realize that for 
the majority of systems of central interest to 
researchers such as glasses, polymers and semi¬ 
conductors, the value of n is much larger than 
zero. It is important to bear in mind that a 
different representation of the data may empha¬ 
size certain features of the relaxation process 
and may facilitate the resolution of some physi¬ 
cal problem, but no new information can be 
extracted by changing representations. 

These and other first universality fits are 
all consistent with the data within the experi¬ 
mental error except for a few cases where there 
are some small deviations from (1.1). Such 
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Fig. U. Creep compliance data for a polysty¬ 

rene (mol. wt. = 3.8xl06) at 90°C during anneal¬ 
ing. Solid curves are predicted J(t) according 
to (1.1) and (2.5) with n values indicated (data 
of D.J. Plazek, see Ref. 47). 

deviations, when they occur, are well understood 
in terms of competing relaxation processes in 
the vicinity of the relaxation mode under study. 
For instance, Fig 1 shows the M"(u>) peaks for 
diffusion of lithium ions in borate glasses. 
The solid lines are fits based on (1.1) and 

45 
(2.2) at different temperatures. The fits are 
excellent up to some 1.5 decades beyond the M" 
maximum where some deterioration in the fit 
begins to appear and the data lie above the 
theoretical curves. This has been observed in 
similar fits of electric modulus data from many 

12 13 37 
glasses and ionic conductors, ’ ’ and is 
consistent with the existence of an excess con¬ 
tribution to the electric modulus which can be 
considered physically distinct from the ion hop¬ 
ping mechanism. This is best illustrate! by 
replotting the daia as e"(ui)=M"(w)/lM' (w)+ 

2 
M" (tu)] from (2.3) and this is shown in Fig. 
5(a). The value of e"(w) is seen to drop about 
3-4 decades and the deviations are noticeable 
only when e" is below about 0.15. In fact, if a 
constant background contribution of magnitude 
Ae"=0.15 is added to all the theoretical curves, 
the resulting fits are excellent over the entire 
frequency range at all temperatures and this is 
shown in Fig. 5(b). Several workers have sug¬ 
gested specific physical mechanisms for the 
excess background contribution in some sys- 

Another example of nearby relaxing proc¬ 
esses is in the primary and secondary relaxation 

of glassy polymers.Relaxation modes respond 
in particular temperature regimes and as the 
temperature is lowered below the glass transi¬ 
tion temperature, T , a polymer can exhibit a 

Log fCHz) 

Fig. 5(a). Data and theoretical curves of Figs. 
1 and 2 replotted as e"(u») according to (2.3). 
Straight line at bottom indicates approximate 
magnitude of excess background contribution. 

series of distinct modes. The first one encoun¬ 
tered on going through T is called the a relax¬ 
ation and the next one 5s called the ß. The a 
and ß modes are sometimes well separated and in 
these cases, they each are found to follow the 
first universality. For some polymers, the a 
and ß are found to partially overlap and this 
can obscure the first universality which is fol¬ 
lowed by each of the modes separately. The com¬ 
bined overlap mode then may not be well fit by 
(1.1), but this does not invalidate the first 
universality which applies only to distinct 
relaxation processes. 

Since it is important to recognize whether 
or not the first universality is being followed, 
we will mention yet another example which can 
have several distinct relaxation modes, that of 
polydispersity in polymers. This will help 
clarify the type of situations in which the 
first universality can be expected to be distin¬ 
guished in relaxation data. The example will 
also be useful in the section on the second uni¬ 
versality. Consider a large collection of mole¬ 
cules linked together into a long chain to form 
a polymer. For instance, C1L molecules or 
"monomer units" are linked by molecular bonds to 
form the polymer chain called polyethylene. For 
simplicity, let us suppress all the molecular 
details and view the polymer as a succession of 
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Fig. 5(b). Theoretical curves including back¬ 
ground contribution, corresponding to Fig. 5(a). 

beads at positions tj, r», •••, r^ linked by 
"springs" of average lengtn a. Phenomenological 
models such as this can be very useful for 
describing the large scale motion of polymer 
chains. Actually, it is not necessary to iden¬ 
tify each monomer unit with a bead but several 
monomers can be lumped into a single bead. The 
chain is damped by the monomeric friction coef¬ 
ficient £. A model like this was first worked 
out by Rouse in 1953 and it exhibits normal 

modes typical of a damped chain.^ In particu¬ 
lar, the relaxation times of the Rouse modes 
scale as the square of the chain length N. This 
is a general characteristic of a large class of 
diffusion systems and, indeed, in the continuum 
limit the chain obeys a diffusion equation: 

3r 3 r 
_n _ 6kT n 
3t a^Ç 3n2 

(2.6) 

2 
Here 6kT/a plays the role of the spring con¬ 
stant. The normal modes for this simple chain 
must look like: 

rn (t) - cos(nni/N) expt-t/^) , (2.7) 
i 

and with chain end boundary conditions 3r/3n=0 
at n=0 and n=N, (2.6) yields the dependence of 

on the chain length N as claimed: 

aH N2 
i 6n* 

(2.8) 

These details of the chain will be useful for us 
in a later section, but the point here is that 
we have a situation where the relaxation times 
depend on the length of the chain, N. Suppose 
we focus on the longest time mode Tj, which is 
called the terminal time. If we have a large 
collection of chains with different lengths N , 
N., N , ..., then there will be a number of dif¬ 
ferent relaxation times 7j(Na), t^N^), ..., in 
our system. This is referred to as a polydis¬ 
perse polymer system. This is another situation 
which can obscure identification of the first 
universality. Fortunately, polymer chemists can 
make monodisperse polymer systems in which the 
lengths are all nearly the same. Indeed, when a 
monodisperse collection of sufficiently long 
chains are brought together to form a concen¬ 
trated solution or a bulk polymer melt, the 
observed terminal relaxation from all available 
data on such monodisperse systems is no longer 
given by a single exponential as in (2.7) but 
instead is modified to the first universality 
form (1.1). We will look into the physical 
reasons for this in the following section. How¬ 
ever, a polymer which is very polydispersive 
does not fit (1.1) very well. The reason is 
that there are several relaxation modes each 
described by a term of the form (1.1) with 
relaxation times t (N) which vary with the dis¬ 
tribution in chain length. A polydispe poly¬ 
mer is therefore not a good system in \ nich to 
test the first universality. 

The first universality is still not 
expected to apply to every form of condensed 
matter without exception, even if the relaxation 
is not overlapping with a distribution of nearby 
modes. It may not occur if the material is suf¬ 
ficiently disordered so that even the short 
range order found in many amorphous systems 
around atomic sites was destroyed. We will dis¬ 
cuss why this may be so in the next section, but 
it is important to try to find and understand 
the limitations of the first universality. It 
is significant that if a polymer rheologist is 
given some spin glass data with the axis labels 
covered, he might mistake it for some of his own 
measurements. However, in order that the first 
universality be useful and not just an empty 
generalization, certain questions concerning the 
physics of slow relaxation must be asked. 

Physics of Slow Relaxation 

As mentioned in the introduction, there is 
now a great deal of discussion about the first 
universality among workers in glass, polymers, 
electronics, and various other types of con¬ 
densed matter physics. Although the degree of 
universality was not appreciated before the 
exhaustive treatment of data recently carried 
out and discussed in the previous section, it is 
now generally accepted by long-time workers in 
relaxation as well as newcomers to the field. 
However, most of the recent discussions have 
amounted to no more than a restatement of the 
first universality along with, in some cases, 
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suggestions of a formal framework within which 
functions of the form (1.1) might be discussed. 

Since the first universality, though sig¬ 
nificant, is of limited use by itself, let us 
instead ask for the physical meaning of (1.1). 
What is the meaning of the timescale Tp? Can it 

be identified with or related to a timescale of 
the relaxing quantity of interest, say the nor¬ 
mal mode time to move a segment of a polymer? 
Does it instead characterize the material system 
in which the relaxing quantity resides, say an 
energy barrier which a hopping charge carrier 
confronts in a glass? Or is it characteristic 
of both the relaxing quantity and material, or 
yet some other effects? WJiat is the meaning of 
the exponent n? What det:rmines its magnitude 
from material to material and between different 
relaxation processes? Can the values of n and 
1 be tailored by changing experimental vari- 
aBles? Is T independent of n? If these and 
other questions are not asked, the relaxation 
problem has not been fully addressed. 

When the large program of data analysis 
which demonstrated the first universality was 
first undertaken in 1978, one of us (K.L.N.) 
also addressed these questions and suggested a 
physical interpretation. This will be 
described briefly below, but before going into 
the details of this let us simply ask ourselves 
what we would expect to happen. Consider a 
relaxing quantity with a characteristic times¬ 
cale T . For instance, this could be one of the 
long polymer chains considered in the previous 
section with a timescale given by (2.8), say the 
terminal i=l mode. Experimental data on dilute 
solutions of such chains or on chains which are 
short enough to move essentially independently 
are consistent with single exponential relaxa¬ 
tion as in (2.7). When the concentration of the 
solution is increased sufficiently or when the 
length of the chains is long enough so that they 
cannot avoid touching, then the relaxation ought 
to be slowed down since the motion of the chain 
is now hindered by the surrounding ones. A 
model might be worked out for a group of chains 
which are allowed to entangle with one another, 
perhaps by modifying the chain diffusion equa¬ 
tion (2.6) by including some types of con¬ 
straints. Well perhaps, but the modification of 
the chain relaxation must not be tied too 
closely to the fact that the relaxation mode in 
this case happens to be a long polymer chain 
because the first universality is not at all 
restricted to this situation. Experiments on 
nearly monodisperse entangled linear polymer 
melts do in fact find that the terminal relaxa¬ 
tion obeys (1.1) with n between 0.40 and 0.47, 
depending on, the type of polymer and sample 
preparation. The measured relaxation time T 
is not found to be equal to the timescale To fof 
an isolated chain but is much larger. How can a 
relaxation of the form exp(-t/To) become modi¬ 
fied by the entangling of other chains to the 
form (1.1) and with a much longer relaxation 

time T ? 
P 

. «*_ , 
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Suppose instead that the relaxing quantity 
is a mobile charge carrier, with a characteris¬ 
tic hopping time T , hopping through a material. 
The electric fie^ inside the material decays 
due to tne migration of the mobile carriers. 
For materials with long range order such as 
metals, the electric field is found to decay as 
a single exponential exp(-t/to). What happens 
if instead the carriers migrate in a material 
without long range order such as a glass? In 
the metallic case, as the charge carrier jumps 
to a region of lower potential energy, it inter¬ 
acts with the surrounding atoms in the crystal 
and causes them to vibrate. These effects can 
all be incorporated by means of a simple acti¬ 
vated rate form for T (i.e. i ~exp(-AF/kT), 
where AF is the change in free energy needed to 

move the carrier).In the case of a glass, 
the carrier ought to have more complicated 
interactions with its surroundings due to the 
lack of long range order and the migration 
should be hindered. The standard theory for 
charge migration might be modified to incorpo¬ 
rate the lack of long range order in a glass, 
perhaps by way of a random array of activated 
barriers. Well perhaps, but as we commented in 
the polymer chain case, the way in which the 
relaxation is modified had better not rely on 
details which are too specific to the system. 
Experiments on the motion of ions in glasses 
have repeatedly verified that the electric field 

,,,. 12,13,45 
follows the first universality (1.1). 
The measured value of I is found to be larger 
than timescales which wáuld typify to. How can 
a relaxation of the form exp(-t/T ) become modi¬ 
fied by the lack of long range order to the form 
(1.1) and with a much longer relaxation time T^? 

The timescale T for the slow relaxation 
processes can be very^large indeed. For polymer 
relaxation, practical limits for direct measure¬ 
ment lie around seven decades in time (i.e. a 
year). The relaxation times T for high molecu¬ 
lar weight melts are commonly on the order of 
10 seconds or more. Data for very long relaxa¬ 
tions are often obtained by accelerating the 
process with increased temperature and then 
using a technique of shifting the data taken at 
different temperatures onto one master curve 
representative of a particular reference temper¬ 

ature.^ At very low temperatures (i.e. below 
the glass transition), the relaxation times can 
easily approach the estimated age of the uni¬ 
verse. These are certainly much larger than any 
relaxation times that can be associated with the 
individual polymer chains or monomer molecular 
units. The relaxation times for the decay of 
electric fields in a glass due to the migration 
of charge carriers range from hundredths of 
seconds to seconds depending on the temperature. 
This is much longer than the time scale associ- 

13 
ated with ionic hopping. Of course, motion ol 
a chain in a bulk polymer or an ion in a bulk 
glass requires some cooperativity so it is not 
surprising that the relaxation times are long 
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compared to molecular time scales. Most 
attempts to describe transport and response in 
amorphous materials have tried to include coop- 
erativity in some way. Concepts used in the 
past have included enhanced friction due to the 
dragging of entangled polymers, availability of 
free volume for motion within liquids and 
glasses, distributions of traps, energy bar¬ 
riers, and bond lengths for the motion of charge 
carriers in semiconductors and glasses, and 
long-range random interactions between spins in 
spin glasses. Similar concepts and elements 
have been used in other fields of relaxation. 

The manner in which these and other con¬ 
cepts may play a role in the magnitude of the 
relaxation time and also in producing the form 
of the first universality (1.1) is, however, 
severely restricted by the way in which the 
observed relaxation time t is quantitatively 
related to the microscopic tSme scale To. This 
is the relationship referred to in the introduc¬ 
tion as the second universality. The amount by 
which T is stretched to the value T in (1.2) 
depends0 on the exponent n which ippears in 
(1.1). Thus (1.1) and (1.2) are coupled rela¬ 
tions, the same value of n appearing in each. 
Relaxation data exhibit a very specific correla¬ 
tion between the timescale of the relaxation and 
the shape of the time decay function. This will 
be discussed and demonstrated using several 
examples in the next section. One of its conse¬ 
quences is that it can be used to relate the 
dependence of the microscopic relaxation time 
on various physical quantities, such as tempera¬ 
ture or molecular weight, to the dependence of 
T on these same quantities for the bulk relaxa- 

P 
tion. Therefore, if T has a certain depen¬ 
dence : 

To = To (T,M, ...) , (3.1) 

then ( 1.1) requires: 

tp(T,M,...) a [to(T,M,...)l1/(1'n) . (3.2) 

For instance, if T described the physics of the 
motion of some mofe over an energy barrier with 
activation energy 

To = t^expfE^RT) , (3.3) 

then (3.2) describes a macroscopic effective 
relaxation time given by: 

Tp = C exp(E¡/RT) , (3.4) 

where : 

When the value of n is found by fitting the time 
dependence of the relaxation according to (1.1) 
or one of its oth'.-r representations, then (3.5) 
can be used to relate the microscopic and macro¬ 
scopic activation energies. As shown in the 

following section, (3.5) is repeatedly verified 
quantitatively in relaxation processes which are 
temperature activated. These include relating 
secondary relaxations in glassy polymers to the 

39 
motion of molecular groups, relating the flow 
activation energy in polymer melts to molecular 

53 
rotational isomerism barriers, relating the 
observed temperature dependence in dispersive 
transport in amorphous semiconductors and 
insulators to that of small polaron trans- 

1 9ft 99 2 r, 
port, ’ ’ and many other examples. Equa- 
tion (3.5) is only a special case of the full 
second universality (1.2) and the presence of an 
energy barrier is not required. Whenever data 
are available to test any part of the predicted 
relation (1.2) between \ and I it has been 
found to hold quantitatively in any system which 
also follows the first universality (1.1). Data 
are not available in every single case for a 
complete test of both (1.1) and (1.2) but the 
evidence to date is nevertheless widespread and 

2 
quite persuasive. In some cases, the data are 
sufficiently detailed to test the complete rela¬ 
tion (1.2), including an identification for the 

. _ 36 
physical meaning of the frequency wc. 

