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SYMBOLS

N Number of input samples
M Number of partial transformations
£ Continuous ~ frequency variable
fh Highest frequency in a spectrum
fg Sampling rate or frequency
F Frequency increment between successive components
t Continuous time variable
tp Effective period for a time function when it is periodic
T Time increment between successive samples
ﬁE X, (1) The set of input data samples
: Xn(®) - - Where 2=0, 1, 2, ..., N~1 and m=1, 2, ...M is an output
- sequence of the mth nodal column computations
Xp (L) - Becomes the input array during the (m+1)St stage of computations
where Xpt+]1(2) 1is the output array
Wo

Fundamental frequency

Number of samples per cycle of f(t)

-



I. INTRODUCTION

In recent years the use of digital simulation has become an intricate
part of military and civilian projects. A significant number of these projects
involve digital system simulations which require frequency response analysis
of the ensuing discrete-time, discrete-frequency simulation output. Very
often these outputs are not composed of simple frequency sinewaves, but rather
contain extraneous harmonics along with the desired fundamental frequency,wg,
making it impractical to calculate amplitude ratios over the desired frequency
range. When this is the case, the frequency response of the system can be
obtained from the input-output amplitude ratios of the input and output
frequency spectrums at each fundamental frequency, wo, over the desired
frequency range.

An ideal method of generating the frequency spectrum of a discrete-time,
discrete~-frequency signal of a computer simulation is a Fast Fourier Transform
(FFT) on the simulation output data. The FFT generates a discrete frequency
spectrum analogous to the Fourier gpectrum. Both give two impulses at + wg
and - wy for a sinewave input. The frequency response of a discrete system
simulation can be found by inputting a sinewave into the discrete system
simulation and using the frequency spectrum input and output impulse ratios
at W, over the desired frequency range.

A FFT computer subroutine using VAX-11 FORTRAN has been written to perform
the FFT. The subroutine can be linked with a system simulation to provide the
frequency spectrum impulse data as a part of the system simulation. This
report outlines the development and checkout of the FFT routine.

II. BACKGROUND

The FFT is an algorithm for computing the discrete Fourier transform of
discrete data samples. There are many available FFT algorithms. The Radix-2
FFT is the one most commonly used. It is based on representing an array of
size N=2M as a product of M factors, each of which is equal to 2. Radix-2
FFT algoritims are derived by decomposing the discrete Fourier transform into
successively smaller discrete Fourier transforms. The manner of the
decomposition produces the variation found in Radix-2 algorithms. Most of
these algorithms may be classified as follows:

A. Decimation in Frequency

1. 1In-place algorithm or

2. Natural input-output algorithm
B. Decimation in Time

1. In-place algorithm or

2. Natural input-output algorithm
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The FFT algorithm used to write the FFT subroutine is an in-place
decimation in frequency, Radix-2 algorithm originally proposed by Gentlemen
and Sande.

The algorithm is implemented in the following steps:

a. Initialization

b. A sequence of transformations, one partial transformation for
each factor.

c. An unscrambling procedure.
IITI. DERIVATION OF A RADIX-2 FFT BY DECIMATION IN FREQUENCY

The discrete Fourier transform of {x(n)} is a periodic sequence of complex
numbers { X(k),k = 0,1,..., N=1 } , defined by

N-1 .
X = P x@ W (1)
n=0 ’

where

W= exp ('j%"r) = cos (ZTI{T‘) = sin (2—;')

Dividing the input sequence into two halves gives

(I N-1

X() = Y x(n) L Y x@ Wk (2)
n=o0 n=N/2
Ny-1 Ny -1
@ Lk @) R

X(k) = Z x(n) + W Z x (n +§-) W (3)
n=o0 n=o

Combining the two summations in equation 3 and using the fact that

w(%) . = (-1)k , yields
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X(k) = Z (x(n) + (-l)k x (n+ _12‘1)) whk (4)

n=o0
Since (-1)k is equal to 1 for even K and equal to -1 for odd K, let
even K = 2r and odd K = 2r = 1.

Dividing the sequence in equation 4 into an even and odd sequence yields
a decimation in frequency of

(3)-1
X(2r) = Z (x(n) + x(n + -g- )) W 2mm

n=o0

(P -1
' N 2rn
X(2r +1) = Z (x(n) -xm+ Z))W W (5)
n=o
N
The arrays X(2r) and X(2r + 1) are the 7 points DFT of the input arrays

shown in equation (5). The signal flow graph for an eight-point input (N=8)
is shown in Figure 1.

