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. I. INTRODUCTION

Disturbances are defined as the uncontrollable inputs which act on a dyna-
mical system. There are many varieties of disturbance inputs which can be
. assoclated with a controlled system and they are, for the most part, comple-
“ tely unpredictable in magnitude and in their arrival times.

In practice, additive disturbances, i.e., disturbances which are repre-
sented by terms added to the plant state equation, can arise from motivating
effects external to the plant (external disturbances) or from motivating
effects arising from the physical characteristics of plant subsystems or
internal plant dynamics (internal disturbances). Further, these disturbances
can be divided into two categories: (a) noise disturbances, characterized by
random and erratic behavior with relatively high-frequency content, and (b)
waveform structured disturbances, characterized by a degree of waveform regu-
larity which can be described, piecewise in time, by differential equations
forced by sparse sequences of impulses. The nature of these disturbances may
be either completely known (through direct prior or real-time observation or
test), completely unknown (random-like), or partially known.

Johnson [1-6, 10] introduced the idea of mathematically describing uncer-
tain waveform—structured disturbances by representing them as a weighted
linear combination of known basis functions of the form

y v B
2 T

Gt ey

n

w(t) = T cyf (), (1)
i-1

where w(t) is the plant disturbance vector and is a p-vector and the weighting
coefficients c; are completely unknown constants which can change in magnitude
N . in a random, once-in-a-while fashion. The basis functions f;(t) are complete-
- ly knowm because they are chosen by the designer based on the waveform pat-

. terns exhibited (or thought to be exhibited) by the disturbance.

Johnson [l1-11] developed a control engineering design technique, referred
to as disturbance accommodation, wherein a combination of waveformmode
disturbance modeling and state-variable control methods are utilized to design
controllers which will: (1) absorb (counteract), (2) minimize, or (3) coustruc-
tively utilize the effects of uncertain disturbances on the plant. Three main
classes of controllers are considered within the overall cognomen of distur-
bance accommodating control theory. These are: (1) Disturbance Absorption
Controllers (DAC), (2) Disturbance Minimization Controllers (DMC), and (3)
Disturbance Utilfizing Controllers (DUC). Each class of controller has its own
assocliated design goals and design methodology. The mathematical theories of
DAC and DUC were thoroughly developed in References 1 through 12. The theory
and techniques associated with DMC were compiled and extended in Reference 13.
- Additional results pertaining to the application of DMC techniques to a
;; linear, time-invariant, second-order state set-point regulator problem with
constant external disturbances were presented in Reference 1l4.

One of the DMC techniques presented in Reference 13 was the isobasis
design technique. This technique makes the a priori assumption that the
N control vectors will be some function of the disturbance vectors, i.e., they
-, will be composed cf some combination of the same basis functions which




describe the disturbances. This approach provides a parametric form for the
control vectors. By utilizing the preferred minimization method [13), one can
design the parameters of the minimization controller to minimize the distur-
bance effects.

\ .'. ....'-‘ .i,‘ ."‘ ‘A‘.:..-‘

Two examples of the application of the Isobasis technique were presented
in Reference 13. One example was for a second-order output servo—command
problam with a ramp for the external disturbance and a ramp for the output
servo—~command. The other example was for a second~order state servo-command
problem, again with a ramp for the external disturbance and for the inpuc
- state servo-command. This report will present results on the application of
- the Isobasis design technique to linear, time-invariant state set-point regu-
lators with time-varying external disturbances.

)

B
.
MO A

II. LINEAR DYNAMICAL SYSTEMS

The class of systems to be considered in this report are "linear,
time-invariant, dynamical systems,” so called because the vector differential
equation for the state x(t) is a linear differential equation, the transfor-
mation between the state space and output space is linear, and the elements of
the matrices in the plant model are constant with respect to time.

These systems will be répresented by equations of the general form
x(t) = Ax(t) + Bu(t) + Fw(t) (2)
= y(t) = Cx(t) + Eu(t) + Gw(t) (3)
where x(t) is the plant state vector and is an n-vector, u(t) is the plant

. control input vector and is an r-vector, w(t) is the plant disturbance vector
- and is a p-vector, y(t) is the plant output vector and is an mvector and A,
-+ B, F, C, E, and G are appropriate size, known matrices with time—invariant el-
ements. In addition, the general form of the disturbance state model is [10].

w(t) = Hz(t) + Lx(t) C))

z(t) = Dz(t) + Mx(t) + o(t) (5)

where z(t) is the p—-dimensional disturbance state vector, o(t) is a sparsely
populated vector impulse sequence and H, L, D, and M are appropriate size,
known matrices.
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III. BACKGROUND

In Reference 13, several methods were presented for minimizing, via
direct control action, the effects of constant disturbance components which
are not completely absorbable on linear, time-invariant state set-point
regulators. The metric used for the minimization process is the norm defined
by

2
||ax - b ||Q = (Ax-b)T Q(Ax-b), Q > O. (6)
The design objective 18 the minimization of the distance between the

attainable and desired set-point, where this distance is defined by the
Euclidean norm,

2
@ e |2 ae, 2
of the error vector between Xgp and the plant state x(t), i.g.,
egt) = Xgp ~ x(t). ’ (8)

An expression for the dynamics associated with this error can be derived by
differentiating Equation (8) and substituting in the appropriate terms from
Equation (2). The result can be expressed as

€(t) = xgp = x(t) = Ae(t) = Bu(t) - Axg, - Fu(t) , (9)

P

where Axsp represents the "set-point disturbance” term.