Compliance of relaxation data with the 
second universality implies that there is in 
fact a single physically identifiable relaxation 
time T which is dominant on the molecular 
level. 0 At first sight, this may seem at odds 
with repeated suggestions in the literature that 
glasses and amorphous materials should be inter¬ 
preted as random configurations of atoms and 
molecules. Such structural randomness would 
almost certainly give rise to a random distribu¬ 
tion of I 's instead of a well-defined single 
I . For instance, consider borate glasses con¬ 
taining lithium ions. Diffusion of the lithium 
ions in this system is consistent with both 
first and cjßecond universalities. In 1932, 
Zachariasen proposed his random network model 
tor the structure of glasses If some form of 
the random network model were appropriate for 
the lithium borate glass, the lithium ions would 
be expected to occupy a spectrum of sites, each 
slightly different from the other. This would 
produce a spectrum of activation energies for 
lithium ion conductivity resulting in a non- 
Arrhenius temperature dependence. However, the 
lithium borate conductivity data indicate 
(essentially) a single well-defined activation 
energy just as is commonly found for cubic crys¬ 

talline solids.59 Although glasses do not have 
the long-range order present in crystals, they 
do retain some short range order sc the presence 
of a single T for glasses in fact is not sur¬ 
prising. For°instance, extended X-ray absorp¬ 
tion fine structure studies of silicate glasses 
have shown that the structure is dominated by 
the invariance, of the SiO, pyramid unit from 
site to site. The Si-0 t)ond length and the 
O-Si-O bond angle are preserved, although long- 
range order is lost due to random variations in 
the Si-O-Si bond angle. If the molecular relax- 
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ation time T is determined locally, the pres¬ 
ence of shorf-range order in glasses, polymers, 
and amorphous semiconductors allows one to 
dominate throughout the material. 

cepts are almost certainly not appropriate in 
systems such as spin glasses or covalently- 
bonded solids, and thus it is not general enough 
for the first universality. In addition, there 
is not even a hint of second universality. 

This does not mean that several different 
t 's cannot be present in some situations. 
Examples where relaxations from different lo's 
can overlap were mentioned in the previous sec¬ 
tion. Also, it may be possible to deliberately 
disorder a sample so severely that even much of 
the short-range order is destroyed. However, as 
shown by the examples in the next section, many 
problems of great interest to researchers are 
consistent with the first and second universali¬ 
ties. For these situations, a single dominant 
T at the molecular level does exist. 
o 

How can the first and second universalities 
be physically understood? These two observed 
phenomena are essential features which must be 
contained in any physical description of relaxa¬ 
tion and in any accompanying theory used to 
quantify the description. Most recent work has 
focussed only on the functional form of (1.1) 
and not on explaining the nearly universal 
appearance of (1.1) or on the associated second 
universality. The most common suggestion is for 
interpreting (1.1) as a distribution of either 
parallel or sequential relaxation processes: 

¢(1) = 2 W e't/Tn . (3.6) 
r n n 

For the case of parallel processes, this view 
suggests that a statistical distribution of 
relaxation processes relax independently (e.g. 
random network) and coatribute additively to 
¢(1), each being weighted from the distribution 
of relaxation times: ^n=8(l:n)' F°r t*le case 

sequential processes, ^ the faster degrees of 
freedom successively constrain the slower ones 
and this is accomplished in (3.6) by choosing 
functions a and ß to relate the successive Wn's 
and T ’s: 

n 

a,) 

= f'n1 
(3.d) 

In either of these cases, the form (1.1) is 
obtained only if the distributions (i.e. g(t) 
for parallel or a(W) and ß(t) for sequentic 
are chosen in just the right way. The physical 
interpretation of (1.1) then rests on the physi¬ 
cal interpretation of g or a and ß. Not only 
must a physical interpretation be provided, but 
an explanation is needed as to why the distribu¬ 
tions are the same for glasses, polymers, semi¬ 
conductors, spin glasses and the large number of 
other systems which follow the first universal¬ 
ity. Finally, the second universality must also 
be obtained. None of this has yet been accom¬ 
plished. For instance, the suggestion has been 
made that g(t) is determined by the way clusters 
of free volume cells are distributed according 

(ï? 
to percolation theory. However, these con- 

Over the years, there have been different 
variations of relaxation models that rely on the 

diffusion of some sort of defect. In addition 
to the defects there are relaxing entities le.g. 
dipoles). The dipoles are pictured as being 
frozen and they can relax only when the diffus¬ 
ing defects reach them. Specialized versions of 
this have obtained the form (1.1) in certain 
time regimes with a particular value of the 

exponent n (e.g. 1/2). ’ Such particulai 
exponents can be traced back to the assumption 
of specific mechanisms, for example the diffu¬ 
sion properties of classical Browniaç motion 
(i.e. root mean square position -11). Ihe 
defect diffusion approach has most recently been 
generalized within the framework of continuous 

time random walk (CTRW).^ In CTRW, the diffus¬ 
ing defect has a waiting time probability den¬ 
sity ¢(1) which allows the defects to wait 
between hops. It has been suggested that the 
waiting distribution should be chose^i_^s a power 
law in time at long times, ¢(1)-1 , because 
then the defect diffusion boundary value problem 
ran be arranged to result in a relaxation of the 
form (1.1) with a=l-n. This allows more general 
values for the exponent n, but the problem of 
the power law of time in ¢(1) has simply been 
replaced by the problem of a power law in ¢(1). 
No justification for this form of ¢(1) and its 
universality across many different processes and 
materials has been given. Choosing ¢(1) arbi¬ 
trarily is on a similar level to choosing in 
(3.6) arbitrarily. No physical insight or pre¬ 
dictions result. In addition, the second uni¬ 
versality does not fit into such a picture. The 
reliance on a diffusing defect is not in itself 
satisfactory because such diffusing defects are 
not present in some systems whic follow the 
first and second universalities (e.g. spin 
glasses). Therefore the mechanism would not be 
general enough even if the physics was satis¬ 
factory. Also, there exist systems such as 
migrating ions in glasses in which there are 
only diffusing particles and no second relaxing 
entity (i.e. dipoles). In these cases, the 
observed diffusion of the ions through conduc¬ 
tivity relaxation is easily shown to^e^total ly 
inconsistent with the form ¢(1)-1 Ihe 
decay of the electric field due to the migration 
of the ions would be predicted_^y the defect 
diffusion model to be simply t , but as men- 

,. .12,13,2 ,. . 
tioned earlier the experiments find tnat 
the electric field decays according to the frac¬ 
tional exponential (1.1). The fractional expo¬ 
nential is observed in the migration relaxation 
of the charged carrier. 

There are still other proposals for dealing 
with the fractional exponential form (1.1) but 
which do not address the first and second um- 
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versalities. Let us instead discuss the current 
physical understanding of how a dynamical system 
relaxes and how this might be modified by the 
properties of the actual material systems of 
interest (i.e. polymers, glasses, spin glasses, 
etc.) to give rise to the observed behavior 
(i.e. eqs. (1.1) and (1.2)). As mentioned at 
the beginning of this section, experimental mea¬ 
surements indicate that there are still vestiges 
of a single underlying relaxation process in the 
observed macroscopic behavior. This was con¬ 
sistent with the intuitive idea that a relaxing 
mode would be slowed down by coupling to its 
surroundings. The amorphous materials of cur¬ 
rent research interest have well-defined short 
range order and provide an appropriate setting 
for a well defined relaxation mode interacting 
with a complex environment. Then what is the 
physics of relaxation and what is the physics of 
complex environments? 

The dynamics of a physical system is 
described on a fundamental level by Hamilton's 
equations of motion for classical mechanical 
systems or by Schrödinger's equation for qua.itum 
systems. These equations are totally reversible 
and do not describe dissipative behavior. The 
effort to understand the irreversible macro¬ 
scopic behavior of a system which is governed by 
reversible microscopic equations of Siution has a 
long history. Although questions still remain, 
a certain degree of understanding^ has been 
achieved. In the 1870’s, Baltzmann obtained 
an irreversible kinetic equation for a classical 
dilute gas by supplementing the dynamical laws 
with a stochastic mechanism: the "Stosszahlan- 
satz." This is the assumption that correlations 
in the motions of the molecules of the gas are 
lost between each collision. This is similar to 
the repeated random phase assumption used by 

¿ O 
Pauli in 1928 to derive an irreversible equa¬ 
tion for a quantum mechanical system. The 
repeated randomness assumptions work roughly as 

69 follows. For a classical system with N parti¬ 
cles, the microscopic state of the system is 
described by the coordinates q. and momenta p., 
where i=l, ... 3N in three dimensions. Using 
Hamilton's equations for the q.'s and p.'s, the 
rate of change of a macroscopic quantity «(»(qj, 
..., p^) can be found from: 

♦ = «8- i, ♦ S- »,> . 3q. 
1 U 

3p. ■1' (3.9) 

The right hand side of (3.9) is a function of 
the 6N coordinates and momenta and if two of 
these are eliminated in place of <)> and the 
energy (which is a constant of the motion), we 
may write 

0 = f(<t>;x.) , (3.10) 

where the x. represent the remaining variables. 
Since ¢1 is1 a macroscopic variable, it varies 
much more slowly than any of the x., and during 
some time interval At it may be poslible for the 
x^(t) to run through practically all their pos¬ 

sible values while ¢(1) remains almost constant. 
In this case, the time integral in the solution 
of (3.10) can be replaced by an average over 
that part of phase space consistent with the 
given values of ¢(1) and the energy: 

^t+At)-^t) = AUfWOixiyAtF^U)) (3.11) 

The use of the phase space average requires that 
the x. vary sufficiently randomly at each time t 
and ià the same as a repeated randomness assump¬ 
tion. If F is now a linear function of ¢ (e.g. 
F(^=^/t ), then a simple exponential decay 
will resuît. These arguments can also be formu¬ 
lated in terms of a transition pvobability 
W(rU) which gives the probability of ¢ chang¬ 
ing its value to ^ during the time interval At. 
The probability distribution P(^t) for the 
value ¢ at time t then obeys: 

^^=M’[W(M’)P(^,t)-WO'| ¢^(¢,1) 1.(3.12) 

This is referred to is a master equation. The 
decay law for ¢ can be obtained by averaging over 
P(^t). 

Repeated randomness assumptions have been 
critized on physical grounds and in fact it has 
been demonstrated that the repeated randomness 
assumption can hold at all times only if the 

system is in equilibrium. Repeated randomness 
was an attempt to quantify the behavior expected 
to give rise to dissipation when a macroscopic 
variable ¢ interacts with the rest of the 
degrees of freedom of the system, x.. The rest 
of the system is usually referred to as a heat 
bath and the physical situation is expected to 
be governed by two factors: (i) ¢ changes on a 
time scale which is longer than any associated 
with the heat bath; (ii) the high number of 
degrees of freedom of the heat bath allow us to 
assume that its statistical properties are not 
affected by the interaction with ¢. The 
repeated randomness assumption was not a com¬ 
pletely satisfactory way of including those 
elements. In 1955 and subsequent years, van 

Hove^’^ developed a more refined way to imple¬ 
ment the ideas in (i) and (ii). He considered 
a Hamiltonian H coupled to a potential V so 
that the total system is: 

H = H + XV (3.13) o 

Instead of assuming repeated randomness, 
van Hove assumes randomness only at the initial 
time and in addition uses two limiting proce¬ 
dures: (i) the weak-coupling limit A->0 in whiçh 
the time is rescaled in such a manner that t=X t 
remains finite (this takes care of physical 
expectation (i) above) and (ii) the infinite 
volume limit in which the spectrum of H becomes 
continuous (th.« takes care of physical expecta¬ 
tion (ii) above). We can see how this works by 
looking at one of the simplest possible classi¬ 
cal systems, that of a one-dimensional line of 
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2N+1 particles interacting by harmonie forces 
as in Fig. 6(a). The Hamiltonian is given by 

P; 

111 Hr *11 i,l ’jV» (3.1*) 

where M., p., and q. are the mass, momentum, and 
displacement of oscillator i andA.^ is the 
"spring constant" connecting oscillator i and j. 
Let us make the oscillator at the origin heavier 

thar the others and choose: 

M. = 1 , i * 0 

M = M 
o 

(3.15) 

limiting procedures. First, the weak coupling 
limit corresponds to making the mass of the 
heavy particle arbitrarily large. Then we can 
introduce a time scale T=t/M which is to remain 
finite as t-*®, M-*» (i.e. here \ in van Hove's 

problem corresponds to M ^). On the original 
time scale, an infinitely heavy particle would 
not react at all to interaction with the other 
oscillators. Second, the infinite volume limit 
corresponds to making the number of particles on 
the chain (i.e. in the heat bath) arbitrarily 
large. As N-*®, the period of the cycles in 
(3.17) become enormously large and the oscilla¬ 
tor spectrum becomes continuous allowing ¢) to 
approach zero as T-*®. The van Hove limits are 

easily implemented and give: 

We will look at the decay of the momentum corre¬ 
lations of the heavy particle as it interacts 
with the heat bath consisting of the large num¬ 
ber of other rapid, light oscillators. The 
relaxing variable in this example is the momen¬ 
tum autocorrelation of the heavy particle: 

¢(1) = <po(0) po(t)> , (3.16) 

where < > indicates an average over the canoni¬ 
cal distribution exp(H/kT). This corresponds to 
van Hove's initial randomness assumption. Well, 
our system (3-lA) is nothing but a bunch of har 
monic oscillators, so we can easily solve for 
(3.16) exactly in terms of oscillatory func¬ 

tions. The solution is: 

¢(1) = ^(cosVEt)00 , (3.17) 

which is the 0-0 element of the matrix cosV^t, 

where = ^jk an^ ^o = ’ 

It is certainly reasonable that the 
response of the heavy particle to the other 
oscillators is periodic, but how can this system 
ever show dissipative effects? This will happen 
on the proper time scale when the light oscil¬ 
lators are made to form a proper heat bath. 
This is accomplished by carrying out van Hove's 

« - <p(o)p(t)> 

Rakuoftor of 

OscIHotcr 
Cham 

W-l/T, 

-W* 

Fig. 6(a). Illustration of a simple relaxing 
system: a heavy particle of mass M in a heat 
bath of harmonic oscillators. The momentum 
autocorrelation of the heavy particle ¢ relaxes 
as a single exponential as the number of heat 
bath particles becomes large and the mass M 

increases (i.e. van Hove's limits). 

¢ = liim)> (cos >/Bt)oo 
M-*® 

= lLim>o(cosfWBT)00 

M "*® ° 
t-*» 

t/M=t 

= ^exp(-T/to) 

¢ then obeys: 

(3.18) 

(3.19) 

Here, the relaxation time Tq can be related 
explicitly to the frequency spectrum of the 
matrix of spring constants A^.. In fact, the 
A., can be arbitrary (i.e. dearest-neighbor, 
lèAg-range, etc.) except insofar as the result¬ 
ing t should be non-zero and finite. In the 
general case of the van Hove problem (3.13), lo 
would be given by a "Golden Rule" type of for¬ 

mula . 

This is the way in which relaxation is cur¬ 
rently understood. Of course there continues to 
be a great deal of work on alternative ways to 
understand relaxation. The van Hove limits 
specify at least one way of how a model system 
can be arranged so that a macroscopic variable 
decays with a well-defined relaxation time by 
way of a heat bath. This picture of relaxation 
apparently does not quite correspond to many 
materials of interest because we do not yet see 
how the observed relations (1.1) and (1.2) fit 
in except for the case when n=0. However, at 
least part of the situation must involve a heat 
bath in the sense of van Hove because the exper¬ 
iments indicate via (1.2) the existence of a 
well defined relaxation time Io. In fact, the 
value of n can be altered by modifying the 

, 2,73-75 
structure of the sample. For example, 
the value of n from ultrasonic and hypersonic 

data on the molten salt 0.6KNO.-0.ACaiNO^), is 
observed to decrease from 0.65 to 0 as the tem¬ 
perature is increased between 105°C and 200°C. 
The value of n remains zero at still higher tem¬ 
peratures and the Io can be described by a 
single temperature 0 activated form, tq = 
ta>exp(EA/kT), where an infinite temperature 

extrapolation gives a value for Tœ which can bt 
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uientitled with an infrared absorption band. 
Below 200°C, the temperature dependence is non- 
Arrhenius and can be described by a larjte effec¬ 
tive temperature dependent activation energy, 

Ea(T)>Ea. Thus, this material changes from 

sluggish dispersive regime at low temperatures 
to a high tluidity regime at high temperatures 
as n decreases from 0.65 to 0. This example is 
described further in the next section. In addi¬ 
tion, values of n indistinguishable from zero 
are measured in materials such as simple liquids 
(e.g. water). This is an indication that the 
new elements in the rrtaxation picture which 
produce the non-zero n’s in (1.1) and (1.2) are 
related to the material structure containing the 
relaxing mode. As we discussed qualitatively 
betöre, the relaxing mode is affected by its 
coupling to the environment. 

