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Introduction
The aim of the present study was to study both experimentally and
analytically the effect of the surface conditions on the shock
reflection phenomenon.
In general, the study was divided into two parts:
1) the reflection of a planar shock wave over rough surfaces, and
2) the reflection of a planar shock wave over a liquid surface.
In accordance with these two parts, the following final report is

also divided into two parts.
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PART 1

The reflection of a planar shock wave

over rough surfaces.




Abstract

The effect of surface roughness on the transition from regular (RR) to Mach
reflection (MR) over straight wedges in pseudo-steady flows was investigated both
experimentally and analytically.

Two models for predicting the RR ¥ MR transition in the (Ms,eW )-plane were
cdevel oped (Ms is the incident shock wave Mach number and ew is the reflecting wedge
angle). Their validity vas checked against experimental reosults. Since tne
experimental results are limited to the ranges 1 < Ms € 2and 3.5< M € 4 and surface
roughness heichts of 0 < ¢ < 0.2 am, the provosed models are applicable to these
rances only. In the first model (the pressure loss mndel!, the transition fram PR
to MR 1s assumed to be related to the pressure loss due to the increased friction
b2tween the flow and the rough surface. In the seconu model (tac boundary layer
displacenent thickness model), tixv- kR € MR transition is related to tne bounrlery layer

displacement thickness which in turn depends on the surface roughness.

b




It was snown that the bourriary layer displacenent tnickness §* coull bu
8, v
characterized by the parameter G = _T* (where GL is the laminar sublayer

thickness, V, 1s the shear velocity and v is the kinematic viscosity). This
paraneter was found to be constant for a given size of surface roughnesg-¢ 1.e., G was
found to be independent of the incident shock wave Mach number - Ms . OWing to this

fact G was termed the "roughness characterizer."
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Introduction

- when a planar incident normal shock wave encounters a sharp corner in a shock

tube, four different types of reflection can occur depending on the incident shock

wave Mach number —Ms and the wadge angle - 8 . They are:

1) regular reflection - RR (figure la),

2) single-Mach reflection - SMR (figure 1b),

3) complex-Mach reflection - QYR (figure 1lc), and

4) double-ttach reflection - DMR (figure 1d).

The latter tiree types, i.e., MR, QMR and DMR are usually termed as Mach reflections
- MR .

The RR # MR transition criterion in pseudo-stealdy flows (the "“detachment
criterion") was first introduced by von Neumann (1963). In developing this criterion
von leumann assumed that:

1) the flow is ideal, i.e.,. w = 0 and k = 0 (¢ is the dynamic viscosity and Kk is
tne heat conkiuctivity),

2) the flow is two-dimensional, and

3) the flow is self-similar and hence pseudo-steady.

As shown by Ben-Dor & Glass (1979), the detachment criterion can be expressed as

follows:

=0 (1)

WiCre 61 is the flow ceflection through the incident snock wave - 1, and sz is the
max1imum nossible flow deflection through the reflected shock wave - F. This
formulation is based on the fact that when the frame of reforoence is attoched to tihe
refloction point -G (see figqure 2) the {low ahead of the incident shock wave - i,
walch now moves parallel to the wedge surface at supersonic velocity Vo T us/cosew

( ug is tne incident shock wave velocity), is deflected towards the wedge by an

angle 6, . Thus tne supersonic flow behind the incident shock wave -1 is deflected

‘ '.‘-' ‘-.n“. ¥ :
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towards the solid surface. In.order to necotiate the solid surface it must experience a

receflection while crossing tie reflected shock wave r to boecome acain parallel to
£he wedge surface. Wwhen the angle 62 exceeds the maximum deflection anyle %&n' the
reqular reflection becomes theoretically impossible. Consequently equation (1)
represents the "detachment" criterion of von Neunann,

However, the experimental findings of von Neumann (1943), Smith (1945), Taub
(1947), Bleakney & Taub (1949), Fletcher (1950), white (1951), Law & Class (1971),
Henderson & Lozzi (1975), Ben-Dor (1978), Hendlerson & woolington (1983) and Hornung &

Taylor (1982) indicates tnat the RR exists beyond the predicted theoretical limit of

the "detachment"” criterion.
The transition line predicted by the “detachment" criterion (equation 1), as
well as our experimentally obtained RR I MR transition points are shown in
fiqure 3. The persistance of the RR beyond the limit predicted by the
detachment criterion is clearly seen. Since the von Neumann paradox was
first noticed, many scientists [Henderson & Lozzi, (1975), Ben-Dor & Glass (1979),
Honderson & Woolmington (1983), Hormung & faylor (1982)] directed their efforts at
resolving this paradox. Probably the most promising approach was tne one sugyested by
Hornung & Taylor (198Z). They argued that the rc¢.son for the existence of the von
lieunann paradox is the fact that the transition line vas derived by solving the
inviscid flow conservation equations whila2 the actual flow was viscous. <onscequently,
they concluded that by accounting for viscous effects tihe von tisumann paradox could ix
resolved. Hornung & Taylor (1982) accounted for the viscous ~ffects by applying tne
pboundary layer displacement thickness concept. 1Tne obtaine: results justitisi their
QODYCAch.
Takayama, Gotoh and Ben-Dor (1981) presentoed oxperinontal rosults regarding N pa
“k transition over rough surfaces. Their results arce reproduce: in figure 4. The

difference between the actual transition and the values predicted by the detachment

criterion (solid line) is quite clear. This difference incrcases as the roughness




neight increases. For =xample, at Ms = 4 and € = 0.2 o, tne actual wedge angle at

which the RR # MR transition occurs is about 20° lower than that vredicted by the
"detachment" criterion,

The fact that the surface roughness has such a meaningful influence on the
transition wedge angle on one hand, and the fact that shock reflections, in nature,
occur over rough surfaces, has led to the recognition that understanding the
reflection process over rough surfaces is of yreat importance. Consequently, models
capable of predicting the RR ¥ MR transition over rough surfaces were sought. This
was further stressed in the first concluding remark of the 3rd Mach Reflection
Symposium (held in Melbourne, Austrlia, in August 1983) whicn said: "It appears to be
the boundary layer which causes the delay of the transition from reqular to Mach
reflection of pseudo-stationary shocks beyond the detachment or maximum deflection
point for reflection from a plane surface. This effect is more pronounced in the case
of rougn surfaces."

Based on the foregoing discussion the RR MR transition process was investigated
votn experimentally and analytically. Since Hornung & Taylor (1982) were able to
2xplain the von Keumnann paracox by including the viscous effect in their solution of
the flow field, it was “~cided to base the present wmodels for predicting the RR 2 MR
transition over rouygn surfaces on “viscous mechanisms."

Subsecuently, two different approaches turough which the effect of viscosity can
bi: accounted for will wve proposed. In the first, tne pressurce loss due to friction is
integrated into the invisciu conservation equations, while in the second the wedge

geonetry is modified using the boundary layer Jisnlacement thickness cencept.

Pxprerimental Kesults

The experimental results reportec herc were obtained using the 40 x B0 mm shock

tube of the IHSM Institute of High Speed Mechanics, Tohoku University, Sendai, Japan.