In disturbance accommodating control design, the control vector u(t) is
congidered to be an ordered collection of the various independent control
inputs which are available to accomplish the primary control objective and to
“"accommodate” the disturbances which are acting on the system. 1In the design
of disturbance minimization controllers, it is common practice to split
(allocate) the total control u(t) into two parts as follows,

u(t) = up(t) + uy(e) , (10)

where u_(t) is given the task of accomplishing the primary control objective
and ud(g) is given the task of disturbance accommodation. The part uyq(t) can
be further allocated into component vectors, as required. For the methods
congidered in this report, uy(t) will sometimes be allocated as

Ud(t) = uds(t) + “dw(t) . (11)

The component uds(t) will be designed to accommodate the effects of the set-
point disturbance term, while uy,(t) will be designed to accommodate the
effects of the external disturbance term. If the plant is completely
controllable and is also completely observable, the control up(t) can be
designed in the form

up(t) = Kx(t) . (12)




LR 2l It 3

Given the allocation of the control vector u(t), Equation 9 can be
rewritten as

e(t) = Ae(t) - Bup(t) = Bugg(t) = Bugy(t) - Axg, = Fw(t). (13)
Upon substitution from Equation (4), Equation (13) becomes

®(t) = Ae(t) - Bup(t) = Bugg(t) = Bug,(t)

; (14)
= Axg, = FHz(t) - FLxg, - FLe(t). .

% In the case of Equation (14), one would design up(t) in the form

- up(t) = - Ke(t) , (15)

with K chosen such that the homogeneous system
(t) = (A + FL + BK) e(t) (16)

will yield e(t) —» O "rapidly.” If one lets ; = A+FL+BK, then Equation (14)
can be expressed as

®(t) = Ae(t) - [(A+FL)xg, + Bugg(t)] = [FHE(t) + Bug,(t)] .  (17)
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IV. PLANT AND EXTERNAL DISTURBANCE MODELS

The plant state and output models to be used in the examples presented in
this report are

x 1 1 x 1 1
. + u + w (18)
X2 X2 2 1

y = (1, 0Ox . 19)
The target state set-point vector is glven as
Xgp = (xsi,’l, 0). (20)

The plant given by Equations (18) and (19) is completely controllable. For
the purposes of the examples it 1s assumed that all necessary state infor-
mation is available from an ideal state reconstructor.

Several different types of external disturbance will be applied to the
plant and the effectiveness of the disturbdnce minimization controllers on
each will be examined. The disturbances which will be used and the
corresponding models, based on Equations (4) and (5) are as follows.

1. w(t) =C, + Cyt (21)
w = (1, 0)z (22)
51 0 1 2]
] - + o(t) (23)
z9 0 0 z9

2. w(t) =Cy sin @ (24)
W = (1, 0)z (25)
21 o 1| [/ . o (26)-

= (o]

;2 "(!2 0 22

3. w(t) =C, + Cjent (27)

 w =1, 0)z (28)
21 0 1 zy
. = + o(t) (29)
%) 0 a zy




: V. GEOMETRICAL CONSIDERATIONS AND THEOREMS

Since the control distribution matrix B of Equation (18) is a 2x1 matrix
of rank 1, it does not span the state space, which is two-dimensional in this
example. Hence, Buy(t) will have a limited set of attainable points in the
gtate space. Also, the external disturbance distribution matrix is of rank 1
and thus, Fw(t) will have a limited range of action in the state space. As
can be seen in Figure 1 the lines of action of Buy and Fw are not colinear.
Hence, no uy exists which will completely absorb a non-zero external distur-
bance or a set-point disturbance resulting from a non-zero target state set-
point.

Given that this situation exists and that a design objective is to mini-~
-mize the effects of the uncancellable disturbances, one thus attempts to
design uy so as to achieve this objective in some fashion. With respect to
the vectors Fw; and Buy; shown on Figure 1, one approach to the minimization
problem is to first express the vector Fwj; as the sum of two component vectors,
one lying in the column range space of B, R(B), and one lying in the orthogo-
nal complement to the column range space of B, R(B)L. This makes it easy to
see that the component lying in R(B)Y , which 1is the component that is
uncancellable, is minimized {f the component lying in R(B) is the orthogonal
projection of Fw; onto R(B) [13]. How can uyg) be chosen such that this is
accomplished?

Casting the prbblem into the form of Equation (6) one wishes to minimize

”Budl + FWI |'(22 - (Budl + FWI)T Q(Budl + le) . (30)

Consider the following theorems from [15].