(o)
1(0)\ /g( ) o X (O)
x(1)q L % - pom o x(2)
2
x(2) 32 | OF T t——o X {4}
Q(3)
(3 ‘ l——o X (6)
(o) WR
x(4) - o X(1)
(1) Wi
1(8) & //\\ - point —e—0 X {3)
n2) Wi
x(6) = / @ 2N oFT | o x(5)
3 Wi
“7)' _r( - p—e—o X (7}

Figure 1. Flow graph of the decimation-~in-frequency decomposition of
an N-point DFT computation into two N/2-point DFT computations
N=8)
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The bit-revexsed gqutput can also be determined by the follewing method:
A, Write out the sequence of integer index numbers.
B. Convert the sequence to binary form.

C. Reverse the order of all the bits in each of the binary index
numbers.

D. Convert back to integer index numbers.

Table 1 shows the determination of the bit-reversed output for the N=8
example using the method just described.

AN AR

P—————

TABLE 1, Index Integers and Their Bit-Reversed Output
. Integers For N=8

Index Integer{ 0O 1 2 3 iy 5 6 7
~2 Binary Index 000 001 010 o1 100 101 110§ 111
- Binary

. Bit-Reversed |000| 100} 010} 110} 001 101 o111 111

Bit-Reversed
Index Integer| O 4 2 6 1 5 3 7_
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Repetition of this decomposition for N=8 leads to Figures 2 and 3.

-e—= X(0)

——0 X(4)

(——o0 X(2)

}——o X(6)

}—e—o0 X(1)

— X(3)

X(7)

Figure 2. Flow graph of decimation-in-frequency decomposition of an
- eight-point DFT into four two-point DFT computations.

Figure 3. Flow graph of complete decimation-in-frequency decomposition
of an eight-point DFT computation.
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The preceding Figures show that the input sequence is in a natural order
and the output sequence is in an unnatural order. This input-output order is
referred to as natural input, bit-reversed output. It is a result of decom-
position. Recall that originally the input sequence is divided into even-
numbered samples and odd-numbered samples with the even-numbered samples in
the first half and the odd-~numbered samples in the second half, Such
separations are carried out by examining the lease significant bit of the
binary index representation where a zero corresponds to an even number and
a one corresponds to an odd number. When the even and odd subsequences
are sorted into their even and odd parts, the second least significant bit of
the binary index representation is examined. This process is repeated until
N subsequences of length 1 are obtained. This sorting process for N = 8 is
shown in Figure 4.

no Ny n2
) ——— x{000) 0
1
0 t———— x{(100) 4
- o]
1 —————— x(010) 2
- 1
x{nyny np) e (1100 6
0
o [ =xtoon 1
1
0
1 ————— x{011) 3
1
—— x{111) 7

Figure 4. Bit-reversed sorting for N=8,
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IV. COMPUTATIONS

The vertical nodes in the preceding flow graphs correspond to successive
inner column computations. Each inner column computation takes a set of N
complex numbers and transforms them into another set of N complex numbers.
This process is repeated M= log, N times.

e s & a4

The flow graph for the basic computation (the butterfly computation) is
shown in Figure 5.

X_ (p) o ——0 X (p)
m m+l
Pl
R wgl‘\
)of —o X (q)
xm (q par mil

Figure 5. Flow graph of a typical two-point DFT as required in the
- last stage of decimation-in-frequency decomposition.
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The set of equations found from the flow graph shown in Figure 5 is as
follows

X ® - X () +X (@
(6)

r
X q = X () - X (qQ) Wn

where

m=0,1, ... M~-1

- p=1,2, ... N2
N
197 +1, ... N

These equations are the algorithm for the transformations necessary for
the Radix-2- FFT. Looking at equation (6), the data pair (X(p), X;(q)) is
used once to compute the new data pair (Xp+1(p), Xp+1(q)) and is not used
again. Thus the transformations defined by equation (6) can be performed in
place where-each new transformation is stored in the same location occupied
by the preceding transformation. This can be seen graphically in Figure 3
by the horizontal lines which connect consecutive nodes.

.....
-------

...................
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As an example of the use of the set of transformation equations, the
. first inner column computations of the 8-~point FFT as shown in Figure 5
are found to be:

B Xl ) XO(O) + XO(A)

X, (D = X (1) + X (5)

+

X (2) = XO(Z) X°(6)

X, (3 = X () + X O

@ = W x,00) - %]

J, X (5) = w; [Xo(l) - xo(s)]
X1 (6) = Wr [%(2) - %6(8)] .
. X (D = W [X%®) - x,()]

