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Introduction

The aim of the present study was to study both experimentally and

analytically the effect of the surface conditions on the shock

reflection phenomenon.

In general, the study was divided into two parts:

1) the reflection of a planar shock wave over rough surfaces, and

2) the reflection of a planar shock wave over a liquid surface.

In accordance with these two parts, the following final report is

also divided into two parts.
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PART 1

The reflection of a planar shock wave

over rough surfaces.
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Abstract

The effect of surface roughness on the transition from regular (RR) to Mach

reflection (MR) over straight wedges in pseudo-steady flows was investigated both

experimentally and analytically.

Two models for predicting the RR t MR transition in the (M ,S w)-plane were

developed (M is the incident shock wave ach number and 6w is the reflecting wedge

angle). Their validity was checked against experimental results. Since tie

experi-iental results are limited to tle rarjes I < M s < 2 and 3.5 < 1-, %< 4 and wirface

roughness heichts of 0 < c %< 0.2 an, the proposed models are applicable to these

ranoes only. In the first model (the pressure loss mrxe1, the transition from PR

to MR is assuTce] to be relate:, to t!he pressure loss due to the increaed5 friction

ie+_tueen the flow and the rough surface. In t.e second me,"el (tnc boundary layer

displace.nent thickness model), tthe -,d Z MR transition is relat2d to the bounlary layer

displacement thickness which in turn depends on the surface roughness.

.a- ... . *. *..- *+-v",, . " ,m. 1 .. ll l -.. l W l I .
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It was snown that the bouriary layer displac¢inent tnickness 6 coul) Lx.
6Lv

characterized by the parameter G = 1 (where 6 is the laminar sublajyt~r
v L

thickness, V* is the shear velocity and v is the kinematic viscosity). This

para- eter was found to be constant for a given size of surface rouqghrs-c i.e., C was

found to be independent of the incident shock wave Mach number - HS . Owing to this

fact G was termed the "roughness characterizer."

- + ,, -.. ,.. . . . . . . . . . . . . . . . . .... .,,,, , -- ,' " , ' n + " . . . . . ..
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In tro(uction

When a planar incident normal shock wave encounters a sharp corner in a shock

tube, four different types of reflection can occur depending on the incident shock

wave V-ach number -Ms and the wedge angle - Ow . They are:

1) regular reflection - RP (figure la),

2) single-Mach reflection - SMP (figure lb),

3) complex-Mach reflection - CMR (figure 1c), and

4) double-Mach reflection - D-.R (figure id).

qne latter three types, i.e., S1R, CIR and DMR are usually termed as Mach reflections

- MR

The RR * MR transition criterion in pseudo-steady flows (the "detachment

criterion") was first introduced by von Neumann (1963). In developing this criterion

von N-eumann assumed that:

1) the flow is ideal, i.e.,. p = 0 and k = 0 (p is the dynamic viscosity and k is

tLi~ heat coKiuctivity),

2) the flow is two-dimensional, and

3) the flow is self-similar and hence pseudo-steady.

As shown by Ben-Dor & Glass (1979), the detachment criterion can be expressed as

follows:

1 + 82m 0 (1)

wiierc 01 is the flow deflection through the incident shock wave - i, and e2m is tne

maximum nossible flow deflection through the reflected shock wave - r. Tnis

formulation is :ased on the fact that when the fra.w-, of ref ,ren-cc is attlchc-d to the

rct lvtion point -G (see figure 2) the flow ahead of the incident shock wave - i,

whlcn now moves prallcI to the wedge surface at suix,rsonic velocity V0 = Us /OSO w

