
ADAlS481 ROUTINES(U), NASSACNUSETTS INST OF TECH CANIRIDGE 1in
ARTIFICIAL INTELLIGENCE LAS P E AfiRE NAY 85 AI-N-129
NSSS±4-7?-C-S3S9

UNCLSSIFIED F/G 5/11± W

EEEEEEEEEEEEE
Eu...|||||||||SENSE

..L.,..,:

d*"-.- ." .'

IIIIL= .==,' 1 ,u.
.1 tm

1.25 1.4 t.6

M ICROCOPY RESOLUTION TEST CHART o*-"

,d

.:4 : : :: : : : : : : : :::: : : : : :: : : : :: : : : -. -: ! : : : : : : -: -: .: -: : .: . .--; .---. .: : -..- .- - .-.- .. -, : -- -., . . -
-.P , i...: :': :,-... ..-. ,..-., .. .- .- ..
• ,'',: .,.*,"- ;.--. - - '. '. -.; -.. ' °.,'-. -.'- -':. , ,..% ; .-1 '.''-- . ;' -. , .- "... -"-'P

- " " " " ' -" ,,, -, : -, .. " -: : , d .;X .(., , ..; tr ,' ' . '" ; " / .' .': " - " " " " " " "- > ' -' -" .' .'" " .' ' ." ,' , " ,, -. " , ," : "; , ' ..'

UNCL.ASSIFI ED
SECUIT C? SSI"IC TIO 0"?-IS PAGE '"0"~ Dme Ent.,.d)

REPOT DCUMNTATON AGEREAD INSTRUCTIONSREPOR DOCMENTTIONPAGEBEFORE COMiPLETING FORM
I REORT U~3. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMIE A

4 TIT7LE 9 fnd Subtl fit) S. TYPE or REPORT & PERIOD10 COVERED

RoutnesAl -Memo

S. PERFORMING ORG. REPORT MNGMER

7. AUTMORI.() &- CONTRACT ON GRANT HU140901.j

Philp E.AgreN00014-77-C-0389
Philp E.AgreN00014-80-C-0505

it. PERFORMING ORGANIZATION NAME AND ADDRESS 10 PROGRAM ELEMENT. PROJECT. TASK
Artificial Inteligence Laboratory AREA A WORK UNIT NUMIERKS

T' 545 Technology Square
SCambridge, MA 02139

*IS. CONTROLLING OFFICE NAME AND ADDRESS IS. REPORT DATE

Advanced Research Projects Agency May 1985 _________

Q 1400 Wilson Blvd. is. MUNGER or PAGES

CC _DArlington, VA 22209 27
14. MONITORING AGENCY NAMES6 ADORESWII OfoitInaIgu Coadvlift G4106) IS. SECURITY CLASS. tolF Vsle Popoff)
Office of Naval Research Unclassified
Information Systems

Arlington, VA 22217 1". OCC16ASIFOCATImNI OWMRADIWO

IS. DISTRIDUTION STATEMENT (of this Report)

* Distribution is unlimited. DISTRIBUTION STATMENT
ALpptoved kc pubHek reloa94

Distributim Unlimited

17. DtSTRIOUTION STATEMENT (*fI. e &60008 40009" In 81106eSO. it 4000m = *00MQoe

I0. SUPPLEMENTARY NOTES
DI

;TJ Routines
$A- Planning

Process representation

3 0. AGSTRAC? (Cal~N 411 P011110 @do it 0600 01 MMRN& uIV.i eONlm-
Regularities in the world give rise to regularities in, the way in

which we deal with the world. That is to say, we fall into routines. I have
been studying the phenomena of routinization, the process by which institution-
alized patterns of interaction with the world arise and evolve in everyday
life. Underlying this evolution is a dialectical process of internalization:
First you build a model of some previously unarticulated emergent aspect of
an existing routine. Armed with an incrementally more global view of the inter-

OD I JA*13143 EIINo UNCLASSI F IED
~ 173 DIIONOFI MVESi ui~t~ SECURITY CLASUFICAION Of T"I PAGE prEt "o"'Po

For

20)
action, you can often formulate an incrementally better informed plan of attack.
A routine is not a plan in the sense of the classical planning literature,
except in the theoretical limit of this process. I am implementing this theory
using running arguments, a technique for writing rule-based programs for intelligent
agents. Because a running argument is compiled into TMS networks as it proceeds,
incremental changes in the world require only incremental recomputation of
the reasoning about what actions to take next. The system supports a style
of programming, dialectical argumentation, that has many important properties
that recommend it as a substrate for large AI systems. One of these might be
called additivity: an agent can modify its reasoning in a class of situations
by adducing arguments as to why its previous arguments were incorrect in those

cases. Because no side-effects are ever required, reflexive systems based on
dialectical argumentation ought to be less fragile than intuition and experience
suggest. I outline the remaining implementation problems.

1 Accesion F~

SNTS an. & d/or
Dit pwctal0

lot,

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

Al Memo 828 May 1985
4

Routines

Philip E. Agre

\a

Abstract: Regularities in the wor4 give rise to regularities the way in which we
deal with the world. That is to say, we fall into routines. 1-hav been studying the
phenomena of routinization, the process by which institutionalized patterns of inter-
action with the world arise and evolve in everyday life. Underlying this evolution is
a dialectical process of internalization: ,First you build a model of some previously
unarticulated emergent aspect of an existing routine. Armed with an incrementally
more global view of the interaction, you can often formulate an incrementally better
informed plan of attack. A routine is not a plan in the sense of the classical plan-
ning literature, except in the theoretical limit of this process. 4-a3 implementing
this theory using running arguments, a technique for writing rule-based programs for
intelligent agents. Because a running argument is compiled into TMS networks as
it proceeds, incremental changes in the world require only incremental recomputa-
tion of the reasoning about what actions to take next. The system supports a style
of programming, dialectical argumentation, that has many important properties that
recommend it as a substrate for large Al systems. One of these might be called
additivity: an agent can modify its reasoning in a class of situations by adducing
arguments as to why its previous arguments were incorrect in those cases.. Because
no side-effects are ever required reflexive systems based on g entation
ought to be less fragile than intuition and experience suggest. I outline the remaining
implementation problems. . / P " . L A A

" 1985 Philip E. Agre

This report describes research done at the Artificial Intelligence Laboratory of the
Massachusetts Institute of Technology. Support for the laboratory's Artificial Intelli-
gence research is provided in part by the Advanced Research Projects Agency of the
Department of Defense under Office of Naval Research contract N00014-80-C-0505,
the Office of Naval Research under contract number N00014-77-C-0389, and the Sys-
ten Development Foundation. I am supported by a fellowship from the Fannie and
John llertz Foundation.

8- 10 10'a......... .

ir V.:W.W-W, r- 7

Introductory demonstration

Most everyone has had the experience of trying to give cough syrup to a small child.
There is a whole ritual to this, involving the assembling of the materials, little tricks
for keeping the drop of medicine that always remains on the lip of the bottle from
falling off, and cajoling on the order of you're a big girl, now, aren't you? Giving

* cough syrup to a small child is an example of a routine. The most memorable part
of the cough syrup routine is the point at which the brimming spoon of cough syrup,
kept from spilling only by its surface tension, invariably spills just before entering the
child's mouth. This is a has-ste, something that regularly goes wrong in the course
of a routine. Both the routine and the hassle are institutions, in the sense that the
experiences they reflect are nearly universal in our culture even if they are rarely
articulated. In the back of everyone's mind is a wish corresponding to each hassle. A
wish is a mechanism that combs through everyday experience looking for the answer
to some routine question or the solution to some routine problem.