An illustration of the "saw-tooth" rougliness imposad on the tested wedge anodels is




given in figure 5a. For the first set of experiments four models (each 4 cn long)

with roughness of ¢ = 0.01, 0.02, 0.08 and 0.2 cm were preparcd. The effective wedge
angle of the models could be adjusted fram outside the' shock tube test section as shown
in figure Sb. The experimental study covered the range of 1< Ms < 4.

The shock wave velocity was measured using Kistler 606 pressure tranducers, ah
Iwatsu UC 7641 digital counter and an Iwatsu DM 901 recorder. The pressure tranducers
were mounted 120 mm apart just ahead of the test section. The attenuation of the
incident shock wave was found to be negligibly small.

The test gas was pure nitrogen. The initial pressures were in the range of 3¢ Po <
150 torr. For the investigated range of Mach numbers (1 < Ms € 4) the nitrogen gas
can be assumed to behave as a perfect gas. Therefore, the initial pressure has no ‘
effect on the reflection phenomenon. For all the experiments the initial temperature
was about To= 300K.

An optical diagnostic (shadowgraph) was used for studying the pseudo-steady
reflection phenamenon. A pulsed ruby laser (6943 A) was used as a light source.
Typical shadowgraphs are shown in figures 6a to 6d. Mach reflection over a wedge
haviny roushness height of € = 0,02 cm is shown in figure 6a. Reqular reflection
over the same wedce is shown in ficure 6b. Fiarues 6¢ and 6d show:-a.MF._and a RR
over a wedce havina rouchness : height of ¢ = 0.2 an, respectively.

The RI 2 MK transition angle was determined in the following way. For a given
value of the incident shock wave Mach number - Ms the wedge angle 8., was gradually
increased until a RR was obtained. Then, tihe valuc of the triple point trajectory
angle x (deduced from the shadowgraphs) was plotted in the (X,ew )-plane as shovn in
figure 7. T1he experimental results were then extrapoluted to x = 0, ‘the wedoe angle
at thls polnt was cnosen as the transition wedge angle - ew o This procedurce

’

yields Qw ¢y tO an uccuracy of +1°. The above-mentioned procedure was repeated for
14

Ms = 1.04, 1.12, 1.21, 1.44, 1.96, 3.58, 3.77 and 3.89.

The experimental results obtained for the four different models, as well as tne
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results obtained for a "smooth" model, are shown in fiqure 4.

It is apparent that the surface roughness (€) has a significant influence on the
RR 2 MR transition wedge angle for any given incident shock wave [Mach number. The
greater € is, the smaller is the transition wedge angle ew,tr‘ It is of interest to
note that the measured transition wedge angles over the smooth surface model does not
agree with the "detachment" criterion (these results confirm the von tleumann paradox) .
Had the surface been perfecty smooth, i.e., € = 0, the experimental results should
have agreed with the "detachment" criterion. However, since no surface is perfectly
smooth, the von Neumann paradox exists. In the following we will refer to a "smooth"
surface as hydraulically-smooth. Furthermore, it will be proven analytically that
a hydraulically smooth surface is a surface for which ¢ < 0.00517 am.

hnalysis
As mentioned previously the aim of the present study is to develop models capable

of predicting the RRZ MR transition over rough surfaces, i.e., models which will
shift the "detachment" transition line (solid line in figure 4) towards the

experimental results for any given roughness height of ~¢e.

General Assumptions

1) The flow is two-dimensional.

2) The flow field can be described by the mass, momentum and energy
conserrvation equations of inviscid flows with additional terms accounting for
viscous effects.

3) The flow is self-similar, and hence, can b made pscudo-steady by apprlying
the well-known Galilian transformation,

4) Real gas effects can be ignored, consequently the gas is assumed to ubey the

equation of state of a perfect gas. (i.e., P = pRT).




The Conservation Eguations

The wave confiquration of a Pk 1s snown schemiatically in figure 2. Fmploying the
foregoing assumptions, and attaching the frame of reference to tie reflection point G
(in such a way that it moves along the wedge surface together witin point G) results in
the following nine equations which completely describe the flow field in the vicinity
cf the reflection point ~ G,

across the incident shock wave 1i:

continuity

PUoSiNg, = 0qvySinle =6 ,) (2)
tangentional momentum

oo'Cal’lq)O = p1tan(¢o-61) (3)

nornal mamentum

2.2 2.2, _
Py * bV, sin“¢ = P (1-F,) + pqV4 sin” (4 0,) (4)
enerqgy
1.2 .2 122,
hy + 3V, sing = hy * 3 vy sinle5ey) (5)

across the reflectad shock wave L@

continulty

PV, Sine,y = o, v,sin(¢,-6,) €)

tangentional momentum

p1tan¢1 = pztan(¢1-82) (7)

Ol b I A A A . Rt i S CERaCTE R S
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normal momentum

2 .2 _ 2.2,
P1(1—FP) *+ o4V Tsiny, = P2(1 Fp) + p,V, sin (¢1 62) (8)
energy
12,2 1.2..2, _
hy + 3 vy"sin ¢, = h, + 5 v, sin"(¢,-0,) (9)

and the boundary condition for the RRZ MR transition:

B, + 6., = a (10)

Setting Fb =0 and ¢ = 0 results in the well-known set of equations
describing a regular reflection in an inviscid flow. The solution of these equations,
which ylelds the "detachment" transition line (shown in {igures 3 and 4), can be found
in .Ben-Dor'S (1978) work. Note that vy =u's/oosew, ¢O = go-ew '

Po anqu)are known. The enthalpy h is related to the tempertaure through h = CPT
and the density p can be calculated from the equation of state for a perfect gas,
i.e., o = P/RT . The definitions of ¢_, ¢4, 6 and @, are shown in figqure 2.

4

Tne Roughness Efi{oct on the Turpulent [iow

Usually, surfaces over wnich fluids {low cannot be considered as perfectly
smooth. Lxperiments have indicated that the roughness height -e significantly
contributes to tne friction coefficient - {. Owing to this fact it is necossary to
acvelop axiels whicn will relate the friction coefficient £ to the rougihness
nelcht - €. ws is done in tne following.,

tlasius [uehlichting (1U9%2)] snowed experimentally that for Ywaraulically stooth
pipes the friction coefficient f depends solely on the Reynolds number (RFe) . lLopf
(1923) found expurimnentally tnat for very rougn pipes the friction coefficient f
deperdds solely on the relative roughness &Rk (R is the pipe radius). Furthermore, he

showed that for less rough pipes [ depends both on Re and ¢/R. These exporimental
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finlings sugaested that the considerad phenomencr: is controil.o<d by the tihilckne sy of
tne laminar sublayer - GL . Their conclusion was tnat tnhe -oninant fuctor in
determining the value of the {riction coefficient { 1is E/GL' when ¢ < GL (1.2., tihe
surface roughness is completely immersed iInside the laminar sublayer) the rovghness
has practically no effect on f, and the surface can be considercd as "hydraulically
smooth." On the other hand, for ¢ >> 5Lthe roughness has a dominant effect on f. 1In
such a case the friction mechanism is known as "wave drag" (Shames (1962)]. 1t was

v, 6
further shown by Schlichting (1962) that for any given size of roughness, " =

const ( Vx is the shear velocity and yis the kinematic viscosity). This finding lod

Sclichting to derive the following relation:

¢ £V,
I
L (11)
€V,
It 1s clear from this relation that — can replace £ and tuerefore b
v

L
considered as the Gominant factor in determining the value of the friction

coefficient.