U us is tie incident snock wave velocity), is dctflectec towards the wedge by an

angle 81 . Thus tne supersonic flow behind the incident shock wave -i is deflected

~~~~~~~~~......... . "............... -'-........ . . .. ...- .. .-.- ....... '.-'.... -.-... '',
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tcwards the solid surface. Inorder to nemotiate the solid surface it must experience a

rcueflection while crossing OiUc reflected shock wave r to bcco .e again parallel to

the wege surface. wvhen the angle e exceeds the maximum deflection angle e , the
2 2m

regular reflection becomes theoretically impossible. Consequently equation (1)

represents the "detachment" criterion of von Neunann.

However, the experimental findings of von Neumann (1943), Snith (1945), Taub

(1947), Bleakney & Taub (1949), Fletcher (1950), White (1951), Law & Class (1971),

Henderson & Lozzi (1975), Ben-Dor (1978), Henderson & voolington (1983) and Hornung &

Taylor (1982) indicates that the RR exists beyond the predicted theoretical limit of

the "detachment" criterion.

The transition line predicted by the "detachment" criterion (equation 1), as

well as our experimentally obtained RR * NR transition points are shown in

figure 3. The persistance of the RR beyond the limit predicted by the

detaciment criterion is clearly seen. Since the von Neumann paradox was

first noticed, many scientists [Henderson & Lozzi (1975), Ben-Dor & Glass (1979),

Henderson & Voolmington (1983), Hornung & Taylor (1982)] directed their efforts at

resolving this paradox. Probably the most pro:,ising apliroach '.ns tne one suggested by

Hornung & Taylor (1982). They argued that the rc son for the existence of tne von

Nernann paradox is the fact that the transition linc '.as derived_ by s olving tife

inviscid flow conserwtion equations whil] the actual fto. Was viscous. Consecqucnt]',

they conclude-i that by accounting for viscous effects tie von neumann -,aradox could bc

resolved. Hornung & Taylor (19582) accounted for the viscous °,ffccts by applyin t..e

boundary layer displacerent thickness concept. The ol;tai-n: - results just. it.i,- their

)-roacn.

Takayama, Gotoh and Ben-nor (1981) presernteu .!xrari.m( itnd rcsults rc'gor inr J

,1 transition over rough surfaces. Their results are r~protx-Cu : in figure, 4. The

difference between the actual transition and the values predicted6 by the .etac.-ent

criterion (solid line) is quite clear. This difference increases as the roughness

-......v .. . ". ....-.'-.....-....-.-.--..-.-.-. -.............--- ... '.--.-. -.-.--- .-...---- -.-....-
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neight increases. For examp ,, at M = 4 and c = 0.2 cai, tne actual wedge angle ats

which the RP * ME transition occurs is about 200 lower than that pre-dicted by the

"detactiment" criterion.

'ihe fact that the surface rougnness has such a meaningful influence on the

transition wedge angle on one hand, and the fact that shock reflections, in nature,

occur over rough surfaces, has led to the recognition that understanding the

reflection process over rough surfaces is of great importance. ConsequentLy, models

capable of predicting the RR. MR transition over rough surfaces were sought. This

was further stressed in tihe first concluding remark of the 3rd Mach Reflection

Sy posium (held in Melbourne, Austrlia, in August 1983) whichi said: "It appears to be

the boundary layer which causes the delay of the transition from regular to Mach

rtflection of pseudo-stationary shocks beyond the detacyment or maximum deflection

point for reflection fran a plane surface. This effect is more pronounced in the case

of rough surfaces."

Based on the foregoing discussion the RR * MR transition process was investigated

botw experimentally and analytically. Since Hornung & Taylor (1982) were able to

explain the von Neu-mann paraiox by including the viscous effect in their solution of

the flow field, it was >-cided to base the prcsent models for predicting the PP -t MR

transition over rough surfaces on "viscous echanisms."

Subsecuently, two different approacnes tnlrou(jfi wnich the effect of viscosity can

be accounted for will we propoised. In the first, the )ressure loss due to friction is

integratedI into the invisciu conservation equa.tions, while in the secon] th. we1dge

gco-try is mioificd using the bounyjary layer .isplace-nent thickness concept.

1 xlx- ri~kntal Results

nt experimcntal re-sults rt' porte(: here wvre obtainecd using tio 40 x P0 m, shock

tub- of the IHSIM Institute of High 5;peed Mechanics, Tohoku University, Sendai, Japan.

An illustration of the "saw-tooth" roughness imposed on the tosted wedge nodels is

< -.. • : -.- -.- ......- ". ........ .... .................. 1 ||
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given in figure 5a. For the first set of experiments four models (each 4 cn long)

with roughness of c = 0.01, 0.02, 0.08 and 0.2 cm were prepared. The effective wedge

angle of the models could be adjusted frcm outside the shock tube test section as shown

in figure 5b. The experimental study covered the range of 1 < Ms < 4.

The shock wave velocity was measured using Kistler 606 pressure tranducers, an

Iwatsu UC 7641 digital counter and an Iwatsu DM 901 recorder. The pressure tranducers

were mounted 120 mm apart just ahead of the test section. The attenuation of the

incident shock wave was found to be negligibly small.

The test gas was pure nitrogen. The initial pressures were in the range of 3, p0

150 torr. For the investigated range of Mach numbers (1 < M s < 4) the nitrogen gas

can be assumed to behave as a perfect gas. Therefore, the initial pressure has no

effect on the reflection phenomenon. For all the experiments the initial temperature

was about T = 300K.0

An optical diagnostic (shadowgraph) was used for studying the pseudo-steady

reflection phenamenon. A pulsed ruby laser (6943 A) was used as a light source.

Typical shadowjraphs are shown in figures 6a to 6d. Mach reflection over a wedge

havinj rougfhness height of c = 0.02 cm is shown in figure Ga. ectular reflection

over the same wedoe is shcwn in fiaure 6b. Fiirues 6c% and 6d show, a-M. and a RR

over a wedce having roughness heiqht of e = 0.2 cm, respectively.

The RF * ME transition angle was determined in the following way. For a giver

value of the incident shock wave Mach number - Ms the wedge angle ew was gradually

increased until a RP was obtained. Then, the value of the triple point trajectory

angle X dclluced from the snadowgraphs) was plotted in tie (x,8 w )-plane as shovin in

figure 7. The experimental results were then extrapolated to X 0. The wdcjdg angle

at this point was chosen at the transition wedge anjglu - . Tnis procedure
w,tr

yields ew,tr to an accuracy of +1 '. The above-mentioned procedure was repeated for

M = 1.04, 1.12, 1.21, 1.44, 1.96, 3.58, 3.77 and 3.89.

The experimental results obtained for the four different models, as well as the

".- " ." " - : : -" . .' -'.- - -" '.- . . '. .- . . '. '".- :".. .-" - .. . . . ... *-".- " -
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results obtained for a "smooth" model, are shown in figure 4.

It is apparent that the surface roughness (E) has a significant influence on the

RR * MR transition wedge angle for any given incident shock wave Mach number. The

greater c is, the smaller is the transition wedge angle 0 w,tr It is of interest to

note that the measured transition wedge angles over the smooth surface model does not

agree with the "detachment" criterion (these results confirm the von Neumann paradox).

Had the surface been perfecty smooth, i.e., c = 0, the experimental results should

have agreed with the "detachment" criterion. However, since no surface is perfectly

smooth, the von Neumann paradox exists. In the following we will refer to a "smooth"

surface as hydraulically-smooth. Furthexmore, it will be proven kalytically that

a hydraulically smooth zsurface is a surfaoe for which E < 0.00517 an.

