
RD-AlSO 451 GUIDELINES FOR A MININAL ADA RUNTINE ENVIRONNENTCU) 1/1
SOFTECH INC MALTHRN NA V GROVER JAN 95 3285-2-268/5

I ESD-TR-85-119 F33666-84-D-1281
UNCLSSIFIED F/O 9/2 NL

1111.0 0
- L =2I 2.

2 51 1 111111.

MICROCOPY RESOLUTION TEST CHART

NAT.ONAL BUREAU OF STANDARDS -,963 A

.

Adl -L %

/ V

ESD-TR-85-139 3285-2-208/5q~".2

0 GUIDELINES FOR A MINiKA. Am RUNTimE ENiVoRwNT

VINOD GROVER

SOFTECH, INC
460 TO'rEN PoND RoAD
WALTHAM, MA 02254

JANUARY 1985

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

L

.8 S OCT @ 2 1985

.j PREPARED FOR

LA..

ELECTRONIC SYSTEMS DIVISION
CAIR FORCE SYSTEMS COMMAND

DEPUTY FOR ACQUISITION LOGISTICS
AND TECHNICAL OPERATIONS
HANSCOM AIR FORCE BASE, MASSACHUSETS 01731

85 10 22 020
-. .9-- ..- 9,. ,,, . .,. - .9m 9.l~a,, nml il~

I
i n , - - "

T- -- 7--V Z

LEGAL NOTICE

When U. S. Government drawings, specifications or other data ore used for any
purpose other than a definitely related government procurement operation, the

* government thereby incurs no responsibility nor any obligation whatsoever; and
* the fact that the government may have formulated, furnished, or in any way sup-

plied the said drawings, specifications, or other data is not to be regarded by
implication or otherwise as in any manner licensing the holder or any other person

* or conveying any rights or permission to manufacture, use, or sell any patented
invention that may in any way be related thereto.

OTHER NOTICES

* Do not return this copy. Retain or destroy.
REVIEW AND APPROVAL

* This technical report has been reviewed and is approved for publication.

*ANTHONY L. STEADMAN WILLIAM J4 LETENDRE
Project Officer, Project 2526 Program a nager,

-Software Engineering Tools and Methods Computer Resource
Management Technology

FOR THE COMMANDER

-ROBERT J. ROERTG. O (MITRE)
Director, Computer Systems Engineering roupeade
Deputy for Acquisition Logistics GopTae
and Technical Operations

qiclassi fied
SECURITV C.ASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

ia REPORT SECURITY CLASSIFICATION 1b. TRICEMAR N

Unclassified M1 O >/V/
26. SECLRITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
2b DECLASSIFICATION/DOWNGRAOING SCHEDULE Distribution unlimited.

A PERVF0RMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBERIS)

3 285-2-208/5 E SD-TR- 85-139

61 NAMilE OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7&. NAME OF MONITORING ORGANIZArION
(If applicable) Hq Electronic Systems Division (AL)So fTe ch, Inc

6c. AOORESS (Ci v. State and ZIP Code) 7b. ADDRESS (City. State and ZIP Codei

4 60 Totten Pond Road Hanscom Air Force Base, MA 01731
Waltham, MA 02254

8B. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicoblel

Deputy for Acquisition ESD/AL F33600-84-D-0280

Se ADDRESS (City. State and ZIP Code) 10 SOURCE OF FUNDING NOS

Electronic Systems Division PROGRAM PROJECT TASK WORK UNIT

Hanscom Air Force Base, MA 01731 ELEMENT NO NO NO NO-

11 TITLE ! c.id.e Security Cla.sfication Guidelines for a 5720

Minimal Ada Runtime Environment '_-_"
12. PERSONAL AUTHOR(S)

Vinod Grover
13. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr. Mo., Day) 15. PAGE COUNT

Final Report FROM TO __ 1985 January 58
16 SUPPLEMENTARY NOTATION

17 COSATI CODES 18. SUBJECT TERMS IContinue on reverse if necessamr and identify by block numberl

FIELD GROUP SUB. GR. Ada Runtimes Environment

19. ABSTRACT Waniftnue on reverse if necessary and identify by block number)

A major goal of the JAMPS Ada software acquisition is to develop highly portable
and reusable modules for JINTACCS message preparation/handling that can easily be used
in many different types of military systems. This goal impacts the selection and use of
the Adi runtime environment, as dependence on features of the runtlme environment
(either for functionality or performance) limits portability to only those systems
providing the same features. This results in the concept of a minimal set of runtime
features necessary to support JAMPS; this minimal set, as identified herein, is
potentially applicable to other real time systems.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIEO'UNLIMITEO E SAME AS RPTX5 OTIC USERS [r Unciassi fled

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER
2

2c OFFICE SYMBOL
i,,I'u d, - r' (uIr, ,, .-

DO FORM 1473,83 APR EDITION OF I JAN 73 IS OBSOLETE nC lassi fled
SECURITY CLASSIFICATION OF THIS PAGE

*,,% ** .,...

-

K" EXECUTIVE SUMMARY

The study is intended to define the characteristics of an Ada
Runtime Environment that effectively supports the development of
real-time applications. The study was undertaken with the specific
objective of supporting the selection of a runtime environment for
the JINTACCS Automated Message Preparation System (JAMPS) program,
but provides results useful in any real-time system acquisition
program. ,, - ,

A major goal of the JAMPStacquisition is to develop highly
portable and reusable implementation that can be used in many dif-
ferent military systems. This goal impacts the selection and use of
the runtime environment, as dependence on particular features of the
runtime environment (either for functionality or performance) limits
portability to only those systems providing the same features. This
results in the concept of a minimalJset of runtime environment
features necessary to support JAMPS. Implementing JAMPS with
dependence only on these features will allow portability within the
class of systems providing those features. This report identifies
such a minimal set of environment features. /

This rport 'inted for use by tw6 main audiences:

a. Procuring agencies or contractors wishing to select an Ada
implementation that meets the needs of a particular real-
time program.

b. Ada compiler implementors wishing to develop an Ada imple-
mentation that is responsive to the needs of real-time
programs.

Accesion Fo. 7f-
NT113 CRA&I
OIIC IA 1{
U a:v o A ced L_

f ~r 'o J .., ,cation

By
S'' / Di.t ib,,tio-,J

Avai ziity Codes

Avail and/or
Dist Special

iii

...I, .- ='..a,.,e..7. t ." . .. - - , . , % % - .% - ' W " . -. - - . "

ACKNOWLEDGEMENT

This document was prepared by SofTech, Inc., under Air Force
contract F33600-84-D-0280 (administered by Ms. Pat Knoop, Language
Control Facility, Wright-Patterson Air Force Base). Financial
support was received from Program Element 64760F, Embedded Computer
Systems Engineering and Applications, Electronic Systems Division,
United States Air Force Systems Command, Hanscom Air Force Base
(ESD/ALSE). The MITRE Corporation provided technical guidance.

It

[.

hln.. % • •,_. . . . ,. .