I have formulated these ideas by a method of systematic introspection. I ob-
serve regularities in the way that ordinary people deal with everyday life and make
computational theories to explain these regularities. Then I use the terms of the
computational theories as an observation vocabulary for introspecting on everyday
activities. For example, picture the moment, when trying to give cough syrup to a
small child, that you accidentally spill it. Suppose I tell you there is a new product
on the market, cough syrup in gel form, whose makers advertise that it "never, ever
spills". That something that goes click in your head is a wish being triggered. Com-
putation provides an observation vocabulary for introspection. This paper is a sketch
of a theory I developed by a principled method of alternating between introspection
and theory construction.

Routines and self-models

Routines are the frequently repeated and phenomenologically automatic rituals of
which most of daily life is made. Routinization, a term borrowed from business
management (see Chandler 1962), is the process by which institutionalized patterns
of interaction with the world arise and evolve in everyday life. Routinization is hard
to study because routines arise with no discernable effort and because most changes
to mundane routines are at most barely conscious. You can observe an especially
graphic example of routine evol ution by stuffing a few thousand envelopes. I (and
others) have observed that the envelope-stuffing novice's technique changes with time,
one change every few dozen envelopes. The first few envelopes will be stuffed in the
"obvious" way. But then as you have the opportunity to observe the process of stuffing
each envelope and moving on to the next, you will notice small opportunities to use
your fingers more conveniently, pick up the envelopes more reliably, fold the stuffing
more efficiently, and so on. After several hundred envelopes have gone by, the original
technique, which arose based on only the most basic properties of the task, will have

:~:* evolved into a technique that takes account of a lot of very subtle properties of the
* .% ~ envelopes, stuffing, stamps, and workplace, not to mention of your hand.

............. '.%

2 Routines

In trying to find computational terms to describe the process of routinization in
everyday life, I have been led to the following formulation of the central weakness
of both the classical planning literature (Sussman 1975, Sacerdoti 1977, etc) and the
more recent work on reflexive ("meta-level") systems (Lenat 1983, Genesereth 1983,
Smith 1982, etc):

In order to sensibly modify itself, an intelligent being must have a good rep-
resentation of itself, a self-model. Plans, rules, heuristics, and the like are
representations of procedure. Self-models based on procedures imply a separa-
tion between inner and outer reality that is inappropriate for beings so deeply

embedded in the world as ourselves. Instead, the bulk of an intelligent system's
self-model ought to be expressed in terms of common processes of interaction
between itself and its world'.

The difference between procedure and process self-models is especially evident
when, as often happens, there is a great abstract gap between what you think you're
doing and the most useful phrasing of the process you're actually engaged in. An
extreme example of this gap is provided by Simon's Ant (1970), whose behavior is
determined by a very simple mechanism that interacts with the great complexity of
its environment to produce a complicated path. If this path were to lead the ant in
circles, its inability to notice or represent this fact would leave it trapped. An everyday
example is provided by the myopic vacuumer of dining rooms who hasn't thought to
describe the process'as one of alternating between vacuuming and furniture-moving.
Explicitly representing that aspect of the vacuuming process should make one think
to move all the furniture before getting started.

If people behaved like classical planners, developing a full-blown plan off-line before
doing anything, the difference between procedure and process self-models wouldn't
be important. But the complexity and uncertainty of new situations generally makes
this impossible. Instead, people improvise2 . Improvised activity very frequently has
patterns to it that are nowhere represented. Routinization is the internalization of
process: you build models of your existing patterns of interaction with the world and
use these models to monitor and (when possible) to improve the processes'.

Routines, I emphasize, are not procedures. A procedure is a description, that is,
a data structure, but a routine is an abstract entity in the world that exists prior

Doyle's (1980) assimilation of thought to action speaks to this intuition but is only half an answer.

Procedural representations of action, whether the action is inner or outer, describe only inner reality.
2 Suchman (1984) contraots plans and situated action. Suchman "treats plans as derivative from situ-

ated action. Situated action as such comprises necessarily ad hoc responses to the actions of others
and to the contingencies of particular situations." Her central concern L the mutual intelligibility of
activity. "Rather than depend upon the reliable recognition of intent, successfid interaction consists
in the collaborative production of intelligibility through mutual access to situation resources, and
through the detection, repair or exploitation of dIifferences in understatding."

3 Sartre's (1083) distinction between praxis and process i- representative of European attempts to
base philosophies of political praxis on the internalization of theories of political process. (See
Bernstein 1971 for a survey.) Laing has taken this vocabulary over to a psychiatric setting (see
Laing and Cooper 1971); his primary concern is the hstructive proC(-hV14 within families (see Laing

and Esterson 1970).

to any model of it. A procedure determines a certain vocabulary of description, but
a routine, like anything else in the world, will in general admit of many different
models4.

Modifying a maladaptive routine pattern of activity is, in general, a very difficult
problem. Often each of the separate decisions that enter into an interaction make
sense individually, even though the result involves annoyance, danger, excess effort,
or outright failure. In most cases, an observer would ascribe the problem to a lapse
of foresight. We can identify three problems in the modification of a routine:

9 Noticing that something is wrong, or that something could be better, can be
either easy or hard. When you cut yourself, you know. But it is difficult in
general to notice that a different assignment of tasks to your two hands would
allow some of them to be performed in parallel. There is no substitute for an
extensive vocabulary of interesting properties of processes, and a (presumably
highly parallel) procedure for noticing instances of them.

* Intervening in an existing routine decision process can be difficult if the wrong
decisions are not connected to the symptom in any readily obvious way. An
important case of this problem is when you have forgotten how you make sonic
routine decision, and it has become a habit. Occasionally a complete reformulation
of the way you think about the problem is called for.

a Anticipating the point in a routine at which an intervention is required can be
difficult when nothing reminds you that a problem is coming up. It is a common

* experience, when driving, to routinely forget to put on your sunglasses until you're
out on the road and retrieving them from the glove compartment becomes difficult.

There is no general solution to any of these problems. There is, instead, a collection
of generic solutions to special cases of them.

Classification of changes to routines

There are, then, two main trends in the evolution of a routine. (1) The routine takes
increasingly detailed account of the particulars and peculiarities of the environment it
is carried out in. (2) The routine's owner acquires an increasingly detailed and global
array of models of the process of carrying it out.

I find it useful to distinguish five classes of incremental changes a routine can
undergo5. The classes are characterized by increasingly more sophisticated ways of
internalizing processes in the routine's execution.

'I depart fromn tradition in using the words representation, description, and model to refer to the
same idea, roughly Minsky's notion of a frame (1975). For further discussion, wee the section on
lattices.

SFitts and Potstir (107) and Scireder (1984) alsow present theories of the stages by which activities
becomne autOTnmtiC. They are not concerned, however, with the evolution of a routine, just with
its becomnang .11,Isonatic. Moreover. their mo~dels of the archijtecture of the inind arm so radically
different from mine that there i4 no basisq for comparison of the different theories.

- . . -- 4. t - a 4 TZ W. W. T - -

4 ~Rotim.s
4'4

(1) Recapitulated reasoning. If, on two occasions, you approach the same world

with the same goal and the same ideas about how to achieve it, then you're going
to take the same action both times. I hypothesize that your mind stores away a
description of the process of reasoning that led to taking that action. By means of
this description, recognizing that the world (both inner and outer reality) once again
satisfies the premises of an earlier line of reasoning should automatically lead to the
same conclusion. This is the idea behind Doyle's Reason Maintenance System (1980).
If you have no desire to do things differently, the routine will stop evolving at this
point.

