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ABSTRACT

Small blade-to-blade property differences are investigated to determine their effects on
the behavior of a simple rotor-body system. An analytical approach is used which empha-
sizes the significance of these effects from the experimental point of view. It is fount! that
the primary effect of blade-to-blade dissimilarities is the appearance of additional petks in
the frequency spectrum which are separated from the conventional response modeb .y mui-
tiples of the rotor speed. These additional responses are potential experimental problerrs
because when they occur near a mode of interest they act as contaminant frequencies which
can make damping measurements difficult. The effects of increased rotor-body coupling
and a rotor shaft degree of freedom act to improve the situation by altering the frequency
separation of the modes.

1. NOMENCLATURE

ci lead-lag damper constant of blade i, N-m-sec

Ce damper constant of the rotor shaft degree of freedom, N-m-sec

CZ damper constant of the z body degree of freedom, N-sec/in

Cy damper constant of the y body degree of freedom, N-sec/in

ei distance from the hub center to the hinge of blade i, in Accesion For

lead-lag inertia of blade i about its own mass center, kg-n 2  NTS rj-r

I. inertia of the rotor shaft about the hub center, kg-in 2  2

ki lead-lag spring constant of blade i, N-in

k. spring constant of the rotor shaft degree of freedom, N-in

k. spring constant of the x body degree of freedom, N/im

kv spring constant of the y body degree of freedom, N/m ........

I? distance from hinge to mass center of blade i, m

Mi mass of blade i, kg T.
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effective mass of the x body degree of freedom, kg

MY effective mass of the y body degree of freedom, kg

N number of blades

s rotor shaft degree of freedom

t time, sec

X body translational degree of freedom

y body translational degree of freedom, normal to x

27r(i - 1)/N

blade i lead-lag angle

g'o multiblade collective coordinate

multiblade cosine coordinate

multiblade sine coordinate

rotor speed, constant, 1/sec

) derivative with respect to t

2. INTRODUCTION

In the course of a recent experimental study of the lead-lag stability of a model rotor
conducted by the Aeroflightdynamics Directorate, difficulties in measuring damping were
encountered for a system whose relevant modes were well separated, i.e. by approximately
2/rev. This measurement problem was similar to that caused by the contamination of
data by another closely spaced mode. This experimental problem was eliminated then by
carefully matching the blade-to-blade properties. Further analysis of this problem led to
an investigation of the dynamics of rotor-body systems in which the blade properties differ
slightly from one blade to the next. Barring mechanical failure or damage, helicopter blades
are sufficiently matched that the assumption of identical blades would not significantly
affect any analysis of the basic dynamic characteristics of the system; however, blade-to-
blade dissimilarities are potentially a factor in several interesting and relevant problems.
In particular, helicopter 1/rev vibration levels and the quality of experimental data in
model and flight test programs could be affected by small differences in properties between
blades. Only the experimental data quality issue is addressed in the present work.

Coleman and Feingold's work on rotor-body lead-lag dynamics [1] showed that if either
the body is isotropic or the rotor has polar symmetry (i.e., the rotor has three or more
blades, all with identical properties) a transformation to multiblade coordinates (21 exists
which will eliminate the periodic coefficients which come from writing the equations of
motion in terms of both rotating and nonrotating coordinate systems. They also showed
that, for the isotropic rotor case, any blade motions which could couple with a rotor shaft
rotational degree of freedom do not couple with the body translational motion and can
therefore be considered separately. However, for nonisotropic bodies, if the rotor blades
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are not identical the periodic coefficients cannot be eliminated and in general the rotor,
body, and drive system dynamics are coupled.

Floquet's theorem describes the solutions of linear differential equations with peri-
odic coefficients, and the use of Floquet theory in rotorcraft dynamics is well established.
References 3 and 4, for example, deal with periodic coefficients due to forward flight, and
reference 5 considers a rigid two-bladed rotor with shaft bending flexibility as well as body
degrees of freedom. These works all use the Floquet transition matrix to obtain the system
eigenvalues and find stability boundaries. Hammond [61 considered a four-bladed articu-
lated rotor on a nonisotropic body which had periodic coefficients as a result of one blade
damper being inoperative. While some time history results are presented, the emphasis in
reference 6 is also on eigenvalues. The effect of a rotor shaft degree of freedom was not
investigated in reference 6.