The physics of relaxation must then be dis- 
i us sed in conjunction with the physics of com¬ 
plex environments. How do we go about including 
the complex environments? The situation demands 
that we have more than just a macroscopic vari- 
able and a van Hove heat bath. Perhaps the heat 
bath in many of these materials is actually more 
complicated than demanded by van Hove. Many 
workers, including van Hove, have examined what 
happens in more general situations when the van 
Hove limit assumptions are not strictly 

enforced.7k This work had led to the gener¬ 
alized master equations which are of the form 
(3.12) but with a memory kerrial factor K(t-t') 
and an extra integral over t' on the right hand 
side. However, none of this type of work has 
led to any hint of first and second universali¬ 
ties. 

As mentioned before, the real experimental 
situation does seem to at least partly involve a 
real van Hove limit. We should let the proper¬ 
ties of the complex environments in these mate¬ 
rials dictate to us how the relaxation picture 
should be altered. However, this appears to be 
difficult. How do we properly include disorder 
to form a complex environment for the relaxation 
mode? Instead ol conductivity in a crystalline 
solid, we want to consider conductivity in a 
glassy solid. Instead of oscillations of a 
single polymer chain, we want to consider oscil¬ 
lations of a chain in an entangled network of 
polymer chains. How do we modify this problem 
to form the proper analog of the glassy con¬ 
ductor or the entanglement network? Above, we 
considered the relaxation of a heavy particle in 
a chain of oscillators. How do we quantify a 
"glass” of oscillator chains? Can we replace 
(3.14) with a Hamiltonian which properlv 
includes the disorder so that when the macro¬ 
scopic variable, the heat bath and the disorder 
are all sorted out and a van Hove limit taken, 
the first and second universalities result? 
This approach seems harrowing indeed. The 
Hamiltonian describing a glassy conductor would 
be quite different in detail from the Hamil¬ 
tonian describing the entangled polymer network, 

yet the macroscopic variable in both are 
described by the same equations (1.1) and (1.2). 
The direct Hamiltonian approach must involve an 
enormous amount of superfluous information for 
the relaxation behavior. The Hamiltonian 
approach may be at the limits of its usefulness 
in the present situation. 

However, all is not lost. Indeed, the 
answer here is not to write down a Hamiltonian 
at all for the situation of complex environ¬ 
ments. There does in fact exist a property of 
complex systems, independent of structural 
details within limits to be described below, 
which contains precisely the modification of 
relaxation necessary to obtain the first and 
second universalities. In this approach, the 
enormous amount of superfluous information men¬ 
tioned above for the direct Hamiltonian approach 
is effectively bu-ied in the material dependent 
parameters n and u which appear in (1.1) and 
(1.2). It doesn't matter whether we had tried 
to write down the Hamiltonian for a glassy con¬ 
ductor, a polymer entanglement network, or 
indeed a "glass" of oscillator chains. The 
modifications to the van Hove relaxation picture 
will be the same except for the values of n and 
ui . The relevant property of complex systems 
which is active in modifying the van Hove pic¬ 
ture of relaxation to the first and second uni¬ 
versalities is the character of their low energy 
excitations. Excitations of any kind respond 
only over some particular energy or frequency 
range For instance, a simple harmonic oscil¬ 
lator responds only near its resonance fre¬ 
quency. A very large class of complex systems 
have excitations which respond at very low fre¬ 
quency and these excitations are distributed in 
a particular way which can be characterized as 
follows. Define P(ui)du) as the probability of 
the complex system responding at frequencies 
between ui and ui+diu. The low energy excitations 
of the complex systems have the property that: 

P(ui) a u>, as ui*0 . (3.20) 

As we will discuss below, the existence of 
the excitations with the property (3.20) is suf¬ 
ficient to modify the van Hove relaxation pic¬ 
ture to that of the first and second universali¬ 
ties. The existence of these excitations is due 
to. the complexity and disorder present in the 
materials obeying (1.1) and (1.2). This 
approach is successful in short-circuiting the 
enormous difficulties of the direct Hamiltonian 
method because the complexity and disorder are 
now controllable. As mentioned earlier, most of 
the systems of interest do not have long range 
order but do retain some short range order. 
Outside the short range order, the part of the 
disorder which controls the form of the first 
and second universalities is the frequency 
response of the set of low frequency excita¬ 
tions. All other aspects of the disorder will 
end up in the parameters n and in . To get more 
of a feeling for what P(tn) means, consider first 
a simple system such as an L-C oscillator cir¬ 
cuit. This can be excited near its resonant 
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frequency which is determined hy the values of 
its inductance L and capacitance C. Suppose now 
we hook several such circuits together, perhaps 
with different L-C values. The system will now- 
have several resonance frequencies and these can 
be computed in terms of the eigenvalues of a 
matrix representing the circuit as constructed 
from Kircholf's laws. The values of the reso¬ 
nance frequencies for the combined circuit will 
be different from the resonance frequencies of 
the individual circuits. These values depend on 
the manner in which the circuits are coupled 
together (e.g. series with capacitance shunt, 
mutual inductance coupling, etc.). Next, more 
and more circuits are added so that the number 
of resonance frequencies ot the system increases 
These frequencies begin to become rather diffi¬ 
cult to compute directly as the size of the cir¬ 
cuit matrix becomes unmanageable. At this point 
we may he tempted to set this problem up on a 
computer. However, as the complexity of the 
circuit continues to increase we reach a stage 
where even a direct computer solution is not 
attractive. With increase in complexity, we may 
not even have full control over the precise 
values of 1. and C which are added to nee por¬ 
tions of the circuit system. The circuit net¬ 
work can now be considered as a large-scale 
many-body system. The number of resonance fre¬ 
quencies is so large that it is now more impor¬ 
tant to know the distiibution of this frequency 
spectrum rather than the individual values. A 
probability distribution can be defined which 
contains statistical information about the sys¬ 
tem response frequencies. This is just the P(w) 
we delined above and this approach will be just 
as useful for materials such as glasses as it is 
for actual complicated circuits. The usefulness 
of this approach lies not only in the replace¬ 
ment of the explicit frequencies of response 
with a probability distribution, but also in the 
fact that the low frequency behavior of these 
distributions, F.q. (.1.20), is nearly system 
independent. As we will see, this is a reflec¬ 
tion of the existence of short-range order and 
the lack of special symmetries in the system. 

The property (3.20) is important because if 
we drive the system with strength V, the average 
number of excitations which respond is: 

Ñ =.rj%u>P(u>)|^|2 , (3.21) 

where X >s thP total number of modes and the 
upper cutoff w is imposed by the physical sys¬ 
tem. Condition (3.20) means that the number of 
modes which respond diverges logorithmically. 
This is sometimes called infrared divergence. 
This rather unusual behavior means that large 
numbers of low frequency modes can be easily 
excited. The effect of this on relaxation is 
profound. 

As we will discuss below, low frequency 
modes obeying (3.20) exist in an enormous class 
of complex systems. This generality is the root 
of the universal properties of relaxation. Ihey 

simply cannot be avoided unless the system is 
arranged in a special way. Suppose a primary 
species such as a polymer chain or an ion or the 
heavy particle in our oscillator chain exampli 
of Fig. 6(a) is part of a complex system. Ini¬ 
tially the low frequency modes will be in equi¬ 
librium because ordinarily the experimental tem¬ 
peratures used will be such that kl is mui h 
greater than any excitation energy of these 
modes. The primary species is thrown out of 
equilibrium and as relaxation begins it starts 
to make transitions on the time scale of lo. 
These sudden transitions create a potential V 
for the low frequency modes and they become 
excited and deexcited. The low frequency modes 
thus move out of equilibrium. The process of 
relaxation corresponds to an increase in entropy 
for the entire system. However, before coupling 
to the primary species, the entropy associated 
with just the low frequency modes was at its 
maximum because they were initially in equilib¬ 
rium. As they are excited and deexcited by the 
coupling, the entropy of the low frequency mode 
can therefore only decrease with time. The 
result of this is that the increase of entropy 
of the primary species is slowed down as the 
relaxation proceeds. This is a slowing of the 
relaxation process and it occAirs because now the 
relaxation is not complete until both the pri¬ 
mary species and the low frequency modes return 
to equilibrium. The property (3.20) ensures the 
divergent response of the low frequency modes 
and they continue to be excited and deexcited 
throughout the relaxation. This guarantees that 
they will never become part ot the heal bath and 
in this sense they are immune to the van Hove 

1imit. 

The constant relaxation rate Wq 1/To 
(e.g. see (3.19)) becomes modified to a time 
dependent relaxation rate W(t). This takes the 

form 

W(t) = (’/T0) exp(-AS(t)) , 13.22) 

where AS(t) is the magnitude ot the entropy 
change of the low energy modes. This can be 
emsidered as similar to an activated rate foim 
(i.e. to=Taexp(AF/kT)= T^expl(AE/kT)-(AS/k)|). 

A calculation1,81 of the response gives the 

expression 

AS(t)/k = |v|2vjirJ0W(u.) (3-25) 

The cosiut factor accounts for the excitation and 
deexcitation of the modes. In this expression 
the crucial assumption has been made that the 
coupling potential V is independent of the mode 
excitation frequency. This is physically rea¬ 
sonable for a complex system containing random¬ 
ness and the advantages gained are enormous. 
If V is independent of w, it can be taken out¬ 
side the integral and V is the average of 
the potential over all sites. Ihis immediately 

, . V 2 
factors the problem into a structural part V ^ 

and a time dependent part. As we shall sei- this 
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allows all the structural information to be 
lumped into a single parameter. If this had not 
been possible, the actual details of the mate¬ 
rial structure would have to be confronted in 
the calculation of the relaxation rate. The 
cutoff tu, in (3.23) is the maximum frequency for 
which the modes have the property (3.20). This 
cutoff frequency is then definitely system 
dependent and in fact we will discuss how it is 
determined in more detail below. The modes 
above will net have the divergent response 
which keeps the low frequency modes out of equi¬ 
librium and thus they do not contribute to the 
time dependence of the relaxation rate. The 
factoring of the structural and time dependences 
in the problem allows us to exploit the low fre¬ 

quency property (3.20) and define:1 

!v|^vjrP(ui) ï nu, (3.24) 

Here we see the first appearance of the 
exponent n which plays such a prominent role in 
the first and second universalities (1.1) and 
(1.2). From (3.24), the quantity n sets the 
coefficient for the response probability (3.20) 
in a manner that depends on the ccuipling 
strength to the low frequency modes ¡Vp and 
the density of the low frequency modeiy As 
claimed above, all the information for the 
structure averaged interaction potential and the 
density of the low energy modes are buried in a 
single parameter n. The value of n is deter¬ 
mined both by how many modes there are and how 
strongly we couple to them. The cutoff fre¬ 
quency wc is also determined by structural 
details. Circumstances in this set of very dif¬ 
ficult problems have allowed us to write down 
(3.24) and the result is a remarkable simplifi¬ 
cation of the problem. The payoffs are enormous 
and we will now complete the steps leading to 
the first and second universalities. With 
(3.24) , then (3.23) becomes 

UJ 

AS(t ) = n f cdui 
O U) (3.25) 

At long times such that w t»l, we can evaluate 
(3.25) using formula 3.78^-1 in Gradshteyn and 

Ryzhik's book of integral tables.82 The result 

AS(t) = n2n(wct) + ny (3.26) 

where y ~ 0.577 is Euler's constant. For 
w b'0!. the time dependent relaxation rate 
(3.22) in the presence of coupling to the low 
frequency modes then takes the explicit form: 

W(t) = ( 1/Tq) (w.t)‘ (3.27) 

For ease of notation we have absorbed the factor 
e into the cutoff frequency u) : id -nu e^. The 
modes with frequencies u)>uj canC in general con¬ 
tribute an additional time independent factor. 
This factor can be identified as the shift in 
entropy AS> of the TLS (and higher modes) and 

will modify W(t) by a constant factor 
exp(-AS>/R). Also for ease of notation, we will 
usually absorb this factor into r . We see in 
(3.27) that the relaxation rate slows down as 
the relaxation proceeds by an amount determined 
by n. The rate equation for the macroscopic 
variable is still determined by the heat bath 
and we can take the van Hove limits as before, 
but now the rate equation is modifed from (3.19) 
to 

¿ = -l/To(iuct) n$ . (3.28) 

This can be immediately integrated as: 

¢(1) = Ooexp|-J^dt’(u)ct,)'n/To) (3.29) 

For situations in which the material dependent 
parameters n and do not change on the time 
scale of the relaxation experiment, (3.29) is 
simply integrated to give: 

¢(1) = ^exp[-(t/ip)1"n) , (3.30) 

where the parameters n, tu and T determine the 
timescale Tp of the relaxation as? 

Tp = |(l-n)u>^Tol1/(1'n) . (3.3!) 

These are of course the first and second univer¬ 
salities (i.e. see (1.1) and (1.2)). We see 
that they have emerged simultaneously from the 
time dependent rate (3.27) which was determined 
by coupling to low energy modes. This is illus¬ 
trated schematically in Fig. 6(b) for a "glass" 
comprised of the heavy particle oscillator 
chains from our earlier example of Fig. 6(a). 
These are coupled expressions in that the same 
value of n appears in both. They predict a spe¬ 
cific type of correlation between the timescale 
of the relaxation and the shape of the decay 
function. Both of these features are governed 
by the value of n. Although an accurate value 
of n cannot be determined on the basis of 
(3.24), the value of n can be measured by fit¬ 
ting data to (3.3C) and then used to make pre¬ 
dictions about the relaxation time (3.31) and 
its dependences. We discussed this briefly in 
the previous section, but the real power of the 
first and second universalities for coming to 
grips with real structural and dynamical prob¬ 
lems is only appreciated by looking at examples 
of relaxation data in some detail. This will 
be done in the following section. The above 
relaxation model leading to the first and second 
universalities was developed1 by one of us 
(K.L.N.) in 1978. It is interesting to note 
that the second universality was predicted by 
this model before any of the experimental con¬ 
firmations. More recently, this same model has 
been described using the language of entropy 
decrease. 

Since the low energy modes with the prop¬ 
erty (3.20) play a crucial role we must ask what 
these modes really are and what is the evidence 
for their existence. In complex material sys¬ 
tems, there is experimental evidence for the 
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Fig. 6(b). Illustration of how the relaxation 
of Fig. 6(a) is modified to the first and second 
universalities when it is coupled to low fre¬ 
quency modes generic to complex systems. The 
probability distribution of the modes P(uj) is 
nearly universal in shape, whereas the parameter 
n is system dependent and contains information 
about coupling strength and number of modes. 

not presently possible at frequencies lower than 

about 108sec’1, there is a large body of indi¬ 
rect evidence that P(u>) actually turns over and 
becomes linear in w as ur^O. This comes from 
the actual examination of P(ui) for complex model 
systems. Several distinct types of studies have 
been carried out and they all point to P(iu) a u> 
as ur*0. 

The first type of study was carried out by 

Wigner,88 Dyson89 and others,90’91 beginning in 
the 1950’s. They were concerned with the com¬ 
plex systems represented by large nuclei. A 
general framework was worked out to describe the 
excitation spectrum in statistical terms of a 
system which is completely random except for 
constraints imposed by certain general symme¬ 
tries (e.g. time reversal invariance, etc.). 
Such a system is referred in their jargon as a 
Gaussian Orthogonal Ensemble (GOE) and this pro¬ 
gram of study is called Random Matrix Theory. 
The excitation distribution P(ui) corresponding 
to GOE can be approximately described by: 

P(w) = 2n(u>/fl^)expl-n(w/fi)^| (3.32) 

existence of excitations whi"h respond at fre¬ 
quencies lower than typical phonon frequencies. 
These are the celebrated two level systems (TLS) 
proposed in 1972 by Anderson, Halperin and 

83 84 
Varma and independently by Phillips. The 
TLS were required to explain anomalies in the 
low temperature thermodynamic properties of 
glasses, polymers, amorphous metals, semicon¬ 
ductors and most recently spin glasses, and they 
are now commonly believed to be an intrinsic 

85 86 
property of disordered systems. ’ The evi¬ 
dence from experiments beginning with Zeller and 

87 
Pohl in 1971 and continuing to the present on 
specific heat, thermal conductivity and ultra¬ 
sonic properties point overwhelmingly to the 
existence of low frequency modes (TLS) which are 
described by a response probability which is 
roughly independent of excitation frequency, 
P(u>) = constant. This differs from the property 
(3.20) of the modes which give rise to the first 
and second universalities. However, the TLS 
thermodynamic experiments directly excite (i.e. 
hw>kT) the low frequency modes and not indi¬ 
rectly (i.e. hw<kT) via the coupling potential 
as in our relaxation picture. Due to experi¬ 
mental limitations, this direct excitation can 

-3 
only be performed down to temperatures of ~10 K 
and. more typically they are done in the range 
10 -IK. This corresponds roughly to excitation 

frequencies in the range 108-1010sec 1. Relaxa¬ 
tion experiments typically involve much lower 
frequencies. Also, relaxation experiments are 
often done at higher temperatures. The TLS 
experiments probe only a limited portion and 
possibly a subset of the P(iu) spectrum. 