TABLE OF CONTENTS

Section Page

1 INTRODUCTION 1

1.1 THE ROLE OF RUNTIME SYSTEMS IN APPLICATIONS 1

1.2 SCOPE OF THIS WORK 2

1.3 ORGANIZATION OF THE REPORT 3

2 RUNTIME ENVIRONMENT ISSUES 5

2.1 MEMORY MANAGEMENT 5

2.1.1 Selective Linking 5

2.1.2 Free Storage Management5

2.1.3 Free Storage Monitoring 6

2.1.4 Free Storage Structuring 6

2.1.5 Target Memory Control 7

2.1.6 Addressing Limitations 7

2.2 PROCESSOR MANAGEMENT 8

2.2.1 Size of Task Population 8

2.2.2 Task Priorities S

2.2.3 Task Dispatching 9

2.3 OVERLAY MANAGEMENT 12

2.4 FAULT TOLERANCE 12

2.4.1 Watchdog Timers 13

2.4.2 Audit Trails 13

2.4.3 Fault Detection 13

Vii

...

TABLE OF CONTENTS (Continued)

Section Page

2.4.4 Deadlock Detection 14

2.5 SECURITY 14

2.5.1 Memory Protection 14

2.6 INPUT/OUTPUT 15

2.6.1 File System 15

2.6.2 Asynchronous I/O 16

2.6.3 Device Support 18

2.6.4 Terminal and Screen I/O 18

2.7 PRAGMAS AND REPRESENTATION ISSUES 19

2.7.1 Pragmas 19

2.7.2 Representation Clauses 20

2.8 MISCELLANEOUS FEATURES 21

2.8.1 Special Optimizations 21

2.8.2 Predefined Packages 22

2.8.3 Timing Services 22

3 EFFICIENCY AND IMPLEMENTATION ISSUES 23

3.1 MEMORY MANAGEMENT 23

3.1.1 Selective Linking 23

3.1.2 Free Storage Management 24

3.1.3 Free Storage Monitoring 24

3.1.4 Free Storage Structuring 25

viii

...- ', ,-.' ", • .. •, -. •, . .. • .,

TABLE OF CONTENTS (Continued)

Section Page

3.1.5 Target Memory Control 26

3.1.6 Memory Limitations 27

3.2 PROCESSOR MANAGEMENT 27

3.2.1 Size of Task Population 27

3.2.2 Task Priorities 27

3.2.3 Task Dispatching 27

3.3 OVERLAY MbANAGEMENT 28

3.4 FAULT TOLERANCE 29

3.4.1 Watchdog Timer 29

3.4.2 Audit Trail 29

3.4.3 Fault Detection 29

3.4.4 Deadlock Detection 30

3.5 INPUT/OUTPUT 30

3.5.1 File System 30

3.5.2 Asynchronous 1/O 31

3.5.3 Device Support 33

3.5.4 Terminal and Screen 1/0 34

4 GUIDELINES FOR MINIMUM RUNTIME ENVIRONMENT FEATURES .56

*4.1 MEMORY MANAGEMENT 36

4.1.1 Selective Linking 36

*4.1.2 Free Storage Management 36

ix

TABLE OF CONTENTS (Concluded)

Section Page

4.1-.3 Free Storage Monitoring 37

4.1.4 Free Storage Structuring 37

4.1.5 Target Memory Control 37

4.1.6 Addressing Limitations 37

4.2 PROCESSOR MANAGEMENT 37

4.2.1 Size of Task Population 37

4.2.2 Task Priorities 38

4.2.3 Task Dispatching 38

4.3 OVERLAY MANAGEMENT 38

4.4 FAULT TOLERANCE 38

4.5 SECURITY 39

4.6 INPUT/OUTPUT 39

4.6.1 File System 39

4.6.2 Asynchronous i/O 39

4.6.3 Device Support 39

4.6.4 Terminal and Screen I/O 39

4.7 PRAGMAS AND REPRESENTATION ISSUES 40

4.7.1 Pragmas 40

4.t.2 Representation Clauses 40

CONCLJSIONS 41

LIST OF REFERENCES 43

DISTRIBIJTION LIST 45

x

SECTION I

INTRODUCTION

A runtime support environment (RSE) for a programming language
usually provides support for the generated code in the target en-
vironment. The target environment may be a bare machine or another
virtual machine (e.g., an operating system). Usually there are
certain high-level language features that cannot easily be mapped
onto the target environment support (i.e., instruction set, system
calls etc.). The runtime system comprises those procedures which
implement such language features.

1.1 THE ROLE OF RUNTIME SYSTEMS IN APPLICATIONS

From the user's point of view, a runtime system has a different
meaning. For embedded systems applications, a runtime system is
viewed as a substitute for an operating system. This implies that
not only should it provide the appropriate functionality, but must
provide it efficiently. Furthermore, in the light of portability,
such functionality and efficiency must be easily provided for in
many different candidate target systems.

Currently, within the user community there are several distinct
concerns about the role of runitime systems in applications [61.
In the following sections we discuss some of these concerns.

1. There are many features of the Ada language that are not
sufficiently well defined or are implementation defined.
This gives the implementor of the language a wide variety
of options. The choice of one or a particular set of
options is dependent on the implementor's convenience.
However, the choice of an option is certainly bound to
affect an application. To give an example, consider an
implementation of the task scheduling strategy that
switches tasks around when they run to completion or
voluntarily wait on some event. (Under this implemen-
tation, if there are certain tasks that execute a perpetual
loop without reliance on external events, then once one
such task is executing others will be permanently locked
oit-) Under a time-sliced implementation, the effect of the
3ame program would be different.

.There are certain well defined area3 of the langunge that
have awide variety of different implementations. The only

-7.....................

•- °

foreseeable effect of the choice of an implementation tech-
nique may have to do with the efficiency of an application
program.

3. There may be well defined capacity limitations imposed by
the implementations which restrict the static or the
runtime behavior of the application program. This category
includes items such as the number of lines in a package and
the maximum amount of dynamic storage available to a
program or the subprogram calling depth. Such concerns
will at best restrict the portability of the application
program and at worst expose surprises at runtime. -or
example, a particularly restrictive implementation may
raise a STORAGE ERROR after the call depth becomes greater
than 20. This behavior may have unexpected consequences.

4. Certain applications cannot best be implemented in Ada,
with all of its underlying runtime and compile time
machinery. They require some additional support, usually
outside Ada, from the implementation. To give a concrete
example, consider an application which is required to
perform, among other things, built in read/write memory
tests. Even though these tests can be performed using Ada,
by resorting to low level facilities like representation
clauses, it is not considered safe to do so, since such
destructive tests could interfere with the runtime data and
code areas. Such tests can best be performed by some
cooperation or support from the runtime system.

5. Many of the concerns are largely based on the fact that the
application programmers are reluctant to use Ada and do not
understand its use. Many of the Ada language features, are
sufficiently high level to make these programmers suspi-
cious, and they ask, for example, how many programs can
simultaneously be executed by a particular Ada implementa-
tion. These concerns can mostly be dismissed by proper
education and a demonstration of the adequacy of Ada
features.

1.2 SCOPE OF THIS WORK

With all these concerns and uncertainties about the language
and its runtime environment, the runtime system is viewed, from the
application designer's perspective, as possessing certain features.
The presence or absence of these features, other than those required
by the language, may yield widely varying application designs.
Ultimately, this may mean that one particular design may or may not

- .-. -< '.. - , .. . ,. -[. . .'-', . ,- - . ", . ,.

S " " " ' '' '" ' ' , , " ? "' ," l " "" ' '"' : " '''' , . ," . . - l . ' -. V .. _,.-. "'' -i<

run as intended on a given implementation of the language. The purpose

of this report is to describe a set of runtime environment features which
are highly suitable for the design and implementation of the JINTACCS*

Automatic Message Preparation System (JAMPS). Ideally, one can safely
define such a set of features if the final design alternatives are known.
However, in this case we are only partly familiar with the current design
of JAMPS, which has been implemented in "C" language.