The occurence of individual modes which contain responses at multiple frequencies
separated by multiples of the rotor speed is a prediction of Floquet's theorem. This phe-
nomenon of "multivalued frequencies" is rigorously understood as a response composed of
a periodic mode shape with the same period as the coefficients of the governing differential
equations, which is then multiplied by an exponential damping term and a sinusiodal term
with a "natural frequency" which will always be less than 1/rev. The analyst is free to
add any multiple of the rotor speed to the "natural frequency" so long as the frequency
content of the periodic mode shape is adjusted to leave the product of the two unchanged.
In practice, enough multiples of the rotor speed are usually added so that what are then
called the natural frequencies of the system are obviously associated with the frequencies
of an appropriate constant coefficient system. This procedure is mathematically correct
and physically appealing, but seems to have led to a certain amount of confusion on some
parts about this seemingly ambiguous frequency. This is probably due to the fact that
most published Floquet results concentrate on eigenvalues and pay little attention to the
periodic eigenvectors or time or frequency domain results.

The objective of this investigation is to examine the effects of blade-to-blade dissim-
ilarities on the dynamics of a simple rotor-body system from the standpoint of how the
behavior of such a system would manifest itself physically. The emphasis here is on gaining
physical insight into the effects of the dissimilarities on the response of the system and
noting when these effects could be problems in an experimental setting, rather than on
determining how the dissimilarities affect the actual analytical eigenvalues. Two different
body configurations are examined, and the effect of including a rotor shaft degree of free-
dom is considered. The approach taken is to numerically integrate the equations of motion,
and then use time and frequency domain data analysis techniques on the resulting time
histories. While this approach is inferior to a Floquet eigenanalysis for determining system
frequency and damping values, both in terms of accuracy and efficiency, it has the advan-
tage of giving more insight into possible experimental problems. Looking at this simple
Floquet system in this manner should also help to clarify the meaning of the "multivalued
frequency"result of Floquet theory.
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2. A NA LYSIS

The model considered herein consists of a body with two translational degrees of
freedom, x and y, each of which has an effective mass, spring, and damper. The rotor
shaft, with inertia I,, rotates at an angular speed of (fl + h) where [I is a constant and
.s is a rotor shaft angular perturbation degree of freedom. This shaft rotational degree
of freedom also has a spring and damper associated with it, attached to the constant fl
"ground". The rotor itself consists of N rigid blades with spring and damper restraints,
each of which is free to move in lead-lag about an offset hinge. The mass properties, hinge
offset, and spring and damper constants of any blade are not necessarily the same as those
of any other blade. A schematic of this system is shown in figure 1.

The differential equations of motion for the system above were derived and pro-
grammed in a form suitable for solution in the time domain using a numerical integration
routine, and they are included in the appendix. The program allowed the x, y, and s
degrees of freedom each to be included, locked out entirely, or constrained to move si-
nusoidally at a specified amplitude and frequency, as desired. The integration itself was
carried out in two phases; an excitation phase and a transient phase. During the first
phase some combination of applied forces, specified body motions, and initial conditions
was used to excite the system, then, at a designated time, the excitation was terminated
and thereafter the transient response of the system was calculated. Each computed time
history was 10.24 sec long with data at 0.005 sec intervals.

The solution results were obtained in the form of time histories of the individual blade
and body motions. In order to remove the periodic coefficient effects associated solely with
the use of both rotating and nonrotating coordinate systems and to allow comparison with
past rotor-body dynamics work, the time history results were post-processed to transform
them to the multiblade coordinate system [2]. For three blades, and allowing for the shaft
degree of freedom, s, this transformation is defined as:

11

3 aj in(flt + 0i~ + a)Ci (3)

Equations (2) and (3) reduce to the usual definition of the multiblade transform for small
a perturbations.