It is pertinent to ask what is the shape of 
P(ut) if we continue to probe at lower frequer- 
cies. Although direct resonant excitation is 

This indeed has the property (3.20). One way to 
view an object such as (3.32) is as the classi¬ 
cal limit of a distribution of spacings between 
a complex set of quantum energy levels. The 
limit ur>0 corresponds to examining quantum 
energy levels which are very closely spaced. 
That the probability P(iu) vanishes as the levels 
approach implies that there exists a level 
repulsion and the levels do not want to become 
degenerate. This property can be understood in 
real complex materials as reflecting the exis¬ 
tence of short range order. Level repulsion 
requires at least some correlation and this 
would not be present in a completely random sys¬ 
tem. This is analogous to the splitting of 
resonance frequencies observed when two or more 
L-C circuits are hooked together as in the com¬ 
plex circuit example mentioned earlier. How¬ 
ever, we emphasize that P(u>) is a completely 
classical object and no quantum effects are 
involved in the relaxation phenomena of concern 
here. Ensembles other than GOE result if some 
of the symmetries are relaxed (e.g. breaking of 
time reversal invariance) and these have differ¬ 
ent P(ui). However, GOE is appropriate for most 
condens d matter physics except, for example, 
perhaps at high magnetic fields. 

The second line of studies of complex sys¬ 
tems involve general arguments developed by 

92-95 
Berry and by Pechukas. Berry has utilized 

a 1929 theorem due to von Neumann and Wigner 
which specifies the conditions for the occur¬ 
rence of accidental degeneracies in excitations. 
He was able to show that, in the absence of spe¬ 
cial symmetries imposed on the complex system, 
the response probability obeys P(w) ci u) as ur^O. 

Pechukas97 has used general properties of the 
spatial distributions of the wave functions cor- 
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responding to quantum systems whose classical 
behavior is sufficiently complex. He is able to 
use these properties along with the Schrödinger 
equation to demonstrate that P(w) in the classi¬ 
cal limit is identical to that found by GOE ran¬ 
dom matrix theory. In particular, P(w) a w as 
ur»0. "Sufficiently complex" classical systems 
are essentially those which are not constrained 
by special symmetries. 

The third line of work on complex systems 
involves direct calculations of P(w) on models 
which are simple enough to solve (analytically 
or numerically) but which exhibit very complex 
classical behavior. Many such systems have now 
been studied and the recent literature is full 

of these examples,92'95,98~101>52 These include 
billiard systems contained within destabilizing 
boundaries, models of molecules with nonlinear 
couplings, and many others. All these direct 
calculations are in agreement with GOE random 
matrix theory. This agreement holds not only 
for ur>0 but over the whole range (3.32). 

The GOE form (3.32) for P(ui) suggests a 
very appealing physical correspondence. This 
P(ui) is linear in id at the lowest frequencies 
corresponding to the low frequency relaxation 
modes. It then turns over and is approximately 
constant for some range of frequencies corre¬ 
sponding to the flat spectrum measured by TLS 
experiments. The location of the flat regime is 
determined by the average excitation frequency 
0. Finally, it falls off exponentially as we go 
up to phonon frequencies and beyond. This sug¬ 
gests that the TLS are merely the tip of the 
iceberg and all the low frequency relaxation 
modes with property (3.20) lie below this. The 
upper cutoff frequency id of the low frequency 
modes can then be identified with the lower end 
of t^ie 9TLS _jpectrum. This suggests that 
iuc~10 -10 sec and this is consistent with 
fits to the first and second universalities as 
we discuss in the following section. 

The structural identification of the low 
frequency modes is another matter. This has 
been a difficulty for the TLS for over a decade 

now. They are presumably composed of a 
large number of atoms, molecules, bonds, etc., 
which have configurations of two nearly equiva¬ 
lent local minima accessible to them. The move¬ 
ment from one local minimum to the other 
involves small rearrangements of large numbers 
of bonds, molecules, etc., so that the change 
between configurations is a slow process. 

It is well accepted that a detailed quanti¬ 
tative description of the structure in glasses, 
polymers, and amorphous materials is a difficult 
problem, and this includes the structural reali¬ 
zation of the low frequency modes as well. How¬ 
ever, the relaxation model described above is 
able to actually take advantage of the presence 
of disorder to circumvent this problem. The 
properties of the randomness outside the short 
range order allowed the relaxation problem to be 

factored into a structural part which is sensi¬ 
tive to the details of the system and a time- 
dependent part which is not sensitive to the 
details of the system. The observed macroscopic 
relaxation laws (1.1) and (1.2) give a succinct 
description of the relaxation data and the 
interrelated behavior of the decay function and 
the relaxation timescale. The data suggest that 
there is a fundamental significance to this way 
of parameterizing the relaxation data. The 
forms of (1.1) and (1.2) have a large degree of 
universality but the specific values and func¬ 
tional dependences of n, w and x depend on the 
relaxation process and material.0 The physical 
reasons for the simultaneous emergence of the 
particular parameterizations given by (1.1) and 
(1.2) ran be understood within the above model 
of relaxation. However, it is to be emphasized 
that the first and second universalities impose 
stringent criterion for any model of relaxation. 
The degree to which (1.1) and (1.2) are embedded 
in the relaxation data is only appreciated by 
looking at specific examples of the second uni¬ 
versality and the predictions which follow from 
its application. 

Second Universality 

As mentioned in the section on the first 
universality, the use of the fractional exponen¬ 
tial (1.1) has a long history even though the 
universal nature of this function was not appre¬ 
ciated until recently. However, the second uni¬ 
versality (1.2) does not have a long history and 
was fjirst predicted by one of us (K.L.N. ) in 
1979. The universal aspects of (1.2) were sub¬ 
sequently verified within relaxation data. The 
second universality gives a physical meaning to 
the measured effective relaxation time x by 
relating it to the microscopic fundamental 
relaxation time x in a well-defined and quanti¬ 
tative manner. The quantitative relation 
between X and x involves the same structure 
dependent pparameter n that appears in the first 
universality. For convenience, we reproduce the 
first and second universality relations here. 

<t)(t) = i|ioexp[-(t/xp)1'n| (4.1) 

Xp = [(l-tOu."xo]1/(1’n) (4.2) 

where wct»l and 0<n<l. Equations (4.1) and 
(4.2) are coupled relations and the same value 
of n appears in each equation. They describe a 
very specific correlation between the timescale 
of the relaxation and the shape of the time 
decay function. Such correlations will also 
show up in the dependences of the relaxation 
time on physical variables (see e.g. (3.2)). 

An example of the second universality was 
mentioned briefly at Eqs. (3.3)-(3.5). This was 
the situation where x was temperature activated 
with an energy barrier E, as in (3.3). The 
second universality then predicts that interac¬ 
tion with the complexity of the system will 
result in an observed effective relaxation time 
Xp described by (3.4). If the experimentally 
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observed values of n obtained by fitting (4.1) 
to data are found to be independent of tempera¬ 
ture, then the second universality predicts an 
effective activation energy Et=E^/(l-n) (see 
(3.5)). Note that there is really no physical 
energy barrier with activation energy E* that 
can be identified within the material structure. 
The real physical energy barrier has activation 
energy E. and the experimentally observed energy 
EŸ in tne Arrhenius factor arises from E^ and 
tne effects of its coupling with the complexity 
of the system as represented by n. As the 
relaxation proceeds to cross the energy barrier 
E,, it is hindered by coupling to the low fre¬ 
quency modes of the system and the result is 
that this can be described as if the relaxation 
process had to cross a larger effective energy 
barrier of magnitude E^=E^/(l-n). 

The most detailed documentation of this 
phenomenon is in the case of dispersive hole 
transport in a-SiO„ where there is general 
agreement on the physics of the hole transport 
mechanism which determines the properties of io 
for this situation. The hole in the non-bonding 
2p orbital of an oxygen forms a small polaron 
and hole transport is via small polaron hopping. 
The dispersive hole transport in a-SiO„ was 
first observed by McLean et al. at times longer 
than 10*4 sec. Hughes later performed high pre¬ 
cision time resolution hole-transport, ’’e has 
shown that after an initial very short time 
interval following the X-ray pulse, the hole 
relaxes to form a small polaron (self-trapped) 
in the non-bonding 2p orbital of_^an oxygen. 
Transport at times shorter than 10 sec takes 
place by the hopping of the small polaron from 
one oxygen to another. Its mobility has magni¬ 
tude, temperature dependence and electric field 
dependence all in agreement with the prediction 
of small polaron theory. In particular, the 
mobility is low, thermally activated (with acti¬ 
vation energy E.50.14 eV, see Fig. 7) at temper¬ 
atures above one third the Debye temperature and 
breaking to a non-activated behavior at lower 
temueratures. For times greater than about 
10 sec, dispersive 
observed with: 

transient current is 

I(t) ~ t'n for t<tT ‘ (4.3) 

and 

l(t) ~ t'(2*n) for t>tT (4.4) 

where 0<n<l and U, is the "transit time." The 
dependence of t^, on electric field E and sample 

thickness L through t_ a (E/L) ^ is also 
observed. The temperature dependence of t„ 
(Fig. 7) s thermally activated above 200 K ana 
can be fit to a simple Arrhenius plot with acti¬ 
vation energy E*=0.37 eV. The large difference 

between EŸ and E. would seem to indicate that 
the transient transport mechanism is different 
from the earlier transport mechanism of small 
polaron hopping and in fact some workers have 
invoked the presence of structural defect traps 

.-/ 
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Fig. 7. Transit time tT and L/pE of a-Si02. 

The solid lines indicate Arrhenius behavior for 
T>200 K with activation energies 0.37 eV and 
0.14 eV. At every T, the ratio of the local 
slope of the lower dashed curve to that of the 
upper dashed curve is (l-n)=0.3 (data of Hughes, 
replotted. See Ref. 103). 

for this reason. However, the hole 
transport dispersion in a-SiO„ is remarkably 
stable with temperature. The dispersion param¬ 
eter was found by Hughes to have a constant 
value of n=0.7 for 140K<T<298K. This property 
rules out the mechanism of a distribution of 
trap depths for dispersive transport. 

However, all of this data can be 
described by the first and second universali¬ 

ties.1,2,22’28,29 If the carrier charge decays 
according to the first universality (4.1), the 
corresponding transient current can be calcu¬ 
lated and it is found to have the form (4.3) and 
(4.4) in agreement with experiment. The 
observed value, n=0.7, can then be used in the 
second universality to predict the relation 
between E. and E* as well as the observed elec¬ 
tric field and sample thickness dependence. The 
quantity E=(l-n)E*=0.3x0.37= O.lleV is in good 
agreement with the directly measured small- 
polaron hopping activation energy of 0.14 eV. 
Such correlations are not expected from the tun¬ 
neling/hopping among traps type of models for 
dispersive transport. Most remarkably, the 
second universality continues to hold for T<200K 
where both the small polaron and dispersive 
transport become markedly non-Arrhenius with a 
decrease in the "local activation energy" as T 
decreases as given by 3(log tT)/3(l/T). In the 
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non-Arrhenius region, the local activation ener¬ 
gies for the small polaron and dispersive trans¬ 
port as given by the local slopes in Fig. 7 are 
still quantitatively related by the factor of 
(l-n)=0.3. Thus even as the temperature depen¬ 
dence T (T) of the primary relaxation species 
(small polaron) changes its character, the pre¬ 
dicted correlation between the shape of the 
decay function and the relaxation time scale 
remains. A true activated process is not 
required for the second universality. In addi¬ 
tion to electronic transport in a-SiO», the 
first and second universalities quantitatively 
describe transport in chalcogenide glass- 

es including a-As.Se-, a-Se, a-As,S., 
and a-As .Te.. ¿ ¿ 3 

A quite similar correlation between activa¬ 
tion energies is found in amorphous polymers 
below the glass transition temperature T . The 
most detailed study has been done 8n the 
y-relaxation of chloral-polycarbonate which is a 

39 
derivative of bisphenol-A-polycarbonate (BPA). 
The physics of the relaxation is of course quite 
different from the small polaron hopping found 
in the electronic transport case. The primary 
relaxation species involved in the polycarbonate 
y-relaxation has been identified by NMR tech¬ 
niques to involve phenylene ring rotation about 

39 the chain axis. Both NMR and dynamic mechani¬ 

cal**^ relaxation measurements have been made on 
bulk polycarbonate. The dynamical mechanical 
data gave a G"(u)) which can be described on the 
basis of (4.1) with n=0.8. The relaxation peak 
shifted with temperature in an Arrhenius manner 
with an activation energy EŸ=50 kJ/mol. The T. 
and T. NMR data were also consistent with these 
values^of n and E* and in addition gave a value 

" -16 
for the Arrhenius prefactor of t*=2.29x10 sec 
(see (3.4)). 

On the basis of these data, the second uni¬ 
versality would predict an activation energy for 
the fundamental phenylene ring motion of E,= 
(l-n)EŸ=0.2x50 kJ/mol=10 kJ/mol. This would fie 
the activation energy in the absence of interac¬ 
tion with the bulk glassy polymer medium (e.g. 
n=0). Available information on the isolated 
phenylene ring motion does in fact indicate an 

39 
activation energy of about 10 kJ/mol. This 
comes from spin relaxation studies on dilute 
solutions of polycarbonates. Measurements were 
made on 10 wt% solutions of four structural 
variations. In dilute sol.tion, the low fre¬ 
quency excitations would be different from that 
in the solid and they are expected to have a 
weaker effect on the transition rate (see 
(3.27)) in dilute solution. The value of n, 
which is a measure of the density and coupling 
strength of the low frequency modes (see 
(3.24)), should be much decreased. Indeed, the 
measured activation energies were found to be 
13 kJ/mol. in BPA solution and IS kJ/mol. in 
chloral solution. This is consistent with 
values of n in these solutions of oetween 0.2 
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and 0.3, which indicates much reduced coupling 
compared-to n=0.8 in the bulk. Exact confirma¬ 
tion must wait for measurement of the value of n 
in these dilute solutions. If the coupling 
could be completely eliminated, the activation 
energy would be expected to be reduced to 10 kJ/ 
raol. Hartree-Fock calculations of the various 
kinds of phenylene ring motion consistent with 
information derived from proton relaxation data 
also,indicate an activation energy near 10 kJ/ 
mol. 

These tests of the second universality have 
involved only predicted modifications by (4.2) 
of the exponent in an activated form for T . 
The prefactor will also be modified by the cou¬ 
pling to complexity and by comparing (3.3) and 
(3.4) with (4.2), we see that the prefactors are 
related by 

T* = l(l-n)u.^tj1/(1'n) . (4.5) 

The value of the frequency ui was identified 
physically at end of the previous section with 
the gloweij end of the TLS spectrum or 
iuc=10 sec Using this along with the measured 

values for n(=0.8) and X*(=2.29x10 ^sec), (4.5) 

predicts = 2.3x10 ***sec. This is a reason¬ 
able value for the preexponential for phenylene 
ring motion. Although the precise value of ui 
was not independently measured for the present 
polycarbonate example, the TLS have been 
observed in a wide range of glassy and amorphous 
systems including amorphous polymers. An 
example where the value of w can be checked by 
other measurements is in diefectric data on the 
fast ionic conductor Naß-alumina. In this case, 
all the second universality parameters can be 
checkjjg and the relation is quantitatively veri¬ 
fied. The second universality is quite suc¬ 
cessful in relating bulk dynamic behavior to 
molecular motions in terms of the low frequency 
modes of amorphous sys “ms. 