™

Dasea on the experimental results of Nikuradsse (1933) it is a comron practice to

Jivide tne turpulent (low over rough surfaces intc three tlow zones [Shames (1buz)].

EV
1) hyiirculically smootn flow: %—-( 1 or —k <5 and f = £f(Re)
1 Vv
. : - € EVx
2) frictional transition flow: 1 < e <150r 5<— < 7 and f = £f(Re, ¢/R)
L Vv
. €V,
5} rougn flows = > 15 or - > 70 and £ = £(e/R)
L

Once e turbulent coaracter of tiae flow 1 Jefined, 1t 1s 1pnortant to nove
correlations relating the rousnness to the friction losses. As a basis for
constructing such correlations the following logaritamie velccity distribution low s

used s

3 x
v. "o (In—- - 1ng) (12)




Al Al Bk S Ar S 8 At i

-11-

where u is the time averags: veloci'y, a 15 & universal constant, y 1s tn: distance
coordinate measured from the surface and B8 1s o constant depending on the rougnness

height -~ e. The assumptions under which the logaritmic velocity distribution law was

obtained are given by Prandtl (1925). Detaile: derivation of equation (12) can be
found in Shames (1952). A comparison between the experimental results of Nikuraase
(1933) and equation (12) indicates that:
1) for a large range of Reynolds numbers and roughness heights, a_ = 0.4 .
2) for a hydraulically smooth flow

Ing = -2.2 (13)

for the frictional transition flow,

~2.2 < Ing € 0.8 (14)
and for the rough flow
eVy,

Ing = ln—;—-3.4 (15)

Based on these values of ay and B expressions for evaluating thie {riction
coefficient - f, for flat plates, were derived for cach of thne three tlos aones,  In
order not to limit the present results to any specific {low zone a urtferc:
analytical approach is taken in the present study. ils ¢pprouch 1s cutlined 1n tne
following.

Inserting the boundary comnxiition u, =u (fijure £) Into eqguation
y=6;,

(12) yielcs

Vv,
=L (1 2L i)
1 \Y)

< |eF

In the laminar sublayer the velocity changes linearily therefcre
T
W
o AT an

. : . 2
where T, 1s the shear stress on the surface. Inscrting the relation v*=rv/o




. v (18)

Canbining equations (16) and (18) yields:

G = l— {InG-1ng) (19)
™ Valp
where G = S
For a, = 0.4 equation (19) reduces to

G = 2.5(InG-1ng) (20)

Since g depends solely on the roughness height €, it is obvious from equation (20)
that so Joes G, i.e., for any given value of €, tne value of G is independent of the
flow properties. It was therefore decided to call G the "roughness characterizer".

v;sL

\Y

It should be noted that the roudhness characterizer G = is simply the
comon  Reynolds number in the usual form applicable to the inner layer. The
laminar sublayer thickness GL is fundamental in the evaluation of G. Indeed, G does
characterize the roughness effects, but should more properly be viewed as the ratio
of two length scales; GLand a viscous lengthv—v*~

For assessing the value of G appropriate to hydraulically smooth surfaces,
2lasius' results can be used. Blasius found [Schlichting (1982)] that the friction

coefficient fo: the considered case is yiven by:

-1/4
f =0.3164 Re,D (21)
uavD
waere Ré D= T . Eguation (21), whicn is known as the Blasius equation, was
14

corived for the following specific velocity profile:

u
u R (22)

(23)

equation (21) can be generalized to the followino form:




In this relation the velocity power exponent n depends solely on tne Reynolds

number (Shames, 1982). Mazor (1964) showed that C{n,G) has the following form,
Sn+1 2 2(nt1)
T L) e2) 1™ 6 O

G(n,G) =
(25)

Inserting n =-% into equation (2%) and recalling that for this value of n,

C(n,G) = 0.3164 [see equation (21)] yields for a hydraulically smooth surface
= 12.2468

Using this value of G in equation (20) implies that for a hydraulically smooth surface

Ing = -2.39

This value of 1InB is about 8% smaller than the value usually quoted in the
literature [equation (13)].

The value of the roughness characterizer - G for a frictional transition flow
can be determined from equation (20). As mentioned earlier, for a frictional
transition flow ~2.2 ¢ 1nB € 0.8 [equation (15)], thus by
inserting 1lng = 0.8 into equation (20), tihe lower value of G for a frictional
transition flow can be obtained.

Following this procedure one finally obtains:
- for the hydraulically smooth flow G = 12.2468
- for the frictional transition flow 0.5625 < G < 12.2406%
- for the rough flow ¢ < G < 0.5625

vodels for Predicting the Effect of the Surface Roughness on the RK £ MR Transition

As mentioned, the detachment criterion of von leumann (1963) Jdoes not agrec vith
experimentsl results. By accountiny for viscous effects, lornung & Taylor (1252) werc
able to explain the discrepancy.

For rough surfaces, where viscous effects are much more pronounced, the inviscid

model {equations (2) to (10)] predict the RR ¥ MR transition very poorly. In tne

et ettt e ettt e ; e
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following, two models for predicting the RR € MR transition over rough surfaces are
developed. The formulation of these models is similar to the inviscid flow model,
with additional terms accounting for viscous effects.

The Pressure Loss-Model

Viscosity results in pressure losses. Therefore it is natural to express its
effects on the flow field by introducing a pressure loss term in the inviscid
conservation equations. Since ahead of the incident shock wave the flow is
qulescent, only the pressures in states (1) and (2) [see figure 2] need to be
corrected. Consequently, a pressure loss coefficient FP' which depends on both the
roughness height € and the inverse pressure ratio across the incident shock wave - §
is introduced into the conservation equations for inviscid flow. This pressure loss
coefficient can be expressed as

AP = Fp(e,g)(P1-P (26)

5)
Tous equations (2) to (10) with FP#O and a = 0 represent the conservation
equations for the pressure loss model.

Takayama, Gotoli & Ben-Dor (1¢8l) showed that the pressure loss coefficient can be

expressed as f:llows:

Fle,8) = F, (1-¢)" (27}

wnere Fe depends on the roughness height € only and n is a constant; n can be found

fron the experimental results. Their experimental cata indicated that n = 7/9. The

n
o

Rk £ MR transition lines, as predicted by equations (2) to (10) for pro and o
were fltted to the experimental results of Takayama, Goton and Ben-Dor (1951) by
cnoosing appropriate values for Fe . The obtained results are shown in figure 9.

Tne values of F€ which resulted in the desired shift of the RR © Mk transition lincs

(to fit the experimental results) are listed in figure 9. It is apparent from figure

9 that the experimentally obtained transitions for hydraulically smooth surfaces can




best be described by Fe = 0.1, The value FC =0 corresponds exactly to the

"detacnment" transition criterion of von Neumann, [i.e., a perfectly smooth surface
(e=0)].