The blade properties used in this investigation were chosen to represent blades that
have been used for some experiments conducted by the Aeroflightdynamics Directorate.
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The body properties were chosen to represent the rotor test stand which is used in conjunc-
tion with these blades. This stand has two possible configurations; one with a relatively
soft flexural element restraining the body z degree of freedom, and a second in which
a clamp is used to further restrain the body z motions, giving a much stiffer system.
These two configurations are referred to as the soft and stiff bodies, respectively. Both of
these configurations are very stiff in the y direction. The rotor shaft properties used were
based on estimates of the drive system properties associated with this stand. The model
properties used for this investigation are summarized in table 1.

The system frequency and damping values were determined from the computed time
histories via spectral analysis and the moving-block technique [71. While this approach
is inferior to a Floquet eigenanalysis with regard to computation time, it duplicates the
experimental data analysis and it has the advantage of giving the same kind of insight
into the behavior of the physical system that an experiment would. It is believed that
this is approach is particularly helpful in understanding the periodic mode shapes, or
"multivalued frequencies" which occur for periodic coefficient systems.

A variable-order, variable-stepsize, numerical integration method was used for the
present work with the belief that it would be a more sophisticated method than this
problem actually called for. As a checkout of the program, the case of the nonisotropic body
with one blade damper inoperative from reference 6 was run. The results of the spectral
analysis and moving-block technique agreed very well with the Floquet eigenanalysis results
shown in figure 5 of reference 6.

3. RESULTS

Matched Blades

To demonstrate the baseline system behavior, system frequencies are shown as a
function of rotor speed in figure 2 for the soft body configuration with three identical
blades. The data points shown were obtained by applying a sinusoidal force to the z
body degree of freedom at approximately the progressing or regressing mode frequency,
or by using a small z displacement as an initial condition, as required. The fixed system
blade frequencies for the isolated rotor case are shown for comparison as the dashed lines.
Because of coupling with the body, the lead-lag progressing mode frequency is about 2 Hz
above the isolated rotor result, and the the lead-lag regressing and progressing modes are
not 2/rev apart, as they must be for the isolated rotor case. The rotor shaft degree of
freedom was not included because it does not affect the results. It is worth emphasizing that
although the system has five degrees of freedom the nonrotating multiblade coordinates,
, and !*, will only participate in four modes. The only multiblade coordinate in which

the fifth mode will appear is the collective coordinate, to, and the modes which appear
in C and C, will not appear there. The frequencies of the stiff body with three identical
blades are shown in figure 3. Even though the body frequencies were fairly high for this
configuration, above 45 Hz, the progressing mode still diverges from the isolated blade
results above about 500 rpm. Although no results are presented here, the moving-block
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analysis can be expected to give very good results for both configurations, because there
are no closely spaced modes which could interfere with each other.

Figures 4 and 5 are included mainly for comparison with the mismatched blade results
which follow. Figure 4(a) shows the frequency domain response of the , coordinate to
a small initial displacement of the body x degree of freedom as a function of the rotor
speed, for the soft body configuration. This type of excitation was chosen because it can
be applied consistently at any rpm and so any differences in the response from one rotor
speed to another are due solely to the changing properties of the system, not changing
excitation. The disadvantages of this type of excitation is that it does not excite the body
y mode very well until the rotor speed is high enough for gyroscopic coupling to become
important, and it tends to emphasize the modes whose natural frequencies are closer to
that of the body x mode. In particular, the lead-lag regressing mode is not as well excited
as the progressing mode, especially at rotor speeds where the regressing mode frequency is
very low. Figure 4(b) identifies the peaks shown in figure 4(a) at 1000 rpm. Figures 5(a)
and 5(b) give the same information for the stiff body configuration. For both cases the
body y mode is more apparent at the higher rotor speeds because the gyroscopic coupling
between the two body degrees of freedom is small at the lower rotor speeds. The ragged
appearance of the progressing and regressing ridges in these plots and the plots to follow
has no physical significance; it is purely a result of the way that the plotting routine
interpolates between data points when constructing the surface. The rough appearance of
the y mode peak at the lower rotor speeds in figure 5(b) is due to computational noise. No
response plots are given for the collective coordinate because, for this case, its response is
zero.