Analysis

As mentioned previously the aim of the present study is to develop models capable

of predicting the RRZ MR transition over rough surfaces, i.e., models which will

shift the "detachment" transition line (solid line in figure 4) towards the

experimental results for any given roughness height of - .

General Assumptions

1) The flow is two-dimensional.

2) The flow field can be described by the mass, momentum and energy

conserrvation equations of inviscid flows with adcitional terms accounting for

viscous effects.

3) The flow is self-similar, and hence, can !X: made pseu3o-steady by applying

tie well-known Galilian transformation.

4) Real gas effects can be ignored, consequently the yas is assum-ed to obey thc

equation of state of a perfect gas. (i.e., P = pFr).

IL-" . - , , , ,.... .. ... ..,.., , .. ..... ., .., .,. .,. ... .... ., ....-, ,. ,., , .,,-. .- oe
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The Conservation Lquations

The wave configuration of u PJ' is snrjo-, scho-ntically in figure 2. DEploying the

foregoing assumptions, and attaching the fra-e of reference to the reflection point G

(in such a way that it moves along the wedge surface together with point G) results in

the following nine equations which completely describe the flow field in the vicinity

of the reflection point - G.

across the incident shock wave t-

continuity

P0 V0 Sint 0 = I 1vlsin(o -el (2)

tangentional momentum

potan o = p1tan(o -el) (3)

nortal momentum

PO + PoVo 2Sin 2 o = P 1 (1-Fp) + plV1 2sin2( 0 -e 1 ) (4)

energy

+ _ v 2sin2 = hl +1 v 12sin (0o-e1) (5)

across thle reflecteu snock wave r:

continuity

0 1v1 sin 1 = p2 v 2 sin( 1 - 2 ) (6)

tan(Jentional -.omentum

P 1t ano1 = p2 tan(O1-6 2) (7)

I " " " . ... %.. " . " • • " ..................................................-. ." .. -"- "-'.'-'

. . . . . . . .. "".".."".. ..... .."" 
'

"'[" " "' """..."' " "' ' "' "". ..." " '" -"" 
¢
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normal -nomentum

2 2 2 2PI(1-Fp) + l sin = P2 (-Fp) + 2v2in (-e2) (8)

energy

1 2 2 1 v 2 2sin (€ 1-e 2 )h I1 + f V I1 sin 0 1 = h 2 +  V2sn4 _ (9)

and the boundary condition for the RR MR transition:

I  = (10)

Settir F = 0 and a= 0 results in the well-known set of equations

describing a regular reflection in an inviscid flow. The solution of tnese equations,

which yields the "detacihment" transition line (shown in figures 3 and 4), can be found

in Ben-Dor's (1978) work. Note that vO =u /Cos, = 90-0w

p and T are known. The enthalpy h is related to the temoertaure through h = CPTo o

and the density p can be calculated fran the equation of state for a perfect gas,

i.e., P = P/RT . The definitions of of I' e1 and are shown in figure 2.

The Roughness Ef_ ct on the Turbulent Liow

Usually, surfaces over w-hich fluids flow cannot b- considerex] as jxrfectly

smooth. hxperiments have indicated tnat thL roughn. ss height -E significantly

contributes to the friction coefficient - f. Owing to this fact it is necessary to

,cvlo: .no6cls whicn will rclatc the friction coefficient f to the rouginess

h eight - E. ',;is is done in tnt following.

ilasius [!chlichting (1'yi)] snowed3 exnerimntally that for liy,iraulically srooth

, tnc f riction coefficient f dpe[ nds solely on t e iPcynol ,s numlxer (Fe). lopf

(1923) foun] expvrinentally tnat for very rougi pipes the friction coefficient f

depends solely on the relative roughncss c/R (R is the )i[e radius). Furthermore, he

showed that for less rough pipes f depends both on Re and e/R. These ex rLrimental

-'-'-. --...-.- .--. ° .-''...'.'.-.''.' - . . . . .- '- "[..-.. .- --. -... . ...". .. . . .. .. . ... . ......
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fin-!ings sugge.-sted tlh t the coiisickarw pnenomencr. is controil ,_. by tii t ickn ::, .)f

tne laminar sublayer - 6L  heir conclusion ,JS t.t tte .'omincit factor in

determining tht value of the friction coefficient f is E/6 L. n C < 6 i.., tnc.

surface roucjhness is campletely immersed inside the laminar sublayer) thu roujhness

has practically no effect on f, and the surface can be consider<ci as "hydraulically

smooth." On the other hand, for E >> 6Lthe roughness has a dominant effect on f. In

such a case the friction mechanism is known as "wave drag" [Shames (19b2)]. It was

further shovai by Schlichting (1962) that for any given size of roughness,v- L

const (v* is the shear velocity and v is the kinematic viscosity). This findiing 1Wki

Sclichting to derive the followiing relation:

CV.
£ L

It is clear from this relation that - can replace an:; tiieroforc- !he

consiiered as the dinant factor in determining the value of the friction

coefficient.

Faseu on the experimental results of Nikuradsse (1933) it is a cor.mon practic-" to

,jivi( o tn turoulnt tlow over rougn surfaces into three tlow zones [Sames (1i32)H.
EV

1) hyiraul it lly smoothi flo;: £ < 1 or - < 5 and f = f(Pe)
L

EV*
2) frictional ransition flow: 1 < - < 15 or 5 < - < 70 and f = f(Re, E/R)

6L V

£ Lv,
E*

i ) rc'vjn fla.: E- > 15 or - > 70 and f = f(£/R)
6 Lv

0, t turbul'-.r t coaract-r of tie flo-, 1:; A fin ] , it is 'xr ,,t to ,

corr.lAtions rt-l:iting th(e rou:;:inoss to the friction loss(s. As a basis for

constructing faicn corrlations te following ogiritanir vcdcity distrihution IAv is

U 1 l - - B](2.. ..1 v.
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whiere u is tht- timE, avt-rcK> veloci' y, a 1is i unive-rsal constant, y is tf ciisttoncc

coordinate nu.sure, [rom the surficc- andY 8 is Ca cons;t.oit 3J..Fpcndingj on tne rougriness

height - c. The assumnptions under which thce loyarit-nic velocity distribution law was

obtained are given by Prandtl (1925). De-tailec. derivation ofi equation (12) can be-

found in Shames (lQ) . A comparison between the e-xperimentol results of Nikuraose

(1933) and equation (12) indicates that:

1) for a largje range of Reynolds numrbers and! roughness heights, al = 0.4

2) for a hydraulically smnooth flow

1nB = -2.2 (13)

for the frictional transition flow,

-2.2 1n6 0.8 (14)

andi for the rough f low
EV*

Based on these values of a 1 and a expressions for evailu,,tir.c t". fric-tion

coefficient - f, for flat plates, were rderived for Lac'a of t-,t t~i,- illo. s. I r

ordei not to limit the present results to any spex-cific Lie;,.' zone o a f-t

analytical approach is taken in the present stui-y. T-iis apru:IS ~1~:i 2

following.

Inserting the boundapry condjition UfY 6 L= UL(fi'jurt: e into t,,juation

(12) yields

In the aia sublayer the volocity changes linearily td-ir(.KcrO

-L-ji W6 (17)

where TrW is the shear stress on the surface. Insurtingj the r~lat ion 2*T /



UL V* 6 L

v. (i)

Canbinig equations (16) and (18) yields:

G = -L inG-In) (19)
al v* 6 L

Gwhere G-

For a = 0.4 equation (19) reduces to

G = 2.5 (InG-InS) (20)

Since depends solely on the roughness height E, it is obvious fran equation (20)

that so does G, i.e., for any given value of c, the value of G is independent of the

flow properties. It was therefore decided to call G the "roughness characterizer".

It should be noted that the roueftess characterizer G = is simply the

common Reynolds number in the usual form applicable to the inner layer. The

laminar sublayer thickness 6L is fundamental in the evaluation of G. Indeed, G does

characterize the roughness effects, but should more properly be viewed as the ratio

of two length scales; 6 and a visoous length 2

For assessing the value of G appropriate to hydraulically smooth surfaces,

lasius' rcsults can bce uz3. Blasius found [Scnlichting (1982)] that the friction

cofficic2nt fo: the considered case is given by:

-1/4
f = 0.3164 R D  (21)

u D

,w.= R -r-e a.v Equation (21), which is known as the Dlasius equation, was
e,D v

Lr.v.5 for th( following specific velocity profile:

U =(Y) 7
u R (22)

0

For i j( nrdl velocity profile,

(23)

exuation (21) can be generalized to -the following form:

- 2n