In order to complete this model, the values of Fs were correlated to tne
roughness height

- 545,45 62 + 31.73e¢ -0.012; for 0<e £ 0.02 om (28)

)
i

T
u

-4.63 62 + 2.55¢ + 0.35; for 0.02€ € € 0.2 em (29)

These correlations along with the measured values of (E; - € ) are shown in
figure 10.

In summary, the proposed mocdel should be used as follows. For any given value
surface rougnness e (in cm) one evaluates IFeusing equations (28) or (29). Then FP
is calculatea by equation (27). Subsequently this value is used in the conservation
equations [(2) to (10)]. It should be noted that for the pressure loss model a

[equation (10)] should be kept equal to zero.

The Boundary Layer Displaccment Thickness Model

The idea to account for the viscous effects through the boundary layer
displacement thickness is due to Hornung & Taylor (1982) who resolved the von Neumann
paradox by applying tnis concept.

The boundary layer displacement thickness -8 * is definei as the distance by
which the solid boundary would nave to be displaced if the entire flow was replaced by
a similar frictionless flow both having the same masc flow at any flow cross-scction,

Since the incident shiock wave was brought to rest by using a Galilian
transformation, the boundary layer displacement thickness in the present case is
negative (see fiqure 11).

In reality the flow associated with the RR is viscous, therefore solving it as an

mudh Sk an T S
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inviscid flow (figure 12a) is inadequate. If one is to use the inviscid conservation
equations, the geometrical boundary must be corrected in order to account for the
viscous effects. One possible way is by displacing the flow boundary (wall) according
to the boundary layer displacement thickness. The resulting f{low field is shown in
figure 12b. As can be seen the boundary condition for RR is no longer 91 + 62 =0,

The boundary condition that the flow obeys behind the reflected shock wave is

e1+62=a where a#0 . Therefore, at transition
61 + 62m = a (30)
or alternately,
B
2m
Tre = F (31)

wnere Fa - the boundary layer dissplacement thickness coefficient is defined as
F6 = u/e1 . Consequently, the solution of equations (2) to (lU) with
FP =0 and a #0 should provide the correct RR Z MR transition for
rougn surfaces since it accounts‘fbr the surface roughness via the displacement thickness.
In the following the relation between Es and € is developed. It is clear from
fiqure 4 that for any given value of roughness size ¢, the actual transiton points

shift away fram the "detachment" criterion transition line to smaller wedoe

angles. Thus, by selecting an appropriate value for Es the transition line cculd also

pe shifted to fit tne experimentul results.,

The required values of FG tor tne given valucs of Ms an! ¢ are listed 1n table
1. Inspecting these values indicates that in the range 1 < PE < 2 and 3.5 ¢ ng 4.0 Lg
1s practically independent of %s’ i.e., Es can be assunedd to riependa soley on g
Owing to this finding, in the subsequent discussions two separate ranges of g are
considered, 1 < Pg € 2 and 3.5 ¢ Pg < 4. The values chosen for F6 for the range 1 ¢

Ng ¢ 2 are shown in figure 13. It is apparent from figure 13 that the selected




values of FG reproduce the experimentally obtained RR Z MR transitions for any

roughness size ¢ fairly well.
The values of Fé and o which reproduce the experimental results for the two
ranges of the incident shock wave Mach number ranges are given in table 2.

The correlations between E‘6 and ¢ , based on the experimental results shown in

figure 13, are:

for 1 <M ¢ 2
s\

F, = -600 2 +38.6¢ + 0.006 0 <e g 0.02an (32)

Fs = -4.17 52 + 3.08¢ + 0.48 0.02¢e ¢ 6.2 am (33)
and for 3.5¢ M ¢ 4.0

F =9.45.45 €% + 37.13 ¢ -0.003 0 <e g 0.02 cn  (34)

F =-1.39¢> +2.47¢ + 0.31 0.02¢ ¢ ¢ 0.2 an (35)

Obviously for a perfectly smooth surface  =0) viscous losses can be ignored and
therefore,
fé = 0 (36)
Eguations (32) to (35) along with the experimentally deduced values of Fk and ¢
are plotted in figure 14.

In summary, the procedure for employing th2 boundary layer displacement thickness
model 1s as follows: for a given value of roughness height -€ (in c¢1) and incident
shock wave Mach number -~ Mg the value of F, 1s calculated from the appropriate
correlation [equations (32) to (36)]}. Then the conscrvation eguations {(2) to (1lu)]
are solved using the obtained value of Fe (with FP = (). Besides its ability to
reproduce the RR ¥ MR transitions for rough surfaces, the proposed model (the boundary layer
sisplacament thickness) can be justifled on piysical groumkls. It will be shown in the
following tnat for a yiven value of roughness beight - the slope of the boundary

layer ailsplacement thickness - §* at a specified point (whicihh will be termed “the

characteristic distancs Xchar ") 1s equal to the angle a which can be obtained from

the model described earlier Wihich is based on experimental results) for the same value
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of €. (Recall that ¢ = F6/61 is the eangle hetween the flow direction behind the
reflectel shock wave and the rrial reflecting surface (see figure 12b)), i.e.,

-1 dex

dx | (37)

o = tan

Intuitively, one might suggest that since the displacemnnt starts at the reflection
point G (figure 12b), equation (37) should be correct at xchar = 0. However, since
tan-1 gﬁ:.x;o = 90° and since a flow cannot follow a 90° turn instantaneously
it appears tﬁat equation (37) must hold for xchar + 0, Furthermore, following
Shirouzo & Glass (1982) and Mireles (1983) it is preferable to use the average slope
of the displaced boundary. Thus, equation (37) is replaced by:
_.‘] 6*
XXX gy (38)

In order to procead with the present analysis, an expression for the boundary

layer displacement thickness -&* of a compressible viscous flow over rough flat plates

is required. &an appropriate expression is developed in appendix A. The obtained

expression for &* (see equation A.17 in appendix A) is:

2(n-1) 3.297n 2n_ T
&% 3n+1 m, 3n+l 2 3n+1 2
2 -G =) ( ) (n+1 - =) (39)
X T2 ‘vz-vo‘x Tm

where C is a constant deperrding solely on n (equation A.18), n is the velocity profilc
exponent, which dependds solely on the Reynolds number (Shames (1932), p. 281}, G is

the roughness characterizer [defined by equation (19)], Ty, vy and v, are the flow temp-
eratuwre, the flow wvelocity and the kinematic viscosity behind the reflected shock wave
respectively, Tm is the average temperaturec inside the boundary layer [defined hy
equation (A.82)] and Vo is the plate velocity on which the boundary layer develons.