Mismatched Blades, No Shaft Degree of Freedom

To examine the effects of blade-to-blade dissimilarities, the inertia of blade one about
its own mass center, I,*, was increased enough to lower the nonrotating, isolated blade
frequency of this blade by 4%. Because 1/rev body motions caused by unbalance were not
desired, the blade mass and mass center location were unchanged. Responses to regressing
excitation, progressing excitation, and an x body initial condition were then computed for
both body configurations without the rotor shaft degree of freedom.

The frequency results for the multiblade cosine coordinate obtained from these com-
putations are shown in figure 6 for the soft body, corresponding to the matched blade
results of figure 2. Any peak that could be found in response to regressing or progressing
excitation, or to a body z initial condition was included. If a point is missing from where
the trends would lead one to expect to find it, it does not mean that that response does
not exist, just that it could not be observed because its amplitude was too low or perhaps
because it was obscured by a larger nearby peak. The results for the regressing and pro-
gressing lead-lag modes and for the body x and y modes are only slightly &lt &Lred from the
matched blade results. Some small changes are expected since the system's overall physical
properties were slightly altered by increasing the one blade's inertia. The obvious change
from the matched blade case is the appearance of many additional peaks in the spectrum
corresponding to the frequencies of the expected modes ±M/rev.
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In addition, responses are found that are not associated with any mode which involved
the cosine coordinate for the matched blade case. In particular the response slightly below
the regressing lead-lag mode and the response 2/rev above this (about 2 lIz below the
progressing lead-lag mode) are associated with the rotor collective lead-lag mode, shifted
± 1/rev. (At 200 and 300 rpm, response at the collective frequency plus 3/rev was also
measurable.) This 1/rev shift is associated with changing from the rotating o coordinate
to the nonrotating , coordinate. These responses are slightly different from the matched
blade uncoupled rotor frequencies because the inertia added to the one blade changes the
coupled collective mode frequency slightly.

Both these types of side peaks are the physical manifestations of the periodic mode
shapes associated with this periodic coefficient system. In general, it was found that
in a single coordinate the individual elements of the periodic mode shapes were always
separated by multiples of 2/rev, while comparing results between rotating and nonrotating
coordinates introduces and extra 1/rev shift, giving odd/rev separations. These periodic
mode shapes and the coupling which occurs through them between the multiblade o
coordinate and the non-rotating multiblade coordinates is better illustrated by figures 7
and 8. Figure 7(a) shows the frequency domain response in the s, coordinate to an x
body initial condition as a function of rotor speed, and figure 7(b) identifies the resulting
peaks for the 1000-rpm case. A comparison with figure 4 shows that the mismatch has only
slighty changed the system's fundamental dynamic properties, as evidenced by the location
and shape of the peaks corresponding to the matched blade results, but the periodic mode
shapes give rise to a much more complex spectrum. The most significant result of this is
in the vicinity of the lead-lag regressing mode peak, where both a collective mode minus
1/rev and a progressing mode minus 2/rev peak have come about because of the mismatch.
The existence of these extraneous peaks very near a mode of interest can be expected to
cause problems with widely used experimental damping measurement techinques which are
based on single-degree-of-freedom assumptions 17). The progressing mode can be expected
to be less seriously affected by the collective plus 1/rev peak near it because the frequency
separation between the two is greater, due to the coupling between the progressing mode
and the body which shifts the progressing mode frequency away from the isolated rotor
result and hence away from the collective mode plus 1/rev peak.

The response seen in the o coordinate for these same cases is shown in figure 8.
Without the mismatch this coordinate does not respond at all to fixed system excitation,
but it can be seen that the blade-to-blade mismatch not only allows the collective mode
to respond to fixed system excitation, but also causes the fixed system modes to appear
in the collective coordinate shifted by ± 1/rev.