Below Tg, large scale polymer motions are 

frozen in and the temperature dependence of x 
is dominated by an activated term as in th? 
above polycarbonate example. Sufficiently far 
above T , activated barrier terms can again 
dominate? In the vicinity of T , the tempera¬ 

ture dependence is more complicated and these 
deviations from Arrhenius behavior are often 
discussed using concepts such as free volume 
variation. For very flexible chain polymers 
which have low T 's, such as polyethylene and 

poly (dimethyl siloxane), the viscosity n is 
proportional to exp(EŸ/RT) throughout almost the 
entire temperature range in which viscosity mea¬ 
surements have been made. For less flexible 
polymers such as polystyrene and polycarbonate, 
the viscosity approaches or tends to approach 
the Arrhenius form only at the highest tempera¬ 
tures reached. Above T , the fast relaxation 

8 
processes associated with more local motion, 
such as the a, ß, and y relaxations, quickly die 
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out. The remaining relaxation modes are associ¬ 
ated with large scale flexing of polymer chains. 
The modes of such a flexible chain were dis¬ 
cussed in the section on the first universality 
in terms of the Rouse bead and spring model as 
in Eqs. (2.6)-(2.8). There we demonstrated that 
the relaxation times of the Rouse modes depend 
on the product of the monomeric friction coeffi¬ 
cient £ and the square of the number of monomers 
N in the chain (e.g. see (2.8)). The friction 
coefficient controls the major temperature 
dependence and the monomer number is propor¬ 
tional to the molecular weight M of the chain. 
Therefore *he terminal relaxation time (i.e. i=l 
Rouse mode) can be written as the product of a 
temperature dependent factor and a molecular 

weight dependent factor:1^ 

Tj = F(M)£(T) (4.6) 

where F(M) a M2 and t;(T) a exp(EA/RT) at temper¬ 

atures sufficiently far above T^. The Rouse 

model gives a description of polymer relaxation 
modes which have specific dependences on molecu¬ 
lar weight and temperature (e.g. see (3.1)). 
For molecular weights below a characterizing 
critical molecular weight the Rouse model in 
fact gives a good quantitative description of 
the relaxation modulus, terminal relaxation time 
and viscosity including values for the prefac- 

109 
tors. The value of M depends on the parti¬ 
cular polymer sample ancf it indicates how long 
the polymer chains must be before entanglement 
with neighboring chains is important. A calcu¬ 
lation of the relaxation modulus on the basis of 
(2.7) gives 

where the chains cross. The critical entangle¬ 
ment molecular weight Mc is approximately equal 
to 2M , where M is the average molecular weight 

e e 109 
between entanglement points. The effects of 
chain entanglements on both the temperature and 

35 
molecular weight dependence can be described 
quantitatively using the first and second uni¬ 
versalities which include the coupling to com¬ 
plexity by the parameter n. Note that the com¬ 
plexity of the entanglement network and its cou¬ 
pling to the Rouse mode is quite different from 
the complexity of the glass and its coupling to 
the Y*relaxati°n mode described above, although 
these are both examples of coupling to complex¬ 
ity in amorphous polymers. The values of n are 
not expected to be the same in these two situa¬ 
tions. In fact, the degree of coupling may dif¬ 
fer even between Rouse modes. The i=l terminal 
Rouse mode has the longest wavelength and it 
will intersect more entanglement points than the 
shorter wavelength (i.e. iM) Rouse modes. The 
i=l mode will then have stronger coupling to the 
complexity of the entanglement network and it 
should have a larger value of n than the other 
Rouse modes. The degree of cooperativity of the 
Rouse modes decreases with increasing i. Then 
(4.7) will be modified by entanglements to: 

® (1-n.) 
G(t) = G“ f expl-(t/T ) 1 1 , (4.10) 

*i 

n. 1/(1-n.) 
t = I (1-n )uj 1 I . I 1 , . (4.11) 
p. 1 1C i 

and 

G(t) = G° .fj expl-t/l.] , (4.7) 

where the plateau .modulus G^ depends on molecu¬ 
lar weight as M1 for M<m" in agreement with 
experiment. The steady-state flow viscosity is 
given by: 

n - i>’G<e) = G¡ ^ ,, , (4.8) 

where the terminal relaxation time dominates the 
viscosity. The molecular weight dpeendence of 

-1 2 
the viscosity is then rj a M =M. or linear in 
the molecular weight for M<Mt in agreement with 

experiment.At sufficiently long times 
(i.e. on the timescale of the flow viscosity), 
only the terminal relaxation survives and the 
modulus becomes: 

n,>n0>n, > 
1 2 a 

(4.12) 

This implies that T >T >T .... The viscosity * n n n 
Pi p2 p3 

will again be dominated by the terminal relaxa¬ 
tion time: 

n'GN Fn- r(TV ^ 
(4.13) 

At sufficiently long times, only the terminal 
relaxation contributes to the relaxation modu¬ 
lus : 

1-n 
G(t) = G° exp|-(t/tp ) I (4.14) 

G(t) 5 G° expl-t/ljI . (4.9) 

However whe-i the polymer chains are suffi¬ 
ciently long, T-h , they no longer move indepen¬ 
dently but can C strongly entangle with one 
another. A complex entanglement network is 
built up and the relaxation of the chains is 
dramatically changed. The interaction of a 
chain with its neighbors can be thought of 
roughly as occurring at "entanglement points” 

The value of n. is found by fitting (4.14) to 
terminal relaxation data. Figure 8 shows G"(ui) 
data for a linear hydrogenated polybutadiene 
(HPB) entangled melt at 130°C and 190°C. The 

53 
solid curve is a fit ' on the basis of (4.19) 
and the fit is very good to the terminal regime 

35 
with n.=0.4. Examination of all available 
data on nearly monodisperse linear polymer melts 
shows that (4.14) fits the terminal regime very 

V.' 
• . 
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Fig. 8. Dynamic loss modulus of a linear hydro¬ 
genated polybutadiene at 130°C and 195°C (mol. 

wt. = 1.8x10^). The solid curves are fits to 
the data by the predictions of G"(u*) that follow 
from (4.14) for a choice of n=0.4 (data of Raju 
et al., replotted., J. Plym.Sci.: Polym. Phys. 
Ed. 17, 1223 (1979)). After Ref. 53. 

well with Oj in the range 0.4-0.47. The value 
of n. can then be used in the second universal¬ 
ity to predict the temperature and molecular 
weight dependence of the terminal relaxation 

35 
time T or the viscosity (4.13). Experimen- 

1 
tally, Gj^ is independent of molecular weight for 
samples with M>M and thus does not contribute 
to the molecular weight of the viscosity in 
(4.13). Hence r| and T will have the same 

'1 
molecular weight dependence. The fundamental 
terminal relaxation time I. of the underlying 
Rouse chain (4.6) can be related to T by the 

P1 
second universality (i.e. substitute (4.6) into 
(4.11)): 

a M1'11! exp(E*/RT) (4.15) 

where E* = E^/(l-nj). 

Polyethylene is sufficiently flexible so 
that the high temperature Arrhenius region can 
be reached experimentally. In addition, poly¬ 
ethylene data are available from a large number 
of studies and thus it is a good choice for a 
test of the second universality in polymer 
melts. The flow activation energies can be mea¬ 
sured from the viscosity while the value of n 

53 
‘1 

can be found from G"(w). For instance, 

different linear polyethylene samples 
have yielded £^=6.35 kca1/mol with 0^=0.43, 

three 
110,111 

Ex=6.40 keal/mol with nj=0.45, and Ef=6.64 kcal/ 
mol with nj=0.47. For* each of the4e cases we 

can deduce the underlying molecular activation 
energy using EA-(l-nj)E‘£. Using the above num¬ 

bers we find £,=3.62, 3.52, and 3.52 keal/mol 
53" 

respectively. All three bulk polymer melt 
measurements reduce by way of the second uni¬ 
versality to the same fundamental E^ within 
experimental error. Remarkably, the predicted 
value for E. agrees with the value of the 

A 53 
internal rotational isomerism barrier as mea¬ 
sured directly by spectroscopic techniques on 
polyethylene analog molecules such as n-butane, 
and on long chain polyethylene oxide in dilute 
solution. As we had found in the a-SiO- trans¬ 
port and the polycarbonate y-relaxation exam¬ 
ples, there is again a quantitative relation 
between the activation energies on the macro¬ 
scopic and microscopic levels. In Fig. 9, we 
plot measured activation energies in polyethyl¬ 
ene against molecular weight. Near M , the 
activation energies increase dramatically as 
entanglement sets in and coupling increases. 
The high and low molecular weight regimes can be 
related by the second universality using the 
coupling parameter n^. 

The molecular weight dependence of the ter¬ 
minal time or viscosity can be predicted simul¬ 
taneously with activation energies using (4.15). 
This predicts a m" dependence with p=2/(l-nj). 
For the three linear polyethylene samples men¬ 
tioned above, we have 0^=0.43, 0.45, and 0.47 
respectively. The corresponding molecular 
weight dependences are then predicted to be 

(J=3.51, 3.63, and 3.77 respectively.^^ These 
predicted values agree with the experimentally 
quoted values of 3.52 for the first sample, and 
3.60 for the second sample, although no value is 
quoted for the third sample. Predicted vaines 
of M for all available nearly monodisperse 
linear polymer melt data lie in the range 
p=3.4-3.8 and is consistent with the measured 

value on a case by case basis. 

An alternative measure of the terminal dis¬ 
persion for polymer melts is the product of the 
recoverable compliance Je and the plateau modu¬ 
lus G° given by: 

JeGN = (GN/n2) ^t’t’Gd') 

(l-n1)r(2/(l-n1)) 

^(l/d-nj)) 
(4.16) 

The measured values of J G« for linear polymer 
melts lie between 2.0 30¾ :5.0 and agrees with 
the calculated value from (4.16) in each case as 
expected. 

The simultaneous testing of multiple pre¬ 
dictions of terminal dispersion, temperature 
dependence and molecular weight dependence puts 
severe constraints on the second universality 
and yet it continues to hold up quantitatively. 
This is illustrated schematically in Fig. 10. 
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Fig. 9. Measured activation energies in poly¬ 
ethylene vs. molecular weight. The vertical 
dashed lines are M and M . The polymer melt 
data (i.e. M>M ) and spectroscopic data (i.e. 
M<M ) are related by the second universality 
(4.Ï5). After Ref. 53. 
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Fig. 10. A network of interconnections between 
the viscoelastic dispersion of the terminal zone 
(1,1'), the molec’.lar weight dependence of the 
terminal relaxation time or the zero-shear 

flow viscosity ndD, and the temperature depen¬ 
dence of I ., or n in the high temperature 
Arrhenius region (III). Note that the same 
value of n appears in all the functional depen¬ 
dences (a)-(d) provided we are dealing with the 
same polymer which is monodisperse and has a 
fixed architecture. After Ref. 53. 

For linear polymers, the value of n, increased 
from nearly zero below h up to around 0.4 above 
M . This variation of n with the entanglement 
structure can be explored further by modifying 
the polymer architecture. One way to do this is 
by using polymers which contain several 
branches. The relaxation modes for branched 
polymers can be calculated in a manner analogous 

to the Rouse model and it is found that the M 
dependence of Tj is retained although the coef¬ 

ficients are different from the linear case. 
Therefore (4.15) can be applied to branched 

35 
polymer melt data as well. The first univer¬ 
sality was illustrated earlier for 4-armed star 
shaped polystyrene samples in Fig. 3 and the 
value of n. is higher than that for a typical 
linear melt. Measurements on a branched poly¬ 

ethylene^^ are consistent with nj=0.70. The 
presence of multiple branches is expected to 
increase the entanglement coupling as compared 
to linear samples and this is consistent with 
the physical interpretation of n^ as a measure 
of the coupling strength to the complexity in 
the system. The flow activation energy of 
branched polyethylene is measured to be 
11.66 kcal/mol, also larger than the linear- 
polyethylene case. However, the second univer¬ 
sality again reduces this to E^=(l-0.70)xll.66 
kcal/mol=3.50 kcal/mol in agreemçnj. with the 
rotational isomerism barrier data. The rela¬ 
tion of the flow activation energies and rota¬ 
tional isomerism barriers in linear and 
branched polyethylene predicted by the second 
universality is summarized in Table I (taken 
from Ref. 53). Furthermore, the value nj=0.70 
predicts a molecular weight dependence with 
exponent |J=6.67 in agreement with the measured 
value of 6.56. 

TABLE 1 

Table I Estimation of coupling constants n and primitive 
activation energies of polyethylene 

Flatenal n Eq used to a E* E^ 

deduce n kral/mole kcal/mole 

104 <N < I0S 
V 

SPNA-5 

1.93kIoShwS'>.2k10S 

C17H36 

n-butane 

Linear Polyethylene 

0.43 II (352) 

0.4/ C"(iii) via 12 3.77 

0 45 II (3.60) 

(6.35)1 3.62 

(6 64) 3.52 

(6.40)1 3.52 

(3 42) 

(3 4)* 

Branched Polyethylene 

104 <H < 2»10^ 0 70 11 (6.56) (11.66) 3.50 
w 

tmun flow activition energy • ultrasonic ibtorption meuurenwnt 
Quantities in parintheses are measured. After Ref. 33. 

The presence of long branches in the poly¬ 
mer sample caused strong entanglement coupling 
with the result that flow of the melt is delayed 
to very long times as compared to linear sam¬ 
ples. This is reflected in the large value of n 
(e.g. = 0.7 and larger) which shifts the termi¬ 
nal mode by way of (4.11). A modification in 
polymer architecture which will further increase 
the coupling is to permanently cross-link the 
sample. This can be thought of roughly as a 
situation with permanent entanglement points. 
The polymer network can still be deformed but 
there will be no real flow so the relaxation 
modulus does not decay to zero as in (4.14). 
Instead, there will be an equilibrium modulus Eœ 
and the long-time behavior can be described by 

E(t)=Eœ+(Eo-E(B)exp|-(t/Xp)1‘n]. The value of n 
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for a cross-linked polymer is typically quite 
large (e.g. n close to the upper bound of 1.0). 
For n close to unity, the approach to the equi¬ 
librium modulus in the large t/t limit can be 
approximated by a term which is a power law 
with a small negative exponent. From this we 
can understand the origin of various empirical 
descriptions of the long-time behavior of cross- 
linked polymers, such as the Chasset-Thirion 
equation: E(t)=Eœ|l+(t/t) ml, where m is typi¬ 
cally ~0.1. 

At times earlier than the terminal time I 
P 1 

the shorter wavelength Rouse modes also contrib¬ 
ute as in Eqs. (4.10)-(4.12). Although the 
value of n. can be obtained from the terminal 
spectrum, independent measurements of the values 
of n„, n-, ... are more difficult to obtain. 
However, the full polymer melt spectrum can be 
described very well for linear samples by using 
the measured value of n^ic.g. 0.4), an inter¬ 
mediate value for n£ (e.g. 0.2), and zero for 
n., Ü3. In principle, the value of u> could 
atso be different for each Rouse mode Sut we 
will keep it a constant here. An example is 
shown in Fig. 11 for a high molecular weight 
polystyrene as measured by creep. J(t) is cal¬ 
culated numerically from G(t) in (4.10) by using 
the convolution relation (2.5). The expression 
(4.11) for t results in a eonuniform shifting 

Pi 
of the different Rouse modes. This results in a 
plateau in the creep curve over several decades 
called the rubbery plateau. This is another 

manifestation of the second universality 

112 113 
salities. De Gennes, and Doi and Edwards 
have devised a model in which the diffusing chain 
is constrained to move within a fixed tube which 
represents the effect of the surrounding chains. 
The resulting curvilinear motion is referred to 
as reptation. For linear polymers, the pre¬ 
dicted molecular weight dependence of the ter¬ 

minal time is M^, J0G?.=1.2, and the terminal 

relaxation is nearly a single exponential decay. 
No prediction is made concerning the temperature 
dependence and the reptation model is not easily 
adapted to branched samples. Furthermore, the 
method of including coupling to the surroundings 
used by the reptation model certainly cannot be 
applied to glassy polymer relaxation or amor¬ 
phous semiconductor transport. It is now clear 
to most polymer melt workers that the reptation 
model mus* be modified in several ways if it is 
to have a chance of serious application to data. 
The predictions of the first and second univer¬ 
salities are superior to those of reptation in 
all respects and are far more general. Even 
within polymer melts, the reptation mechanism is 
too specialized. Recently, measurements on 
melts of ring shaped polystyrene molecules have 
been carried out. Viscosity measurements by 
McKenna, Hadziioannou, Kovacs and the Strasbourg 

114 group and creep measurements by McKenna, Fet¬ 

ters, Plazek and Plazek^"* are found to be in 
quantitative agreement with the first and second 

universalities. However, it is not presently 
clear how to even consider the ring melts using 

the reptation ideas. 