The starting point of this report is the list of concerns raised by
a straightforward reimplementation of the current JAMPS design, in Ada, on
a target environment devoid of the operating system. This list of concerns
has been raised by R. G. Howe of the MITRE Corporation as a set of questions
regarding the capabilities of an Ada runtime environment. In this report

we analyze some of the concerns and try to see how they might arise in the
design of JAMPS. Having established a need for some of the concerns, we try
to determine if such concerns should be addressed by an Ada runtime environmenL;
the chief criteria being portability, efficiency, and ease of implementation
of the proposed features. We have found that most of the concerns which do
not involve the capacity of the runtime system can be addressed almost completely
in Ada, with minimal additional support from the runtime system.

From this analysis, a set of tentative guidelines is derived for features
which should be an essential part of an Ada implementation. For the sake of
completeness, we also included a list of similar concerns raised during the
design of certain other applications, in the expectation that such concerns may
arise during the reimplementatlon of JAMPS in Ada if a redesign is necessary.

1.3 ORGANIZATION OF THE REPORT

This report is organized as follows: In Section 2, we give a taxonomy of

the various issues which concern the application programmer in general. We try
to give a rationale and the context in which such issues arise. Many examples are
taken specifically from JAMPS, and many others from other application systems
we have encountered. These issues form the basis for suggesting the plausible

features of an Ada runtime organization.

In Section 3, we present a preliminary analysis of these issues from the
perspective of efficiency, portability, and implementation ease (both from the
view of the user and the language implementor). This gives us a method for
deciding the features of runtime environments which can and should be implemented
for the JAMPS application. For the features which we feel should not be part

of the runtime system, we describe, with examples, how they can be implemented in

* Joint Interoperability for Tactical Command & Control Systems (JINTACCS)

3

application code. In Section 4, we enumerate all the features of a
minimum runtime environment relative to JAMPS.

Finally, in Section 5, we outline our conclusions and suggest
some areas for further study.

SEUTION 2

RUNTIME ENVIRONMENT ISSUES

Following is a list of typical user concerns, drawn mostly from
the JAMPS application design.

2.1 MEMORY MANAGEMENT

2.1.1 Selective Linking

If no access type is declared, then will the implementation
still require some overhead? Or, in general, if a language
feature X is not used, then will the implementation still
require some overhead in terms of space or time?

This problem appears in all those cases, where general purpose
(i.e., reusable) software (e.g., the runtime system) is used for a
specific less general application. This occurs when only part of
the general purpose package is actually required by the application.
This means that all or most of the general purpose software is going
to be loaded into the memory. This is clearly wasteful in embedded
systems. For example, consider a general purpose stack package
which provides operations POP and PUSH. If a certain application
never uses POP but uses PUSH, then the code for POP should never be
loaded. The same concern applies to the runtime system and the
reusable software written by the user. This falls broadly under the
category of selective linking.

2.1.2 Free Storage Management

What storage management (allocation and deallocation)
facilities are available in the underlying system? What is the
allocation strategy? First-fit? Best-fit? Other? What
deallocation strategy is used? Automatic or on demand? What
are the limits of allocation for procedures, tasks, and
packages?

The allocation and deallocation mechanisms are vital to many
applications. Ada provides the use of the allocator mechanism new
for allocating space. It is important for most embedded applica-
tions, including JAMPS, that the algorithms used for dynamic
allocation be quite efficient. It is not very important to know the

.........................

exact allocation strategy though. Even more important is the
deallocation strategy used by the system. Automatic garbage
collection may be desirable from the point of view of the
programmer, since it allows him to be free of this concern.
However, in most embedded Systems it may mean that the time used by
a certain section of the code becomes unpredictable. For certain
time critical procedures it may be necessary to have the garbage
collection turned off.

2.1.3 Free Storage Monitoring

Are there any methods for detecting the state of working
storage? How can I find out if X percent of working storage is
exhausted?

This problem is typical of embedded systems. Such systems
which are often required to take certain actions when a certain
fraction of free storage is used up. Typically, these systems will
explicitly reclaim storage at this point or decide to allocate
storage on disk.

Ada does not address this problem explicitly, except in the
case when pragma STORAGESIZE is used for specifying the size of the
heap associated with a collection. In the case of all storage being
used up an exception STORAGEERROR is raised. JAMPS requires that
when 80% of the system space is used up certain action be taken.

2.1.4 Free Storage Structuring

Is there one heap, or is a separate memory region reserved for
each collection?

The ability to declare separate heaps is important to many
applications. With this capability it may be easy to prove that a
certain allocator in a time-critical region cannot raise the STORAGE
ERROR exception. This leads to considerable simplifications includ-
ing providing no handler and eliminating the check. Also, it may be
desirable to put an upper bound on the storage available to a low
priority function, thus ensuring that a higher priority function
will not be deprived. Furthermore, the presence of separate heaps
may also prevent contention among several tasks competing for
storage. It would be pleasi..g to have the implementation associate
a separate heap for a collection for which pragma STORAGE SIZE has
been used. However, the only disadvantage is that excessive use of
this capability may lead to excessive fragmentation and cause
inefficiencies in the storage management functions.

6

2.1.5 Target Memory Control

Will the user be allowed to statically assign an appropriate
amount of working storage at time of system generation (via
LINKAGE EDITOR)? Does the implementation support the use of'
the pragma MEMORYSIZE?

It is quite common, during the life cycle, to change the memory
configuration available to an embedded system. The reason for this
might be to improve the runtime performance. This could be used to
increase the size of the runtime heap available to the application
code. In the light of these requirements, it should be possible to
redefine the memory regions available to the generated code and the
runtime system. The Ada mechanism for doing this is the pragma
MEMORY SIZE. This defines the memory size, in STORAGEUNITS, of the
target system, and is used by the Ada implementations To assign code
and runtime areas.

2.1.6 Addressing Limitations

What are the limitations on memory space as occupied by
individual packages, tasks, and subprograms? What are the
absolute addressing limits of the code?

This is a problem that comes up regarding the usability of most
language implementations, and affects portability in many ways.
Depending on the choices taken by the compiler writers and the
idiosyncrasies of the target machine several restrictions are placed
on the programmer. We describe some such restrictions here, and the
reader should also consult the separate report on Ada Portability
Guidelines for further discussion on these issues.

Packages: Depending on the target machine, the size of the
packages may be restricted to some specified maximum. For example,
if library packages are represented as segments on an Intel 8086,
then the code size of the package may be restricted to 64K. Further
limits may be imposed on the size of the data that can be declared
inside such packages, depending on the implementation strategy
chosen; for instance if the package code, package constants, and
package variables are represented in separate segments then the
source size of packages can be quite large.

Subprograms The strategy chosen to represent subprograms at
runtime will have an impact on the textual size, the call depth (or
nesting), and the number and type of parameters that can be passed.

For Intel 8086 if a stack cannot grow beyond a single segment, or
the size of a stack frame is limited to a segment, this would have
several implications for the programmer.

Tasks: Similarly a task's runtime representation (i.e., its
stack and the frame) would dictate the data areas and the depth of
calls originating from that task.