The other column computations can be found in a similar manner using
the transformation algorithm as shown in equation (6). The number of colummn
computations will always be equal to M.
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- V. PARAMETERS
2
Selection of FFT Parameters:
]
- A. The number of input samples (N) must be a power to two,
‘-Q
o B. The sampling rate (fg) must be greater than twice the highest possible
- frequency in the spectrum (fh) to avoid aliasing.
. C. The pertiod of the time function (tp) is chosen to be longer than the
;C time length of the signal to prevent overlapping.
ﬂj D. The desired frequency resolution (F) is
- F = —o
» tp (7
{{ E. The only way to select both t and f, independently 1s to use the
» relationship.
for
= »
= o N> 2 f .
:::: = — F (8)
’;
5 VI. RADIX-2 FPT CGMPUTER PROGRAM
> A computer program which uses the Radix-2 FFT algorithm developed in this
- report and containing a binary unscrambling algorithm is shown in the Appendix.
ij The computer program is written as a subroutine. There are three inputs
o necessary to run the FFT subroutine,
- A. N .
) B. M
- C. The input samples.
The finput samples (N) are placed into two arrays as listed below.
i: P (N, 1) Real part of sample
:3 P (N, 2) Imaginary part of sample
- If the input samples are all real numbers, F (N,2) would be zero
- filled.

. 10
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In order to insure reliable FFT results, care should be taken in selecting
the input data sampling rate and sampling duration.

LG

The output of the FFT subroutine is contained in the two arrays P (N, 1)
and P (N, 2). The series of magnitudes found from these arrays is the
discrete Fourier series equally spaced F units apart. Recalling that a
Fourier series separates a periodic function of period T 1into sinuisoidal
components of frequency ®wo, 2Wg,...,NWo, Where wo=2r/7 is the fundamental
frequency and the other frequencies, 2uwp,...,NWy, are the harmonics of w,,
the output of the FFT subroutine is in fact a harmonic analysis where the

.. output magnitudes are amplitudes of signal components are discrete frequency
. intervals.

OO AU

VII. CHECKROUT

The FFT program was checked out by inputting samples from the function

f(t) = 5 sinwjt + 10 sin w,t

4 N

N with
- - Y1 =6.28 RAD/SEC w; = 31.42 RAD/SEC
g £, =~ 1.0 H, ad s,
~ '
\'
5 The following FFT parameters were used:
N
N = 1024
: tp = 2.0 sec
- F = 0.5H,
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The output of the FFT program is shown in Table 2,
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The table shows

the expected results of a 5 degree signal at 1 Hz, and a 10 degree signal
at 5 Hz. - which are the same results that would be obtained from a DFT.

TABLE 2, FFT Output For The Checkout Example
FREQ SPECTRUM MAGNITUDE
(Hz) (DEGREE)

Ve, 4--.-“.‘5*.".

\‘loS'JQ'aC"L
le Q¥ »JCQ\.’
le30uC.0
2620029
dedUll I
360300030
3.5G003
e JGJCJO
Je J':'nto'-.'
So SUJU'J-
6eldGlL U
5e 500G Ju
7.40iC.0
Te5CeC20
Be a1,
3e5C00J0
Je. JOJG-O
335,620
1o.03000

3e93T71373E=35
Te335E043E~4
S.v 200281

7.953E33iE-. 4
1.+43371927€-C3
20“9412735“;’0
1e7234393%-_3
162300881E~.3
1.95758%93¢E-.3
1e119€62E-(3
€e53S121

3.7630.62TE-" 4
5166321876~ 4
1.)92%515¢-.3
3.2T754)S1E-0u4
Je )2BEa8LE-(4
T« 17323628~ 4
Te4l527612=1 4
le 53c4T4E-L3
305268751204
1.711850568-.3
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To check the effect of sampling rate and the length of record (tp),
Table 3 was constructed. A spectral analysis (FFT) of f(t) = 10 cos 20 Tt
was done for the cases tp = .1, 1, and 4 sec. and fg was varied until the
minimum sampling frequency was found.

Table 3 shows that a minimum sampling frequency for the 10.0 Hz signal
is 256 Hz for tp equal to 1 and 4. The sampling rate at tp equal to .1 is
larger, but this 1s due to the discrete values that N must have which then
causes a discrete jump in the sampling frequency as seen between tp = .1 and
1 sec. The minimum sampling frequency produces an impulse at wp and zeroes
at all other frequencies. It should be noted that at lower sampling frequen-
cles the impulse at wp can be seen along with other low impulses at other
frequencies.

TABLES 3. Minimum Sampling Times and Frequency for
f(t) = 10 cos 20 mt,

- cp
_ (sec) .1 1 : y

fs

(Hz) 640 256 256

N 64 256 1024

Cycles
of

Input 1 10 40
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The main sources of error for the FFT are sampling rate, quantization
and round-off. The sampling rate error as given by Hopper and Newberry [SJ
is

2
g < 8T
s — 12 g percent

9

where K 1is the number of samples taken en each cycle of f(t), and the
quantization and round-off error as given by Welch [4.] is

Eq < 0.1 percent A (10)

Using equation (9) with the data in Table 3., Eg is found to be zero for tp
equal to .1 sec,and 0.01 percent for tp equal to 1 and 4 sec.