There is no known way to quantitatively 
understand this large mass of polymer melt data 
other than by using the first and second univer- 

Fig. 11. Recoverable creep compliance for a 

polystyrene (mol. wt.=3.8xl0^) showing the 
plateau and terminal dispersions. Solid curve 
is a fit from (4.10)-(4.12) and (2.5) as 
described in the text (data by D.J. Plazek, 
see Ref. 47). 

The high temperature Arrhenius region of 
the polymer melts was examined because it is 
relatively unambiguous to interpret a single 
temperature independent activation energy E'£. 
At lower temperatures, the viscosity becomes 
non-Arrhenius. Within a range of 100° or so 
above T^, the temperature dependence of the vis¬ 

cosity n or the friction coefficient £ is often 
well described by the empirical Vogel-Fulcher- 
Tammann-Hesse (VFTH) equation: 

£nÇ = £nÇ0 + , (4.17) 
00 

which is equivalent to the well known Williams- 
Landel-Ferry (WLF) equation. Although the jus¬ 
tification for the form of (4.17) is often dis¬ 
cussed in terms of the relative free volume for 
molecular mobility, there is no complete under¬ 
standing of (4.17) or the deviations from it. 
Caution has to be exercised when applying the 
second universality to 4(T) near T^ and it is 

not clear at this time how it would be affected 
by other factors in this region. However, the 
second universality can be applied tentatively 
in polymers near T^ by including the information 

available from experiments and examining the 
25 results. Such a tentative application is 

illustrated below for the case of a non- 
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polymeric material, a molten salt. Recall that 
in the case of electronic transport in a-Si02, 

the physics of the X was understood in detail, 
even in the non-Arrhenius regime. Then the sec¬ 
ond universality could be applied unambiguously 
and quantitative agreement was found in all tem¬ 
perature regimes. In the future we shall return 
to the problems of viscosity and shift factors 
of viscoelastic functions near T^. 

Application of the second universality to 
the molten salt 0.6KNO -O.ACaiNO^), is shown in 
Fig. 12 where the experimental relaxation2times 
are plotted as a function of temperature. The 
highest temperature data in the range 175°C- 
382°C are from hypersonic measurements of 

Torell, and Angelí and Torell. These data 
show approximately single exponential relaxation 
behavior (i.e. n=0) with Arrhenius temperature 
dependence. The preexponential, x^, obtained by 

1000/T CK-1 ) 

Fig. 12. Relaxation map for the molten salt of 
0.6 K(N03)-0.4 Ca(N03)2. The insets depict the 

imaginary part of the longitudinal mechanical 
modulus as a function of frequency normalized to 
f , where f is the frequency of the modulus 
max’ max 

peak. At each temperature, the modulus is well 
fitted on the basis of the first universality 
(4.1) and the temperature variation of n is 
plotted. f is plotted as i =l/2nf vs. e max r p max 
inverse temperature and this agrees well with 
the second universality prediction based on the 
observed values of n (data by Weiler et al. Ref. 
75) and Angelí and Torrei (Refs. 73,74), 
replotted). 

extrapolation of the high temperature Arrhenius 
behavior to infinite temperatures turns out to 

fall in between 10‘13 to 10*14 sec which corre¬ 
sponds to the frequency region where a far 
infrared absorption band has been observed from 
a thin film of nitrate glass. This band is 
thought to come from the coupled transverse 
vibrational modes of the quasilattice. Thus, 
the far infrared absorption data gives us a phy¬ 
sical identification lor the underlying molecu¬ 
lar relaxation time To. At 177°C, the lowest 
temperature studied by Angelí and Torell, their 
data indicate the onset of non-Arrhenius behav¬ 
ior. The loss spectrum has now broadened suffi¬ 
ciently from the single exponential relaxation 
(i.e. n=0) spectrum that we can assign the value 
n=0.15 at 177°C. At lower temperatures, in the 
range of 90-130°C, the ultrasonic relaxation 

data of Weiler et al.^3 have been fit to the 
first universality. The fits to the limited 
amount of data are good and the values of n can 
be seen to increase from 0.4 at 126°C to 0.65 at 
105°C. 

Using these values of n(T), we can then 
attempt to apply the second universality. The 
second universality (4.2) is a prediction 
between the microscopic relaxation time To (and 
its dependences on physical variables) and the 
experimentally observed macroscopic time 1^. In 

situations where X is understood in detail 
experimentally and theoretically, such as in 
a-SiO. or in polymer melts at high temperature, 
the second universality can be tested unambigu¬ 
ously. The unambiguous applications have all 
quantitatively supported the second universal¬ 
ity. However, in situations where the detailed 
properties of X are not known, applications of 
the second universality must be more tentative. 
One procedure is to apply it by making assump¬ 
tions about the behavior of X based on the o 
limited available information. The consequences 
of the second universality prediction can then 
be examined. In fact, the confidence gained 
from the success of the second universality in 
other applications' can be used to reverse the 
situation and the second universality can be 
used as a tool to help learn more about the 
properties of X . In the present case of the 
molten salt, the high temperature behavior can 
be understood in terms of a single activation 
barrier. However, a detailed theory for X is 
not available and possible modifications to this 
at lower temperatures cannot presently be 
described in detail. We can proceed tentatively 
by representing XQ by a single activation bar¬ 

rier, X =Xooexp(EA/RT), at all temperatures and 
examine°the consequences of the second univer¬ 
sality using the measured values of n(T). The 
values of X and E. are taken from the high tem- 

» a 

perature data. Using the available data, a 
least squares fit of (4.2) was performed to 
obtain a continuous curve. In tfu process, the 
value of tu is obtained where for simplicity we 
have assumed it is constant. The best fit is 
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shown as the solid line in Fig. 12. It can be 
seen fiom the quality of the fit that it pro¬ 
vides a satisfactory simultaneous account of 
both dispersion and relaxation time over the 
entire temperature range. A possible interpre¬ 
tation of this result is that deviations from 
the single activation barrier form for X are 
not important within the measured temperature 
range. It would be expected that free volume 
variation or other contributions to To will 
enter at temperatures sufficiently close to 

and we emphasize that the above analysis is a 
tentative application of the second universality 
based on incomplete information. The non- 
Arrhenius region of Fig. 12 can be described 
empirically by a VFTH form as in (4.17). In 
many cases, though not all, part of the reason 
for this non-Arrhenius form can be traced to the 
change of the coupling parameter n with tempera¬ 
ture. The complete picture of this situation 
will not emerge until a detailed theory of the 
glass transition is available. It is interest- 

118 
ing to note that Litovitz and McDuffie sug¬ 
gested in 1963 that the mechanism responsible 
for non-Arrhenius temperature dependence might 
also be responsible for the broadening of the 
spectrum of relaxation times in liquids. Such a 
mechanism may in fact be provided by the two 
universalities . 

A similar application of the second univer¬ 
sality to the conductivity relaxation data of 
the ionic conductor Nap-alumina not only gives a 
satisfactory description of data, but the second 
universality parameters can be independently 

checked.'***’'^ Nonstoichiometric Naß-alumina 
exhibits glass-like dielectric, thermal and 

acoustic properties at low temperatures (£50 K). 

At elevated temperatures (>300 K) the ionic con¬ 
ductivity is comparable to that of ionic 
liquids. The transition from the liquid-like to 
the glass-like phase is of fundamental interest. 
Dielectric loss data for Nap-alumina in the MHz 

119 
frequency range has been measured at tempera¬ 
tures between 90 and 140 K. At such tempera¬ 
tures and frequencies, the dielectric loss is 
dominated by the thermally activated hopping 
motion of ions over local potential barriers, 
e.g. T =1^ exp(EA/kT). As discussed in the sec¬ 
tion on "the first universality, the dynamic 
aspects of ion motion in vitreous ionic con¬ 
ductors can be characterized by the electric 
modulus, M*(u>), which describes the relaxation 
of the applied electric field. This can be 
related to the first universality by (2.2) and 
the fit to the electric modulus data at various 
temperatures is shown in Fig. 13. The M"(w) 
frequency curves will peak at ^max-^^nlp w^ere 

X is given by (4.2) whereas the shape of the 

M"(w) versus u) curves is determined predomi¬ 
nantly by the value of n. The deviations at 
high frequencies in electric modulus data are 
easily explained and this has been discussed in 
the section on the first universality using 

Hg. 13. Electric modulus data for nonstoichio¬ 
metric Naß-alumina as a function of temperature 
and frequency. Solid curves are fits based on 
(1.1) and (2.2) (data by Almond and West, 
replotted. See Ref. 119). 

Figs. 5(a) and 5(b). Each curve of M" vs. ua was 
least square fitted to determine the optimum 

36 37 
value of n at each temperature. ’ With n(T) 
known for six temperatures, a least square fit 
of the second universality is made to the exper¬ 
imentally determined peak frequencies fniax(T) by 

varying the parameters E,, w and xœ. The 
OfL O? ft C 

fit ’ is shown by the solid lines drawn 
between the f (T) data points in Fig. 14. The 
good agreement* with experiment justifies the 
assumed temperature independence of lu^ and X^. 

The values of the parameters ol^ainedj from 
the fit were £.=0.059 eV, w =1.2x10 sec" and 

-10 ” c 
X =2.7x10 sec. These parameters can be 
00 

checked by directly relating them to other 

experiments. The value of £.=0.059 eV is in 
close agreement with the value of 0.058 eV which 
vas determined from internal friction and NMR 
spin-lattice relaxation. Although there have 
been suggestions, there is at present no clear 
identification of the microscopic process which 
corresponds to this energy. This microscopic 
activation energy predicts EŸ=0.16 eV by using 
the value n(92 K)=0.625 in the second univer¬ 
sality. Microwave conductivity data between 
50 K and 680 K points to three distinct tempera¬ 
ture regimes. Above T~320 K, the conductivity 
is thermally activated with activation energy 
E*=0.16 eV, between 320 and 120 K a thermal 
activation energy of £,=0.05 eV approximates the 
data, whereas a non-Arrhenius process dominates 
below 100 K which falls in the "glassy" regime 
of Naß-alumina. This is consistent with NMR 
data and the second universality. 

The value of u> can be related to estab¬ 
lished microwave ancf dielectric loss (e") mea¬ 
surements. According to the physical interpre¬ 
tation of the previous section, the first and 
second universalities should be observed for 
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Fig. 14. Variation of n and f (peak of M"(u))) 
with temperature correspondin|f\o Fig. 13. The 
upper curve shows f , where the crosses are 
experimental data anisic solid line is the sec¬ 
ond universality pediction based on the observed 
values of n. 

U) t>l or u)<U) . Only at frequencies below tu do 
the modes have the property (3.20) and become 
excited in large numbers. At higher frequencies 
than u) , deviations from the first universality 

^ 36 
are expected. An analysis'3 of AC conductivity 
data on Naß-alumina is aole to distinguish a low 
frequency region described by modes with 
P(u>) a u) (i.e. see (3.20)) and a high frequency 
region described by P(w)~constant (i.e. TLS). 
The transition between the two regions occurs 

is consistent with 
obtained from the 

7 8 - ] 
near 10-10 sec . th^s 
the value u> =1.2x10 sec 
second univeriality above. 

The value t =2.7x10 *^sec obtained from the 
fit described above, however, seems too large 
for the preexponential factor of Naß-alumina. 
This is instead expected to correspond to j typ- 

-12 ical phonon frequency in ß-alumina, T h~10 sec. 
The reason for this apparent discrepancy lies in 
the contribution of the modes with iu>u) . As 
discussed after (3.27), these modes contribute a 
constant factor exp(AS /R) which, for ease of 
notation, we have usually absorbed into To. 

Physically, AS> represents the entropy shift 
from the TLS (and higher modes). Thus both 

and exp(AS>/R) should give rise to the preexpo¬ 
nential factor, T^i=Tp|iexp(AS>/R). A reasonable 

approximation is3 AS>/R~E^/kT . Using E^= 

0.059 eV and T =120 K for Naß-alumina, we find 
8 -9 4 

E./kT ~6 and therefore T_=10 ' sec. This is 
A' g 00 

consistent with the value of T obtained from 
the second universality. The first and second 
universalities and their physical interpretation 
as described in the previous section are found 
to hold quantitatively when tested against the 
available data. As more detailed data become 
available, more refined tests of the second uni¬ 
versality can be carried out. 

The value of n is observed to change near 
2 25 

T for many other glass-forming materials, ’ 
8 2 

although there are many important exceptions. 
Analogous situations are found in other 
strongly cooperative systems such as spin 
glasses. Spin glasses are metal, insulatoi, or 
semiconducting hosts containing magnetic "impu¬ 
rity" concentrations of about 0.1-10%. Concen¬ 
trations higher than about 30% result in the 
more traditional forms of magnetic phases such 
as ferro or antiferromagnetism. When the con¬ 
centrations are too dilute, however, the local 
magnetic moments are only weakly interacting and 
the spin glass state does not result. Examples 
of spin glasses are Cu:Mn, Eu Sr. S, Cd Mn, Te, 

A I A A I A 

120-123 
and many other systems. The magnetic 
impurities are placed substitutionally at nor¬ 
mal atomic sites in the host but entirely ran¬ 
domly. The randomly distributed interacting 
spins respond cooperatively to experimental 
probes at low temperatures. At sufficiently 
high temperatures, the local moments respond 
paramagnetically to an applied magnetic field. 
The AC magnetic susceptibility X*(u>) which is 
the ratio of the resulting magnetization to the 
applied magnetic field, follows a Curie law and 
is inversely proportional to the temperature. 
As the temperature is lowered, x"^) (f°r a 
given u>) reaches a maximum and then decreases 
down to the lowest temperatures studied (e.g. 
1°K). The temperature of the peak in x" is 
identified as the spin glass transition tempera¬ 
ture T . The value of T decreases as ui is 

8 8 
lowered. For spin glasses such as the metallic 

122 120 
system Cu:Mn or the insulating system 
Eu^Stj xS, the x"(w) peak broadens markedly as T 

is lowered corresponding to increasing values of 
n. This is qualitatively similar to the molten 
salt and the Naß-alumine examples described 
above. These spin glasses can also be described 
by the first and second universalities (4.1) and 
(4.2) by using a single activated T and the 

°42 44 
temperature dependent values of n. ’ n 
increases to a value in the neighborhood of 

0.9 near T . Other types of spin glasses, 
8 i o i 

such as the insulator ^Ho2°3^x ^B203^1-x’ 
also follow the first and second universalities 
but with n remaining constant with temperature 
(nS0.7). 
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There are phenomena in addition to the peak 
at T which characterize the spin glass state, 

g 
If the system is cooled below while in a 

static magnetic field H, the resulting magneti¬ 
zation consists of a piece due to the paramag¬ 
netic response and a second piece due to a 
developed magnetic remanence. If the field H is 
turned off at temperatures below T , the spin 
system remains partly oriented affd this is 
called thermoremanent magnetization jg (TRM). 
Chamberlin, Mozurkewich, and Orbach have 
recently shown that the time dependence of the 
TRM in Cu:Mn and Ag-.Mn spin glasses follows the 
first universality. This is shown in Fig. 15. 
In fact, the data are consistent with both the 

44 124 
first and second universalities. ’ There is 
currently no other way to understand relaxation 
in spin glasses than by the first and second 
universalities. The validity of the analyses 
given in terms of these two universalities is 
independent of whether there is a real phase 
transition or not in spin glasses, a question 
which remains unsettled. 