f =C(n,G) Re Tq1-. .. .

f -- CmG.. ... ... ... .. .. . .... ....-.-...-..-..- ,.



In this relation the velocity power exponent n Jepends solely on tne Reynolds

number (Shanes, 1982). Mazor (1984) showed that C~n,G) has the following form,

Sn+1 2 2 (n+1)

G(n,G) = 2 n+1 [(n+1)(n+2)]
n + l G

(25)

Inserting 1 = into equation (25) and recalling that for this value of n,7

C(n,G) = 0.3164 [see equation (21)] yields for a hydraulically smooth surface

G = 12.2468

Using this value of G in equation (20) implies that for a hydraulically smooth surface

ina = -2.39

This value of InB is about 8% smaller than the value usually quoted in the

literature [equation (13)).

The value of the roughness characterizer - G for a frictional transition flow

can be determined from equation (20). As mentioned earlier, for a frictional

transition flow -2.2 < in8 < 0.8 [equation (15)], thus by

inserting inB = 0.8 into equation (20), the lower value of G for a frictional

transition flow can be obtained.

Following this procedure one finally obtains:

- for the hydraulically smooth flow G = 12.2468

- for the frictional transition flow 0.5625 < G < 12.2468

- for the rough flow G < G < 0.5625

Models for Predicting the Effect of the Surface Roughness on the RR M MR Transition

As mentioned, the detachncnt criterion of von Nleumann (1963) does not agrc with

ex[xerimrental results. By accounting for viscous effects, Hornung & Taylor (193i.2) werc

able to explain the discrepancy.

For rough surfaces, where viscous effects are much more pronounced, the inviscid

mxel [equations (2) to (10)] predict the RR t MR transition very poorly. In tne
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following, two models for prelicting the RR M , transition over rough surfaces are

developed. The formulation of these models is similar to the inviscid flow modc l,

with additional terms accounting for viscous effects.

The Pressure Loss-Model

Viscosity results in pressure losses. Therefore it is natural to express its

effects on the flow field by introducing a pressure loss term in the inviscid

conservation equations. Since ahead of the incident shock wave the flow is

quiescent, only the pressures in states (1) and (2) [see figure 2] need to be

corrected. Consequently, a pressure loss coefficient Fp, which depends on both the

roughness height c and the inverse pressure ratio across the incident shock wave -

is introduced into the conservation equations for inviscid flow. This pressure loss

coefficient can be expressed as

AP = FP (E, E) (P1 -P2 ) (26)

Thus equations (2) to (10) with F p0 and a = 0 represent the conservation

equations for the pressure loss model.

Takayama, Gotob & Ben-Dor (1981) showed that the pressure loss coefficient can be

expressed as f Allows:

F P(c,E) = F (1-P27-- (27)

miere F depends on the roughness height c only and n is a constant; n can be foundC

fran the experimental results. Their experimental (.ata indicate , that in = 7/9. The

Rl( + MR transition lines, as predicted by equations (2) to (10) for Fp O anKd a = 0

werc fitted to the exlxerimental results of Takayana, Goton and lBen-Dor (19S1) by

ciloosing appropriate values for F . The obtained results are shown in figure 9.

ThL values of F wnich resulted in tne desiroed shift of the RR 4 MR transition linesC

(to fit the experimental results) are listed in figure 9. It is apparent fron figure

9 that the experimentally obtained transitions for hydraulically smooth surfaces can

.......~~~................-. ." .""."........'.......... ......... .....
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best be describei by F = 0.1. The value F = 0 corresponds exactly to the

"detachm~ent" transition criterion of von Neumann, [i.e., a pxLrfectly smooth surface

H= 0)].

In order to complete this model, the values of F were correlated to tneC

roughness height
2

F - 545.45 c + 31.73c -0.012; for 0 .< c 0.02 an (28)

and

F -4.63 c2 + 2.55 c + 0.35; for 0.02< c < 0.2 cm (29)C

These correlations along with the measured values of (F - e) are shown inC

figure 10.

In su:inary, the proposed model should be used as follows. For any given value

surface roughness E (in cm) one evaluates F using equations (28) or (29). Then

is calculated by equation (27). Subsequently this value is used in the conservation

equations ((2) to (10)1. It should be noted that for the pressure loss model a

[equation (10)] should be kept equal to zero.

The Boundary Layer Displacement Thickness Model

The idea to account for the viscous effects through the boundary layer

Jisplac-ment thickness is due to Hornung & Taylor (1982) who resolved the von Neumann

poradox by applying tnis concept.

The "boundary layer displacement thickness - 6 * is defineu as the distance by

'inich th(. solid boundary would nave to be displaced if the entire flow was replac&xl by

, slmilar frictionless flow both having the same mass flow at any flow cross- sction.

Since the: incident shock wave was brought to rest by using a Galilian

transformation, the boundary layer displacement thickness in the present case is

negative (see figure 11).

In reality the flow associated with the RR is viscous, therefore solving it as an

.. . . . . .. ... .. . . . . . . . . . . . . . .
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inviscid flow (figure 12a) is inadequate. If one is to use the inviscidi conservation

equations, the geometrical boundary must oe corrected in order to account for the

viscous effects. One possible way is by displacing the flow boundary (wall) according

to the boundary layer displacement thickness. 'T1e resulting flow field is shown in

figure 12b. As can be seen the boundary condition for RR is no longer 01 + 02 = 0.

The boundary condition that the flow obeys behind the reflected shock wave is

E1+2=a where csO . Therefore, at transition

0 + 02m = a (30)

or alternately,

1 2m
0 1 6 (31)

where F - the boundary layer dissplacenent thickness coefficient is defined as

F6 = a/0 1  . Consequently, the solution of equations (2) to (10) with

Fp = 0 and a 0 should provide the correct PR * MR transition for

rougn surfaces since it acounts for the surface rouqhness via the displacement thickness.

In the following the relation between F6 and c is developed. It is clear from

figure 4 that for any given value of roughness size E, the actual transiton points

shift away fram the "detachment" criterion transition line to smaller w

angles. Thus, by selecting an appropriate value for F6 the transition line could iso

be shifted to fit tne ex[erimentil results.

The required values of F& for tne given valucs of Ms 3irl c arc listed in table

1. Inspecting these values indicates that in tht2 ran.jc I < K < 2 and 3.5 < VS< 4.0
s s~ 6

is practically indeperdent of Ms, i.e., F6  can be assu-ed to iIcjix n solcy on E.

Cwincj to this finding, in the subsequent discussions two separate ranges of i:s are

considered, 1 < M .< 2 and 3.5 g M S < 4. The values chosn for F6  for the range 1 <

M < 2 are shown in figure 13. It is apparent from figure 13 that the selecteds

. . . . ..-. "-''-':., .. ...:":', " ''''":" ~ ~ . m ' ""'":""": -'"""'""" : '": . . ." 54 . ':.?•:' :.-:--- . ,' -.- -::<.-:.: :,:,..'-:\:-:b: ' - . .
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values of F reproduce the experimentally obtained RR MPR transitions for any

roughness size c fairly well.

The values of F6 and c which reproduce the experimental results for the two

ranges of the incident shock wave Mach number ranges are given in table 2.

The correlations between F6  and E , based on the experimental results shown in

figure 13, are:

for 1 < M <2

F = -600 C + 38.6 c + 0.006 0 < c .< 0.02 an (32)6

F6 = -4.17 2 + 3.08 c + 0.48 0.02 < c g 0.2 an (33)

and for 3.5 < M < 4.0

F =-9.45.45 c2 + 37.13 c -0.003 0 < c .< 0.02 an (34)

F = -1.39 c2 + 2.47 E + 0.31 0.02 < c 0.2 an (35)

Obviously for a perfectly smooth surface (E =0) viscous losses can be ignored and

therefore,

F = 0 (36)
6