Theorem: Let B be an mxn matrix, Fw; an m vector an Q a positive definite
mxm matrix. Then IIB“dl + Fwy ||1s smallest when

uq; = XFwq , . (31)
where X satisfies

BXB = B , (QBX)T = QBX . | (32)

Theorem: Let B be an mxn matrix, Fw; an m vector and P a positive defi-
nite nxn matrix. If Buy) = -Fw; has a solution for uy;, the unique solution
for which ||“d1 l'P is smallest is given by

ugy - XFWI ’ (33)

where X satisfies

BXB = B , (PXB)T = PXB. (34)
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Figure 1.

Line of action of external disturbance and

control in plant state space.
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Corollary: Let B be an mxn matrix, Fw; an m vector, Q a positive definite
mxm matrix and P a positive definite nxn matrix. Then, there is a unique
matrix X satisfying

20 s &
LA A N

(QBX)T = QBX , (PxB)T = PXB . (35)
5: Moreover, ||Bud1 + Fwy L' assumes its minimum value for uyy; = XFw;, and in
3 the set of vectors uy; for which the minimum value is assumed, uy; = XFw) is

"

the one for which ||“d1 ||p is smallest.|

(4

If the weighting matrices Q and P are chosen to be the identity matrix I,
then Equation (30) represents the Euclidean norm and the properties which X
satisfies in the above theorems are properties which are satisfied by the
Moore-Penrose generalized inverse. Thus, if uy; is chosen as

‘.l"'l
vos

ugy = -BTew; , (36)

YRR
I3
el

where (')+ represents the Moore-Penrose generalized inverse of (*), then
- uq) is the minimum norm controller which minimizes ||Bud1 + Fwy | « Also, one
X has

: Bug, + Fw; = -BB'Fw; + Fuy = (1 - BBN)Fw; (37)

and (I-BBT) is the projector of Fw; on R(B)l along R(B) and BBT 15 the pro jec-
: tor of Fwj on R(B) along R(BY*. The uncancellable part of Fw; 1s thus the
o component in R(B)+.
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VI. DISTURBANCE MINIMIZATION WITH w(t) = €y t 1t

A. With Allocated Disturbance Minimizing Control Vector

This section will apply the isobasis design technique to a state set~

point regulator problem where the external disturbance is given by Equation
(21), i.e., a combination of a step and a ramp. The stabilization control
u,, designed according to Equation (15) and Equation (16), is chosen to be
(3, 14]

up(t) = -Ke(t) = (3., 0.36)e(t). (38)
Recall Equation (17), which is the general expression for E(t),

() = As(t) - (Axg, + Bugg) = [Fw(t) + Bugy(t)]. (39)
If w(t) = 0, a steady-state solution would exist for e as [14]

cgs = Al[Axg, + Bugg]. (40)

This steady-state error could then be minimized by choosing uyg as

* ~ ~
- - Ta=1
uze = (A71B)Ta"lax,, (41)
which, in this example, becomes [13,14]
*
Uis ™ -2.3447x8p’1 . (42)

In order to develop an expression for uy,(t), with the external distur-
bance given by Equation (21), the a priori assumption is made that uqy Will be
of the form

uge(t) = blcy, + ¢ t) = bw(t). (43)
The general solution of Equation (17) for e(t) can be written as
~ t ~
e(t) = eAtg(0) - f eA(f—'T)[Axap + Buggldz
o

(44)
t ~
- f eA(t=7) [Fu(1) + Bug,(t)]d~.

o

If Equation (21) and Equation (43) are substituted into the last term on the
righthand side of Equation (44), the error contribution due to the external
disturbance term can be expressed as

TS - 3
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oo

t ~ : t ~
Ag, = - f eA(t=7) (F + Bb)cydt - f eA(t=1) (F + Bb)cywdt
o

o

= - A-l(eAt-I)(F+Bb)c, - [A-2(eAt-1) - A-lt](F+Bb)c; - (45)

If one considers the response after the transients have settled out, Equation
(45) can be reexpressed as

Ag, = A-L(F + Bb)c, + A-1(A~1 + It)(F + Bb)ey .

(46)
Upon expanding the right-hand side of Equation (46), one obtains
0.0854 -0.1951 1+b
"7 129 -o.6098| \ 1e2n)
(47)
-0.35 + 0.0854t 0.1023 - 0.1951t 1+b
' -0.9591 + 1.829¢ 0.015 - 0.6098t 1+2b 1
which can be rearranged to the form
-0.1097w - 0.2477w =0.3048w - 0.145w
Ag, = )+ .] b (48)
1.2192w - 0.9441w 0.6094w - 0.9291w
Let Equation (48) be represented as
Bg, = upb + uy . (49)
One would like to have
uib +uy =0 (50)

but this is not attainable in the case of this example. If the norm minimiza-
tion criterion is applied, one chooses b such thatm[ Ae,, (|15 minimized.