(2) Primitive credit assignment. Unpleasant experiences are the primary motor of
routine evolution. At first, finding a decision to blame for an unpleasant experience is
governed by a single primitive heuristic: when making an underconstrained decision,
look around quickly (in the world or your memory) for evidence of a bad thing that
previous choices at this point led to (as determined by domain dependent reasoning).
The prototype is the puddle you stepped in yesterday on the high road. Arriving at
the fork in the road today, if you notice the puddle up ahead on the high road, you
might take the low road instead. But when you're deciding which road to take on
the return trip, there might not be any ready reminder of the puddle. This is why,
for many people, the routine paths back and forth between two points are often not
reverses of one another.

(3) Scene characterization. The first significant process representation is the script
(Schank and Abelson 1975), organized as a simple chain of scenes. Many opportunities
for routine improvement can be noticed by characterizing individual scenes. A scene in
which you're waiting for something might suggest moving useful work into the waiting
period, as when you put the water on to boil before getting out the tea. Waiting is a
generic hassle. As I explain below, generic hassles motivate generic repairs.

(4) Process characterization. Many common patterns more global in scope than
a single scene also suggest improvements to routines. Doing something and then
undoing it can suggest omitting both steps. Often you can take advantage of some
coincidence to replace two actions that you happen to take successively with a single

• " action. Such optimizations are remarkably common when the routine first arose by
recursive decomposition of generic plans. Vacuuming is often best characterized as
interleaving the processes of moving the furniture, running the vacuum around, and
returning the furniture. Sometimes it is better to deinterleave these processes.

(5) Process manipulation. In engineering and business, one often constructs and
manipulates formal models of processes, attempting to apply powerful -analytical
methods to discover the optimum procedures. Clear cases of such reasoning is corn-
paratively unusual in everyday life, though it is present in the making of diagrams
in activities like navigation. People sometimes do carry out the complex debugging
skills embodied in programs like Hacker (Sussman 1975), and parts of that reasoning
should surely be assigned to this classG.

The work of VinLehn (1983) and Suminan (1975) on plan repair is relevant here, but I emphasise
.4 that I aun not concerned with the debugging of faulty plans but rather with the improvement of

stahlished routines. Diagnosing and repairing a hug in a plan requires a much cleaner and more

* *a
5

S*S
5

"I

Generic models

Representations* reflect regularities in the world. Routines reflect regularities in the
world too, but much more implicitly, through regularities in the way you deal with
the world. This parallel suggests some important interactions between the theory of
routines and the theory of representation. These interactions fall into two classes, (1)

* . the ways in which the organization of knowledge supports the process of routinisa-
tion, and (2) the ways in which the regularities that routinization stumbles onto are
internalized as new domain representations. I will concentrate on (1) here.

I imagine the knowledge supporting routinization to be organized in a frame net-
work (Minsky 1975). 1 will introduce my ideas about the structure of this frame
network with a discussion of generic hassles. Suppose you didn't have the idea of
waiting in your head. You could spend ten minutes every morning of your life staring
into space until the water boils without ever clearly formulating what is bothering
you. But, fortunately, waiting for water to boil and waiting for an electric stove to
heat up are notorious hassles. By putting names to generic hassles, like waiting, you
provide yourself with a way of noticing that something is more trouble than it ought
to be.

Associated with the frames for many generic hassles are heuristics for repairing
the routines they occur in. (Brady et al 1984), the first extended exercise in applying
the theory of routines to a real world domain, describes the generic repairs for some
of the carpenter's generic hassles:

e Insufficiently controlled degrees of freedom. When a point (like a screw tip) slides
across a surface, try fixing it with a small dent (as with an awl or gimlet). When
surfaces slide, increase static friction.

* Restricted access. The nail set, the offset screwdriver, and the angled wrench head
represent three generic plans for transmitting force into tight spaces.

e Changing tools. When you have to alternate between tools, try deinterleaving the
processes, finding a combination tool, or keeping the tools as handy as possible.

e Irreversible overshooting. If you take off too much with a saw, you can't put it
back. So approach the desired surface with successively more refined methods,
from saw to plane to coarse sandpaper to fine sandpaper.

Generic hassles, like all frames, are constantly trying to instantiate themselves over
whatever is happening. When onc of them succeeds, it brings along with it information
that might be useful, in the form of warnings, suggestions, or control advice. The
insight that leads to identifying generic hassles and their associated generic repairs
also leads to the classification of other kinds of generic knowledge:

fork is a versatile tool that is at once an inst.nc oatlstfvgerimodel.

of physical structures: flat plate, grating, row of tines, solid block, and sharp blade.
The most important generic models are the cognitive cliches (Chapman forthcoming),

* .. thorough doinain itiodct than I ani .uauming.

0 RA)UtilI.

very general domain independent ideas like total order, propagation, resource, and en-

ablgment. (The theory of cognitive cliches, of which no more here, directly motivated

most of the ideas in this section.)

Lach generic model brings with it some generic plans. To scoop something up, try

moving a flat plate into it along its supporting surface. To wash out a grating, try

running water -through the back of it. To retrieve something that's at the other end

of a cord (a generic model of which strings, ropes, wires, and occasionally rolled-up

table cloths are instances), try reeling in the cord.

Routine evolution, as I mentioned, is the internalization of process. There is no

general way to characterize a process one is engaged in, but there are generic processes

covering many of the important cases7. I have mentioned some of the important

generic processes already; some others are: consuming a resource, approaching a goal

(according to some discrete or continuous metric), reaching a peak (in some quantity),
and going in circles. A generic process, like a generic hassle, often brings along advice
about how to modify a routine it describes. If you're waiting, find something useful
to do. If you're consuming a resource, be careful not to run out.

Lattices

My other hypotheses about the frame network that supports routinization concern
generalization relationships and episodic memory. Formal systems with relation-
ships of generalization and specialization tend to form mathematical lattices (Birkhoff
1967), an observation made as early as 1970 (Plotkin, Reynolds). That they do so is -

one of the most consequential ideas in AI, though it is often not clearly articulated.
It can be seen underlying work on analogy (Winston 1980, Gentner 1980, 1983), in-

ductive learning (Winston 1975, Mitchell 1983), data clustering (Michalski 1980), and

classification (Lipkis 1982, Schmolze and Brachman 1982b).
The mental latticework describes a continuum from abstract knowledge to con-

crete, weak methods to strong, general concepts to specific, large extensions to small.
I suggest that people put a lot of effort into maintaining this lattice. Much attention

has been paid to the most abstract parts of this lattice, whose members are widely ap-
plicable but can be hard to apply and miss fine detail. At the terminals of the lattice
is episodic memory, literal transcriptions of passing reality. By storing frames along
the entire continuum of intermediate degrees of abstraction, you can always select a
frame whose degree of abstraction is suited to your task. The generic hassles, models,
plans, and processes are among the more abstract frames; in everyday practice one

tends to use special cases of them.
Part of the job of episodic memory is to define natural classes of episodes for use

in future analogical reasoning. There are (at least) two ways of doing this. One way
is to look for pairs of episodes that are broadly similar in some crude terms like the
proportion of shared features. The class of episodes that shares those features might

. Dyer's (1984) idea of a TAU is very similar. In Dyer's program, though, TAU's have an unfortunate
modularity. The progran's knowledge of a generally teful itlet (like that of an implicit contract)
is embedded in a description of a particular way that a plan using that idea cm go wrong.

...'

7

be a useful frame to define. Although I imagine that many of the scenes in the simple
script representation of a process are first defined this way, the method as stated is
sorely underconstrained, even under the assumption of massive parallelism. (Many
clues are available in work at Yale, see Schank 1982.)