Equations (32) to (35) along with the experimentally deduced values of F 6 anc E

are plotted in figure 14.

In summary, the procedure for employing the boundary layer displacement thickness

model is as follows: for a given value of roughness height -C (in an) and incident

shock wave ?och number - Ms, the value of F6 is calculated from the appropriate

correlation [equations (32) to (36)]. Then the conservation equations [(2) to (10)]

are solved using the obtaineN] value of F (with Fp = 0). ii-sidcis its ability to

reproduce the RP Z MR transitions for rough sLurface:s, the proposed mo jel (the boundary layer

, isplacement thickness) can be justified on p iysical grounds. It will iyh shown in tne

following tnat for a given Valuu of rouginness neight - , the slo[Y2 of the bounfdary

layer oisplaccnent thickness - 6* at a sp_ cifiedj point (which will be torm.d "the

cnaracteristic distan= xchar ") is vcual to the angle a which can be obtained fro.

the model described earlier jhich is based on experimental resultS) for the same value

S ...,...... .-..-.. .. *- . *. . . •.. -.. . ... .. /. :, , -, ", ... * .? .: .. ', , -
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of c. (Recall that ai F6/A1  is the angle between the flow ;1irection hehinrd the

reflected shock wave and the rrcl reflecting surface (see figure 12b)), i.e.,

a =tan-1 d6* (7
x (37)

Intuitively, one might suggest that since the displacement starts at the reflection

point G (figure 12b), equation (37) should be correct at xchar = 0. However, since

= 900 and since a flow cannot follow a 900 turn instantaneouslyixo
it appears that equation (37) must hold for xchar ' 0. Furthermore, following

Shirouzo & Glass (1982) and Mireles (1983) it is preferable to use the average slope

of the displaced boundary. Thus, equation (37) is replaced by:

a = tan - 1 6*I
x I=Xchar (38)

In order to proceed with the present analysis, an expression for the boundary

layer displacement thickness -6* of a compressible viscous flow over rough flat plates

is required. An appropriate expression is developed in appendix A. The obtained

expression for 6* (see equation A.17 in ap-exndix A) is:

2(n-1) 3.2975n V2n T
_ 3n ( 3n+1 (2 ) 3n+1 2

x (22 v (n+1 - T (39)
2 2(ri+1

where C is a constant depending solely on n (equation A.18), n is the velocity profilc

exponent, which dependls solely on the Reynolds number [Shames (1922), p. 281], G is

the roughness characterizer [defined by equation (19)], T2, v2 and v2 are the flow tenp-

erature, the flow velocity and the kinematic viscosity behind the reflected shock wave

respectively, T is the average temperature inside the boundary layer [define,- by

equation (A.8)] and V is the plate velocity on which the boundary layer develops.

Inserting equation (39) into equation (38) yields:

- 2(n-1) T 3.2975n 2n T

= tan-1 CG 3n+1 (T) 3n+1 ( 2 3n+1 2

.F ..... V.. n+ - (40)



There are three unknown parameters in the right hand side of equation (40); they

are:

1) the roughness characterizer - G which in the proposed model depends only on

the roughness height - c (this fact is yet to be proved),

2) the velocity profile exponent - n which according to Shames (1982) should

decrease with increasing Reynolds numbers (this dependence is yet to be found),

3) the characteristic distance - Xhar , which according to the present model

should approach zero, i.e., x 0.
char

In the following these unknowns will be found. H1owever,in order to do so we

start by introducing an expression for the laminar sublayer thickness - L (for

details see appendix B):

2 1 n -1/2

6 G nl 2 n+1 6n+lQ(1

[appropriate expressions for Q and 6 are developed in appendix A.]

For a hydraulically smooth surface G = 12.2468 (see the foregoing discussion) and
1

from table 2, a = 4.630. Inserting these values as well as n = ( [see Martin (1975),
5

Glass & Hall (1959)] into equation (39) yields,

Xchar = 1.25 x 10-6

The mwean fr4ee path of toc flow behind the refletcteu shocK Vwv - it t.] comitions
-6

of the problem at hard is 10 6 n. Thus it is seen tihat the chara-cteristic lenntd

i- of ttic onr r of the nean freu path.

tie matneatical definition of a hydraulically srr)ootn surfac, can Lx easily

obtainexl using equation (41). At x = 2 cn, wnich is half the length of our

exrx_,r imrntal rmxels:

6Lx-- 2cn 0.00517 an

* .- . . - .I
".; ".. > ",-'" ¢"- "" .: .... :J. :'. .--.- " " ................. ;..... :......"".....: ; -: ."::";:" :. " . -'... -. : '..
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As mentioned earlier, a flow is considered as hydraulically s.vooth when the

roughness heightc is smaller than the laminar sublayer thickness. Thus, for a

hydraulically smooth surface

Cmax < 6L = 0.00517 cn (42)

It is also of interest to note that from equation (39)

6* Ix = 2  = 0.00086 cm

The obtained values for Xchar and cmax  suggests two possible criteria for

relating the roughness characterizer - G to the roughness height - E.

Criterion A

Hypothesis: The above calculated value of xchar is independent of the

roughness height - c.

Verification: Using the constant value of Xchar the values of G as a function

of a (which depends on C, table 2) were calculated. Using

thl7sprocedure it was clear that for a given value of E they are

different'alues of G. This contradicts our basic requirement

that C is independent of c.

Conclusion: Xchar depends both on the incident shock wave Macn number and

the roughness height. Therefore, this criterion is incorrect.

Criterion B

Hypothesis: The value of6 2 is indepencent of the roughness
Ejx--2c

height.
6*

Verification: The value of C-- x=2m for a hydiraulically s.,ootn surface

can be easily obtained. Using the above calculated values of

6, x=2cm and cx , on, obtains:

1 x-2an " 0.166

• , na i~i n~i.-mlnnuin -n.ul .. . . . . ..i l - - -II I 1 . . .



-21-

(this is the minimu value since 6* was ivi--e y E ).

Assumption: The flow over a rough surface having

e = 0.01 an belongs to the frictional

transition flow zone. As mentioned

earlier (equation 20)

G = 2.5 (inG - 1na)

and for the frictional transition flow zone

(equation 14) -2.2 < Wn < 0.8. Using an average

value of ino = 0.7, results in:

G = 6.3848

Inserting this value of C together with n =

into equation (39) results in:

6*= = 0.176

Comparing this value (0.176) with the value

obtained previously for a hydraulically smooth

wedge (0.166) and recalling that the latter

value is the minimum value for a hydrulically

smooth wedge (these two values would be exactly

equal if c = 0.0049 an which is smaller than Ema~x

was used for a hyoraulically smootl surface),

leads to the conclusion that is£

independent of the roughness height E

Furthermore, equation (41) yields:

6Llx=2an = 0.0018 an

and since c = 0.01 cm:

I.,.=-. .55"
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This value falls well within the range 1 < 15
6L

which defines the frictional transition flow

zone. Thus, the foregoing assumption is

verified.
6*

Let us now verify the argument that - = const in the rangeE

1 < Ms .< 2 as well. For a hydraulically smooth surface and M = 1.5

one obtains:

6*x=2cm = 0.0059 cm

Dividing this value by c = 0.0049 an (which is typical to

a hydraulically wedge), results in:

6* 1.204

Similarly, for a rough surface with E = 0.01 am , one obtains

6 **6
jx=2z~ =1.224

The obtained values for *1 verify our hypothesis that

is practically independent of c. Furthermore,

Ex=2 = 1.25

This value again verifies our earlier assumption that the flow

over a plate with e = 0.01ca belongs to tne frictional

transition flow zone.

Conclusion: The hypothesis that is independent of the roughness
C

height - c is correct.

Sumuary: For a given incident shock weve Macii number

6*
7l x=2an = constant

In the franework of the present stuly:

6* = 1.224 for 1 < M . 2 (42)
C1 1x=2an s
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6* : 0.176 for 3.5 < M < 4.0 (43)
C 1 x=2an s

7he velocity exponent - n