The restrictions imposed by problems of this nature can in many
cases (though not all) be circumvented. For instance, if a compiler
does not accept a package with 20 procedures or with too many source
lines, then it is a mechanical (but tedious) task to split up the
package to satisfy the compiler. But if the implementation blows up
because the stack overflows or there are too many task in the
system, then it is a non-trivial problem to re-design the system to
overcome this problem.

The only course left for the user is to design his system with
these restrictions in mind, and if possible, know them in advance
before any implementation is undertaken.

2.2 PROCESSOR MANAGEMENT

2.2.1 Size Of Task Population

What restrictions are placed on the maximum and minimum number
of active tasks in a given application?

This is a very important design concern for many applications.
Up to a point, the throughput of an application can be increased by
increasing the level of multiprogramming. Systems with high
throughput requirements will, in general, tend to have a larger
number of active tasks than the ones with low throughput require-
ments. This may be so, even if the number of different task types
is relatively small. To give an example, consider a message
handling system (e.g. JAMPS). It may be desirable to assign a task
for each message in transit; with all such tasks having the same
type. Therefore, it is important for performance that the implemen-
tation allow a large number of tasks.

2.2.2 Task Priorities

Does the implementation support the use of pragma PRIORITY? If
so what is the declaration of subtype priority range? Can any

C"

a°. ~......-- •..........- ~~~~~~~~~~~~~~~~.. . .:.. ..- :-...- -.... o..... .?. ?-........................-...........-......-...........

one task be invoked at more than one priority level? What
algorithm is applied for tasks of undefined priority?

In many real-time embedded systems, the use of priorities is
important in order to specify the relative urgency of various tasks.
Based on experience and literature searches, the maximum number of
priority levels in most systems is not likely to be greater than
ten. Nevertheless, it would be pleasing if it was possible to
change the range of priorities, and use system level priorities (if
available). Ada does not allow one to invoke a task or task type at
more than one priority level. The only means of 'changing' the
priority level of a task is to engage it in a rendezvous with a task
having a higher priority. The higher priority of the rendezvous
only lasts for the duration of the rendezvous.

The tasks with undefined priority are immune to the priority
rules as defined in the language. The intent behind this was to be
able to define certain "server" tasks which do not have a priority
of their own, e.g., bounded buffers. For such tasks the language
implementors can sometimes take shortcuts for implementing
rendezvous and activation (see [31). Therefore, in keeping with the
spirit of Ada, the users should not depend on the priority rules for
unprioritized tasks.

2.2.3 Task Dispatching

Does the implementation support the use of expedited dispatch-
ing? What is it?

The tasking model of Ada is very expressive, and subsumes the
traditional notions of interrupt handlers and bounded buffers used
extensively in real-time systems. In fact, most of the 1/0 in a
large number of systems is done via bounded buffers. A typical
example of such a bounded buffer in Ada is described below, and an
equivalent description ueing the concept of an interface module of
MODULA [7] is given. A bounded buffer could be viewed as a data

* structure with two operations GET and PUT defined on it. The effect
of a GET is to suspend the caller when the bounded buffer is EMPTY,
and return some data when it is not. The effect of a PUT is to
suspend the caller if the buffer is FULL. An Ada implementation of
such a bounded buffer is to encapsulate the buffer within a task and
the operations are implemented as entries.

As is evidenced from the above two examples, the Ada code is
more elegant, but the equivalent MODULA code imposes less overhead.
A naive Ada implementation may actually create a special task for
such purposes when a simple semaphore or signal scheme can be used.

9

IRq

task BOUNDED BUFFER is
entry GET(x : out DATA);
entry PUT(x : in DATA);

end BOUNDED BUFFER;

task body BOUNDED BUFFER is

BUFFER
begin

loop
select

when not EMPTY(BUFFER) =>
accept GET(x : out DATA) do

DATA
end GET;

or
when not FULL(BUFFER) =>

accept PUT(x in DATA) do
-- store DATA in BUFFER
end PUT;

end select
end loop;

end BOUNDED BUFFER;

Figure 2-1. An Example of a Bounded Buffer in Ada

10

. . ,. . . .

module BOUNDED BUFFER;
define GET; PUT;
var buffer : ...;

notempty, notfull : signal;

function GET : DATA;
begin

await(NOTEMPTY);
get := /* next available item from the buffer */
send(NOTFULL);

end GET;

function PUT(x : DATA);
begin

await(NOTFULL);/*
* store x at the next

* available position in the BUFFER
*/
send(NOTEMPTY);

end PUT;
end BOUNDED BUFFER;

Figure 2-2. An Example of a Bounded Buffer in Modula

11

::X ?,! - -- ?.]?.-',<'-b-.<..''?,?.- .. ?- -. -. - ' - - --* - , - . L.-- -- . -§:-,., , .c-c .-. ..-.-

This would increase the task population. The consequences of this
could be to increase the task switching overhead in the system and
to use up more memory for task representations.

For such tasks a notion of expedited dispatching is essential.
As Hilfinger has shown [31, frequently such tasks can be eliminated
by the implementation, or simplified considerably. For the success
of Ada in these systems such strategies should be used where
possible.

Similarly, for interrupt handler tasks the full generality of
Ada tasking is rarely going to be used. The main concern here is to
reduce the time between the occurrence of an interrupt and the time
when the matching accept body gains control. It is most important
that this time be much smaller than the time for a normal entry
call.

2.3 OVERLAY MANAGEMENT

Does the implementation support the use of memory partitions,
overlays, swapping, and program segmentation? If so what
mechanisms are available for detecting thrashing problems? Is
the use of virtual memory supported? Can both data and code be
overlayed?

In many embedded systems, there usually are certain procedures
which are executed very rarely, for example, maintenance and
diagnostic procedures or certain man-machine interface procedures.
It is prohibitive to keep the code for such procedures in main
memory all the time. Since they are executed rarely, it is
acceptable to have them stored on disk and have them overlaid when
needed.

One of the convenient schemes for providing overlays in Ada
would be to provide a pragma (say OVERLAY) applicable to packages.
The meaning of this pragma would be to incorporate all the code and
diata associated with a package in an overlay which could be resident
on disk. This will allow the users to organize rarely used software
on disk and have it automatically loaded when called.

2.4 FAULT TOLERANCE

An important requirement in many military systems is that of
survivability. This generally implies that a certain degree of
fault- tolerance and fault detection mechanisms be present in the
application system or the underlying system. It is not completely

12

possible to meet this requirement in users' code without support
from the underlying hardware or the operating system. For example,
if the hardware has no mechanism for detecting power failures then
the software cannot detect them.

2.4.1 Watchdog Timers

If the hardware has a watchdog timer then does the
implementation offer any support for it?

In most applications a watchdog timer is used to monitor the
sanity of the software. Before entering a section of a code, the
software might set the watchdog timer to a value corresponding to an
upper limit of the expected execution time; on exit the timer will
be reset. If the timer is not reset within the specified interval,
then a fatal error or fault is signaled, which may cause some
recovery or clean up action to be performed. This mechanism is
typically used to detect deadlock or infinite loops.

2.4.2 Audit Trails

In case of fatal faults, does the implementation log the state
of the machine?

It is necessary in many systems to determine "what really
happened before the crash?". Logging the state of the machine on a
continuous basis, by the runtimie system or by the application, will
be detrimental to the runtime performance of the system. Support
from the implementa- tion could offer certain features to ease this
task. For instance, one could indicate to the system to invoke
certain subprograms or tasks when interrupts associated with such
crashes occur.