The results for these same conditions, but with the stiff body, are now considered.
The frequencies at which responses were found in the , coordinate for the stiff body
configuration are shown in figure 9. Because the stand frequencies are relatively high,
the rotor modes now fall closer to the isolated blade results, especially at the lower rotor
speeds. This means that the progressing and regressing lead-lag modes are closer to 2/rev
apart from each other, and closer to 1/rev apart from the collective mode than they were
for the soft body case. This means that the periodic mode shape responses caused by the
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mismatch are now located closer to the modes of interest and any data analysis problems
will be exacerbated.

Neither the soft nor the stiff body configurations was ever found to produce a mea-
sureable response at the regressing mode frequency plus 2/rev. It is believed that it is
present but is being masked by the collective mode plus 1/rev response. It should also be
noted that the collective mode plus 1/rev response could not be found at 800 rpm and that
this is likely related to the regressing mode frequency becoming zero near that rotor speed.
Figures 10 and 11 show the frequency domain response to an x initial condition for the
multiblade cosine and collective coordinates respectively for the stiff body configuration,
as in figures 7 and 8 for the soft body.

Effect of the Shaft Degree of Freedom

The effect of the rotor shaft degree of freedom combined with the 4% frequency mis-
match was investigated for both body configurations using the shaft properties shown in
table 1. Figures 12 and 13 show the resulting frequencies which could be observed in the
, coordinate for the soft and stiff bodies, respectively (corresponding to figures 6 and

9 without the shaft). The most significant result of the addition of the shaft degree of
freedom is that the collective mode ± 1/rev responses can no longer be observed in the
cosine coordinate. The regressing lead-lag mode still has the progessing mode minus 2/rev
peak nearby, and the progressing mode still has the regressing mode plus 2/rev nearby, but
for both body configurations the frequency separation is now great enough that, at least
at most rotor speeds, the two mode damping measurement problem should be managable

171 Note that for the cases without the shaft the peak which paralleled the progressing
mode was identified as the collective mode plus 1/rev, while for the cases with the shaft
degree of freedom this peak has been identified as the regressing mode plus 2/rev. This
classification was based on careful frequency measurements and this result is evidence that
the regressing mode plus 2/rev response does occur for the no-shaft cases, but that it is
obscured by the collective plus 1/rev mode, as suggested above.

The multiblade cosine coordinate response to an x body initial condition at 1000
rpm is shown in figure 14(a) for the soft body and in figure 14(b) for the stiff body.
These results are directly comparable to figures 7(b) and 10(b), respectively, the only
differences being due to the inclusion of the shaft in the present case. For both body
configurations with the shaft free, the regressing mode's peak shape gives no reason to
expect any measurement problems, and the combined effects of the shaft and the mismatch
have shifted the regressing mode frequency slightly (by about 0.2 Hz). Again, without
mismatch the rotor shaft freedom does not affect either the progressing or regressing modes.

The response in the multiblade collective coordinate for the soft and stiff bodies re-
spectively are shown in Figures 15 and 16. Whereas for the cases without shaft freedom
a single multiblade collective mode appears very close to the isolated blade frequency, the
addition of the shaft degree of freedom gives rise instead to two modes, labeled a, and s2,
involving rotor shaft and blade collective coordinate motion at frequricies: of 5.1 and 34.1
Hz at 0 rpm, increasing to 5.5 and 46.2 Hz at 1000 rpm. The fact that these modes are now
well removed from the isolated blade frequency explains why the cosine coordinate peaks
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are not contaminated: neither s, nor s2 ± 1/rev falls near the )rogressing or regressing
mode frequencies as was the case without shaft freedom (and particularly so with the stiff'
body). Even if the s, or 82 modes did appear in the cosine coordinate, they would not be
in a position to necessarily cause difficulties. This conclusion should hold over a wide range
a shaft spring and inertia values, but if I. is low and k. is very high, then s1 will approach
the uncoupled blade frequency; and if I. very high while k. Is low, then 82 will approach
the uncoupled blade frequency. In either case the potential then exists for behavior similar
to the no-shaft case.