Using the foregoing criterion, the value of the velocity exponent -n(equation

23) can be calculated for any given incident shock wave Mach number.

Martin (1957) showed that in the range 1 < M < 2 the value of n = - fitss 5

experimental results best. Glass & Hall (1959) also arrived at this conclusion.
1

Based on these studies the value n = - was chosen for the range 1 < M < 2.- -5 S

Schlichting (1962) claimed that the value of n decreases when the flow (shock) Mach

number increases. The appropriate value of n for any shock Mach number can be

calculated using the fact that the roughness characterizer is independent of the shock

Mach number. For example, for the range 3.5 < M . 4.0 one should solve tie

equation

G(E=El, M =3.75, n=?, -Ix2= 0.176) =

G(c=rI, MS=1.5, n:-' -* = 1.224).
S 5 x=2an

The solution of this equation results in n = 0.1935, in agreement with the

reruironent that for M > 2 , n < 0.2. The change in the obtained value of n is nots

too large. Nevertheless, the present procedure provides a method for calculating the

valuc of n for any inciuent Mach number. It is expe-teri th t when Uic incide(nt shack

wave !-acn nuimber increases to nigher values, n wall hc- furtlr rec',ucc betlow ('.2.

The roughness characterizer - C

Using the values F6 given in table 2 for any valut, of roughness hoignt, toaltncr

with the appropriate criterion [equations (42) or (4'3)1 inJ c-quation (39), onaLAc I us

to find the values of the roughness characterizer - C for a giver, roughness height -c-

• ..... ... . .. . .,.... ..- - ... .- '.. . . . . . . . .. -. ... .. -... . ." ....- -. '....'.'. ...--
." " '." .' " ." "- ..' .' . . .-. ,.' " 2 . .. ". ",'. . "''" " " " -" ." -' .' ,....,,', ",." ' . - " ... ".'," -" ." .
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'hk= obtained values are given in table 3. ,s can bc s.,2n, tUre are vry slight

differences bttween the obtaineu value of G for a specific' veilum cf c . ',)is tac:c

complies with our earlier reL<uir nent that the roughness characterizer shoult be

independent of the rougnness height. Tne: small discrepancy is probably due to tci

fact thac the two criteria [equations (42) ard (43)] weret established for Ms = 1.5

and M = 3.75, while the values in table 3 are for M = 1.495 ± 0.015 and M = 3.74 ±

0.15 .

The average values of C (given in table 3) were fitted against c to result in

G =- + 0.252
(44)

(c in c-). This curve, as well as the (G-E) values given in table 3, are shown in

figure 15. It is worthwhile to note that tnis expression comlies with the physical

requirement that the value of the shear stress - Tw (equation A.14) increases as the

roughness height c increses. Note also that for a perfectly smooth surface (=0),

equation (44) results in G. - and from ecquation (A.14) one gets for this case

(G - ) Tw - 0as expected.

Further Check of the Displacement Thicknss el

The boundary layer displacement thickness model was bs_,' on expert ntal cita

obtained for £ = 0.01, 0.02, 0.08 and 0.2 oy. In orLier to consoli-iatc the findinjs

additional experiments with £ = (.04 ur were j-_rforMn].

The RR t MR transition lines obtained by the present model for the ranges 1 < M , 2s

rnK 3.5 < M < 4.0 togetheir with the cx*eri,-.9nt illy :asur-u transition 3at;, <:r(

,]ottd< on figurc 16. The von Ncumann "detacn',icnt" transition line is also :,!)o,, ,2

tig:urc 16. It is clearly seen that the prc ;icticrsot tni prc s,,.ntol are Muci i>_t1, r

tha-:, tnat of the von Nemann "detachiment" crithrion. A;.- ,x-ct(_6, in the rin( 1 < M 2

excellent agreement is obtoincd at the cntt.r of this r.-' (M = 1.5). m

prodictions of the present model for the range 3.5 * M s < 4.0 are not as good as

thos obtained for the range 1 < M < 2 However, they arc, far btter than tho
S

-- - i" , -" " -" -'- - '<, -'- '." ""-< -'' - .' .- ''" - "." ''.-.-' -...- ''''- '<" .- '-''.- -< ' > .. < -;-'" ""-. -"-.-.". -
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pr,.ictions of the "detachment" criterion.

Conclusions

Two models for predicting the effect of the surface roughness on the RP t MP

transition in the ( M s,8w  )-plane ire developed. They are:

1) the pressure loss mod el, and

2) the boundary layer displacement thickness model,

These two models suggest alternative ways to account for viscous effects when treating

the RR 2- MR transition.

In order to develop the boundary layer displacenent thickness model, an

expression for the boundary layer thickness of a compressible flow over rough, moviry_

flat plates was developed. Using this expression, appropriate expressions for both

the bourary layer 6isplacement thickness and the laminar sublayer thickness were

derived.

While developing the boundary layer displacenent thickness the following facts

were established.

1) A hydraulically smooth surface is a surface for which the roughness height

E < 0.00517 cm

v62) The roughness characterizer G =  is v0 ,enendent of the incident

shock wave Mach number.

3) The value of -- does not depend on tne rougiincss height.
E lx=2an

4) T!,e characteristic distance - Xchr increases with decreasing

incident shock wave ['vcn number, atnd increasing roughn.='s nc-ijnt.

5) In addition, a method by w1ich tne velocity exponent - n can be determncx;

for any incident shock wave 1fi-;ci, number was prescnttx.

both modetls reprodluc( the experi.nental results quite well.
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App x-cix - The Boundary Layer Displacnent Thickness 6*

Tihe origin of the coordinate system is moving with the reflection point G along

the wedcye at a constant velocity v° = u s/cose (us is the incident shock Wave velocity in th

laboratory frame of reference and e is the we-dge angle, see figure 12b). In thisw

frame of reference the flow in state (0) is moving towards the incident shock wave

(whicn is now stationary) with a velocity v0 (the angle of incidence between this flow

and tie shock wave is 0 = 90 - e ). The wall, which in a laboratory frame of

reference is at rest, is also moving now with the velocity u = vO . The flow in

state (2), which initially had an induced velocity u2 (Y) , is now moving with

tnc velocity v2 (y) = [us - u2 (y)]/cosew  Therefore, in the considered frame of

reference 6* should be calculated for a flow velocity v2 (y) over a moving inclined

flat late having a velocity v in the same direction of v2 (y) .

For turbulent incompressible boundary layer flows two different approaches are

frequently used (both are semi-empirical): they are the mixing length of Prandtl .and the

von-Karman momentum intejrals (see Shames, 1982, pp. 368). Since similar

semi-cr-pirical approaches are not available for compressible, turbulent boundary layer

fiow,- , it w.-,s suggeste-d by Eckert (1954) and Mireles (1956) to adopt the approaches

proposed ";r incompressible flows while adjusting them to account for compressibility

effects. In tie following a similar approach is adopted.

Prior to adjusting ticse approaches to the compressible case the differences

uetwe,-n the incompressible and the compressible cases should be understood. inile in

t-l- for:.cr the velocity and tnErmal b-oundary layers can b considerecd separately, in

t: .1,tttr tn(.y are couple,,. This coupling arises from tile fact that at high flow

vIucit ieb te heat generot ..J by friction and the temperature chailgLs Ou to

cror i':rtsuibi ity must be accounteu for. Consequently, in the compressible case tilc

toiluwirrv Lctors must be considered]:

i) tnQ i4cri nunber,

2) tnc Prandtl number,

.. .•............ ,..,..... 2.-....-, ..... -.. , .- ,. ..,. . ....-. ,..,..,-. .'-'- -. .
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3) the viscosity dependence on temperature, and

4) the heat transfer fram the floW% to the solid surface.

The major assumptions upon which the present model is developed are:

1) the gas behaves as a perfect gas,

2) the flow is pseudo-steady and two-dimensional,