A more satisfactory way of defining natural classes in episodic memory is called
argument indexing. In a certain situation you decide to act in a certain way. If you
have been recording your reasoning step by step (in the manner of Doyle 1980), then
the premises of that reasoning define the natural class of episodes in which you would
make that decision. The decision to conserve a resource, for example, might be based
solely on there being a resource, its being consumed, and there being a danger of
running out. If it had never before occurred to you to conserve a resource, then the
generic suggestion of conserving a scarce resource will be associated with the resource
cognitive cliche.

Most decisions, though, are based on finer details of an episode. Suppose you
decide to rescue a burning omelette by making it into scrambled eggs. This same line
of reasoning might also lead you to stir a sauce to keep the sediment from burning,
and so it's worthwhile defining a frame for the general idea of the bottom surface of
a heated container of liquid threatening to burn. This new frame would contain the
generic line of reasoning about stirring. There are simpler versions of the argument
indexing algorithm due to Rosenbloom (see Laird, Rosenbloom, and Newell 1984) and
Minton (1984). Batali (personal communication) is building a theorem prover based
on a very similar idea.

Dialectical argumentation

The original motivation for this work was (Doyle 1980). Doyle points out that, by
assimilating thought to action, a system can support domain reasoning and meta-
level reasoning in a uniform manner. To achieve this end, Doyle proposed the method
of dialectical argumentation8 . Whenever there is a decision to be made, any active
component of the mechanism is free to adduce arguments as to how it should be made
and why. When there are disagreements, deciding among the arguments is itself a
decision to be made by argumentation, recursively: each mechanism may adduce
counterarguments as to why its arguments are better than the others.

Suppose that I suggest:

P9326: (PROPOSE (HOLD-UP BAYBANKS))-

Contradictory arguments are put forward:

P9621: (PROPOSE (SUPPORT (HOLD-UP BAYBANKS) MONEY-IN-IT))
P9442: (PROPOSE (OBJECT (HOLD-UP BAYBANKS) IT-WOULD-BE-WRONC))

There are no objections to accepting the first argument, and so it is accepted:

P9818: (TAKE (SUPPORT (HOLD-UP BAYBANKS) NONEY-IM'IT))

s The phrase is, of course, redundant. Perhaps dialectical reaboning would be better.

..

S Routines

But some part of the rule system considers the second argument inferior, and
proposes that it be considered so.

P9800: (PROPOSE (OBJECT (OBJECT (HOLD-UP BAYBANKS) IT-WOULD-BE-WRONG)
PREFER-PRACTICAL-TO-MORAL-ARGUNENTS))

There are no objections to that line of argument, so it is accepted:

P9710: (TAKE (OBJECT (OBJECT (HOLD-UP BAYBANKS) IT-WOULD-BE-WRONG)

PREFER-PRACTICAL-TO-MORAL-ARGUMENTS))

Consequently, the moral argument against robbing the bank is rejected:

P9465: (BLOCKED (OBJECT (HOLD-UP BAYBANKS) IT-WOULD-BE-WRONG))

There being no other outstanding objections, the motion stands:

P9336: (TAKE (HOLD-UP BAYBANKS))

Dialectical argumentation, then, involves the adducing of arguments and counter-
arguments concerning a proposal for action. Because each argument and counterar-
gument is itself an action, the argumentation process itself is fair game for argumenta-
tion. The system approaches the problem of deciding between conflicting arguments
in just the same way that it approaches any problem in the world. The method has
some important properties:

" All reasons for action are defeasible, meaning that they might be overridden if
there are good reasons to do so.

" The decision process is additive, meaning that all parts of the system can con-
tribute to the reasoning in a uniform way, by contributing arguments.

" Individual decision processes are automatically compiled into TMS networks, so
that an arbitrarily complex argument structure can be used many times a second.
In particular, an argument's conclusions will stay in as long as its premises stay
in.

" Because a compiled argument will be recapitulated whenever its premises are
satisfied, it will be automatically carried over to analogous future situations.

" The system's reasoning can be modified without ever introducing a side-effect. By
simply providing an argument explaining why an action is a mistake, a person or
program can arrange for it to be overridden in the future0 .

o Tid lack of mide-effects is an attempt to answcr one of the les,-uns of Eurisko (L 'nt 1983), that
even well-motivated znodifications to the running sourcc code can wreak suhstantihd havoc.

............---... ...

.".'.pa ". --.-. ..n. .'....p a''.....' .. '-'..... '..... 1 ',.." --... '¢ , _'. -". . .. '.....x..... . ".'

There are very many generic arguments, among which are such cliches as do it now
because you might not get another chance. A generic line of reasoning stored in a frame
is implemented as a pattern of argument and counterargument that has prevailed in
some context.

In the domains of everyday life, it is common for every candidate action in a
situation to have drawbacks. Consequently, one must often carry out an action in the
face of perfectly valid counterarguments. A hassle is a pattern of such conflict that
arises repeatedly; a wish is very often formulated as a desire to find a way to satisfy
all the considerations that arise in such a conflict. It is useful to classify patterns of
conflict and their means of resolution10

Running arguments

Over the last few months I have developed and implemented the technique of running
arguments. Running arguments, an idea derived loosely from (Doyle 1980), are a
way of programming an agent in a time-extended world that has several important
advantages over other methods:

* Although the source language is a version of the rule-based language Amord (de
Kleer et al 1978), the code is rapidly compiled into TMS networks that run by
propagating simple tokens and without consing (see Doyle 1978).

60 9 Both the rule language and the TMS networks are well-suited for implementation
on massively parallel computers.

o The language supports a powerful style of programming, dialectical argumenta-
tion, which makes possible uniform treatment of domain reasoning and meta-level
reasoning.

e As time passes, incremental changes in the world require only incremental recom-
putation of the structure of the arguments. The system notices only differences
that make a difference.

e Because the system per se lives entirely in the present tense, it does not pre-
judge the user's decisions about representations of time. In particular, neither the
simulation nor the decision mechanism impose a discrete temporality.

The next few sections describe the present system and some of its consequences.

m0oResearch into the conflicts that arise in reasoning about ethical issues (Kohlberg 1981; see also

Gilligan 1982) offers suggestions about how people deal with conflicting arguments. Kegan's (1982)
theory of human understandings of self and other aswimilatcs Kohlberg's stages of ethical develop-
nent to Piagct's stages of cognitive development. Kegan's theory of the mechanisms underlying
the stage tran.sitions bears a striking resemblance to the present theory. For Kegan, an individual
passes into each new stage by (as I would put it) internalizing her old decision processes. My use
of the word internalize descends from psycwanalytic theory, which speaks of people internalizing
problematic relationships in an attempt to get control over them.

.2"

10 .. - - - - - - - .-.-. ~ ~ .~.~ .

System organization

The system's modularity is sketched in Figure 1.
The outer ioop of the running argument system moves between the world's physics

and, the agent's reasoning. The system is built on a nhemoizing rule system called
S Life. There are two Life databases, one for the world simulation and one for the
* agent. Numerical computations are limited to a small Lisp program, the physics

model. Here are the steps in the outer loop:

* The physics model computes a new list primitive qualitative world-properties.

* This set of propositions is compared to the set from the last cycle; any changes
are recorded by bringing TMS nodes in and out in the world simulation database
as appropriate.

e This causes the world simulation to propagate TMS values and, occasionally, to
run rules to cover previously unseen cases. This process incrementally computes
a new set of propositions representing the agent's primitive percepts.

* These primitive percepts are transmitted to the agent by bringing TMS nodes in
and out in the agent database as appropriate.

& The agent database now propagates TMS values and, occasionally, runs rules.
This happens an awful lot at first, and less and less as time goes on. This pro-
cess incrementally computes a new set of propositions representing the agent's
primitive physical actions.

e These primitive actions are transmitted to the world simulation by bringing TMS
nodes in and out in the world simulation database as appropriate.