Doing this, that b of minimum norm which will minimize the norm of Ag, (see
Section V) is found to be

b* =~(up) Tuy (51)
where[13]

T 4T
ul = (uuple’) . (52)

When the appropriate substitutions are made from Equation (48) into Equation
(52) and Equation (51), the results obtained are as follows,
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8 u - [(-0.3048w - 0.14569, 0.6098w - 0.92918) (:294%¥ - 8:%23?:)] luy

' -0.3048w - 0.1454w , 0.6094w - 0.9291y
0.4643w2 - 1.0438ww + 0.8843w2  0.4643w2 - 1.0438ww + 0.8843w2) °

N

N (53)

-

N pr = 0:7764w’ + 1.6167ww - 0.913242

3 . 4
0.4643w2 - 1.0438ww + 0.8843w2 (34)

For the purposes of these examples, it will be assumed that w and ; are
obtained from an i1deal disturbance state reconstructor.

A digital simulation was written for this example. Several runs were nmade
with various values for the coefficients describing w(t). The results are
shown in Figures 2 through 9. In each case, three curves are given. One
curve represents a case where ug = 0. One curve is for the controller
designed in this section. A third curve, which is shown for purposes of

. comparison, 1s for a case where ujy was designed under the assumption that w
ot was a constant disturbance. With this assumption, when ug4y is designed to
- minimize the contribution of the external disturbance to the steady-state
% error, the result is

- udw = -1.6723z. (55)

-~ Figures 2 through 5 show the resulting set-point error magnitude for

- various target set-points and external disturbances. Figures 6 through 8 show

i the gset-polat error magnitude and the error components for a case with zero

- target set-point and changing external disturbance parameters and Figure 9

- shows w(t). As can be seen from the plots, the controller with ugy designed

- using the isobasis technique with norm minimization does not result in
improved performance over the controller designed to minimize egg when w is
assumed constant.

. Another minimization criterion which could be applied would be to design
o) udy such that Asy] or Agy2 is steered to zero, i.e., design ugy such that the
f direct effect of the external disturbance on €] or €2, respectively, is

y completely absorbed. If one follows this approach, the parameter b would be

- designed as follows. First, assume that e] is a critical-state variable and

that the direct effect of w on €] 1s to be absorbed. From Equation (48), one
has that

Mgyl = =(0.1097w + 0.2477w) - (0.3048w + 0.1454w)b. (56)

In order to obtain Agy] = 0, one thus requires that

T - _ 0.1097w + 0.2477w
5 b * - 5.3048y ¥ 0.1454% ° ‘ (37
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Figures 10 through 15 show results for two cases when Equation (57) is used to
define uy,. As can be seen in Figures 11 and 14, in each case ¢)(t) was

_steered to zero. However, the total set-point error (Figures 10 and 13) was

not improved over that obtained by using uy designed to minimize €gg*

Next, assume that ) is the critical-state variable and design U4y tO
absorb the direct effect of w on €. Again, from Equation (48), one has

Aggn = (1.2191w - 0.9441w) + (0.6094w - 0.9291w)b. (58)

In order to obtain Ag,y = 0, one requires that

b= - 1.2192w ~ 0.9441w . (59)

0.6094w ~ 0.9291w

Figure 16 shows results obtained for the case used in Figures 10 through 13
when Equation (59) is used to define uy,. As can be seen, this controller
produced unacceptable transients. This points up a caution in the use of this
technique.

Since the parameters given by Equation (57) and Equation (59) to define
ug,(t) have time varying functions in their denominators, the possibility
exists that some combination(s) of the constants Co» ¢ defining w(t) may
result in a zero in the denominator thus causing an infinitely large value to
be input by the disturbance minimizing controller. For the two external
disturbances used to generate the plots of Figures 10 through 16, 1i.e.,

w(t) =1 + ¢ (60)
w(t) = =2 -5t (61)

a check of the denominator of Equation (57) shows that no positive value of
time exists at which uy, would go to infinity. However, the denominator of
Equation (59) will go to zero at t = 0.525 seconds for Equation (60) (which
gives the resulting peak in the response shown in Figure 16) and at t = 1.125
seconds for Equation (61). A practical implementation would thus require a
limit on the allowable magnitude of u4,. Figures 17 through 19 ghow the
results for w as in Equation (60) when the magnitude of uy, is limited to +50.
From Figure 19 it can be seen that g;(t) is steered to near zero and a com—
parison of Figures 17 and 10 indicates that choosing uy, to give Agyy = O does
reduce the total error over the case where uy, is chosen to give Ag, = O.
However, in neither case is the total error less than that obtained using the
controller designed to minimize ggq4.