2.4.3 Fault Detection

What fault related interrupts are recognized? Are there
additional implementation defined exceptions for fault-
detection?

In general all fault related interrupts, if any, should be
recognized. There could be two causes for these interrupts: either
a fault which is external to the system as a whole, e.g., power
failure etc., or some attempt to perform an illegal operation. The
interrupts of the first category should and can be treated as
regular interrupts. This handler could either be provided by the

13

F

runtime system or the user. In either case, a reasonable recovery
action could be performed.

If an interrupt occurs as a result of an illegal operation,
then it can be handled separately either in the runtime system or
the user's code, or the runtime system can turn it into an
exception. The decision to treat illegal operations as normal
interrupts or exception depends on the nature of the fault or the
operation which caused the fault. For example, in many machines a
divide by zero causes an interrupt; the runtime system must raise
CONSTRAINT ERROR as a result of this interrupt.

At this point we do not know of any fault detection require-
ments of JAMPS which could not be treated in this manner. If the
occurrence of an external fault causes an interrupt it should be
treated as such.

2.4.4 Deadlock Detection

Does the implementation detect deadlocks? If so how?

The presence of deadlocks is an undesirable feature, to be
interpreted as a 'bug' in the application program. The only reason,
then, such a facility might be useful is to serve as a debugging
tool rather than a strict requirement. One of the ways an
implementation might signal the presence of a deadlock might be
through the presence of an exception or a software interrupt.
(e.g., an entry call into a special task)

,.5 SECUHRITY

2.5.1 Memory Protection

Does the implementation provide for memory protection of code
and data?

In general, this issue is not really very relevant in many
embedded systems. Assuming that the compiler is correct, then one
cjn safely make tho assumption that the code and data are protected
from each other as reiired in Ada. However, with the option of
inserting machine c,],?, or interfacing to assembler code this
assumption will riot always be true. If the underlying hardware
provides protected areas of memory, then an implementation could
locate the code generated and the data areas in such designated

14

protection domains. This provides further safety, even in the
presence of low-level code.

NOTE: This form of checking is often required by NSA
guidelines.

2.6 INPUT/OUTPUT

This section deals mostly with the input/output requirements of
the JAI4PS application. Since it was originally implemented on top
of UNIX and the 1/O facilities were adequate for the application,
most of the concerns are operating system oriented concerns.

2.6.1 File System

1. What are the maximum and minimum record sizes for disk 1/O?

2. What are the naming conventions for files?

3. How is the association of peripheral devices with files
established? Can there be more than one disk unit etc.?
What meaning is associated with the term 'EXTERNAL'?

4. Are library routines available for comparing one file with
another, for copying a file from one device to another?

5. Must files be contiguous?

Some of the key functions of JAMPS involve message preparation
as well as message management. This second category of functions
involves keeping track of the history of message preparation over
long periods of time, and storage of information on permanent or
long-term storage media. Hence, the concern for a suitable file
system. Below we describe in detail the concerns raised above.

1. The maximum and minimum record sizes which can be stored on
disk will determine, to a large extent, how management
information associated with messages (including message
contents) is to be represented. This will determine the
complexity of the intermediate layers used for storage and
retrieval of various high-level message data representation
in terms of disk records. At this point, however, there
are no apparent requirements and it seems that a reasonable
number would be sufficient. It is important to know this

P in advance for any detailed design of these subfunctions

15

- - - . . . ~ .. ,.r;.- *. *~ ~ .. ~ -77- - *V .,*7 r

(i.e. conversion be ween disk representation and in-core
representation).

2. Similarly, it is necessary to know the naming conventions
for files. This includes:

a. Number of characters in a file name - if there are
limits on lengths of file names, then it may imply an
upper limit on the number of files supported by the
system.

b. Do file names form a flat name space or a hierarchical
name space - This may determine if the name space is
flexible and extensible.

C. Is there a notion of file extensions?

d. Is there a notion of version numbers ?

e. Is there a default scheme for file name access (e.g.,
if no version number is specified id it the latest
version or the oldest, etc.) ?

3.How are storage devices such as disks drives, tapes drives,
etc. 'mounted' as file systems? Since the environment is
going to be devoid of an operating system per se, and TEXT
10 does not address this functionality, this issue is of
particular importance for several reasons: It might be
necessary to bring JAMPS disks from other installations for
processing, or old backup disks might be required to be
mounted for some message preparation work.

4. In order to make backups of JAMPS disks it is necessary to
have 'file copy' functions which will permit this to be
implement ed.

5. Whether or not files must be contiguous is purely perfor-
mance related, since this allows disk access algorithms
such as the 'elevator algorithm' (i.e., those which
minimize the disk head travel timnes) to be considered.
This knowledge is not essential, hut it can be useful in
predicting the disk access times.

2.6.2 Asynchronous 1/0

1.Must data be moved from I/0 buffer areas prior to
manipulation?

2. Can user request that the control be returned to the
calling module following an 1/0 request? Can another task
be requested to receive control following completion of an
1/0 request?

3. Can user cancel 1/0 requests? Are timeouts detected for

1/0 requests?

4. How are priorities associated with I/0 requests?

The need for asynchronous 1/0 arises in all those systems,
where a large amount of data is to be transferred between several
processes. JAMPS is likely to be one such system, where possibly
large amounts of data will be transferred between disks, memory, and
special devices such as the line printer, communication ports, etc.
The need arises from two factors: the amount of copying performed
is too large under conventional schemes, and the amount of blocking
time associated with such 1/0 or data transfer requests is large.
Clearly, the built-in TEXT 10 facilities of Ada do not addre:3s this
need.

1. Many times when data is stored in intermediate buffers, it
may be desirable to get a pointer to the data in the buffer
or the queue. This may save a copy if the required data
may not be needed.

2. When an I/0 request (a read or a write) is made, the
calling task would not like to wait. This helps increase
the throughput of the system. The 1/0 request can be
completed in parallel to other activities of the calling
task, especially if the caller has sent a file to be
printed.

3.Since JAMPS is required to support a line printer for the
printing of various messages and information associated
with them, it is necessary to provide cancellation
procedures for deleting files from the I/0 queues, or
request a time limit for the completion or 1/0 requestsi.

4. In a multi-user or multiprocessing system, it may be
necessary to order the 1/0 request queues to provide serial
and urgent access to the various devices3.

17

. .1- - - - - - -

S..

2.6.3 Device Support

1. What low level I/O drivers are supported? Is there support
for writing new drivers?

2. What are the effects of plugging/unplugging of peripherals?

3. What types of support are available for creating
non-standard (unique) device drivers? Must unique device
drivers be written in Ada?

4. Is there an I/0 driver in the target runtime environment
for communication with the host computer which can be used
for data collection in real-time?

5. Is there support for binary I/O? What restrictions are
there on the types that can be used for instantiating I/0
packages?

In order to make JAMPS device independent, the underlying
system must allow individual devices to be replaced by different
ones, possibly having different characteristics such as interrupt
vector locations, protocols, etc. In view of this, it should be
easy to introduce new devices and provide interfaces with them from
software.

2.6.4 Terminal And Screen I/O

1. Is there support for generic terminal operations that are
translated appropriately for specific terminals? Does it
do windows?

2. Does console monitor provide capabilities for clearing of
console screens? Is there a quick response command? Can
cursor motion be controlled by character position, word
position, line position, and page? Are there facilities
for deleting characters, words, lines, pages, joining or
splitting of lines, character overwrites and insertions,
string location, text selection and transfers?