Fig. 15. Time decay of the thermoremanent mag¬ 
netization, oTRM, of a metallic spin glass. The 

solid lines are the best fits to the data based 
on the first universality (4.1) (data by Cham¬ 
berlin et al., reproduced with permission. See 
Refs. 18, 124, 44). 

We have seen examples where n changes as 
temperature is lowered near T in polymers, 
liquids and spin-glasses. The \&lues of n also 
changed as the molecular architecture was modi¬ 
fied in polymer melt samples. These changes in 
n reflected the modified cooperativity in the 
system as the structured is altered. Throughout 
all these modifications, the first and second 
universalities (4.1) and (4.2) were still found 
to track with one another. There are many other 
examples of variations in n. At the beginning 
of this section, we considered a-SiC>2 in differ¬ 
ent temperature regimes for a given value of n. 
There, we considered a situation where the tem¬ 
perature dependence of X changed but n remained 
constant. However, it is possible to vary the 
amount of water during the growth process to 
produce a-SiO. samples with different n values. 
The value of ff for wet oxide, n , will be dif¬ 
ferent from that for dry oxide, ndry. The water 

does not affect the temperature dependence of 
the primary relaxation process, e.g. X = 
X^exptE./kT) at high temperatures for small 
polaron"hopping. The second universality 
then predicts that 0‘n^y) 1¾ and (1_nwet) 

EŸ should both have the same value E.. The 
A n 
wet 

measured values were EŸ =0.6 eV and n(. =0.8, 
"dry y 

and E* =0.37 eV and n =0.7. They yield 
A » wet 
wet j 

nearly identical predictions, 0.12 eV and 
0.11 eV, for E.. A similar situation was 
observed for the absorption water in 
polymers. Dielectric measurements on the ß 
relaxation in Nylon 66 showed that both the 
value of n and the value of E^ depend on the 
water content of the polymer. However, the 

2 
second universality was obeyed once again, 
reflecting a single underlying fundamental acti¬ 
vation energy EA- 

The first and second universalities have 
predicted the temperature dependence of differ¬ 
ent systems under many different conditions. 
The polymer melts allowed a second simultaneous 
prediction, that of the molecular weight depen¬ 

dence Examples of modifications of 
mass dependence also occur in other systems. An 
example is the isotope mass dependence for ionic 

45 
conductivity in alkali glasses. The diffusion 
of interstitial solute atoms or defects in 
solids has usually been analyzed using absolute 
reaction-rate theory. These theories are based 
on the application of saddle-point methods to 
the decay of classical metastable states in cry¬ 

stalline solids.'*^’'*2 In general the individual 

defect jump rates Wo=XQ^ are given by 

W = ï exp(-AF/kT) (4.18) 
o 

where AF is the free energy needed to carry the 
defect from an initial equilibrium position to a 
saddle point and i- is an effective frequency 
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associated with vibration of the defect in the 
direction of the saddle point. Although the 
validity of such models has often been chal¬ 
lenged on several points, many experiments have 
been aimed at testing them. In particular, 
experiments on the diffusion of isotopes in 
solids have tested predictions of the isotope 
mass dependence of W^. The simplest interpreta¬ 

tion of (4.18) leads W a m'*5 where m is the 
mass of the diffusing atom and this results from 
a harmonic treatment of the lattice vibrations. 
Recall that the simple harmonic oscillator fre¬ 
quency has the same mass dependence. Even if 
such models ate accepted as being valid, it has 
not been clear how to extend them to apply to 
noncrystalline systems. 

Jain and coworkers'^' measured the 
electrical conductivity, o, a. a function of the 

6Li/7Li ratio in a series of ( Li/ Li)20: 

2.886,0.. glasses. If the simple relation Wq 

> 6 , 7_ 
a m ^ were to hold then we would expect a /a - 

VT/S ~ 1.08, where a6 and o7 represent the con¬ 

ductivity of ^Li and Li in Li-borate and Li¬ 
berate glasses respectively. In fact, the data 
deviated considerably from this result and 
showed a temperature dependence which did not 
seem consistent with any interpretation of 
(4.18). These data are shown in Fig. 16. 

In the case of light interstitial atoms, 
quantum corrections may be expected and some 

workers12®’129,127 have incorporated quantum 
partitions functions into the activated rate 

Fig. 16. Isotope mass data for conductivity in 
a lithium borate glass. Upper' solid curve is 
theoretical fit based on (4.19) using n values 
of Fig. 1 and phonon frequencies hi7k=600 K and 
h k1 /k=250 K. Lower solid curve corresponds to 
n=0 (data by H. Jain et al., replotted. See 
Refs. 127, 45). 

a . ß 
models ,so that the simple prediction o /0 = 
(mQ/m )* is modified to: pa 
oa/0p=(mp/ma)!iFl(mß/ma)^, h,/kT,h /kT) (4.19) 

where « and / are the vibration frequencies of 
particle ß at its equilibrium and saddle point 
respectively, and F is a simple function 
involving quantum partition functions. Equa¬ 
tion (4.19) has been used to describe the diffu¬ 
sion of hydrogen isotopes in single-crystal 

hosts.128’129 Jain and Peterson127 applied 
(4.19) to the lithium-borate glass data and they 
were able to find a wide range of combinations 
of » and V which fit the data within the exper¬ 
imental uncertainty. However, in all cases, 
they find luVk > 2280K and this is much higher 
than the equilibrium vibrational frequencies 
obtained from measurements of the far-infrared 

1 JO 
spectra by Exarhos and Risen. These measure¬ 
ments on lithium borate glass systems indicate 
hv/kTSbOOK. As we will see, such a value is in 
accord with the isotope mass data of Fig. 16, if 

... 
we use the first and second universalities. 

In addition to the isotope mass data, the 
frequency dependence of the conductivity was 

measured.126 This is plotted in terms of the 
imaginary and real parts of the electric modulus 
in Figs. 1 and 2. The electric modulus was dis¬ 
cussed briefly in the section on the first uni 
versality. Migration of the ions leads to a 
decay of the electric field within the material. 
If this decay follows the first universality, 
the electric modulus can be calculated by (2.2). 
The first universality does indeed fit the data 
and this is shown as the solid curves in Figs. 1 
and 2. The slight deviations at high frequen¬ 
cies were also discussed in the section on the 
first universality and they were explained using 
Figs. 5(a) and 5(b). The value of n was about 

0.48 for both the 6Li and 7Li isotope, although 
a small dependence on n with temperature 
improved the fit somewhat. These values of n 
can now be used in the second universality to 
predict the isotope mass dependences. Equa¬ 
tion (4.19) gives the mass dependences in the 
absence of coupling to the glassy system (i.e. 
gives Information about T for each isotope, 
since o-t"1). In the presence of coupling, the 

O 
second universality will modify (4.19) to. 

oV= l(mß/ma)V/(1-n) • ^-20) 

For IWk = 600K, we find a best fit of (4.20) to 
the data with h*7k = 250K and this is shown as 
the upper solid curve in Fig. 16. This used the 
same values of n that were found from the first 
universality in Figs. 1 and 2. The lower solid 
curve in Fig. 16 shows the calculation with the 
same » and i>’ but with n=0 (i.e. no coupling to 
the glassy system). With a vibrational fre¬ 
quency near the observed value, the first and 
second universalities describe the isotope mass 
dependence within the experimental error over 



the entire range of observed temperature. The 
first and second universalities not only allow 
us to quantitatively describe the data but they 
also make direct contact with the physics of the 
glassy system as measured by far-infrared spec¬ 
tra. Ionic conductivity is found to obey the 
first universality in many other systems and 
this was first pointed out in the pioneering 

12 1 ^ 
work of Moynihan and coworkers. ’ 

Besides modified dependences on mass, tem¬ 
perature, and other variables, the second uni¬ 
versality (4.2) predicts a shift of the entire 
magnitude of the relaxation time. In the poly¬ 
mer melt discussion above, it was pointed out 
that the rubbery plateau illustrated in Fig. 11 
is a manifestation of the relative shifting of 
Rouse modes from the second universality. The 
long wavelength terminal Rouse mode had a 
stronger coupling to the entanglement network 
than the more localized Rouse modes. Therefore 
the terminal mode had the largest n vali.e, 
although independent measurements of the lower 
Rouse modes are difficult to obtain. Relative 
shifting of the relaxation time due to changes 
in n also are observed for other relaxation 
processes. An example is in the a relaxation of 
glassy polymers where physical aging can cause n 

47 
to increase. When a liquid is rapidly cooled, 
the viscosity becomes enormous and it is thrown 
out of equilibrium. The result is a glass and 
its structural conformations are frozen in on 
timescales set by the viscosity. However, on 
longer timescales the glassy state does tend to 
return to the equilibrium liquid state. After 
quenching the liquid into a glass at a certain 
temperature, the glass can be annealed or aged. 
This means that it is allowed to recover 
towards equilibrium at that temperature. One 
manifestation of agine is a spontaneous increase 
of the density of the glass. This has attracted 
much interest and has a significant influence in 
determining the brittleness or toughness of 
glassy polymers. As the density of the glass 
increases with aging, we would expect the cou¬ 
pling of a relaxation process with the glassy 
system to become stronger. Aging of glasses may 
then be an appropriate place to test first and 
second universalities. 

Figure 4 shows creep data taken by Plazek"*^ 
on polystyrene for several values of annealing 
time. As the aging time t increases, the creep 
curve is seen to shift Co longer times. The 
creep curves J(t) corresponding to a relaxation 
modulus G(t) of the first universality form 
(4.1) can be calculated using the convolution 
relation (2.5), which is valid for linear visco¬ 
elasticity. For a given value of n, G (t) given 
by (4.1) can be converted to J (t) Sy solving 
(2.5). At sufficiently small times, the creep 
is given approximately by the inverse of (4.1): 

J (t)~J exp(+(t/T )^ n). This is a form used 
P 3 131 

empirically by Kohlrausch and Struik. How¬ 
ever, this form is not accurate at longer times 
and a complete solution for the creep function 

can only be obtained by numerically solving 
(2.5). The solid curves in Fig. 4 show these 
first universality fits for the shapes of the 
creep curves at different aging times. The 

47 
fits are very good and the value of n required 
to fit the data is seen to increase as the aging 
proceeds. This is consistent with the expected 
increase in coupling as the density of the glass 
increases with ’ging. The value of n increased 
from an initial value of 0.54 to about 0.66 at 
the longest aging time examined. The aging time 
required to reach n=0.66 depended on the temper¬ 
ature and at 10 degrees below T it took about 

, 8 
three times as long as at 5 degrees below T . 

The values n(t ) can be used to test the 
second universality 14.2). There is no detailed 
theory available for the a relaxation in poly¬ 
styrene and the behavior of its T as the den¬ 
sity increases with aging. We encountered simi¬ 
lar situations in previous examples, and once 
again we can proceed tentatively in the absence 
of complete information about I . The simplest 
assumption is to let t and ui °be constant and 
just use the n(te) vafues inC(4.2) to predict 

the relative shift in I with aging. 7 These 
second universality predictions are quite good, 
although we cannot rule out a small additional 
shift from changes in T or w with aging. The 
relative positions of the curves from the second 
universality are shown in Fig. 14. The aging 
data exhibit a simultaneous flattening in shape 
ai a shifting to longer times in a manner con¬ 
sistent with the first and second universality. 

Several of the examples described above 
involved a series of samples in which each mem¬ 
ber of the series differed in polymer architec¬ 
ture, temperature, doping, or aging time, etc. 
The result was that each sample in the series 
had a different value of n and the universality 
laws could be tested. However, the value of n 
remained constant throughout the experiments 
performed on any given sample. This was an 
important feature to reduce the general predic¬ 
tion of the model (3.29) to the first and second 
universalities (3.30) and (3.31). The general 
prediction for the decay function allows the 
possibility that the material dependent param¬ 
eters n, u)^, or to could change on the timescale 
of the relaxation experiment. These situations 
actually involve following the dynamics of 
structural recovery and rearrangement. Equation 
(3.29) is a generalized version of the first and 
second universalities in which the correlated 
changing of the decay function and the relaxa¬ 
tion time can take place continuously. Examples 
of its application include the volume or 
enthalpy recovery of a glass for a specific 
quenching history, stress relaxation at high 
strain levels, and hysteresis effects in spin 
glasses and charge density wave systems. 

Several phenomenological models of the 
kinetics of recovery in glasses have been devel¬ 
oped in recent years. These include the models 
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of Kovacs et al. and Moynihan et al. These 
models incorporate characteristic features which 
have been observed in a great variety of experi¬ 
mental studies since the pioneering work of 
Tool. These characteristic features are: non¬ 
linearity with respect to the magnitude of 
departure from equilibrium, asymmetry with 
respect to its sign, and memory effects observed 
after multiple perturbations. In the models of 

132 133 
both Kovacs et al. and Moynihan et al., 
the nonlinearity and asymmetry features are 
included by allowing the relaxation times to 
depend on the structural state if the glass in a 
phenomenological manner. Memory effects are 
produced if, in addition, there is effectively a 
distribution of relaxation times. The model of 
Kovacs et al. accomplishes this by using an 
actual distribution of relaxation times where 
each relaxation time depends on the structural 
state. The model of Moynihan et al. uses a par¬ 
ticular generalization of the fractional expo¬ 
nential decay function: 

¢(1) = (^expl-iJ^dt’T V "] (4.21) 

where the single relaxation time I depends on 
the structural state. 

These models have been successful in repro¬ 
ducing the major features of a large number of 
experiments. They are, however, phenomenologi¬ 
cal and are not based on a microscopic picture 
of relaxation. In addition, it has recently 
been pointed out that these models, although 
they contain mapy features of the glass- 
transition kinetics, may have to be modified to 
describe some experimental situations or to 
quantitatively agree with extensive sets of 

data. The generalized first and second 
universality decay function (3.29) also contains 
the essential features of nonlinearity, asym¬ 
metry, and memory and has the advantage of a 
microscopic basis which allows us to make con¬ 
nections to structural details of the glass. 
The similarities and differences between the 
microscopically derived (3.29) and the phenome¬ 
nological form (4.21) allow insight into the 
reasons for the success of the earlier phenome¬ 
nological models. 

For 
notation 
describes 
perature. 
tions (e. 
at times 
Koltzmann 

convenience, we will use the standard 
of fictive temperature, Tp which 
the structural state in units of tem- 
For a continuous series of perturba- 

g. steps in temperature, strain, etc.) 
t' , we can make the assumption of a 
superposition principle so that: 

dT 

-J^dt' 
f 

dt' 

exp[-jpdt"T^hc(t"-t’)]' (4.22) 

where Tf is the equilibrium value of Tf and in 

general the structural dependent parameters n, 
and t may depend on Tj(t"). The recovery 

back to equilibrium depends on the relaxation 

rate t*1lu)c(t"-t')l"n and how it changes with 

time. In this more general situation, n, wc and 
I may also contribute to the time dependence. 
For example in the situation where the deviation 
in fictive temperature represents the deviation 
of volume, we can consider the experiments of 

Kovacs.136 In these experiments, single temper¬ 
ature jumps were made and the volume deviation 
6(t) measured. A single temperature jump corre¬ 
sponds to just a single term in the integral 

43 
over t' in (4.22) and this becomes: 

6(t) = ôoexpl-J^dt'Xo1(u>(,t') (4.23) 

The dependence of n on 6 was emphasized in 
(4.23), but it is possible that uit or To also 
depends on Ô. This is similar to situations 
described earlier where the details of were 
not known near T or during physical aging. 
Information on th^ dependences of n, ta,, or Tq 
is necessary before (4.23) can be tested in 
detail. However, it can be seen from the form 
of (4.23) that it is nonlinear in 6, it is asym¬ 
metric in the sign of 6 as long as n, ta^, and 
are not completely symmetric, and it contains 
memory. The aspects of memory can be seen 
because the solution of (4.23) must be self- 
consistent in 6 on both the right and left hand 
sides and therefore the entire resulting func¬ 
tion 6(t) will be sensitive to the initial value 
6 . Small changes in 6o can result in very dif¬ 
ferent solutions 6(t). 