B. With Unallocated Disturbance Minimizing Control Vector

In Part A, the disturbance minimizing control uy was allocated as uy =
ugg + uy, and uyg, was designed to minimize the norm of the steady-state set-
point error contribution given by Equation (40). As was seen, the performance
of the controllers designed in Part A was not as good as that of the control-
ler designed to minimize the steady-state error under the assumption that w(t)
was a congstant. In this section, the isobasis design technique will be
applied with an unallocated disturbance control vector.
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" Since the set-point error is a constant, the a priori assumption will be
made that uy is of the form

ud(t) = b(co + ¢t + CZ), (62)

where ¢y 1s included to represent the fact that the set-point disturbaunce is
constant. The general expression for &£(t) is thus given as

‘f ®(t) = Ae(t) - [Axgy + Fu(t)] - Bug(t). (63)

The general solution of Equation (63) for e(t) can be written as

~ t ~
e(t) = eAtg(0) - f eA(-t"T)[Axsp + Fw(t) + Bug(t)lde
o]

~ t ~
= eAtg(0) - J/. eA(t=T) [Axy, + Fe, + Bb(c, + cp)]dt
o
t ~ (64)
- f EA(t"T) (Fcl + Bbcl)‘t‘d’t
o
= eAte(0) - A"l(eAt - I)[Axg, + Fc, + Bb(cy + cp)]

[A-2(eAt - 1) - A-lt](F + Bb)c,

Again, 1f one considers the response after the transients have settled
out, Equation (64) can be reexpressed as

e(t) = XLI[AXSP + Fc, + Bb(c, + c3)] + XLI(X'I + It)(F + Bb)cyl . (65)
When the appropriate substitutions are made into Equation (65), the result is
e(t) =

1.829 -036098 Zbcz + (1+2b)c°

-0.35 + 0.0854t  0.1023 - 0.1951t] [1+b
* [-0.9591 +1.829t 0.015 - 0.6098t ] 1420)
. (66)
0.0854xgp,1 = 0.1097w = 0.2477w
) 1.829xgp,1 + 1.2192w - 0.9441w
+ b.

(:0.30A8c2 - 0.3048w - 0.1454w

0.6094cy + 0.6094w - 0.9291w




If Equation (66) is written in the form
e(t) = uyyb + uy (67)

then that b of minimum norm which will minimize the norm of e(t) is found to
be given by

T
bk = -(ul)fuz = -(l.lful)"1 ujug . (68)

When Equation (68) is evaluated, the resulting expression for b* is,
b* =

[1.0886(cy+w)=1.7117W]Xg5 140, 7764wl+(0.7764w=0.4498w)co-1.6166wirt0.9132w2 ]
o.4643c§+o.9286c2w-1.0438c2a+o.4643w2-1.oasew&+o.8843a2

(69)

It should be noted that if w(t) is assumed to be zero, the corresponding
controller using b* from Equation (69) is

ug = ~2.3447xgp.1 , (70)
which is the result obtained in Equation (42).

The digital simulation from Part A was used to generate results with b* as
given by Equation (69). The two cases given by ug = 0 and uy designed to
minimize egg were again included for purposes of comparison. Results are pre-
sented in Figures 20 through 24.

As shown in Figure 20, when w(t) is a constant the controller from this
section and that designed to minimize ess give identical results. Figures 21
through 24 repeat the cases shown in Figures 2 through 5, respectively. A
comparison of Figures 21 and 2 shows that with no interaction possible between
the set-point and external disturbances (since the set-point is the origin),
the disturbance minimizing controllers of Part A and Part B give identical
results. When interactions are possible, i.e., neither the set-point nor
external disturbances are zero, a diversity of results occurs. Comparing
Figures 22 and 3, it can be seen that the controller of Part B gave better
overall results than did the controller of Part A. A comparison of Figures 23
and 4 shows that the controller of Part B resulted in much better performance
than did the controller of Part A, except around a time of 3.5 seconds, with
zero error at two different times. However, in comparing Figures 24 and 5 it
can be seen that the controller of Part B gave slightly better results between
a time of 2 and 5 seconds, and much worse results between a time of 5 and 9
seconds, as compared to the controller of Part A. It is also apparent that,
except possibly for the case shown in Figure 23, the controller designed to
minimize €35 still results in the best overall performance.
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VII. DISTURBANCE MINIMIZATION WITH w(t) = cysinat

This section will apply the isobasis design technique to the state set-
point regulator example with an external disturbance of the form

w(t) = cysinat . (71)
For this case, the a priori assumption is made that uyy is of the form

ugye(t) = bcysinat = bw(t), (72)
and uy, is as shown in Equation (42).

That part of the solution of Equation (17) for e(t) which is due to the

last term on the right-hand side of Equation (17) will again be found, with
u4, as given by Equation (72). In this case then, one has

t ~
Ag, = - [ eA(t=T) [Fw(t) + Bbw(t)]d<

t ex(t"f)(F + Bb)cysinawd<
f ) (73)

o

- - (1‘2 + 21)"1 (-Kainat - alcosat + eAtq)(F + Bb)e; .