One of the main functionalities required by JAMPS is that of
providing sophisticated word processing operations to assist in the
preparation of various messages. Since most of the word processing
is meant to be interactive, the high level representations of
various messages need to be supported. In terms of the user, he
should be able to view the message representation continuously on
the terminal screen in order to have a meaningful and productive

18

Ud,

interaction with the system. In particular, the terminal should be
able to support multiple windows, multiple buffers, multiple files,
and an integrated set of operations for manipulating such
representations.

2.7 PRAGMAS AND REPRESENTATION ISSUES

2.7.1 Pragmas

2.7.1.1 Inline. This pragma is most useful in cases of short
subprograms rone-liners') which, for modularity reasons, have to be
implemented as subprograms. Support for this pragma will encourage
programmers to respect the integrity of an interface without concern
for efficiency. Furthermore, in the presence of an optimizer, the
inline expansion of subprograms may open the path for certain
optimizations which may not otherwise be detected.

2.7.1.2 Interface. This feature is most useful for incorporating
code written in a foreign language. Since JAMPS is targeted for a
stand alone system, the only programs which could be incorporated
would be operating system independent routines from the previous
versions of JAMPS (written in C), or certain machine dependent
assembler routines (for efficiency reasons). In order to make a
better analysis of this requirement, one would have to determine the
extent of C progrims which will be incorporated from the previous
versions of JAMPS, and analyze the nature of the interfaces more
carefully. However, the interface to the assembler routines should
be most useful in tuning the performance of the final system as well
as providing additional support for low-level programming (e.g.
device drivers).

2.7.1.3 MEMORY SIZE. (see 2.1.3)

2.7.1.4 Optimize. Any form of optimization would be most useful
for improving the runtime performance of the final system.

2.7.1.5 Pack. Since JAMPS supports a large number of specialized
word-processing functions dealing with character strings, it would
be highly desirable to provide a packed representation for such
strings for maximum space utilization.

2.7.1.6 Priority. Since most of the I/O and message handling
functions would be required to be programmed in Ada (requiring the
use of tasks), there is a foreseeable need to control the relative
urgency of these tasks. For this reason the use of pragma PRIORITY
should be supported.

19

.q.

2.7.1.7 Suppress. As mentioned before, since JAMPS would be
providing several string and array manipulation procedures and
functions, bound checks will be generated for such manipulations.
Therefore, it is wise to require the suppression of range checks.

2.7.1.8 SYSTEM NAME. SYSTEM NAME is a named constant defined in
the package SYSTEM. Its value is an implementation defined
enumeration literal. Since JAMPS is an application involving many
computers sending specialized messages, it can be argued that there
would be a need to name the various JAMPS workstations. With this
view, it might be a good idea to be able to use SYSTEM NAME for
determining the identity of various computers, as well as defining
the valid names (i.e. the enumeration type NAME).

2.7.2 Representation Clauses

1. What type of control is afforded by 'length clauses'?

2. What allocation scheme is used for access types (e.g. space
allocated on the stack, dynamic allocation, fixed
allocation)?

3. Will the objects in a collection always have the same
length if the designated type is 'unconstrained array' or
an 'unconstrained record type with discriminants'?

4. What restrictions are placed on the use of alignment
clauses?

length clause is normally used to specify certain attribute
values for certain types and task types. For simple and composite
types only the SIZE attribute can appear in the length clause. This
specification places an upper bound on the number of bits for all
objects of that type. It does not, however, specify the exact size
of such objects. Along with the other representation specifica-
tions, it can be used to specify an exact size (in bits) for the
objects of such types. Since this is an extremely target specific
concern, its portability is suspect. It should, therefore, not be
used for bit twiddling and such applications. A proper use of
length clauses would be to control the sizes of heaps for access
objects. We will demonstrate a 'proper use' of this feature in
conjunction with other length specifications to allocate an exact
amount of storage later in this section.

For access types the only length specifications allowed are for
the attribute STORAGE SIZE. This puts a lower bound on the number

20

of allocatable objects for such collections. In many applications,
the maximum number of allocations for certain objects is known well
in advance. Therefore, it is desirable to initialize the heap to
have that many objects. This is a highly desirable feature which
must be supported by all implementations, for it allows for good
management of available memory.

For task types, the length specifications apply to the STORAGE
SIZE attribute. Such specifications define the number of storage
units for an activation of a task object of the given type. This,
essentially, puts an upper limit on the task stack. It is not clear
whether any useful purpose is served by this, since the storage
considered part of a task is implementation specific. In the
absence of such information, the portability of this feature is
highly suspect, and not really required for applications requiring
high degree of portability.

EXAMPLE: A proper use of length clause for specifying the
number of objects in a collection.

type OBJECT PTR is access OBJECT;
-- not more than 1000 allocations of
-- OBJECT PTR will ever be needed.
for OBJECT-PTR'STORAGE SIZE use

100Q*(OBJECT'SIZE/SYSTEM.STORAGE UNIT);
-- This 'fixes' the heap to contain 1000 'OBJECTS'

2.8 MISCELLANEOUS FEATURES

The following areas have been identified as potential features
of an Ada implementation.

2.8.1 Special Optimizations

Special optimizations can decrease the overhead imposed by the
runtime system.

Of particular importance is the overhead due to the runtime
constraint checks introduced in the generated code. This is
required by the language. However, a sophisticated optimizer could,
at times, determine that a runtime check would never fail. In such
cases the runtime check may be omitted. In the most general case a
sophisticated theorem prover is necessary to detect such a
condition. For example, consider the following code fragment:

21

...

-- linear search with sentinel.
if N = A'LAST then
raise error flag;

end if;

A(N+I) := X;

while A(I) /= X loop

I : I + 1;
end loop;

if I < = N then
FOUND;

else
NOT FOUND;

end if;

In the evaluation of the indexed component A(I) in the test of
the while condition, a runtime check is not really necessary. In
this case the pragma SUPPRESS can be used by the programmer to
suppress the runtime check.

2.8.2 Predefined Packages

In addition to the standard reusable packages (e.g. CALENDAR),
the implementation can supply packages whose bodies have been
written in some non-Ada language (e.g. assembly) for efficiency
reasons. Alternatively, a provision for interfacing with code
written in assembly could be very useful for time critical
applications.

2.8.3 Timing Services

Timing services may include maintaining the clock and providing
accurate measures of time intervals between events.

22

SECTION 3

EFFICIENCY AND IMPLEMENTATION ISSUES

This section examines the implementation and efficiency issues
concerned with the requirements discussed in the previous section.
No particular distinction is made as to whether these requirements
or features are implemented as part of the application or the
underlying implementation's runtime system.

3.1 ME14ORY MANAGEMENT

3.1.1 Selective Linking

Selective linking is very beneficial to mast application
systems. The benefits resulting from this feature could be applied
both for trimming the runtime system as well as the application
system.