* This causes the world simulation to propagate TMS values and, occasionally, to
run rules. This process incrementally computes (1) a new set of judgements about
the success or failure of the agent's primitive actions and (2) a new set of propo-
sitions representing primitive qualitative world-changes.

9 The physics model runs again, and so on ad infinitum.

After considering an example, I will describe the workings of the system and the issues
involved in programming with it.

* Example

The next three figures show some simple examples of the program running in a simple
blocks world. In each display, the left panel shows commands to the program and the
statistics it computes about itself on each cycle.

(Notation: M(R/T) for the world simulation, the agent simulation, and the total,
with M = number of calls to the pattern matcher, R = number of rules fired, and
T = number of propositions whose TMS state has changed from in to out or out to
in. The number in braces is the maximum depth of propagation through the TMS
network. Lines of statistics ending in a '<" record the workings of a process that
attempts to keep down the fanout in the pattern lattice by indexing new patterns.)

A4 qI4I-04

4 .9 .9k

ALA- 11

LlIF

Figire 1. Organization of the running argument system. Thc rnning arganticut system 6a built
on *a% rtl-bauwd Ianiiage riffled Life. Tite systvein itself is orgmiuMed awunrl at loop of incremuental
iipflat'-c of thle pjuyic~s Iuiodc'I (wrillten in Lisp1), thie world siituatiuii (written in Life rules), and the

upti' reasoiul (alsoi in Life Tuh i).Te agent's vile met i6 orgaiiized in three parts, a gencral-

pmrpos-e coztriol-Alrwwt~i package bas4ed on Aniord's tecltiin~e for explicit conitrol of reawotaivg, at

.4111.11 le1tbi of riilc-S slipporting dialecticul arguiieiitatitoii, and the doiainl-specilic arguitiiela Uld

.P?~~~~~~~~~1 M - .*F I .I I IN it* **.;~v-*.*.*-*9-~9

12 Routizns

In Figure 2, 1 ask the system to put B on C. On the first tick, proposals are made
- -to move the hand to the left and down, on grounds of getting closer to the block.

There are no objections. On the next tick, there is no more reason to go left because
the hand is over the block, so only the argument for going down goes through. By
the third tick, there are no new considerations, and so the hand keeps moving down
without any rules being run, until finally it comes in contact with the block.

Figure 3 traces the progress of the hand as it carries block B toward block C.
Initially it moves both left and up, since both directions make forward progress. But
as block B makes contact with the side of block C, another rule objects to moving
left on the grounds that it will move C unnecessarily. So the hand and B move up
for several cycles. Finally they move to the left by one when B clears C and there is
no more reason to go up. In this blocks world, blocks are sticky enough that just-on
counts as on.

Figure 4 shows the results of two experiments. The world is restored to its original
state and the same task is given. This time, the same lines of reasoning are carried
out entirely in the TMS, with the exception of a couple of stray rule firings that
result from the discontinuous world-change when the original state was restored. In
the second experiment, B and C are interchanged and the task of putting C on B is
posed. Even though this task is isomorphic to the last one, many rules must be fired,
though not as many as for the first task.. Some of the compiled reasoning has been
carried over to the new task, but not as much as I would like. The problem is that
the rules refer to blocks by their names, so that reasoning carried out about A and B
can only be carried over to B and C by substituting variables for the names. Finding
more generalizable names, or substitutes for names, is a current project.

The Life rule system

Life is a simplified variant of the rule-based system Amord. The Life system has three
tightly intertwined components:

* There is a lattice for storing patterns. Every pattern in the lattice is connected
to those other patterns that are immediately more general than and immediately
more specialized than them. See Figure 5.

e There is a TMS that constantly maintains a collection of justifi cation relationshiips
among the patterns. When a pattern is made in or out, the effects of this change
are propagated throughout the network of justifications. See Figure 6.

e There is a rule systein that operates over the lattice. A rule is stored on the pattern
corresponding to its left hand side". When a more specialized pattern is made in
by the TMS, the rule fires, constructing the appropriate TMS justification for the
appropriate consequent.

"I heard about this scheme from David Chapman.

-7-7 7. FT 7 7- 7

13

* ~(Pro" (start-blaxIks--wo Id-plar I'Ar
(Inscal I-sar Id-state &last-monstta)
(tae-sug~est ons)

* -,tales"e ion b c))
uor Id * aget a tots

* Il1se Listener 7

(Preon (Sstblockl-..r ld-oImiir
(Iatsail-war Id-state * lsot~rn-stetos)
(take-sugget IlOW) I

-(pleses (on b c))
world * gat £ tetal

14SI 3V 42). 6021 So %)a 627(11' 1) (13)
8(0 so 9. 6(8go 4)a W(8' 4) (3)
Si so 41). 94 V' 0?. W4 go S) (S)

ILtSP LIStentr P

Figu~re 2. Please put B on C. On estchlit of the world clock, s~tttics shiow roughly]how inudi
Work the programiis dohi11g. Rilem only serif to bc fred whenl iaOVel .miuntiozwS n ate Ir(?uftered1; once
the progrsto blmmc eit vavrty o(zmitonatihim all then work hitarts to Ile doIne in the TMS.

....... b s'..r d ~ w

(w"(st-aI 3- wo -stte3lii-a-t

(tab*-sugee $oes)

#A * agn total

-'(1313P6

?I@% Go 0' 63344 w0' 03420621 4 0) 0 4
* 1454 3o 423. 403 02t So 3 % 3111 a 27 P (13)

f(0's). G(0' 43a 040f 4)3(3)
0(0') so0 0M (' 3

24P3420 W 2..6311463101 44 (51)
44342o 64' 104464 141.'-203.220054 j6264) (443

04 Go 0O- 044(0' 0o. 40444 GO 63 (0)3
1149413. 42). - 41(* 4 403- 29W0 Il 6O23 (43

G(so6W. 6% so3 0) w0)1(9)

C

(wogn (st-looks-.or d-010 3wN I
(tonal Igorst to "o sf-))16

-o(plinew (on b oh ,*
morld . gn

6132(GllUP93 .11640'62 .36164-mom11mm4 (163

fl69 Ow 8)-34"434 0 01.43634 S 0) (6)
1414 30' 42). GUI NO 4j. U111' 16) (13)

0(0'so1). @(0 4S .On M0& 4)(3)
so 0- Ill 0 0). IN0-GO (0)
so(0). 0('3. 00 633

443432' 14) .)S44'P14?.'226) .'i414 1162043 (443
11Ito6) 0.444 11 M- 3444,00 601 il

-11494 t3'f 42t, 941V 4' 411k 3660(11 02) (4)
04 so 41). 66 0' 914 .4SO0) (63
of so I)V40'0. 0 '0 6 6

3 384 GoW 92 03)a" P0

1026(S' 50.. sS44 O- 43 16924 V-141) (143
9AI14 S.e 12- Z" GO9 0 10-: 000 6'* 22) (43

go 0' 0f 00'6. of 0 03 (03 .7
(tick 33
6234 4olo'. 118 ,34 P1113,14)6 (25)

164 0o'l", - "*6 IS6'440' 2S6043.443 (33)

e GBon. 94a P: 0 ,2. s

Figuure 3. Moving 13 toward C. The uto is not r'spe4c3tIly grful. ioving mw rta i pcmible. Along
COW11 IlielitiOll W-P~rlitely. Luiinutfig to intlegrate aigis4',315 about mingii vertivi'ly with mrgumnta
Abm~it mloviug hlorizloltaily 34 a fituuc tjie ior thet ptngrizl