The response after the initial system transients have settled out will again
be considered in designing uy,, thus, Equation (73) is rewritten as

ag, = R-1(Kw - wI)(F + BD), | (74)

where ’A\ = (“A'2 + aZI). From Equation (74) one can find that that b which is
itself of minimum norm and which minimizes the norm of Ag, is given by

b* = —[A-1(-Aw - wne]"R-1[-Aw - wIJF, (75)

When the appropriate substitutions are made into Equation (75), the following
is obtained,

-Je + .
At 1 3.762 + o2 1 101‘
A = DET (76)
-10.72 0.16 + a2
where DET = o - 3.602a2 + 10.76 , an

Ao~ . (1.182 + 1.36a2)w + (2.661 - o2)w
A-1(-Aw - wI)F = 55T . (78)
(-13.12 + 5.72a2)w + (10.16 - a2)w

o~ . (3.28 + 0.72a2)w + (1.56 = a2)w
A-l(-Aw - wI)B = — (79)

(-6.56 + 5.44q2)w + (10 - 2q3)w
38

DET




and
(A-1(-Aw—w1)B)T = [CA-1(-Aw—w1)B]T(A-1 (-Aw—wI)B]}F! (A-1(-Kw—ul)B] . (80)

When Equation (75) is evaluated, one has
cl]v'iz + c]zwﬁ + c]3€12

bt = - cp1W2 + cooww + coqwl (81)
where

c11 = 89.95 - 103.59c2 + 32.1a%

c12 = -187.28 + 145.55¢% - 18.964" (82)

c13 = 105.75 - 34.54a2 + 3o

c21 = 53.79 - 66.65¢2 + 30.11%

c22 = =120.97 + 130.732 - 23.24% (83)

c23 = 102.43 - 43.12¢% + 5o

The controller defined by Equation (72) using Equation (81) to Equation
(83) was added to the digital simulation of the set-point regulator example of
Section VI. Figures 25 through 31 show results obtained with the uq of this
section as compared to results with ug = 0 and uq designed to minimize eg4
under the assumption that w is a constant. As can be seen from these results,
the external disturbance minimizing control vector uj designed via the isoba-
sis design technique does provide better performance, in this case, than uq as
designed to minimize egg, except at low frequencies. An examination of these
figures shows that for the low frequency cases (Figures 25, 26, 30 and 3)
the controller designed to minimize e54 provided no, or at least a small,
decrease in the peak-to~peak amplitude of the sinusoidal external disturbance
effect over the case with ug = 0. However, as the frequency of the extermal
disturbance term increased, this controller resulted in an increase in this
peak-to-peak amplitude. The controller designed in this section, on the other
hand, generally resulted in a decrease in this amplitude. The exceptions were
for the two cases where a = 1 rad/sec. As the frequency increased, this
decrease became substantial.

In order to obtain a better indication of the performance obtained via use
of the 1sobasis technique for a sinusoidal external disturbance, several sets
of runs were made. The first set was for a case with xgp 1 = 10. Figure 32
shows the percent by which the peak-to-peak magnitude of the sinusoidal com—
ponent of the error was reduced, as a function of the frequency of w(t), by
using uq as designed in this section. Figures 33 and 34 show the percent
reduction, as a function of the amplitude of w(t), for frequencies of 3 and 10
rad/sec, respectively. Figures 35 through 37 present similar data for a case
with xgp,1 = ~5. All data in each case was obtained after the initial tran-
sients had settled out. As can be seen from examination of Figures 32 and 35,
for frequencies above 2 rad/sec (with amplitude held constant) the disturbance
minimization controller of this sectfon did reduce the amplitude of the sinu-
soidal contribution to the total error, as compared to both the uq = O case
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and the case with uy designed to minimize €gge For frequencies below about

1.5 rad/sec, the controller designed to minimize €gg 8lves better performance.
) At frequencies above about 25 rad/sec, it was difficult to measure performance
3 accurately due to the small amplitude and increasingly erratic nature of the

sinusoidal component of the response produced by the uy of this section.

VIII. DISTURBANCE MINIMIZATION WITH w(t) = cect
: . This section will apply the isobasis design technique to the state set-
. point regulator example with an external disturbance of the form
w(t) = cet, ) (84)
For this case, ti: a priori assumption is made that uy, is of the form
ug,(t) = bced = bw(t), (85)
and uqg 1s as shown in Equation (42).
That part of the solution of Equation (17) for e(t) which is due to the

last term on the right-hand side of Equation (17) will again be found, with
uy, as given by Equation (85). In this case then, one has

t ~
Ag, = - ‘O/ eA(t=T) (F+Bb)cedW

= - (oI-A)~l[edIt-eAt](F+Bb)c. | (86)

AIf only the response after transients have settled out is considered, Equation
- (86) can be rewritten as

ag, = “R-1(r+Bb)w , (87)

where lA\ = ql -1a.

3 From Equation (87) one finds that that b which is itself of minimum
. norm and which minimizes the norm of Ag, is given by
: b* = ~(A-1Bw) "4-1pw. (88)

Evaluating the terms in Equation (88) results in

A —~ -M'Z _0064-1
: A=l -4= P ozsl (89)
o=V, J
' "e-0.28 0.647
A 1 &
A7 = o 6 a*2 0
53
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where
DET = o + 1.72a + 3.28, (91)
Acla. v atl 2(a=1) DET
(A-1Bw)" = \ ——— |, —— == (92)
52-6at5 52-6a+5 ( ">
and .
p# = - 30%-8.640+8.36 (93)