Effect of Varying Mismatch

Figure 17 is included to briefly show the effect of varying ryji!imatch. For the ioft
body configuration at 1000 rpm without the shaft degree of freedom, the cosine coordinate
response to progressing mode excitation is shown as the fre(lw v irismatch (caused by
increasing I,*) varies from 0 to 5%. It is seen that the misu-ii !, mily slightly changes the
frequencies of the expected peaks, but that the amplitude of the NI rev shifted side peaks
increases with increasing mismatch. Because the amplitude is plotted on a logarithmic
scale in figure 17, it appears that these side peaks increase rapidly for small amounts of
mismatch and then level off. To better show the true amplitude of a side peak as mismatch
is increased figure 18 is included to show the amplitude cf the progressing plus 2/rev peak
as a function of mismatch with a linear amplitude scale. This Tows that the ampli:uI,'c
varies more uniformly with mismatch than figure 17 implied. The figure 18 results ar,
significant, however, because frequency-domain results are often viewed using log scales.
Hence, in an experimental setting even relatively small amounts of nismatch could product,
noticeable effects.

4. CONCLUSIONS

Direct time integration of the equations of motion along with time and frequency
domain analysis of the resulting time histories has been used to study the effects of small
amounts of blade-to-blade dissimilarities on the dynamics of a rotor- body system. A system
of this type is governed by differential equations with periodic coefficients. This analytical
approach has the advantage of giving the same sort of physical insight that one obtains
from an experiment.

Small amounts of mismatch in the nonrotating, isolated blade frequencies of a rotor
were found to only slightly alter the frequencies of the system. The most noticeable effect
of the blade-to-blade dissimilarities was the appearence of many new peaks in the spectrum
at frequencies equal to the those of the expected modes ±M/rev. These side peaks are the
physical manifestations of the periodic mode shapes of Floquet theory, and they illustrate
what the idea of "multivalued frequencies" really means. Coupling between the previously
uncoupled o coordinate and the non-rotating coordinates comes about through these side
peaks when the blades are not matched.

Because these side peaks are spaced at multiples of rotor speed from the primary modes
of interest (i.e., the regressing mode, the progressing mode, and collective mode) and these
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modes naturally tend to be separated from each other by near multiples of 1/rev, the side
peaks then appear near these modes and can potentially create frequency and damping
measurement problems due to frequency contamination. This is less of a problem for soft
bodies where rotor-body coupling is strong enough to move the progressing and regressing
frequencies away from the uncoupled values (which have exactly 2/rev separation from
each other and 1/rev separation from the collective mode). The inclusion of the rotor
shaft degree of freedom greatly reduces the extent to which the rotating system modes
appear in fixed system coordinates, thus easing the frequency contamination problems.
This shaft freedom shifts the collective mode frequency so that even if the mode does
appear in the fixed system it is less likely to interfere with any mode of interest.
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Appendix
Equations of Motion

The equations of motion for the system shown in Figure 1 were derived by Kane's

method 181 and are expressed as vector equations of the form

M(u,q,t)il f(u,q,t)

where u, q, and f are column vectors, M is a symmetric matrix, and t is time. The column

vector q is

qi = 'i = ,..N

qN+I = X

qN+2 - Y

qN+3 = S

The elements of M are given by

Mi~i = I'* + rail 2  =1,..N

Aio = 0 i--1, 2,...N i¢

Mjjm+, = milcos(Ot + Vik + qN+3 + qi) 1,2,...,N

M,,N +2 = reidsin(flt + VtI + qN+3 + q1) 1,2,..., N

Mi,N+3 Ii + mil 2 + meil cos qj ","

N

MN+I,N+1 - n 
+ E

m i

i=1

MN+I,N+2 ()0

N

MN+I,N+3 =-Y-jmieicos(
n t + Vki + qN+3)

+ mji cos(flt + tki + qN+3 + qi)l
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N

MN+2,N+2 = My + M

N

MN+2,N+3 = Y~~~i~t+ P ~~~
i=1

+ miL~si&(flt + i + qN+3 + qj)]
N

MN+3,N+3 = I. +E(i + M?2+ M~ei2

+ 2mi eitLeos q1i

The column vector f is given by

fj -iqi- ciui + T.