7.. W-7C F . - -Mj- , - - % . 1 . -.-

64~Z T.49~ k4 Z4)' 17 1'6 N41)

IN 60 42). at so %,a IN so "6) ' 13)
80., V) 4Sda G 4)a. O gSo 4) (3)

of W of'll')' 60 8~) a Iuo 11)1 (0)

i ,0 12)- OS 6 14 ,) (.)
64 1. 92). IM 0212) a 01 104) (36)

01 So 42)- N do 461 a, Oeo 02) (4)
I" Go a). SE so W. I s I) (a)

at I a). of Go a). of so 4) (a)
6W 0ll1). G4 0@W&4). f 004111) (29)
of 00 so)- IN so 621) a 4 9(141) (14)
SI of 12). SE so S)m 04 V 22) (4)
IN so a). SE 0,). S s, a) (a)
at so W. f s, a). 1 GO O) (a)
o GO V S), 04 Oo a,: SE 0 6) (o)
O4 90130. S- 0,118). 4 01216) 19)
Sq 0. , O pe a a) atl. S 3) (22)
of s, a). SG 02P)- 2 E eO 2) (5)
04 so 5). I(d a). 6(v, () Ca)

L0-9 Ltstener P_________ _____________________________

* (please (en c b))
.ld * aw a Ue

Go m

" 2124 41g).4460354SP).496U4P4vP36I (S4O
IN so 0) -9934- Oo 0) a %93(So3S)()

1654 So." INs126 Go9v4)a112 INSdv64) (4)
64 go 4. G(so 4l. 6. G .))

at (1o a) ofof 6 .6)....
633* 90- 02).I 4) 4 " 4Sd 3)-&.j51 P4S-) (S)
164(9' 8)- 263 e24), 0 4 2 5,2) (4)

3644 60 42)- SE3 00 1z6) 4 5- 02) (4)

Si(Be). Of 0 5) 16(O 6) (5)

O4 V- 0). 64 Go 4)- 4 eo 4) (9) c

",Of Go 12)- 94 aw M)- Of Go 22) (4)
9. (sol W0)- 0(GO 00 oI) (0)
91(Geol 02.1 4 s P 4)#a]P0, & ,) (a)

64 eo a). 04 0 Go a. 9(6,,) (a)
64 sor32G 34 i:% e- O- 3 31 504) (25)

14N L9,11",. 4944 -1 14 9) 31641022) -33)

0(Be, W. 4? 60 Op. 0N(GO 6) (a) .

Ofe V 1. 04 Go0l.- 14 0 21) (5)

"- (0v 6). eq o -'. 045 O5CO)

AS

Lisp) Li1 tener1P

Fig re 4. Two experiments. Relpeiting tin tmk of)utting D on C requires only a trivial auut of

work outmid' the T I.S. Howe.ver, the il .oiaorpluic task of pnttiag C an D in a worl whee they started
* -. m.,.ot in exha.uaged pl.e'i. reqnires Iu,,Uy rules to lie irml, not i nuuy but still too .imny.

-r rr-r. -16.

W ~ ~ ~ ~ ~ ~ ~~4 K -~0~ rc r r.

OoC& Px6)

(C6T75 O0c el 7 H F(M)l

Figure 5. The pattern lattice. Patteriim are oriauiixaoa in !I Iati ire, wit I t1ta' imt iit ~uVa At thle top

ana11 tile 1inut '4('ifir at the bottom. Tile primary alviuttageOti -4-imu i.4 2Wh1it 1tat 11I of dh i -tuic
of a patt Ieru, or AI of thie pattertis generahixitig au inatauka', catt lit foutid qIiiiukly by a1 simiple lattice
travainqa. _______ _________

17

A.)o7C C4 N4,

Figure 0. The TMS. Every propositiona that has ever been in hew a fEst of juatifiationse. For a
jIuetihrcatio i 1.) provide sutpport for it propu1sitiou, all tile joropwcuitioli oil itse in liat zawest he in andi
al)li' h Jir~ituins on1 itut lisLht umiet. bv' out. Whenever a propimiti chiget tte~, ai pottentially

- - extrusiive updating pro'essbegiuas to propagate thiroughi the network of Jpropwitionse and just ilkcations.

%%

%*% .* **j~* *

°°~:* ~ V *'~v \

~p

18 Routines

The Life language has two primitive forms, if and unless, whose semantics is not
imperative but declarative.

PI: (if (loves ?x ?y) (likes ?x ?y))

"So long as ?z loves ?y, ?z likes ?y."

P2: (if (person ?y) (unless (loves ?x ?y) (lonely ?y)))

"So long as nobody loves ?y, ?y is lonely."

If

P3: (person george)

is asserted, then so are:

P4: (unless (loves ?x george) (lonely george))
PS: (lonely george)

Now P4 is justified in terms of P2 and P3, and P5 is justified in terms of P4. If,
now,

P6: (loves sam george)

is asserted, then

P7: (likes san george)

is also asserted. Because P7 matches the left hand side of P4, the justifications of
all of P4's past consequents are changed to include P7 on their out-list. Thus PS,
having lost its TMS support, is retracted. See Figure 7.

Despite its simple primitive functionality, Life is nonetheless a powerful program-
ming system because its rules are asserted in the same database as its other proposi-
tions. This allows rules to fire on other rules. Here, for example, are the rules that
support and clauses in the left hand sides of rules and progn clauses in the right hand
sides:

(if (if (and . ?p) ?q)
(build-and . ?p))

(if (unless (and . ?p) ?q)
(build-and . ?p))

(if (build-and ?p ?q . ?r)
(if ?p (if (and ?q . ?r) (and ?p ?q .?r))))

(if (build-and ?p) (if ?p (and ?p)))
(if (prop ?p . ?q) ?p)
(if (pron ?p . ?q) (prop . ?q))

This makes it easy to write rules of this sort:

17

(L-"Je7Z~ 6za~G -)-K6 -

quzz

* Figure 7. An urateii rule has been overridden.

-I

20 Routines

(if (block ?block)

(progn (if (and (on ?block ?support)
(supported ?support ?root))

(supported ?block ?root))
(if (grasping ?block)

(supported ?block hand))
(unless (supported ?block ?root)

(unsupported ?block))
(if (unsupported ?block)

(falling ?block))))

Amord techniques for the explicit control of reasoning are easily supported as well:

(if (if-shown ?p ?q)
(progn (try-to-show ?p)

(if ?p ?q)))
* (if (try-to-show (and ?p ?q ?r))

(progn (try-to-show ?p)
(if ?p (try-to-show (and ?q ?r)))))

(if (try-to-show (and ?p)) (try-to-show ?p))
(if (try-to-show (and ?p ?r)) (build-and ?p . ?r))

See (de Kleer et al 1977) for further explanation of this sort of rule language pro-
gramming.

Here are the Life rules underlying the bank robbery example:

(defrules thats-where-the-money-is
(can-show (practical-argument money-in-it))
(can-show (moral-argument it-would-be-wrong))
(propose (hold-up baybanks))
(can-show (profitable (hold-up ?anything)))
(can-show (wrong (hold-up ?anything)))
(if (propose ?action)

(progn (if-shown (profitable ?action)
(propose (support ?action money-in-it)))

(if-shown (wrong ?action)
(propose (object ?action it-would-be-wrong)))))

(if (and (propose (support ?action ?practical-argunent))
(propose (object ?action ?moral-argument)))

(if-shown (and (practical-argument ?practical-argumnt)
(moral-argu'aent ?moral-argument))

(propose (object (object ?action ?moral-argument)
prefer-practical-to-moral-arguments)))))

Dialectical argumentation is supported by a deceptively simple set of rules:

(defrules interpreter
(it (propose ?action)

(unless (blocked ?action)
(take ?action)))

(if (take (object ?action ?argument))
(blocked ?action)))

-.