These qualitative features can be demon¬ 
strated by solving (4.23) for a simple example 
where n(Ô]=a-bô and the other parameters are 
constant. This choice for n with a and b posi¬ 
tive allows n to increase with the density as 
was demonstrated by the physical aging data. 
The constants a and b can be chosen so that the 
total change in n is about 0.1, also as sug- 

137 
gested by the aging data. A solution of this 
case by numerical iteration of (4.23) is shown 
as the solid lines in Fig. 17 where it has been 
fit to volume recovery data of Kovacs for poly- 

(vinyl-acetate) (PVAc). Here dó/dt is a 

measure of the rate of change of 6. These two 
curves correspond to single temperature jumps 
from 30°C to 35°C and from 32.5°C to 35°C. 
Despite the small difference in initial tempera¬ 
ture, the corresponding Teff's differ by about 

half a decade near equilibrium as 6 approaches 
zero. The experimental data is sufficiently 
accurate to demonstrate this memory effect in 
PVAc. Equation (4.23) is able to reproduce this 
effect by way of the generalized first and second 
universalities which is built into it. The ini¬ 
tial temperature of 30°C corresponds to a 6q 
which is negative but larger in magnitude than 
for 32.5°C. The initial n|6 ) will then be 

larger for 30°C than for 32.5°C. The initial 
rate in (4.23) which is determined by n, as well 
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Fig. 17. Illustrative simulation of volume 
recovery after a temperature jump to illustrate 
how first and second universalities can repro¬ 
duce large difference in Teif n-ar equilibrium 

for a small difference in initial temperature. 
Preliminary result of Rendell, Aklonis, and 
Ngai. See Ref. 137. (Data by Kovacs, 
replotted. See Ref. 136.) 

as wc and io, will be slower for 30°C than for 

32.5°C. The initial value of the rate deter¬ 
mines the initial time decay of 6 which in turn 
subsequently determines the charge in the rate 
parameter n. This self-consistent interplay 
between changes in 6 and changes in the rate 
determining coupling parameter n[0] leads to the 
large difference in t ,, near equilibrium. This 
is the same interplay between the shape of the 
decay function and the relaxation time demon¬ 
strated in the earlier examples of first and 
second universalities. 

It must be emphasized that the above exam¬ 
ple is only a simulation to demonstrate some of 
the features built into (4.23). We do not yet 
have detailed infirmation on the dependences of 
n, u>c, and to on 5. However, if these depen¬ 
dences can be measured by subsidiary experi¬ 
ments, then a strict test can be made of the 
first and second universalities in their gen¬ 
eralized form. Dependence of ui and t on 6 may 
be required in addition to n(6] to0 describe 
large sets of volume recovery data. Also note 
that for simplicity we have assumed that n can 
be specified by the single physical variable 6. 
It may turn out that in actual materials, the 
dependence of n on structure is more compli¬ 
cated. These more complicated situations are 
easily incorporated but of course wo always 
examine the simplest possibilities first. 

Perturbing the glass with a single tempera¬ 
ture jump pulled a single term out of the Boltz¬ 
mann superposition (4.22). More general treat¬ 
ments of the sample can be considered, including 
any sort of thermal, annealing, strain or other 

history of sample treatment. An example is the 
cooling of a liquid at constant rate, physical 
aging in the glassy state for a time t , and 
then heating back above T^ at another constant 

rate. This corresponds to a typical enthalpy 
recovery experiment as measured by differential 

scanning calorimetry (DSC). A simulation46 of 
a DSC run based on (4.22) is shown in Fig. 18. 
Here a normalized, dimensionless heat capacity, 
Cp=dTj/dT, for the heating leg of the cycle has 

been plotted. The three curves correspond to 
different aging times in the glassy state and 
the differences arise from the effect of self- 
consistent changes in n during aging on the 
rates in (4.22). This simulation includes, 
besides a linear dependence of n on T,, a depen¬ 
dence of T on T, of the form: 

o f 

xo[Tf] = t^exp(X(EA/RT)+(1-x)(EA/RT{)) , (4.24) 

where 0<x<l is a parameter. Phenomenological 
generalizations of temperature activated forms 
to include structural dependence, such as the 
Narayanaswamy expression (4.24), have been used 
in the approaches of Kovacs et al. and Moynihan 
et al. Detailed calculations of enthalpy recov¬ 
ery including physical aging have been carried 

out by Hodge^® using (4.24) in the Moynihan 
phenomenological form of the decay function 
(4.21). Although this was able to reproduce the 
data (except for systematic deviations over 
large sets of data), anomalously small values of 

and large values of E. had to be used. 
Depending on the type of material, they were in 

the range too~10'75-10‘650sec and £=80-430 kcal/ 
mol. The present microscopically aerived formu¬ 
lation not only can attempt to describe the data 
but it can use physically meaningful values 
because of the second universality (4.2). The 

exponent of l/(l-n) allowed us to use T^IO 76 
sec and E»~17 kcal/mol in the simulation of 
Fig. 18, which are more reasonable values for a 
polymer a relaxation process. Better informa¬ 
tion about the dependences of n, ui , and t on 
the structure can be obtained by Sarrying°out 
simulations such as these in conjunction with 
subsidiary relaxation experiments designed to 
take "snapshots" of the structural recovery 
under specific temperature, aging, strain or 
other conditions. 

A series of such subsidiary experiments 
49 

have been begun by Yee and Bankert. Step- 
strain measurements on polycarbonate under uni¬ 
axial tension have been able to characterize the 
dependence of n and on strain level. The 

strain is ramped up within a few milliseconds to 
a given level (e.g. 1%, 2%, 3%, ...) and the 
stress relaxation is measured. It was found 
empirically that, although at early times after 
the strain ramp the stress is consistent with a 
form such as (3.29) where n changes during,the 
relaxation, at times longer than about 10 sec 
(i.e. about 24 hrs) the stress is accurately 
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Fig. 18. Illustrative simulation of specific 
heat during heating after a history of cooling 
at a constant rate, annealing for (a) 18 s, 
(b) 180 s, and (c) 1800 s, and then heating at a 
constant rate. The calculation is based on 
(A.22). (See Ref. 46.) 

described by a fractional exponential (4.1) with 
a single well defined n and x . The shape of 
the stress decay at long times*1 was obtained by 
adding an additional small strain increment, a 
"tickle" (e.g. Ac~0.1%). This situation is 
consistent with a picture where the structure 
dependent parameters nlTj] and IplTj] settle 

down to nearly constant values as the structure 
settles down to a near equilibrium conformation 
T, (on the time scale of the tickle run) at 
IOD 
long times. Furthermore, the specific values of 
n and t depended on the strain level. The mea¬ 

sured values of n are shown in Fig. 19 for an 
experiment performed at 35°C. The long-time 
value of n decreases from about 0.9 at 0% strain 
to about 0.6 at 5% strain. In a constant strain 
rate experiment, polycarbonate at 35°C yields 
near 5% strain. Near yielding, structural con¬ 
formations are liquid-like allowing flow of the 
material to begin. These structural conforma¬ 
tions determine a relaxation spectrum described 
by n=0.6. However, structural conformations 
generated at 0% strain but at the actual glass 
transition temperature of polycarbonate, T = 
147°C, also determine a relaxation spectfum 
described by n=0.6. This was borne out by 
repeating the step-strain tickle experiments at 
higher temperatures and also by earlier dielec¬ 
tric measurements on the a relaxation of poly¬ 
carbonate. This is consistent with a strain- 
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Fig. 19. Value of n as a function of strain 
level measured on polycarbonate by step-strain 
technique (data by Yee and Bankert. See Ref. 
49). 

temperature equivalence picture where the struc¬ 
tural conformations, whether generated at low 
temperature and high strain or low strain and 
high temperature, determine the time decay of 
the stress. A strain-temperature equivalence 
was also found for X . These experiments are an 
important beginningptowards characterizing the 
structural dependent parameters. This informa¬ 
tion can be used in a constitutive equation for 
the stress: 

°w = ar 

to predict the results of different strain his¬ 
tories such as yielding, cycling, and fatigue as 
well as other experiments such as nonlinear 
creep. 

These examples of the second universality 
are not intended as an exhaustive summary of the 
data, but only as representative of how it works 
in several fields. More extensive discussions 
can be found in thç references and in a recent 
review of the data. 

Perspective on Relaxation 

The current trend in condensed matter 
research is the study of strongly coupled sys¬ 
tems involving complex interacting parts. Phy¬ 
sicists are studying conducting polymers such as 
CH , spin glasses such as Cu:Mn and 
electron glasses such as insulating St:P, and 
charge density wave systems such as TaS. and 
K Mo0v Polymer workers are studying entangled 
networks of polymer melts and glassy polymers 
near the glass transition. Glass workers are 
studying charge transport in conducting glasses. 
Physicists, rheologists, metallurgists, engi- 
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neers, chemists and others are all drifting 
toward a set of problems with similar character¬ 
istics. These problems are of interest both 
technologically and for basic understanding. 
Technological applications which depend on this 
type of research include nuclear waste contain¬ 
ment, new types of batteries, electronic circuit 
devices and materials, polymeric structural 
parts in spacecraft, aircraft, automobiles, and 
other machinery, industrial processing and char¬ 
acterization of materials, and many other exam¬ 
ples . 

Complex interacting systems involve coop- 
erativity between the different components. The 
physicists speak of complicated interactions 
which cannot all be satisfied simultaneously 
(i.e. frustration in spin glasses) resulting in 
many local minima in the free energy surface of 
the system. Polymer rheologists speak of 
entanglement networks in which the dynamics of 
entanglement points must be followed in addition 
to the motion of individual chains. Glass tran¬ 
sition researchers speak of free volume fluctua¬ 
tions allowing the mobility of atoms. Computer 
scientists speak of content-addressable memories 
where articular memories are stored non-locally 
in many circuit interconnections. These and 
many other concepts in different fields are all 
attempts to include the effects of the compli¬ 
cated structure on the dynamics of some physical 
process. This is certainly a difficult problem. 
It is advantageous for attempts to incorporate 
as much information from the experimental data 
as possible. This article has emphasized two 
coupled relations, the first and second univer¬ 
salities, which are supported by the experimen¬ 
tal relaxation data. It is expected that these 
relations can be used to obtain a better under¬ 
standing of these complicated problems. 

It is very significant that as soon as the 
first universality is accompanied by the second 
universality, the discussion is able to become 
far more specific to the details of the material 
structure, short range order, relaxation mecha¬ 
nisms and dependences on physical variables, and 
coupling of the relaxation process to the rest 
of the system. The discussion is no longer 
limited to descriptions of the shape of the time 
decay or frequency dependence. The first and 
second universalities together address many 
physical questions concerning the meaning of 
relaxation and its relation to the material 
structure. A model and physical picture of 
relaxation in complex systems proposed earlier 
by one of us (K.L.N.) was also described on a 
physical level in this article. This model 
leads to the first and second universalities and 
gives physical interpretations for the param¬ 
eters n, u)c> and T . For instance, n is a mea¬ 
sure of the coupling strength of the relaxation 
mode to its complex surroundings. This inter¬ 
pretation holds up qualitatively in that 
strongly coupled systems such as spin glasses, 
electron glasses, and polymer secondary relaxa¬ 
tions have values of n in the range 0.7-0.9, 
while less strongly coupled systems such as 
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linear polymer melt entanglement networks and 
ionically conducting glass have values of n in 
the range 0.4-0.5, and weakly coupled systems 
such as simple liquids and crystals have n 
values near zero. However, when values of n are 
taken from experimental measurements, the first 
and second universality predictions are quanti¬ 
tatively obeyed. The physical model described 
in the article allows insight into how the 
structural details of these complex materials 
can be handled in a controllable way to quanti¬ 
tatively describe relaxation in these situa¬ 
tions . 

From the success of the first and second 
universalities, it is possible to understand the 
usefulness of several long-used empirical laws 
such as the Andrade and Kohlrausch-Struik creep 
laws, the Chasset-Thirion equation for stress 
relaxation in elastomers, the Curie-von 
Schweidler discharge law in dielectrics, the 
KAHR and Moynihan formulations of volume and 
enthalpy recovery, the BKZ, Shapery, and Green- 
Rivlin representations of nonlinear viscoelas¬ 
ticity, and many others. The appearance of the 
second universality furthermore allows the pre¬ 
diction of new relations and the explanation of 
many puzzling phenomena such as anomalous 
molecular weight and temperature dependences in 
polymer melts, anomalous isotope mass effect in 
glasses, unusual transport properties in semi¬ 
conductors, and many other examples described 
above and in the references. Furthermore, the 
first and second universalities can be turned 
around and used as a probe to learn about phe¬ 
nomena that are not completely understood in 
microscopic detail such as the glass transition 
and nonlinear viscoelasticity. Further progress 
on relaxation in complex systems, by whatever 
approach, must take into account the existence 
of the first and second universalities. 

Definite progress by applying the first and 
second universalities has been made in under¬ 
standing aspects of amorphous polymers, polymer 
melts, electronic and ionic transport, spin 
glasses, and other fields of relaxation as 
described in this article and in the references. 
Work is continuing on these fields and further 
progress is expected, especially as data become 
available from experiments which have been 
explicitly designed to elucidate the first and 
second universalities. An area of relaxation 
which has great promise and which we are begin¬ 
ning to develop is that of electronic materials 
and devices. We have already examined elec¬ 
tronic transport in materials, but here we refer 
to a much wider area of electronic materials 
phenomena which includes oxidation, electro¬ 
migration, material flow, VLSI operation, and 
many others. These areas are important in 
regards to fabrication of integrated circuits 
and other devices as well as their operating 
properties. 

141 Numerical simulations and theoretical 
studies of transport in very small devices (i.e. 
submicron channel lengths) have found strong 
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size-related effects due to coupling of an indi¬ 
vidual device to its environment which includes 
contacts, interfaces, interconnects and other 
devices. The possibility of synergetic effects 
from device-device interactions has been noted. 
Indeed as the feature size decreases and com¬ 
plexity increases in VLSI, the individual 
devices must interact with each other. This 
coupling should have a randomness that is analo¬ 
gous to naturally occurring complex systems such 
as glasses, spin glasses and polymers which are 
made up of coupled component building blocks. A 
result of complexity and randomness in the lat¬ 
ter is the slowing down of rate processes (i.e. 
first and second universalities) and this can 
also be studied in VLSI. For example, charge 
state relaxations in memory devices involved in 
read and write operations that have high speed 
(or short relaxation time To) before high den¬ 
sity integration, may be drastically slowed down 
(or have longer effective relaxation time) after 
scaling down in VLSI. It would be desirable to 
know how the time scale is shifted to longer 
times and the form of the modified time depen¬ 
dence of the relaxation process. These proper¬ 
ties are very important for designing optimal 
devices characteristics, and the first and 
second universalities play a central role in 
these studies. 

Besides the op-ration of the device itself, 
the properties of i.ie materi.il from which the 
device is built are also important. One of the 
requirements in integrated circuit fabrication 
is the ability of conducting lines to cross over 
abrupt steps and to enter contacts without thin¬ 
ning or breaking. These are necessary to main¬ 
tain reliability standards and prevent open cir¬ 
cuit failures. A phosphorus doped oxide (phos- 
phosilicate glass or PSG) has often been used as 
the dielectric between metal and polysilicon to 
round out the step profiles and produce better 
metal step coverage. For this technology, it is 
necessary to know the flow properties of PSG as 
a function of temperature, doping, ion implanta- 

1A3 1AA , tion and other treatments. ’ A similar 
class of problems has been considered earlier in 
the context of glassy polymers. Yielding and 
flow, volume recovery, physical aging, polymer 
doping, and temperature dependences were studied 
in glassy polymers using the first and second 
universalities. Similar studies in the context 
of device fabrication materials and processes 
are also expected to allow an understanding of 
this phenomenon in relation to the microscopic 
material structure. 

As a final example of relaxation in elec¬ 
tronic materials, we consider the actual mate¬ 
rial growth and processing. Manufacture of 
materials for use in device fabrication involves 
many processes. An important one is the thermal 
oxidation of silicon. This involves both the 
transport of oxygen through the oxide film and 
the 0„-Si oxidation reaction at the Si/SiCL 

1 / C 

interface.1 3 Our earlier work showed that 
various types of transport in glasses and amor¬ 

phous semiconductors as well as diffusion con¬ 
trolled reactions can be described by the first 
and second universalities. The situation of 
oxide growth may have even more interesting 
features in that the rate controlling the 
transport and the rate controlling the reaction 
process may not be independent. The first and 
second universalities are powerful tools to 
analyze interdependent relaxation processes 
such as these. 
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