There are two ways to achieve this goal in Ada. We will
illustrate these two methods by examples. Consider a general
purpose package STACK as defined below:

package STACK is

type STACK TYPE is private;

procedure PUSH
(S :in out STACK TYPE;
E :in ELEMENT);

procedure POP
(S : in out STACK TYPE;
E :out ELEMENT);

private

end STACK;

In the first approach the two procedures of the package STACK
can be compiled separately as shown below. In this manner all
packages vhich use this package can refer to the procedures as
required. However, since all the procedures are compiled sepa-
rately, the object code is in separate subunits, therefore, only

* 23

those procedures that have been explicitly referenced would be
linked.

package body STACK is

procedure PUSH is separate;
procedure POP is separate;

end STACK;

The other method is to compile the two procedures together, and
leave it to the implementation to selectively link and load the code
for the appropriate procedures. However, it is most desirable to
follow the first alternative as far as possible since the desired
effect can be obtained in the application domain. The runtime
support software as implemented by the compiler writers should
follow this rule. This would allow minimal runtime code to be
loaded into the target system.

Neither of these strategies involves any overhead at runtime,
but they do involve significant overhead during the linking/loading
phase. It requires the computation of following the procedural
dependencies to determine which procedures need to be linked in or
loaded. It seems that it is worth paying this price for obtaining
smaller program size.

3.1.2 Free Storage Management

The simplest choice for a free storage management scheme is to
support the allocator new as provided for by the language and
implement the generic procedure UNCHECKED DEALLOCATION. This is
perhaps the simplest and the safest mechanism, both from the point
of view of the application programmer as well as the implementor.
From the implementor's point of view, no fancy algorithms or data
structures need be provided. From the application programmer's
point of view, it leaves the option of implementing any sophisti-
cated garbage collection schemes built around these two basic
primitives. Furthermore, if the two given operations are suffi-
ciently simple and fast, it can be used in predicting the cost
performance of the application as a whole.

3.1.3 Free Stoidge Monitoring

In order to get a certain degree of storage monitoring several
options may be employed. Perhaps the simplest option is to intro-
duce an additional exception (say HIGH WATER) when the allocated

24

..

storage goes beyond a certain percentage that can be indicated to
* the implementation via a pragma. This has a certain drawback that

all allocators must be surrounded by exception handlers.

An alternative approach is to introduce an additional attribute
for each access type T in the program whose value is the percentage
storage left in the system. This has the appeal of leaving it to the
programmer to check for high water conditions, but may require code
to check the attribute in many parts of the program.

This approach does not require too much overhead, except
updating of a location associated with the heap for a particular
collection. However, particular caution is recommended in the use
and implementation of this option when garbage collection is done
on-the-fly. Since the high water information is shared between the
allocator, the garbage collector, and the user of this information,
inconsistencies could arise in the value of this attribute.

3.1.4 Free Storage Structuring

This feature has several distinct possible uses in a typical
application. First, this feature's main use is for more effective
memory utilization: for each collection declared in the program, if
a maximum or minimum required size is known, then one could pre-
allocate that size. This means that a certain amount of memory will
always be available for use.

If there is a common heap reserved for all the collections in
the system, then several allocation and deallocation requests on
this heap must be serialized; since several tasks may be involved in
these requests. Furthermore, memory management becomes more
complicated, since various requests may be for different sized
blocks of memory. If a separate heap is reserved per collection,
then different requests for different collections need no mutual
exclusion, and also for each collection all the requests may be of
fixed size.

All this translates to better and faster memory allocation and
deallocation. One approach is to have the implementor provide an
option which wiill allow a separate heap for each collection. The
other possibility is to explicitly maintain free lists for each

K collection in the users' code, thus assuring that the required
memory management capabilities are available. From an efficiency
viewpoint either option is acceptable, but from a portability
viewpoint it is perhaps better to implement this capability in the
application code itself.

25

As an example we give a specification of such a package

generic
SIZE : positive;
type MY TYPE is < >
type ACCESS TYPE is access MY TYPE;

package ALLOCATOR is
function ALLOCATE return ACCESS TYPE;
procedure DEALLOCATE(X : in out ACCESSTYPE);

end ALLOCATOR;

Specification of a generic allocator.

This generic package takes three parameters: the size of the
collection, the type of the elements in the heap, and the access
type name for pointers to the cells. The body of this generic
package would contain a declaration of a heap of elements MY TYPE
with the size SIZE, and all allocations and deallocations are
guarded by a monitor task. In fact, if one decides to implement
memory allocation locally as described above, a third function could
be added which returns the fraction of memory left in the given
heap.

generic
SIZE : positive;
type MY TYPE is < >;
type ACCESS TYPE is access MY-TYPE;

package ALLOCATOR is
function ALLOCATE return ACCESS TYPE;
procedure DEALLOCATE(X : in out-ACCESSTYPE);
function STORAGE LEFT return positive;

end ALLOCATOR;

Generic allocator with storage monitoring.

3.1.5 Target Memory Control

The recommended implementation of this requirement is to
support pragma MEMORY SIZE with the following interpretation.
MEMORY SIZE is treated as the total memory available for the code
and data areas of the compiled program. In particular, with a fixed
sized program (code and static data) this implies that the dynamic
data areas available can be manipulated.

An implementation must treat the existence of this pragma as a
parameter to the interface between the linker/loader and the storage
initialization modules of the runtime system. A simple implementa-

26

;'.'bfi'2 -"2".-".-'"-".................................." " '" """".. .
-'"- "/ ', ','"'".' .- '- <. 'G "'"'-" -"-''-'-."-..-...."..'..-,.. . .".--."."-.-..-.'--..-...-'-..- -.-.

tion may be to have the linker/loader prepare a table of contents
for the runitime system, including the memory size of each component.

This does not involve any runtime overhead, except perhaps
during compile time or during system activation time.

3.1.6 Memory Limitations

There are no apparent implementation or efficiency problems
with this requirement.

3.2 PROCESSOR MANAGEMENT

3.2.1 Size Of Task Population

This is totally implementation dependent, but in general we do
not see any problems in the implementation of this requirement,
unless the target machine is memory limited, or has only limited
processing power.

3.2.2 Task Priorities

There are no obvious implementation difficulties with this
requirement.

3.2.3 Task Dispatching

There are several distinct cases where expedited dispatching is
desirable so that certain monitor and interrupt handler tasks can be
implemented efficiently. It is extremely hard to enumerate all the
cases where tasking does not involve the full generality of Ada
tasks, but we describe two commonly used idioms, monitors and
interrupt handlers. One example of a use of monitor task was
described in section 2.2.3. A straightforward translation of such a
task into a program which does not use a task, but uses signals or
semaphores, was also described. An implementation could provide two
possible options, a semaphore package or a monitor package.

A semaphore package specification (in Ada) could be provided by
the implementors of the runtime system. The body of this package
could be a highly optimized version written in the underlying
maichine language. This would encourage the tx--rs to construct

?7

monitor-like packages without the overhead of tasking. Such a
package specification might look like:

generic
package SEMAPHORE PACKAGE is

procedure P;
procedure V;

end SEMAPHORE PACKAGE;

For portability reasons an Ada source level version of this
package might also be provided.

Similarly, the implementors could possibly provide a monitor
package whose specification is written in Ada, while the body is
written in the machine language avoiding any tasking or task
switching overheads.

An interrupt handler task could similarly be optimized if the
corresponding interrupt entry is not called by any software task, or
if the control does not 'leak' out of the body of the accept
statement. This may mean that the queue management associated with
entries could be eliminated and certain state saving operations in
the handling of the entry call could be avoided. It general, it is
difficult (sometimes impossible) for an implementation to verify
these assumptions. However, an implementation could follow one of
two strategies: provide a pragma which indicates that one or more
of these assumptions would never be violated, or provide predefined
packages which ensure that it is impossible to violate these
assumptions.