Inserting equation (39) into eqguation (38) yields:

2(n-1) 3.2975n v 2n T
-1 3n+1 m, 3n+1 2 3n+1
a = tan G (=) ( ) (n+1 - =)
T2 vz-vb X Th (40)
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There are three unknown parameters in the right hand side of equation (40); they
are:

1) the roughness characterizer - G which in the proposed model depends only on
the roughness height - ¢ (this fact is yet to be proved),

2) the velocity profile exponent - n which according to Shames (1982) should

decrease with increasing Reynolds numbers (this dependence is yet to be found),

3) the characteristic distance - x , which according to the present model

char

i 3 h i L] L L]
snould approach zero, 1.e., xchar + 0

In the following these unknowns will be found. However, in order to do so we
start by introducing an expression for the laminar sublayer thickness - 5L (for

detalls see appendix B):

2 1 n
6 =™ (2 T T 72
L |v2—V0| (41)

[avpropriate expressions for Q and § are developed in appendix A.]
For a hydraulically smooth surface G = 12.2468 (see the foregoing discussion) and
from table 2, a = 4.63°. Inserting these values as well as n =% {see Martin (1975),

‘Glass & Hall (1959)] into equation (39) yields,

Xchar = 1.25 x 1076

The mean free path of the flow behind the reflected shock wive at tne consitions
of the problem at nand is 10—6 an. Thus it 1s seen tiat the characteristic lengta
is of the order of the aean f{rec path.,

The mathematical definition of a hydraulically smootn surface: can be casily
obtalned using equation (41). At x = 2 an, wnich is nalf the length of our

oxperimental models:

8 = 0.00517 am

L| x= 2¢cm




As mentioned earlier, a flow is considered as hydraulically smooth when the

roughness height € is smaller than the laminar sublayer thickness. Thus, for a

hydraulically smooth surface

€max < 6, = 0.00517 cm (42)
It is also of interest to note that from equation (39)
* =
8 %=2cm 0.00086 cm
The obtained values for Xy and € max suggests two possible criteria for

relating the roughness characterizer - G to the roughness height - ¢.
Criterion A

Hypothesis: The above calculated value of x is independent of the

char
roughness height - €,

Verification: Using the constant value of Xchar the values of G as a function
of a (which depends on €, table 2) were calculated. Using
this procedure it was clear that for a given value of € they are
differentwlues of G. This contradicts our basic requirement
that G is independent of ¢.

Conclusion: xchar depends both on the incident shock wave Macn number and

the rougnness height. Therefore, this criterion is incorrect.

Criterion B

. , §* o
Hypothesis: The value of . |x=2<:n is indepenaent of the roughness
height.
L. . &% - .
Verification: The value of e__|x=2an for a hydraulically smootn surface

can be easily obtained. Using the above calculated values of

&* on. obtains:
|x=2c:n and ¢ ¢ OL ain
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(this is the minimun value since §* was divided by ¢ ).

Assumption:

max
The flow over a rough surface having
€ = 0.01 an belongs te the frictional
transition flow zone. As mentioned
earlier (equation 20)
G = 2.5 (InG - 1ng)

and for the frictional transition flow zone
(equation 14) -2.2 ¢ 1ng < 0.8. Using an average
value of InB = 0.7, results in:

G = 6.3848
Inserting this value of G together with n = %
into equation (39) results in:

B e = 0-176

Comparing this value (0.176) with the value
obtained previously for a hydraulically smooth
wedge (0.166) and recalling that the latter
value is the minimum value for a nydroulically
smooth wedge (these two values would be exactly
equal if € = 0.0049 cm which is smaller than g
was used for a nhydraulically srmooth surface),
leads to the conclusion that <§: is
independent of the roughness nheight g .
Furthermore, equation (41) yields:

6L|x=2cn|= 0.0018 cm

and since ¢ = 0.01 om:

€

= 5.55
‘L

xX=2cm

~ e




Conclusicn:

Sumary:

This value falls well within the range 1 < £ <15

Sy,

which defines the frictional transition flow
2one. Thus, the foregoing assumption is
verified.

Let us now verify the argument that S: = const in the range

1T<M €2 as well, For a hydraulically smooth surface and Ms = 1.5

one obtains:

§* = 0.0059 am

x=2cm
Dividing this value by ¢ = 0.0049 an  (which is typical to
a hydraulically wedge), results in:

ki = 1.204
E_1x=20n'— ‘

Similarly, for a rough surface with e = 0.01 am , one obtains

6*
E"1x=2cm = 1.224
he obtai for & if hypotiesis that $=
The obtained values for E—1x=2cm verify our hypothesis that = |x=2cm

is practically indeperxient of e, Furthermore,

€
=l = 1.25
Gle-ch

This value again verifies our earlier assumption that the flow
over a plate with € = 0.01cm belongs to tne frictional

transition flow zone,

*
The hypothesis that g— is independent of the roughness

helgnt - € is correct.

For a given incident shock wave Mach number

6*
-é— x=2cm = constant

In the franework of the present study:

§*
2| ge2am = 1+224 for 1 < M_ < 2 (42)
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8* )
| eoem = 0-176 for 3.5 ¢ M_ < 4.0 (43)

inc velocity exponent - n

Using the foregoing criterion, the value of the velocity exponent - n (equation
23) can be calculated for any given incident shock wave Mach number.

Martin (1957) showed that in the range 1 < M < 2 the value of n = % fits
experimental results best. Glass & Hall (1959) also arrived at this conclusion.
Based on these studies the valuen =-% was chosen for the range 1 < Ms < 2.
Schlichting (1962) claimed that the value of n decreases when the flow (shock) Mach
number increases. The appropriate value of n for any shock Mach number can bhe

calculated using the fact that the roughness characterizer is independent of the shock

Yach number. For example, for the range 3.5 < Ms < 4.0 one should solve tne

equation
S*
= = =?, — = =
Gle=e,, M_=3.75, n=?, . lx=2 0.176)
Gle=e,s M_=1.5, n=g, - |x=2 = 1.224).

The solution of this eguation results in n = (.1935, in agreement with the
reruirenent that for Ms >2 , n<0.2. The change in thc obtained value of n is not
too large. Nevertheless, the present procedure provides a method for calculating the
value of n for any incident Mach number. It 1s expected that when the incident shock
wave Mach number increases to nigher values, n will be further recuced below €L2,

The roughness characterizer - C

Using the values F_, given in table 2 for any value of roughness helgnt, togcthor

§
with the appropriate criterion (equations (42) or (43)] und cquation (39), cnavled us

to find the values of the roughness characterizer - C for a given roughness height -ee
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The obtained values are given in table 3. 75 can be seen, tiwere are very slignt
differences between the obtalned value of G for a specificd value ¢f €. Tals fact
complies with our earlier requirement that the rouyghness characterizer shouldt be
independent of the roughness height. The small discrepancy is probably due to tinc

fact thac the two criteria [equations (42) ani (43)] were established for Ms = 1.5

and Ms = 3,75, while the values in table 3 are for MS = 1.495 %+ 0.015 and Ms= 2,74 +

0.15.

Tne average values of C (given in table 3) were fitted against € to result in

G =

0.062
—" + 0.252 (44)

(€ in an). This curve, as well as the (G-e) values given in table 3, are shown in
figure 15. It is worthwhile to note that this cxpression complies with the physical
reguirement that the value of the shear stress - Tw (cquation A,l14) 1Increases as the
roughness height e increses. lote also that for a perfectly smooth surface (e=U),
equation (44) results in G+ = and fron equation (2A.14) one gets for this case
(G~» > ) rw*Oas expected.