3) the boundary layer is turbulent from x = 0. This assumption is reasonable

because,

a) the Re number is very high. Therefore, [Martin (1957)] the

boundary layer is laminar for a short distance only, and

b) Schlichting (1962) showed that the surface roughness

decreases the value of the critical Re number where transition

takes place,

4) tne gravitational forces can be neglected,

5) the pressure is constant throughout the entire field, i.e., E = 0
ax

and E= 0, and

6) Blasius' semi-enpirical results for the wall shear stress - T in incompressible

flows are applicable when the avrage temperature - T is used.
m

TIje ;,.,l shear stress - Tw

In t:--. following an expression for the wall shear stress in a compressible

viscous flow over a moving rough flat plate is developed. The shear stress for an

incompressible viscous flow over a rough stationary flat plate is (Ilazor 1983):

2(n-1) - 2n0w 2 n+1 .. n+1 (A. 1)

wrnurc u q: o.0 are the flow velocity arx] density outside the boundary layer, G is tOh
V,6

roujhnuss cr-kircterizer G = - (V, - shear velocity, 6L - the laininar sublayur

thickness, v- kinematic viscosity), and

U 6C=
6 v
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Inserting n = n and C 12.2468 (the value calculated previously for hydraulically

smooth surfaces) in equation (A. 1) yields:

--w = 0.0233 u Re -1/4
P. 0 (A.2)

which is only 3.4% larger than Blasius' expression for incompressible flows over a

smooth plate, i.e.,

T'= 0.0225 u ReP.

In order to apply equation (A.2) to a compressible flow, the flow properties must

be calculated for the average temperature inside the boundary layer - T .

Consequently,

2 (n-1) 2n
w 2 n+1 m)n+1P =  u G (- ) (A. 3)

A similar approach was adopted by Tucker (1951), Eckert (1954), Bartz (1955) ani

Mireles (1956). By definition: vm = m/pm and v. = p./p., furthermore

from the equation of state for a perfect gas: pm = P m/(RT m ),

p. = P /(RTOO) and from assumption 5,P = P . Inserting these expressions

into equation (A.3) results in:

2 (n-1) 2n
w 2 n+1 (00)n+l

w- uu (--6 A 4

Ww

2n 1-n
Q (fl n T1 n+1

Tm

(A. 5)

Equation (A.4) differs as expected from equation (A.1) by the term Q which

• , . ,~. * . . . . . . - . . *: . -. .,
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accounts for compressibility. In order to calculate Q, apropriate expressions for m

and T are reqTuired.

For nonpolar diatomic gases Mazor, Ben-Dor & Igra (1985) sucgsteJ,

T 0.64874

PO T0go o

therefore

Pm Tm 0.64874
- = (Y-) (A.6)
No 0

Inserting this relation into equation (A.5) yields

T 1-2.2975n
0 n+l

T )(A.7)

Eckert (1954) showed that T can be approximatedO by;m

Tm = 0.5(Tw-TO) + 0.22(T r-Tc (A.8)

where T, T. an T r are the wall, the free stream ar the recovery temperature,

respectively.

The recovery temperature - T (which is r]ual to the wall temxrature for ther

case when there is no heat transfer) can be calculated fro-m [Schlichtinri (1962)]:

T rU 2 u 2 pr1/3

r i+ (w_
-- = 1 + - - 1) (A. 9)C U= 2T Cp

wn-re u ari u arc, tnh wall anJ tr,..t, stred" VciocLt17,,1esk(tiVely, [r is tt,'

PrarJitl nuL~m*r (calculjt-d at Tr ) arxC i!; tin sr-,-cific l'.cat or-Jcitv it Consnt nt

pressure (calculateCit T)

Mirtles (l,56) shom-(j thit tquations (a. y) ar: (1.) 1,; K coa)viL-. to rSujit

in: u 2Tn: 5.56 - 0.28[1 + (UL,) 2

m-= (A.1I0)
E. 6 u _ 1

U .-
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Insertiny equation (A.10) into equation (A.7) results in;

u 1-2.2975n

Q =. u2 (A .1i)
5.56 1 w  0.28[l +()]

As mentioned, in the present case the frame of reference is attached to the

reflection point G (see figure 12b), thus: Uw = V 0  u = v2  1

P" = P2 and V. = V2  Inserting these terms into equatians (A.4) and (A. 11)

results in,

2(n-1) 2n
TW 2 n+1 2 n+1

-=v 2GQ
P2 2 (A.12)

and 1-2.2975n

V n+16 0 -2

5.56 - 0.28[1 + (YIQ)I
(A.13)

&-uation (A.12) expresses tne wall shear stress for a compressible flow over a rough

flat platc. The compressibility is accounted for through Cj and the roughness is

accounte] for through G. Additional correction is requried in order to use equations

(A.12) and (A.13) for thc probla at hand; i.e., to account for the fact that in the

present case the flat plate is not stationary. This can easily bc done by replacing

v2 in eqluation (A.12), by the relative velocity Dctw(:c<n the flow and the surface, v2 -

VO. Carrying out this transformation finally results in:

2 2(n-1) 2n

PW=(2 -v'o) 2G n,1 Q ( 2 )nAl 1A14

Thc boundary layer thickness-6

Inserting the velocity profile (equation 23) and the wall shear stress (equation A.14)

I mm
, , i

Hin. . . ..,. . . . . . . . ..
H

tua . .. . .. . .
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into von Karman's mentum integral for the case of zero pressure gradient, i.e.,
aP
--x 0 [see Schlichting (1962)]

d w6 P [u2 _ (v2-v°)uldy

results in:

2 (n-1) T 3.2975n 2n n+1
6 G 3n+1 (____ 3n+1 Re 3n+1I (3n+l) (2n+) I 3n+12 x n(A.15)
xT 2  x n

Iv2-vlx
were Re =

X V2

Equation (A.15) describes the boundary layer thickness for a compressible flow over a

rough flat plate.
T

In the special case of an inopressible flow _m = 1, over a smooth plate
1 T2(C = 12.2468) when n = 7 equation (A.15) reduces to

6- 1
A = 0.3816 Fe 5x X

The expression found in the literature for this case is ([see Schlichting (1962)]:

1
-= 0.376 Re 5
x x

11,e difference between these two values is negligibly small (about 1.5%).

The boundary layer displacefent thickness -6*

The bouniary layer displacement thickness - 6* can b- calculated from

[rchlicnating (19G2)]
6

6* f (1~. £.) dyop®

1nserting tnle vulocity profile (equation 23) into the above equation and, c(irrying (jut

tne inteJration results in:

1 T26 .n1 (n+1 -T (A.16)

.........-.......... .
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Inserting equation (A.15) into equation (A.16) finally yiel .s:

2 (n-1) T 3.2975n 2n T
6* 3n+1 2 3n (n+1 - T2-- = fl( (..\3nI+1 --x Tv2-vl (717

x2 VV 1 ) 7

where

n+1

c = 1 (3n+l) (2n+I 3-TC:n+1 n
(A. 1)

Equation (A.17) describes the boundary layer displacement thickness for a

compressible flow over a rough surface of a flat plate which moves with the velocityv O

relative to the free stream velocity v2

* * ..- ~ .. *..- ... ... ... .... ... ... ...
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Appendix B- The Laminar Sublayer Thickness -L

The roughness characterizer G was defined (equation 19) as:

v,6L

G = V (B.1)

where V*the shear velocity is:

= (I /P) (B.2)

Inserting Tw (equation A.14) into equation (B.2) results in:

n-i n

v, = (v2-Vo)C0 
+1 ( 2)nVo Q (B.3)

Using this value (equation B.3) in equation (B.1) and rearranging, yields:

2 1 n(.;T _ - -(B )

=G n12 +1 6 n+1 Q (B.4)

6 and Q are defined in appendix A by equations (A.15) and (A.13), respectively.

.
" - . . .- - . .'- - . .- - .'.- - ., ' ----. ? , , - -.' .' .--i ' ., ., ..-.",- '..i 'pi - -.-..i , ---" .i ., - --.-. "* .' -i.i.. ..*.~i , ' ., -i -
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Figure Captions

Figure 1: Illustration of four possible shock wave reflections.
(Interferograms are on the left and explanatory diagrams on the
right):
a) regular reflection (RR) Ow = 600, M = 4.68.
b) single-Mach reflection (SMR) Ow = 180, mt = 4.72.
c) complex-Mach reflection (CMR) 6w = 200, Ms = 6.90.
d) double-Mach reflection (DMR) Ow = 400, Ms = 3.76.
The test gas is nitrogen at Po 15 torr and T, 300K.
(I,I 1 - incident shock waves, R,R 1 - reflected shock wave,
M, M1 - Mach stems, S,S - slipstreams, T,T1 - triple points,
K-Kink X ,X - triple point trajectory angles,
(0)-(5) - therrmodynamic states. The interferograms were taken in
the UTIAS 10 x 18 an Hypervelocity Shock Tube.

Figure 2* Wave configuration of a regular reflection.
I - incident shock wave, R - reflected shock wave,
P - reflection point, Us - incident shock wave velocity,
- angle of incidence, a- deflection angle, 6 - wedge angle.w

Figure 3: Comparison between the von Neuman "detachmen" criterion and the
experimental results on RR - MR transition over smooth wedges