VIII. CONCLUSION

The FFT_subroutine presented in this report gives good results in the
frequency domain. The results are discrete and are nonexistant between
adjacent frequency intervals. )

Nothing is known between the discrete frequencies. For more resolution
of frequency, the record lenght, tp, must be increased. Care must be taken
to ensure that wy 1s one of the discrete frequencies calculated, and the
sampling frequency is high enough to yield low error results.

Overall, the FFT subroutine is a very useful, fast computational
algorithm which can be used with any digital system simulation when frequency
spectrum processing is needed in the calculation of the system's frequency
response.
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. ' (VAX-11 FORTRAN)
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SUBROUTINE FFT
COMMON C (2000)

EQUIVALENCE  (C( 900),IP9 )
EQUIVALENCE  (C( 901),IP8 )
DIMENSION P(8192,2)

PARAMETERS

INPUT***kkkkhkkkkkkkkkhkkhkkk*FOURIER TRANSFORMA#kkkkdkkkkkkkkikkdkkdkikk
P - AN ARRAY DIMENSIONED MAX--P (8192,2)
DIMENSIONED-~P(IP9,2) USED FOR THE DATA
IP9 = N = A POWER OF 2 = THE NUMBER OF DATA POINTS
IP9 MUST BE A POWER OF 2

IP9 = 2*+IP8 IP8 = M MAX--~-8192 = 2%%13

OUTPUT*hkkkikkhkhkkkkkkkhkkkAFOURTER TRANSFORMA %Ak sk deek e dedeskde ek de de ek de

P - THE TRANSFORMED DATA. THIS MEANS THE INITIAL DATA IS DESTROYED BY
THE ROUTINE AND REPLACED WITH THE TRANSFORMED DATA.

kAR kA FFThAkAA

IQl = 2*IP9
Q6=3.141592654/IP9
DO 30 Isi,IP8
IQ1=IQL/2
I1Q2=IQl/2_
Q6=Q6*2.0
JQ=IP9+1-1Q1
DO 20 J=1,J0Q,1Q1
Q5=-Q6
IP4=J-1
DO 10 K=1,1IQ2
Q35=Q5+Q6
IQ3=IP4+K
1Q4=1Q3+1Q2
Q7=C0S(Q5)
Q8=SIN(Q5)
Q9=Q7*(P(1Q3,1)-P(1Q4,1))+Q8*(P(1Q4,2)-P(1Q3,2))
Q8=Q7*(P(I1Q3,2)-P(1Q4,2))+Q8*(P(1Q3,1)~-P(IQ4,1))
P(IQ3,1)=P(1Q3,1)+P(1Q4,1)
P(IQ3,2)=P(1Q3,2)+PIQ4,2)
P(1Q4,1)=Q9
P(1Q4,2)=Q8
10  CONTINUE
20  CONTINUE
30 CONTINUE

DO 60 I=1, IP9
IQ3=I-1
1Q4=0.0




DO 50 J=1,IP8

1Q4=2*1Q4

P4=FLOAT (1Q3) /2.0

IF (INT(P4) ,EQ.P4)GOTO 40
IQ4=IQ4+1
40  1Q3=INT(P4)
50  CONTINUE

IQ4=IQ4+1
IF(1Q4.LE.I)GOTO 60
Q9=P(I.1)
Q8=P(I,2)
P(1,1)=P(IQ4,1)
P(1,2)=P(1IQ4,2)
P(IQ4,1)=Q9
P(1Q4,2)=Q8

60  CONTINUE

DO 70 I=1,IP9
P(I,1)=P(I,1)/IP9
P(I,2)=P(I,2)/IP9
70  CONTINUE

J=IP9 -
K=IP9/2

DO 80 I=2,K
Q1=P(1,1)
Q2=P(1,2)
P(1,1)=P(J,1)
P(1,2)=P(J,2)
P(J,1)=Q1
R(J,2)=Q2
J=J-1

80 CONTINUE

PRINT OUT FREQ (FQFFT) AND MAG (FFTM) OF FFT **kkkikkkkkkikik

DO 90 I=1,30
FFTM=SQRT ((P (I,1)*2,0) **24(P(I,2)*2.0)**2)
PRINT*, FQFFT, FFTM
FQFFT=FQFFT+1.0/ (IP9*DTFFT)
90  CONTINUE
END IF
RETURN
21  FORMAT(2(1x,G14.6))
END
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