A Furtner Check of the Displacement Thickness Model

The boundary layer displacement thickness model was based on exper! - ntal data
cbtained for € = 0,01, 0.02, 0.08 and 0.2 or. In order to consoliusate the findings
additional experiments with e = (.04 an were porformas,

The RR # MR transition lines obtained by the present model for the ranges 1 < MS <2

ant 3.5 ¢ M_ < 4.0 together with the experimentally acasured transition dats are
plotted on figure 16. The von teunann "detactiment' transition line is also shown 10
S

tigure 16. It is clearly seen that the pradictiorsot too nrosent model are nuch botior

than that of the von Leumann “detachment" criterion., As oxochod, in the ranc- 1 € MS <2

cxcellent agreement is obtalned at the center of this range (Ms = 1.5). ‘ine
prodictions of the present model for the range 3.5 € Ms € 4.0 are not as good as

those obtained for the range 1 < M, <2 . However, they arc {ar better than the
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predictions of the "detachment™ criterion.

Conclusions

Two models for predicting the effect of the surface roughness on the RF € ME
transition in the ( Ms'ew )-plane were developed. They are:

1) the pressure loss model, and

2) the boundary layer displacement thickness model,

These two models suggest alternative ways to account for viscous effects when treating
the RR € MR transition.

In order to develop the boundary layer displacement thickness rmodel, an
exoression for the boundary layer thickness of a compressible flow over rough, moving
flat plates was developed. Using this expression, appropriate expressions for both
the bounxlary layer displacement thickness and the laminar sublayer thickness w:re
derived.

While developing the boundary layer displacemnent thickness the following facts
were established.

1) A hydraulically smooth surface is a surface for which the roughness height
e < 0.00517 cm .
‘ v & C . .
2) The roughness characterizer G = —t—- 1s i~iependent of thc inci‘ent
shocr. wave Mach number.
3) The value of & does not depend on the roughness height.

€ |xX=2cm

4) Tie characteristic distance - X
char

incident shock wave lach nuvber, and increasing roughness ncignt,

increases with decreasing

5) 1In addition, a method by which the velocity exponent - n can be determined

for any incident shock wave Mach number was prosenteda.

hoth models reproduce the experinental results quite vell.
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Appencilx & - The Boundary Layer Displacement Thickness §*

ihe origin of the coordinate system is moving with the reflection point G along

the wedce at a constant velocitv v, = us/cosew (us is the incident shock wave velocitv in th

laboratory frame of reference and ew is the wedge angle, see figure 12b). In this
frame of reference the flow in state (0) is moving towards the incident shock wave
(which is now stationary) with a velocity v (the angle of incidence between this flow
and tne shock wave is ¢o =90 - ew ). The wall, whicn in a laboratory frame of
reference is at rest, is also moving now with the velocity , = vb . The flow in
state (2), which initially had an induced velocity u2(y) . 1S now moving with
tne velocity v:(y) = [uS - u2(y)}/cosew . Therefore, in the considered frame of
reference §* should be calculated for a flow velocity'vz(y) over a moving inclined
flat nlate having a velocity A in the same direction of vz(y) .

For turbulent incompressible boundary layer flows two different apprcaches are
frequently used (both are semi-empirical): they are the mixing length of Prandtl.and the
von-Karman momentum integrals (see Shames, 1982, pp. 368). Since similar
seml~-empirical approaches arc not available for compressible, turbulent boundary layer
fiows, 1t was suggested py Eckert (1954) andd Mircles (1956) to adopt the approaches
proposed ‘~r incampressible flows while adjusting them to account for compressibility
etfects. In the following & similar approach is adopted.

Prior to adjusting these approaches to the compressible case the differences
petweenh the incompressible and the compressible cases should be understool. wnile in
tace former the velocity and thermal boundary layers can be considered separately, in
the latter they are coupled. This coupling arises {rom tne fact that at high flow
velocities the heat gencrated by friction and the temperaturce changes due to
comressivil ity must be accountea for. Conscquently, in the compressible case tie
tcllewlng fuctors must be consiGerceds

1) tne Mecen numibwer,

2) the Prandtl number,
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3) the viscosity dependence on temperature, and

4) the heat transfer fram the flow to the solid surface.

The major assumptions upon which the present model is developed are:
1) the gas behaves as a perfect gas,

2) the flow is pseudo-steady and two-dimensional,

3) the boundary layer is turbulent from x = 0. This assumption is reasonable

because,
a) the Re number is very high. Therefore, [Martin (1957)] the
boundary layer is laminar for a short distance only, and
b) Schlichting (1962) showed that the surface roughness
decreases the value of the critical Re number where transition
takes place,
4) tne gravitational forces can be neglected,
5) the pressure is constant throughout the entire field, i.e., %E =0
andg—yp=0,and

G) Blasius' semi-empirical results for the wall shear stress - T in incompressible

flows are applicable when the averace temperature - Thlis used.

The wall shear stress - 'w

In ta: following an expression for the wall shear stress in a compressible
viscous flow over a moving rough flat plate is developed. Tne shear stress for an
incompressible viscous flow over a rough stationary flat plate is (Mazor 1983):

2(n-1) - 2n

T
Bg _ uwz G n+1 Ref n+1 (A1)

wiere U anG p_ arc the flow velocity and density outside the boundary layer, C is the
V*GL

roughnuss charecterizer G = - (V, = shear velocity, GL - the laminar sublayer

thickness, v - kinematic viscosity), and

u g
)
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Inserting N =3 and G = 12.2468 (the value calculated previously for hydraulically

swooth surfaces) in equation (A.1) vields:

T

v -1/4
» 0.0233 u_Re (A.2)

©

which is only 3.4% larger than Blasius' expression for incompressible flows over a
smooth plate, i.e.,

T
= 0.0225 u re /4

P

In orcder to apply equation (A.Z2) tO a compressible flow, the flow properties must

be calculated for the average temperature inside the boundary layer - Tm.

Consequently,
. 2(n-1) 2n
Mo y2g nH (;"r_n_)n+1 (A.3)
°n © u é

A similar approach was adopted by Tucker (1951), Eckert (1954), Bartz (1955) and
Mireles (1956). By definition: Vi = un«bnland v = “m/pm' furthermore
from the equation of state for a perfect gas: o = ?m/(REn)'

P, = Pm/(RTm) and from assumption 5(P_ = pm . Inserting these expressions

into equation (A.3) results in:

T 2n-1) 20
w2 n+1 ® n+l
v, U= © Qg7 (2.4)
wh., ¥
2n 1-n
b == T —
- (L n+l e n+

Q= :‘) )

(h.S)

Equation (A.4) differs as expected {rom cquation (hJ) by the term ¢ which

IR Y A
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accounts for compressibility. In order to calculate ¢, avpropriate expressions for Mo
and ’I‘m are required.