5 a2=6 kS

The controller defined by Equation (85), using Equation (93), and by
Equation (42) was added to the set-point regulator digital simulation.
Results are presented in Figures 38 to 45 for a case with the origin as the
target setpoint. Data is included on each figure for the uy = O case and the
case with ugy to minimize gg5. From Figures 38 to 40, for cases with negative
exponents in w(t), it can be seen that the isobasis controller design provides
the lowest error. From Figure 41, however, it can be seen that as a becomes
increasingly negative, the isobasis controller loses its advantage. Figures
42 through 45 present results for cases with positive exponent values in w.
The isobasis controller provided the lowest overall error in all cases. For
the case in Figure 45, the controller designed to minimize €gg Produced an
error twice as large as for the results shown. Figures 46 through 49 present
results for two non~zero target set-points. The results are mixed for these

four cases, but the isobasis controller can provide smaller errors in some
cases. ’
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IX. SUMMARY AND CONCLUSIONS

The purpose of this report was to present results of the application of a
disturbance minimization control design technique, called the Isobasis design
technique, to a state set-point regulator problem with time-varying external
disturbance inputs. The isobasis design technique makes the a priori assump-
tion that the disturbance control vector is composed of some combination of
the same basis functions which describe the disturbances.

Section VI presented results for disturbance minimization when an exter-
nal disturbance of the general form w(t) = c,*cit was applied to the plant
described in Section IV. In Part A, an allocated disturbance minimizing
control vector was developed. The norm minimization and critical-state
variable methods were illustrated. It was shown that the isobasis technique
provided no advantage over a controller designed under the assumption that w
was a constant. In Part B, an unallocated disturbance minimizing control vec-
tor was developed. It was shown that with this approach, the isobasis
designed controller can provide performance equal to, or better than, that
provided by the controller designed with w assumed constant. The performance
improvement does not, however, occur in all cases. -

Section VII presented results for the isobasis technique when an external
disturbance of the form w(t) = csinat was applied to the plant. It was shown
that the isobasis designed controller can provide significant reduction in the
amplitude of the sinusoidal component of the error. Results were presented
for two different target state set-points to show the performance of the
controller as a function of the frequency of w(t) and of the input amplitude
of w(t).

Section VIII presented results for the isobasis technique when an exter-
nal disturbance of the form w(t) = ce ot was applied to the plant. It was
shown that the isobasis designed controller can result in improved performance
for this external disturbance also, but again, not consistently.

As these example results have shown, the isobasis design technique
obviously did not produce the best disturbance minimizing controller for all
external disturbances examined or even for all target set-points with the same
external disturbance. It was shown that it does have the potential of pro-
ducing a controller which will perform well in reducing the error between the
plant state and the target staté set-point. 1Its application should, there-
fore, be considered in cases involving time-varying external disturbances.

In the Appendix, a definition is given for the "utility” U of time-varying
external disturbances. Examples are presented to illustrate the concept of
disturbance utility. Two external disturbances were considered: one was w(t) =
¢y + c1t, the other was w(t) = csin(at).
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APPENDIX A

UTILITY OF TIME-VARYING EXTERNAL DISTURBANCES

In the case of state set-point regulation/stabilization problems
involving a linear, time-invariant plant and a constant external disturbance,
it was shown in Reference 13 that the steady-state error is the residual part
of the sum of the set-point and external disturbance vectors which lie in the
orthogonal complement of R(B) and is hence unabsorbable by the control vector.
It was also shown that the steady-state error may be reduced, independently of
the control vectors, by a fortuitous combination of the set-point and external
disturbance vectors, except in cases where the get-point is the origin. The
“"utility” U of the external disturbance was defined in Reference 13 as

U={|es||wmo = || €ss || wtor (a-1)

If U > 0, then w can actually aid in reducing egg. On the other hand, if U <
0, then the presence of w increases the value of ¢ Some examples of
disturbance utility were presented in References lg and 14,

In the case of time-varying external disturbances, as cousidered in this
report, the definition of U given by Equation (A-1l) must be modified to

U= o) [famo =[] (&) ||wpor @a-2) -
Depending upon the system and the particular w(t), it is possible that U could
be always positive, always negative, or positive until a certain time and then
negative thereafter, or vice versa. Also, the utility could exhibit a
periodic behavior as a function of time, being alternately positive and
negative. Several examples will be presented in this section to illustrate
disturbance utility for the plant model given by Equation (18) and several
types of time-varying external disturbance.

For the first example, the external disturbance will be given by

w(t) =1 + ¢t. (A-3)

From Equation (17), with uy = 0, the solution for e(t) is found as
~ t ~
e(t) = eAt g0) - f eA(t-r)[Axsp + Fw(t)]dT . (A-4)
°
Let the target set-point be xg, = (-5, 0)T. With w(t) = 0, one has
t ~ ~
| ee) ||wmo = || f eA(t=Dd (Axgp) || = ||-a"1Axg, || (A-5)
o
1f the initial transients given by 2Atg(0) are ignored. Making the

appropriate substitutions into Equaction (A-5), the result {is

|| ey || wmo = || (0.427, 9.145)T ||= 9.154. (A-6)