-mie 1 1i*(f) + ULN+3) 2 sin qj i =,2,...,

fN+1 -kq= - CxtLN+1 + Fz
N

+ E jefI+ tLN+3) 2 sif(Ilt + 0Pi + 9N+3)
i=1
+mil +2 sN3+u)in(flt + 10i + 9N+3~- + q,)]

IN+2 -kxqN+ 2 - CzUN+2 + Fy
N

- ZjmsCi(fl + UN+3)2eo'S(flt + V)u, _+ qN+q3)
j= 1

+ mnX(fl + UN+3 + tt,)2COS(flt + VP. + qN+3 + 9i)]
N

AN+3 = -kcsqN+ 3 - CIUN+3 + Te + E Ti

N

+ FZJmses: (20 + 2 UN+3 + u,)uiein q.)
i=1

where Fz and F1 are applied body forces, and T. and T1 are applied torques on the shaft
and blades.
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Table 1: Baseline Model Properties

Blade Properties: ci = 0.0325 N-m-sec
ei = 0.0956 m

I = 0.01165 kg-rM2

ki = 149.65 N-m

V= 0.169 In
mi = 0.934 kg

N=3

Soft Body Properties: c, 4.38 N-sec/m

= 62.75 N-sec/m

k = 29,200. N/m

k= 474,600. N/m

m. = 2.945 kg

MY = 1.706 kg

Stiff Body Properties: c, = 46.7 N-sec/m
Cv = 49.6 N-sec/m

k. = 298,700. N/m

ky = 533,550. N/n

m= = 1.735 kg

MY = 1.646 kg

Shaft Properties: c. = 0.407 N-m-sec

I. = 0.02034 kg-m2

k, = 338.95 N-m
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Fig. 3. Fixed system frequencies; stiff body, matched blades.

64-15

= m m l Si l I - . - I- ll -i l l



0. S00 2. 00~ . 00 7. 00 9.

Fg 4esosof codattoa iitlcodio;ofbd,

matced bades (a)As fnctin ofrpm.(b) t 100rp.

W 16.-21



.00

00

0. 1.0 200 0. O. 5.0 600 00 0. 9.0 10.
In 27 421'

Fin.~~~~~2 5.Rsos4f2 oriaet n nta odtin tf oy

Race lds a sfntino p.()A 00rm

2230 48 4 1

Ck 30

.-.



-- UNCOUPLED BLADES

100 0 REGRESSING
Dl X

90 0 PROGRESSING
A COLLECTIVE

8o 0
70 (SOLID SYMBOLS INDICATE

FLOQUET SIDE PEAKS)

60 re, r 6 r 6 6 6 4

50

~40*U
:

F U
230 0

A 0U. £ * -

20 A 0 '' l r r

10 300 000 0 0

0 200 400 S00 800 1000
ROTOR SPEED. rpm

Fig. 6. Fixed system frequencies; soft body, no shaft degree of free-
dom, 4% mismatched blades.
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Fig. 7. Response of , coordinate to an z initial condition; soft body,
no shaft degree of freedom, 4% mismatched blades. (a) As function
of rpm. (b) At 1000 rpm.
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Fig. 14. Response of coordinate to an z initial condition; at 1000
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body. (b) Stiff body.
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Fig. 17. Response of , coordinate to progressing excitation as a
function of mismatch; soft body, no shaft degree of freedom, 1000
rpm.
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Fig. 18. Amplitude of the 1c coordinate progressing mode +2/rev
response with as a function of mismatch, with a linear amplitude
scale; soft body, no shaft degree of freedom, 1000 rpm, progressing
excitation.
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