For nonpolar diatomic gases Mazor, Ben-Dor & Igra (1985) sugqusted,

T 0.64874
o = (=
= )
therefore
u
'm (T_m)0.64874
- \7 (A.6)
Ho o
Inserting this relation into eguation (A.5) yields
T 1-2;13375n
9= ) (a.7)

Eckert (1954) showed that Tm can be approximated by;

T =0. . A.8
m 0 S(Tw-’I‘w) + 0.22 (Tr-’I‘m) ( )
where Tw' T and Tr are the wall, the free stream and the recovery temperature,
respectively.

The recovery temperaturc - Tr {which is Al to the wall temperature for the

case when there is no heat transfer) can be calculated from [Schlichtina (1962)}:

Tr uw 2 umz Pr1/3
T = 1+ (.u_ -1) ——— (£.9)
0 oo ZTQCP

wiere U, and u_ arce tne wall and tree stread velocitios, regyxctively, Ir 1s the
Prandtl numner (calculated at Tr) and Cp 15 e soc1fie neat capacity at constant
nressure (calculoted at Tr) .

Mireles (1956) showedu that equations (R.0) anc (7.4) can e combite to resuit

in:

u 2
] 0.28[1 + (u—") ]

5.56 — -
u




Inserting equation (A.10) into eqguation (A.7) results in;

u 1-2,2975n
6 2 - 1 n+i
oy (A.11)

Q =
Uy Yy, 2
5.56 =% - 0.28[1 + ()]

As mentioned, in the present case the frame of reference is attached to the

reflection point G (see figure 12b), thus: W, =V  ,u =V, '
P, = Py s ond v = vy . Inserting these terms into equatims (A.4) and (A.11)
results in,
c 2(n-1) y 2n
\ 2 2
= = v G n+1 0 (‘_’__)n+1
2 2 (A.12)
anc 1-2.2975n
v n+1
6 v—° -1
Q= 2

-
5.56 52 - 0.28[1 + (\Q)°]
2 2 (A.13)

Enuation (A.12) expresses tne wall shear stress for a compressible flow over a rough
flat plate. The compressibility is accounted for tnrough ¢ and the roughness is
accounted for through G. Additional correction is requried in order to use equations
(5.12) anc (A.13) for thc problem at hang; i1.e., to account for the fact that in the
present case the flat plate is not stationary. This can easily be done by replacing
Vzin eguation (A.12), by the relative velocity butween the flow and the suriao:,v: -

v_. Carrying out this transformation finally results in:

o
Tw 2 2 (11_;1) V2 2!': 1
b, (v2 - vo) ¢ " Q ( VA,V 6)n
2 ' 2 o (ha12)

The boundary layer thickness= 6

shear stress (eguation A.14)

Inserting the velocity profile (equation 23) and the wall
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into von Karman's momentum integral for the case of zero pressure qradient, i.e.,

32 _ 0 [see Schlichting (1962))

ax
e ot - ol
O

results in:

2(n-1) p 3:2975n _ _2n n+1
S _ ~ 3n+ _m, 3n+1 3n+1  (3n+1) (2n+1), 3n+1
2 =G (T‘;‘) Re [ (A.15)
|v,~v_|x
where Re_ = —20© .
x v,

Equaticn (A.15) describes the boundary layer thickness for a compressible flow over a

rough flat plate.
T

In the special case of an incampressible flow ,—,,E = 1, over a smooth plate
4
2
(C = 12.2468) when n =-% equation (A.1l5) reduces to

s -1
% =0.3816R 5

Tne expression found in the literature for this case is ([see Schlichting (1962)]:

1
=0.376 Re 5
X

X lo

The difference between these two values is negligibly small (about 1.5%).

The boundary layer displacement thickness -3&*

The bounvary layer displacement thickness - §* can be calculated from
[Schlicnting (1962)]
§*= [ (1 -2 %, g

o P Y,

Inserting the velocity profile (equation 23) into the above equation and carrying out

the inteqgration results in:
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Inscrting equation (A.15) into equation (&.16) finally yiclus:

2(n-1) T 3.2975n N 2n T
S* 3n+1 3n+1 2 3n+1 2
S= 6 =) — (n+1 - =)
X T2 7 Tm (2.17)
where
n+l
_ 1 (3n+1) (2n+)} 3n+1
€= n+1 [ n J] (A.13)

Equation (A.17) describes the boundary layer aisplacement thickness for a
compressible flow over a rough surface of a flat plate which moves with the velocity vy

relative to the free stream velocity v, -

PR
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Appendix B - The Laminar Sublayer Thickness - GL

The roughness characterizer G was defined (equation 19) as:

V——m—

V*GL
G= v (B.1)
where v, the shear velocity is:
- 4
V, = ﬁwh) (B.2)
Inserting T, (equation A.14) into equation (B.2) results in:
o1 v, D
n+1i 2 .+t 4
Ve = v,-v,)G (T——‘) Q B

Using this value (equation B.3) in equation (B.1) and rearranging, yields:

2 L
n+1 2 n+l .n+1 -4

GL =G (T;;:GET 8 Q

(B

)

6 and Q are defined in appendix A by equations (A.15) and (A.13), respectively.
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Figure Captions

Figure 1: Illustration of four possible shock wave reflections.
(Interferograms are on the left and explanatory diagrams on the
right):

a) regular reflection (RR) 6y = 60°, M_ = 4.A8,
b) single-Mach reflection (SMR) 8y = 13°, Mg = 4.72.
c) complex-Mach reflection (OMR) 6, = 20°, Mg =6
d) double-Mach reflection (DMR) 6y, = 40°, Mg = 3.76.

The test gas is nitrogen at Pp = 15 torr and T, = 300K.

(1,19 - incident shock waves, R,Rq - reflected shock wave,

M, My - Mach stems, S,Sy - slipstreams, T,Ty - triple points,
K“King X+ Xq- triple point trajectory angles,

{0)-(5) - thermodynamic states. The interferograms were taken in
the UTIAS 10 x 18 cm Hypervelocity Shock Tube.

Figure 2+ Wave configuration of a regular reflection.
I - incident shock wave, R - reflected shock wave,
P - reflection point, Ug - incident shock wave velocity,
¢ - angle of incidence, 8- deflection angle, 6y = wedge angle.

Figure 3: Comparison between the von Neuman "detachmen" critericn and the
experimental results on RR ¥ MR transition over smooth wedges
in pseudo-steady flows. The disagreement is known as the
von Neuman paradox.

Ixperimental results of the RR ¥ MR transition over rough wedges.
€ - roughness height, and the "detachment" criterion.

Figure 4

Figure 5: a) Schematic illustration of the type of roughness used in the
experimental study.

b) The test section and the adjustable test model.

Figure 6: a) SMR over an € = 0.02 ¢ wedge.
b) PR over an € = 0.02 om wadlge.
c) SMR over an € = 0,2 cm wedge,
d) ER over an € = (0,2 cm wedge.

Figure 7: TIllustration of the mcthod used to obtain the RR ¥ MP transition
wedge angle (6 ,tr) [E - inverse pressure ratio (PO/P1) across
the shock waveY.

Figure 8: Schematic illustration of the boundary layer structure over o
flat plate.

Figure 9: The predictions of the pressure loss model against the oxoerimental
result for various sizes of rounhness.
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Figure 10: The dependence of Fé on €.