in pseudo-steady flows. The disagreement is known as the
von Neuman paradox.

Figure 4: Experimental results of the RR t MR transition over rough wedges.
c - roughness height, and the "detachment" criterion.

Figure 5: a) Schematic illustration of the type of roughness used in the
experimental study.

b) The test section and the adjustable test model.

Figure 6: a) MIR over an E = 0.02 cm wedge.
b) PR over an E = 0.02 an wedge.
c) SMP over an E = 0.2 cm wedge.
d) PP over an E = 0.2 cn wedge.

Figure 7: Illustration of the method used to obtain the RR MP transition
wedge angle ( 8 tr ) [F- inverse pressure ratio (Po/Pl) across
the shock wavey'

Figure 8: Schematic illustration of the boundary layer structure: over
flat plate.

Figure 9: The predictions of the pressure loss mcoxel aqainst the oxporimental
result for various sizes of rouqhnoss.

.- ------------------.-.. '------.-------.----'-'.-.-.--"."-:--.-."-"--.--.------"-----------"-.-.----.-.--*.."-.' " .'



Piqure 10: The denendencr of F on E.C

Figure 11: Illustration of the boundary layer displacement thickness - 6* in
steady flows and pseudo-steady flows.
steady flow : (6* is positive)
a) velocity profile of the viscous flow
b) the equivalent inviscid velocity profile.

pseudo-steady flow (6* is negative)
c) the unstedy viscous velocity profile
d) the pseudo-steady viscous velocity profile
e) the equivalent inviscid velocity profile

Figure 12: Schematic illustration of a viscous regular reflection at (a)
and the equivalent inviscid regular reflection at (b).

Figure 13: The predictions of the boundary layer displacement thickness model
against the exoerimental results for various sizes of roughness.

Figure 14: The dependence of F on .
6

Figure 15: The dependence of the roughness characterizer C on c.

Figure 16: The detachment criterion of von Neuman and the predictions of the
boundary layer displacement thickness model for E = 0.04 cn (in
the two Mach number ranges) and experimental results of the PR P
transition for E = 0.04 cm.
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PART 2

The reflection of a planar shock wave

over a liquid wedge.



Introduction

In order to have a better understanding of the blast reflection

phenomenon over liquid surfaces such as seas or oceans an experimental

study of the reflection of a planar shock wave over a water wedge was

carried out.

Experiments

In order to get a planar shock wave reflecting over a water wedge a

special shock tube has been designed and constructed in such a way that

the whole tube could be tilted in a vertical plane. Using this

technique, it was possible to adjust the shock tube inclination to

obtain any desired water wedge angle. A schematic drawing of the tilted

shock tube with the water wedge having an angle of 0w as well as a

planar shock wave reflecting from it as a Mach reflection is shown in

figure 1.

A photograph of part of the inclined shock tube with the test

section is shown in figure 2. A detailed view of the test section

filled in with water is shown in figure 3.

The test gas throughout the experimental study was dry air. Both

the test gas and the water were initially at room temperature.

Results

Two different incident shock wave Mach numbers were used with a

variety of different wedge angles. The two Mach numbers were

M 1.475 ±0.015 and M1 = 2.125" 0.05.

.........................................
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= 1.475 _ 0.015

Typical results for this case are shown in figures 4(a) to 4(d).

At ew = 44.3 ° the incident shock wave reflects over the water wedge

as a regular reflection [figure 4(a)]. As the wedge angle is decreased

regular reflection becomes impossible and the incident shock wave

reflects over the water wedge as a single Mach reflection. Such a

reflection is shown in figure 4(b) for Ow = 25.80.

Further decrease in 6w causes higher triple point trajectory

angles. The reflection over a wedge with OW = 18.20 is shown in figure

4(c). Figure 4(d) illustrates the case of a glancing incidence

(Ow = 0).

It is interesting to note that in all the above photographs a

disturbance is seen to be propagating inside the water tank. Its

front propagates along the air/water interface faster than the point of

reflection of the regular reflection or the foot of the Mach stem.

M = 2.25 ± 0.05

A typical regular reflection Is shown in figure 5(a) for

e = 50.8 °. At lower wedge angles Ow = 49.5 ° a double Mach reflection

is obtained [figure 5(b)]. At even lower wedge angles ew = 25.80 the

incident shock wave reflects as a single Mach reflection [figure 5(c)].

The disturbance propagating into the water is clearly seen in this set

of experiments too.

............ ............................................ . . . . . .. . . . . . . . . . . ......... . . .. ... ., .,,,.,..... ,
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The RR + MR transition wedge angle

+ tr
The RR + MR transition wedge angles, were measured for both

tr
Mt = 1.47 and Mt = 2.2. The value of w  was obtained by plotting the

triple point trajectory angle x as a function of the wedge angle 0w for

a given value of Mach number. Then the experimental results were

extrapolated to get 0 tr at the point where X = 0. The present results

are shown in figure 6.

The results are also shown in table 1. For the weaker incident

shock wave the actual transition wedge angle is about 50 smaller than

that predicted by the "detachment" criterion. For the stronger shock

wave the agreement with the "detachment" transition wedge angle is

surprisingly good. The agreement is better than that obtained over

solid wedges.

At the present a detailed study of the reflection over a water

wedge in the range 1 < M 1  4 is being carried out.

i"2

m'-". . . . . - . . . . . . . . .

.. * ...---. . . . . . . ..m* ~ n
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Conclusion

The reflection of a planar shock wave over a water wedge has been

investigated using a tilted shock tube which was especially designed and

constructed for this study.

The four well known types of reflection, namely RR, SMR, CMR and

DMR, have all been observed over the water wedges.

The RR 4 MR transition was investigated. Our early results

indicate about a 50 disagreement with the "detachment" criterion at

M = 1.47 and a surprisingly excellent agreement at M = 2.2. Further

experiments are being carried out.

. . . . .. ... .... I.



Table 1

Shock Wave - Actual Transition "Detachment"

Mach Number Wedge Angle Wedge Angle

1.47 430 ± 0.50 48.70

2.2 50.20 ± 0.50 50.70



APPENDIX - LIST OF EXPERIMENTS OVER A WATER WEDGE

ow Ms

51.5 2.26
50.8 2.30
50.5 2.29
50.0 2.31
49.5 2.30
49.0 2.29
46.2 2.29
43.5 2.21
34.3 2.10
29.8 2.22
25.8 2.05

48.0 1.49
47.0 1.49
46.2 1.48
45.8 1.45
45.2 1.49
44.8 1.47
44.3 1.47
44.0 1.47
43.5 1.47
43.0 1.47
42.7 1.47
41.8 1.45
40.8 1.46
40.0 1.45
39.2 1.48
37.4 1.47
33.3 1.48
29.8 1.47
25.8 1.52
22.0 1.56
18.2 1.44
14.3 1.46
10. 1.46
7.2 1.46
2.3 1.42
0. 1.47



List of Figures

Figure 1: A schematic drawing of the titled shock tube with the water

wedge having an angle of e

Figure 2: A photograph of a part of the tilted shock tube and the test

section.

Figure 3: A detailed view of the test section with the water wedge.

Figure 4: Various reflections over a water wedge of a weak shock wave.

a) regular reflection - M = 1.47 & aw = 44.3o

b) single Mach-reflection - Mi = 1.52 & Ow = 25.80

c) single Mach-reflection - Mi = 1.44 & Ow = 18.20

d) glancing incidence - Mi = 1.47 & ew = 0

Figure 5: Various reflections over a water wedge for a moderate shock

wave.

a) regular reflection - Mi = 2.30 & ew = 50.80

b) double-Mach reflection - Mi = 2.30 & ow = 49.50

c) single-Mach reflection - M. =2.05 & ew = 25.80

Figure 6: The triple point trajectory angle -x vs. the wedge angle -0w .

Note transition from Mach to regular reflection is at x + 0.
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