:. ...Q%'o .% %a~~ * *- -: -* :*

21

I arrived at this formulation of argumentation in the course of trying to understand
Doyle's (1980) discussion of the problem of writing a fully reflexive interpreter. A
decision method is fully reflexive if its every detail is capable of being questioned and
potentially overridden in the light of new discoveries or preferences.

One way to try making a decision method reflexive is to require it, before it makes
the slightest move, to pose itself the problem of deciding whether it ought to make
that move. But this leads immnediately to an infinite regress: the act of deciding
whether to move ought to be decided on itself, which deciding ought to be decided
upon in turn, and so on. It is not at all obvious a priori that it is possible to build
a reflexive decision method that does not get itself into infinite regresses (see Batali
1983).

Doyle's hypothetical SEAN program (1980) employs the following algorithm:

Top level loop:
Do forever

Figure out what to do
Do it

To figure out what to do:
Enumerate candidate actions
Adduce arguments for or against
If all arguments favor one action
then Take that action
else Recursively figure out how to settle the argument

Take the winning action

This scheme suffers from three important difficulties:

e The decision mechanism, by only deciding upon and performing one action at a
time, tends to impose a discrete model of time and an atomic model of action.

e The decision mechanism is too highly centralized. Often it is useful for different
non-interacting decision processes to go on in parallel.

9 There is no clear way to give up on a decision process when the arguments don't
render a clear decision. Both Minsky's Law of Non-compromise and practical
experience indicate that this is often the most nature move.

The difference between Doyle'E mechanism and mine is in the mechanism of arbitra-
tion. If there are two proposals for action, SEAN automatically invokes a proceuu to
decide between them. My mechanism, by contrast, only attempts to arbitrate be-
tween proposals for action if someone notices a conflict and makes an objection. This
way, many processes of reasoning and acting can proceed asynchronously in parallel.
Actions are carried out so long as they have TMS support.

Scenario

It will help in making my descriptions concrete to consider a scenario that I would

like the finished system to be able to limp through.

.J2.

22 Routines

ofImagine a simple difference reducing planner facing the task of producing a bowl
ofcereal with milk and bananas, with a spoon to one side. The program conmes with

a library of operators for reducing differences, with add lists and delete lists in the
manner of Strips (Fikes and Nilsson 1971). The program does not know some basic
things, as will become evident.

Making a bowl of cereal is a substantial feat if you haven't even got a routine
for bringing the box of cereal over to the table. The first routine that develops is
the routine for deciding to bring the box of cereal to the table. The process to be
captured is entirely internal, involving an enumeration of differences to be reduced and
a process of arguing out which one to reduce first. The program makes an instance of
the generic argument process for this particular argument. The next time the issue
comes up, the argument will proceed differently, because this new frame will provide
a really compelling argument about why getting the cereal is the right thing to do
next.

Actually getting the cereal is a different matter. You can't put the cereal down
* because you haven't got it in your hand, and you can't pick it up because it's in

the cupboard across the room and because the cupboard is closed, and so on. The
system improvises, repeatedly assessing the situation, selecting a difference to reduce,
and reducing it. There will arise a stereotyped process of walking, thinking, opening,
thinking, picking up, thinking, walking, thinking, and putting down. The system

* will build a representation of this process, in about two stages. First the program
will write down the component processes of thinking and doing. Then it will notice

* that these processes often occur end-to-end and write that down too. Because the
* reasoning that goes into these processes is independent of it being a cereal box rather
* than a spoon, say, or a cupboard instead of a refrigerator, the process descriptions

will be generalized appropriately.
So when it comes time to reduce the difference of there being no spoon, or no milk,

* a series of really compelling suggestions will appear about how to go about getting
* them.

Some generic process concerned with iteration will become interested in this se-
* ries. One of the things you know about iterated processes is that they often involve

overhead that can be elimiinated by stringing together the content of each iteration
(see Waters 1978, 1979). So, one day, after the program has picked up the cereal box,
it will occur to it to get the spoon too while it's at it. Once it has the spoon, it will
occur to it to get the bowl too. And so on. Acting on these suggestions will itself

* become the subject of new process descriptions.
The route that our imaginary robot follows when fetching box, spoon, bowl, and

milk will interest generic processes concerned with the following of paths. Such process
descriptions can often offer advice on the order in which different points on a path
ought to be visited. This advice will change the outcome of each successive argument
about which object to fetch next.

If the robot has only two hands, it will become annoyed when its attempt to pick
* up the third object fails. With some care; it ought to be possible to arrange for it to

see the problem as one of insufficient carrying capacity. There are two important ideas

23

that come with the notion of capacity. They are making several trips and increasing
the capacity. The program will wonder if there is a way to increase one's carrying
capacity and notice that this is exactly what a tray is for. The next time around, the
ideas of making several trips and using a tray will both occur to it.

There is no good way to tell which of these two options is better a priori, so the
decision will be underconstrained and made arbitrarily. Making an arbitrary choice is
a generic process. One of the generic arguments associated with arbitrary choices is
try the other one this time to see what it's like. The typical breakfast maker would take
this advice and decide between the two options on the basis of which one involves less
hassle. I have not been able to learn much about how people make such comparisons.

An enormous variety of issues bear on the remaining steps in preparing a bowl
of cereal, but representing them is likely to be too hard for a long time. Especially
complex is the reasoning that goes into slicing a banana onto a bowl of cereal. Peeling
the banana two-thirds of the way down is better than peeling it completely right away
because it gets your hands less messy. When cutting the slices, passing the knife
through from the bottom of the banana is better than passing it through from the
top. The reason is that the slices of banana stick to the knife; striking the banana
from below knocks the stuck slice straight down into the bowl rather than making it
roll off the top of the banana. The right thickness for the slices is the one that lets you
cover the top of the cereal evenly. The slices are usually too big to easily leave enough
room on the spoon for cereal. One way to deal with this is to cut the banana once
lengthwise after peeling it and before slicing it. Some people save washing a utensil
by slicing their bananas with their spoons. Most everyone who does this thinks they
invented it.

Proposal

As I have been describing, I have by this time established most of the theory and
the beginnings of an implementation. My thesis will present a (presumably small)
number of examples of the program improvising new routines and then modifying
them in the light of experience. Of the many dimensions of the space of possible
examples, I am primarily concerned with two:

eAlthough the current toy examples are taken from blocks world, this is only a
reflex on my part. The theory of routines is intended to explain what goes on
in domains more representative of everyday life. I am unlikely to have the time
or technical wherewithal to connect the program to real cameras and robots, so
any "real" domain will be entirely artificial. But even an artificial scenario like
that of the previous section will serve to demonstrate both the unsuitability of
classical domain-independent planning and the alternative provided by the theory
of routines.

9 My real interest in routinization comes from its connection to the theory of per-
sonality. People construct their minds, very roughly speaking, by internalizing
their interactions with their environments. In real life this requires many cycles
of internalizing an old pattern of activity and watching as a new one emerges.

- .. - - .- - - . . - . . -

24 Routinm

It is possible that the program will hold together for enough cycles to construct
for itself the basics of classical linear planning. Naturally this will require some
cheating.

The implementation needs several more parts. As it stands, it is terribly myopic. It
can muddle through most simple blocks world situations, but its learning is confined to
TMS-compilation of its existing rules. It has yet to internalize any processes, though.
The next few modules will manipulate process representations, called scripts. A script
is an interval-based representation of a pattern of activity (Allen and Koomen 1983).

e The interface between the running argument system and the script database is
the chart recorder, largely written. Certain propositions (selected somehow) are
monitored. Imagine each proposition dragging a pen behind it on a moving scroll
of paper, as in a real chart recorder. When the proposition goes in, the pen goes
down, and when it goes out the pen goes up. The resulting pattern of line segments
is matched against the scripts in the database.