Figure 11: Illustration of the¢ boundary layer displacement thickness - §* in

Figure

Fiqure

Figure
Figure

Figure

12:

13:

14:
15:

16:

steady flows and pseudo-steady flows.
steady flow : (6* is positive)
a) velocity profile of the viscous flow
b) the equivalent inviscid velocity profile.

pseudo-steady flow : (8* is negative)
¢) the unstedy viscous velocity profile
d) the pseudo-steady viscous velocity profile
e} the equivalent inviscid velocity profile

Schematic illustration of a viscous reqular reflection at (a)
and the eaquivalent inviscid regular reflection at (b).

The predictions of the boundary layer displacement thickness model
against the experimental results for various sizes of roughness.

The dependence of Es on g.

The dependence of the roughness characterizer G on e.

The detachment criterion of von Neuman and the predictions of the
boundary layer displacement thickness model for € = 0.04 cn (in

the two Mach number ranges) and experimental results of the RR I MR
transition for € = 0.04 cm.
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PART 2

The reflection of a planar shock wave

over a liquid wedge.

T




Introduction

In order to have a better understanding of the blast reflection
phenomenon over liquid surfaces such as seas or oceans an experimental
study of the reflection of a planar shock wave over a water wedge was

carried out.

Experiments
In order to get a planar shock wave reflecting over a water wedge a

special shock tube has been designed and constructed in such a way that
the whole tube could be tilted in a vertical plane. Using this
technique, it was possible to adjust the shock tube inclination to
obtain any desired water wedge angle. A schematic drawing of the tilted
shock tube with the water wedge having an angle of ew as well as a
planar shock wave reflecting from it as a Mach reflection is shown in
figure 1.

A photograph of part of the inclined shock tube with the test
section is shown in figure 2. A detailed view of the test section
filled in with water is shown in figure 3.

The test gas throughout the experimental study was dry air. Both

the test gas and the water were initially at room temperature.

Results
Two different incident shock wave Mach numbers were used with a
variety of different wedge angles. The two Mach numbers were

~

= 2,25+ 0.05.

- Hi =1.475 +°0.015 and M

i




Mi = 1.475 + 0.015

Typical results for this case are shown in figures 4(a) to 4(d).

At ew = 44.3° the incident shock wave reflects over the water wedge

as a regular reflection [figure 4(a)]. As the wedge angle is decreased
regular reflection becomes impossible and the incident shock wave
reflects over the water wedge as a single Mach reflection. Such a
reflection is shown in figure 4(b) for o, = 25.8°.

Further decrease in ew causes higher triple point trajectory
angles. The reflection over a wedge with 0y = 18.2° is shown in figure
4(c). Figure 4(d) illustrates the case of a glancing incidence
(9w = 0).

It is interesting to note that in all the above photographs a

disturbance is seen to be propagating inside the water tank. 1Its
front propagates along the air/water interface faster than the point of

reflection of the regular reflection or the foot of the Mach stem.

2.25 + 0.05

A typical regular reflection is shown in figure 5(a) for
50.8°. At lower wedge angles 0, = 49.5° a double Mach reflection
obtained [figure 5(b)]. At even lower wedge angles 0, = 25.8° the
incident shock wave reflects as a single Mach reflection [figure 5(c)].
The disturbance propagating into the water is clearly seen in this set

of experiments too.
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The RR « MR transition wedge angle

The RR + MR transition wedge angles, e:r

, were measured for both
M; = 1.47 and Mi = 2.2. The value of e:r was obtained by plotting the
triple point trajectory angle x as a function of the wedge angle o, for
a given value of Mach number. Then the experimental results were
extrapolated to get 95” at the point where y = 0. The present results
are shown in figure 6.

The results are also shown in table 1. For the weaker incident
shock wave the actual transition wedge angle is about 5° smaller than
that predicted by the "detachment" criterion. For the stronger shock
wave the agreement with the "detachment" transition wedge angle is
surprisingly good. The agreement is better than that obtained over
solid wedges.

At the present a detailed study of the reflection over a water

wedge in the range 1 < Mi < 4 is being carried out.
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Conclusion

The reflection of a planar shock wave over a water wedge has been
investigated using a tilted shock tube which was especially designed and
constructed for this study.

The four well known types of reflection, namely RR, SMR, CMR and

DMR, have all been observed over the water wedges.

The RR + MR transition was investigated. OQur early results
indicate about a 5° disagreement with the “detachment” criterion at
Mi = 1.47 and a surprisingly excellent agreement at Mi = 2.2. Further

experiments are being carried out.




“ Table 1

Shock Wave . Actual Transition “Detachment"
Mach Number Wedge Angle Wedge Angle
1.47 43° + 0.5° 48.7°
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APPENDIX - LIST OF EXPERIMENTS OVER A WATER WEDGE

- et ata”
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Sw Ms
51.5 2.26
50.8 2.30
50.5 2.29
50.0 2.31
49.5 2.30
49.0 2.29
46.2 2.29
43.5 2.21
34.3 2.10
29.8 2.22
25.8 2.05
48.0 1.49
47.0 1.49
46.2 1.48
45.8 1.45
45.2 1.49
44 .8 1.47
44.3 1.47
44.0 1.47
43.5 1.47
43.0 1.47
42.7 1.47
41.8 1.45%
40.8 1.46
40.0 1.45
39.2 1.48
37.4 1.47
33.3 1.48
29.8 1.47
25.8 1.52
22.0 1.56
18.2 1.44
14.3 1.46
10. 1.46

7.2 1.46

2.3 1.42

0. 1.47
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List of Figures

Figure 1: A schematic drawing of the titled shock tube with the water
wedge having an angle of 6y

Figure 2: A photograph of a part of the tilted shock tube and the test
section.

Figure 3: A detailed view of the test section with the water wedge.

Figure 4: Various reflections over a water wedge of a weak shock wave.
a) regular reflection - M, = 1.47 & = 44.3°

25.8°

b) single Mach-reflection - M; = 1.52 & 0

18.2°

c) single Mach-reflection - M, =144 &0
d) glancing incidence - M, = 1.47 & 0,=0

Figure 5: Various reflections over a water wedge for a moderate shock
wave.

a) regular reflection - M, = 2.30 & 0, = 50.8°

b) double-Mach reflection - M 2.30 & 0y = 49.,5°

i
c) single-Mach reflection - M =2.05 &0 = 25.8°

Figure 6: The triple point trajectory angle -y vs. the wedge angle -0,

Note transition from Mach to regular reflection is at y » O.




PO Aengh v Sl BB b S S Aautaching

inclined shock tube

shock wave

2T

\_~

Fig. 1

¢
1
....... “x }: NN ‘...w.‘:.‘_-. _-..'_\J.\ A
S PEOACAL YA 0O o
X .':'-‘t'\f‘ Iy e ‘l'\f .-':.-":.' P °




- v .

e -!.‘--‘ -\‘:1': ‘--“ LA}
W T AT













TR R p——y—————

< e
[







MLARt B S Jaeie daiic)




NLAME AN SN . el adl aelh s aetiC e aai Ssunt i G bR A LW wT v, v

-~x e A= fe e e Mal et el