With w as given by (A-3), the norm of e&(t) is found as
A-1
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M =t) ||wso = || ft eA(t-1) [Axgp + F(1+7)]dv | |
o

||-A"Y(Axgp + B) = A"1(A"L + 1) || (A-7)

- V1.5¢2 - 21.5¢ + 79.4 .
In order to find the time at which U changes sign one sets
|| et) ||wmo = || &) [{upo = o (4-8)
Making the substitutions from Equations (A-6) and A-7) into (A-8) results in
1.5t2 - 21.5t - 4.4 = 0, (A=9)

which, when solved, yields a positive time of t = 14.5 seconds. In this case
then, at t = 14.5 seconds the utility of the external disturbance goes from
positive to negative, i.e., from aiding in error reduction to increasing the
error magnitude. A digital simulation was written for this example and the
result is shown on Figure A-l. As can be seen, e(t) for the case with w = 1+t
exceeds &(t) for the case with w = 0 after t = 14.5 seconds.

If the target set-point is assumed to be xgp = (10, 0)T then
|| &t) || wmo = || (-0.854, -18.29)T || = 183.1 (A-10)

[| ) ||wpo = || (0.1097¢ - 0.497, -1.219¢ - 18.566)T ||

= V1.5¢2 + 45.16t + 345.1 . (A-11)
From Equation (A-8) one finds that for this set-point,

1.5¢2 + 45.16t + 9.9 = 0, (A-12)

and there are no positive values of t which will satisfy Equation (A-12). For
this set-point then, the external disturbance always acts to increase the
error (since at t = 0, U = -9.9). This case was also simulated and the result
is shown on Figure A-2. As can be seen, e(t) for the case with w(t) =1 + t
is never smaller than e&(t) for the case with w = 0,

As another example, let
w(t) = gin(t) (A-13)

with xgp = (10, O)T. In this case, one would have

t t ~ .
|| &t) ||wpo = | |- f ex(t‘f)dr(Axsp) - f At Dginwd<(F) ||
[+ o

= || ;Flesp -~ Q'I[—;;in(t) - Icos(t)IF ||, (A-14)
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where & = A2 + 2I. When Equation (A-14) is evaluated, the result is

(t) - | (1)
JECRIES 18.79 + 1.1lsin(t) - 1.336cos(t)

The norm of the error when w = 0 is given by Equation (A-10). The utility of
the external disturbance of Equation (A-13) and the given set-point is found
from Equations (A-15) and (A-10) to be

0.854 = 0.355sin(t) - 0.232cos(t)
U = 183.1 - . (A~16)
18.79 + 1.11sin(t) - 1.336cos(t) ’

The digital simulation used to generate the data in Figures A-1 and A-2
was modified to include the w(t) as given by Equation (A-13) and to calculate
U as given by Equation (A-16). Figure A-3 presents U versus time and Figure
A-4 presents the corresponding error versus time data for this second example.
If Figures A-3 and A-4 are overlaid, the agreement can be seen between the
regions of positive utility and the regions where the error with w # O is less
than that with w = 0. Figures A-~5 and A-6 present similar data for a case
with w = gin(t) and Xgp = (=5, 0)T. Again, 1t can be seen that the utility of
w(t) alternates between positive and negative.

Figure A-7 is a plot of the state space showing the external and set-
point disturbance vectors and the line of action, R(B), of the control
corregsponding to the case of Figure A-5. Note that the vector representing Fw
has an arrowhead at each end. This represents the fact that w(t) = sin(t) and
w(t) varies between +l1 and -1 as a function cf time. The component of
Axsp lying in R(B)L is shown and is denoted by a. Since w(t) varies with
time, the component of Fw lying in R(B)L will also vary. This component is
also shown in Figure A-6 and is denoted by £.

In Reference 13, two criteria were given which must be satisfied in order
for w(t) to exhibit a positive utility. The first criterion is a magnitude
criterion,

HEL] < |l2= |l (A-17)
and the second is an angle criterion,

90° < 8¢ 270° , (A-18)
where 6 18 the angle between the two vectors (2a+f) and (f). From Figure A-7,
it can be seen that Equation (A-17) is satisfied for all t. The angle
criterion, however, is only satisfied when "w is positive, i.e., when sin(t)
is positive. Since a is given by [13,14)]

T = (1 -88D)axg, = (=4, DT, (A-19)
the magnitude of ¥ 1s found to be

[{= |]|= 4.47 (A-20)
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From the magnitude criterion Equation (A-17), even when 6 satisfies the angle
criterion, if llf ||is greater than ||2a II, the utility of w(t) will be
negative.

In order to illustrate how utility changes with w(t), two additional rums
vere made for the xg, = (-5, 0)T case. Figure A-8 shows the results for w(t)
= 10sin(t), i.e., ||f ||- 4.47, and Figure A-9 shows the results for w(t) =
20sin(t), i.e., er = 8.94. As can be seen, as the magnitude of f
approaches the limit set by Equation (A-17) the utility of w(t) approaches a
condition where it will be zero for all t (since the error with w # O is
approaching a condition where {t will always be greater than for the case with
w =0,
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