* Another module maintains the script database. The hardest part of this module
is the script-subsumption algorithm, which, given two scripts, determines if one
extensionally includes the other. The complexity of this algorithm will limit the
extensions I can make to the script representation; I need in any event some
notation for iterated processes.

* The database will start out with a collection of generic scripts. Many of these will
have arguments to offer when they are recognized; others will cause the program -

to hypothesize that some generic model applies to the relevant elements of the
domain. Learning to write this code will be the primary interest of the exercise.

a The worst part of the entire program is the module that attempts, by whatever
means, to synthesize new commonly-recurring scripts from the program's con-
tinuing history of interaction with its world. I don't expect to be proud of the
algorithm.

This shouldn't take much more than a year.

Acknowledgments

John Batali, David Chapman, and Mike Brady were major influences. Kurt Fleischer
lent me his house and Macintosh to write the first draft. Subsequent useful com-
ments by Gary Drescher, Margaret Fleck, David Kirsh, and Lucy Suchman led to
this version.

Bibliography

Allen, James F and Johannes A Koomen, [1983], Planning using a temporal
world model, IJCAI, 741-747.

Batali, John, [1983], Computational introspection, MIT Al Lab Memo 701.

.- . ".''..".-'' "° ", "."".".','%'.*.'.' ' +.° " ..- ".. . ."..'..-..-.-. .-.... o.. -.". . .. '- *',

o *

25

Bernstein, Richard, [1971], Prazis and action, Univ of Pennsylvania Press.

Birkhoff, Garrett, [1967], Lattice theory, Vol. 25, American Mathematical Society
Colloquium Publications.

Brady, J Michael, Philip E Agre, David J Braunegg, and Jonathan H
Connell, [1984], The mechanic's mate, ECAI.

Chandler, Alfred D, Jr, [1962], Strategy and structure, MIT Press.

Chapman, David, [forthcoming], Cognitive cliches.

de Kleer, Johan, Jon Doyle, Guy L Steele Jr, and Gerald Jay Sussman,
11977], "Explicit control of reasoning," Symposium on Al and Programming Lan-
guages, in A CM Sigplan Noticea/Sigart Newsletter.

de Kleer, Johan, Jon Doyle, Charles Rich, Guy L Steele Jr, and Gerald
Jay Sussman, [1978], AMORD: A deductive procedure system, MIT Al Lab
Memo 435.

Doyle, Jon, [19781, Truth maintenance systems for problem solving, MIT Al Lab
TR 419.

Doyle, Jon, [1980], A model for deliberation, action, and introspection, MIT AI Lab
TR 581.

Dyer, Michael G, [1984], In-depth understanding, MIT Press.

Fikes, Richard E and Nils J Nilsson, 1971], "Strips: A new approach to the
application of theorem proving to problem solving," Artificial Intelligence, 2 (3)

189-208.

Fitts, Paul M and Michael I Posner, [1967], Human performance, Brooks/Cole.

Genesereth, Michael R, [1983], An overview of meta-level architecture, AAAI,
119-123.

Gentner, Dedre, 11980], The structure of analogical models in science, BBN Report
4451.

Gentner, Dedre, [1983], "Structure mapping: A theoretical framework for analogy,"
Cognitive Science, 7.

Gilligan, Carol, [1982], In a different voice: Psychological theory and women's de-
velopment, Harvard Univ Press.

Kegan, Robert, [1982], The evolving self, Harvard Univ Press.

Kohlberg, Lawrence, [19811, The philosophy of moral development, Harper and
Row.

Laing, R D and D G Cooper, [1971], Reason and Violence, Pantheon.*

Laing, R D and A Esterson, [1964], Sanity, Madness, and the Family, Tavistock.

Laird, John E, Paul Rosenbloom, and Allen Newell, [1984], Towards chunking
as a general learning mechanism, AAAI.

Lenat, Douglas B, [1983], "Eurisko: A program that learns new heuristics and
domain concepts," Artificial Intelligence, 21 , 61-98.

% i Llpkis, Thomas, [1982], A KL-ONE classifier, in (Schmolze and Brachman 1982a),
128-145.

26 Routines

Meltser, Bernard and Donald Mlchle, eds, [1970], Machine intelligence 5, El-
* sevier.

Michalski, Ryszard, [1980], "Knowledge acquisition through conceptual clustering:
A theoretical framework and an algorithm for partitioning data into conjunctive
concepts," Policy Analysis and Information Systems, Special Issue on Knowledge
Acquisition and Induction, 4 (3).

Minsky, Marvin, [1975], A framework for representing knowledge, in Winston
1975(b).

Minsky, Marvin, [1977], Plain talk about neurodevelopmental epistemology, MIT
Al Lab Memo 430.

Minton, Steven, [1984], Constraint-based generalization: Learning game-playing
plans from single examples, AAAI.

Mitchell, Tom M, 11983], Learning and problem solving, IJCAI.
Plotkin, Gordon, [1970], A note on inductive generalization, in (Melzer and Michie

1970), 153-163.
Reynolds, John C, [1970], Transformational systems and the algebraic structure of

atomic formulas, in Melser and Michie (1970), 135-151.

Sacerdoti, Earl D, [1977], A structure for plans and behavior, Elsevier.
* Sartre, Jean-Paul, [1976], Critique of dialectical reason, Humanities Press.

Schank, Roger C and Robert Abelson, [1975], Scripts, plans, and knowledge,
IJCAI.

Schank, Roger C, [1982], Dynamic memory, Cambridge Univ Press.

Schmolze, James G and Ronald J Brachman, eds, [1982 (a)], Proceedings of
the 1981 KL-ONE Workshop, BBN Report 4842.

Schmolze, James G and Ronald J Brachman, [1982 (b)], Summary of the KL-
ONE language, in (Scbmolse and Brachman 1982a), 233-260.

Schneider, Walter, [1984], Toward a model of attention and the development of
automatic processing, Univ of Illinois Psychology Dept report HARL-ONR-8402.

Simon, Herbert, [1970], The sciences of the artificial, MIT Press.
Smith, Brian C, [1982], Reflection and semantics in a procedural language, MIT

PhD Thesis, MIT Lab for Computer Science TR-272.

Suchman, Lucy, [1984, also forthcoming as a Xerox PARC report], Plans and situ-
ated action, PhD thesis, UC Berkeley Dept of Anthropology.

Sussman, Gerald Jay, [1975], A computer model of skill acquisition, Elsevier.

VanLehn, Kurt, [19831, Felicity conditions for human skill acquisition: Validating
an Al-based theory, Xerox PARC Report CIS-21.

Waters, Richard C, [1978], Automatic analysis of the logical structure of programs,
MIT Al Lab TR-492.

Waters, Richard C, [1979], "A method for analyzing loop programs," IEEE 7,ans-
, actions on Software Engineering, 5 (3) .

...................... ". .

. * . - .

*T 7h 7. V;-

27

Winston, Patrick H, 11975 (a)], Learning structural descriptions from examples, in
- Winston 1975(b), 157-209.

Winston, Patrick H, ed, [1975 (b)J, The psychology of computer vision, McGraw-
Hill.

Winston, Patrick H, 119801, Learning and reasoning by analogy: The details, MIT
Al Lab Memo 520.

FILMED

1 -85

SDTIC

. O A, %2 , - .

I.. .. F IL M ED..V. .-'- ~ ->2~ *