For example, if an interrupt handler task and its declaration
are hidden inside the body of a package, then it is impossible to
call the entry from outside the package. It is quite easy to check
for any calls to the entry from within the package itself or from
its visible interfaces. Either strategy is acceptable.

3.3 OVERLAY MANAGEMENT

The issue of overlay management in Ada requires careful study
and research. We feel that this issue must ultimately be addressed.
However, we are not currently in a position to specify how such a
requirement might be met, and what is the best way to achieve it.
This needs to be studied more carefully to see if there are no
semantic ramifications to adding this feature to the runtime system.

28

3.4 FAULT TOLERAN~CE

3.4.1 Watchdog Timer

A useful watchdog time, which is not very difficult to use,
could be built by using the runtime facilities and having the
following properties. When the watchdog timer is called with a
certain value, the runtime system transmits the identity of the
calling task to the timer. If the watch dog timer is not reset
within the appropriate interval, an interrupt handler task or an
ordinary task could be called with the faulty task's identity. In
this manner some action could be taken against this task (e.g.
abort).

3.4.2 Audit Trail

Logging the machine state is nearly impossible to do in user
code. In most cases, a low priority task (possibly another
processor) could provide prioritized asynchronous 1/0 to a storage
device. In this manner, a certain amiount of high-level information
from user tasks could periodically be sent across to the log file.
En the event of a fatal fault, the implementation could send high
priority log information to the log file, and try to flush out as
much as possible of the pending log from other tasks. For any kind
of meaningful log to be gathered some of the system services needed
might be: time stamps on each log, identity of the sender, etc.
Any such scheme implemented on the same resources as the application
software and with minimal support from the underlying system would
have to be a compromise. Thus, to be most effective, the logging
scheme would have to be highly implementation specific.

3.4.3 Fault Detection

Ideally, there is no problem at all for faults caused by
hardware errors, or an interrupt by software errors. However, if
this interrupt is to be turned into an exception, then some support
from the runtime system is needed. We outline one scenario in which
this possibility might be handled. Consider the case when an
instruction (e.g. divide) could possibly raise an interrupt under
certain circumstances (e.g. divide by zero). Suppose it raises an
interrupt called FOO. If this interrupt is non-maskable and of a
high priority, then the runtime system could provide a handler
(witni sebylnug)wic.ol idottets hc

was active prior to the occurrence of the interrupt, and call the

29

exception delivery routines of the runtime system to raise an
exception (say FOO BAR) in the correct task.

It should be clear from this example that this cannot be
implemented without the knowledge of the task which was active prior
to the interrupt occurrence. Therefore, a pragma (say EQUATE
INTERRUPT TO EXCEPTION) of two arguments, the interrupt name and
the exception name. An implementation could provide a list of
interrupts which could possibly be equated to exceptions declared in
users' code. For certain fault detection and handling this is the
most natural approach; recovery should be performed in the task
which caused the fault.

3.4.4 Deadlock Detection

The problem of deadlock detection is perhaps more difficult,
and can be performed only in very restricted circumstances, some of
them being disabling of all interrupts. Since JAMPS would have
quite a few devices which interact with the CPU via interrupts, it
would be very expensive to detect deadlocks. For most such
purposes, to avoid or break deadlocks, the use of a watchdog timer
is recommended.

55 INPUT/OUT'PUIT

Input/Output is one area, which is very application specific,
and it is hard to come up with an I/O package which will be suitable
for most applications or even the same application in its different
stages of evolution. Thus, it seems that as JAMPS requirements are
likely to change, even the initial I/O system would be not be
adequate. Therefore, the best solution is to require only those
features from the runtime system which would be adequate to
implement most, if not all, application requirements outlined
before.

3.5.1 File System

For most flexibility, it is desirable to have a simple but
flexible file system, which does not make any assumptions about
extensions, versions, etc. Since file extensions, versions, etc.
are techniques used to encode specific information about files and
the various tools which manipulate then, it would be best if the
file system did not assume any such conventions. These could
restrict the use of the file system unless designed particularly for
JAMPS. Even in this case it would be inadequate if JAMPS require-

130

ments and conventions were to change. Also preferable would be a
tree-structured hierarchical naming scheme for files. This would
permit the designer to organize his files in a better manner, and
also to extend the name space in a structured manner. This requires
that library routines be available for the creation of directories.

Furthermore, facilities need to be provided for mounting and
dismounting of entire file systems. In other words, there should be
support for associating file systems and data storage devices.

The implementation should also provide a detailed explanation
of the operations of closing and opening a file. The main use for
these operations is to establish an association between external
file objects and internal file objects. However, these operations
are sufficiently ambiguous. If, for example, a file is opened
twice, (in different tasks, or differently nested blocks), then the
language does not mention if the state of the two file objects is
required to be the same or different. In most systems open and
close serve as a caching function; an open copies an external file
to an internal buffer area, and subsequent operations on the file
are performed on this area. Upon closing a file all the trans-
actions performed on this file are committed, i.e. the file is
copied back to the disk and the intermediate area of memory is
destroyed. This is very important from an efficiency viewpoint.

The main arguments for requiring these features from the
runtime systems are that, since Ada 1/0 already provides some file
system-related functions (such as create, delete, open, close,
etc.), it is perhaps easier to implement this additional support at
this level. Another alternative is to implement the entire file
system in application code. This would ensure that the file system
is highly suitable, but this unnecessarily duplicates the I/O
facilities of the language.

3.5.2 Asynchronous I/O

Our view is that asynchronous I/O should not be part of the
runtime system at all. Such requirements are highly application
specific, and such functionality can be addressed efficiently enough
in the application written in Ada using the existing low-level
facilities nnd the tasking features. Therefore, nothing is gained
by depending on the runtime system for such needs. Furthermore, one
gains portability by implementing such functionality directly.

We describe how to implement, asynchronously, transfer of large
amounts of data from a producer process to a consumer process. A

31

..

simple shared data structure, such as a bounded buffer, is
inadequate for this purpose for two reasons:

1. The amount of copying necessary for transfer of data, from
the producer to the buffer and from the buffer to the
consumer, is too inefficient for large chunks of data.

2. The waits for access to the buffer are limited to the
duration of the copying operation. This may cause the
producer to drop the data if the data production rates
become large.

A simple scheme to overcome these difficulties is outlined
next. The producer stores the data in areas called buckets. Each
bucket is maintained in a special pool. When data arrives, a bucket
is allocated (from the fixed pool) and filled in with data, and then
a pointer to the data (bucket) is put into a queue. On the other
side, the consumer retrieves a bucket from the queue and empties out
its contents onto the disk, and finally returns the empty bucket to
the pool of buckets. In this scheme both of the above-mentioned
difficulties are overcome; the access times to the queues are
limited to the time for copying pointers to and from the queue, and
the only copying operations are performed outside the queue. The
overall architecture of the system looks like this:

Dempty

Data -.Prod Consumer DD r tata

buckets

Figure 3-1. Data Flow Diagram of the System

32

With this scheme in mind, we get the following abstract
structure of the producer and consumer processes.

Producer:
loop -- forever

I- . get an empty bucket from the bucket pool
-2. wait for data arrival
-3. fill bucket with the data
-4. put the bucket into the queue

end loop;

Consumer:
loop -- forever

-1. get a bucket from the queue
-2. empty the bucket onto the disk.
-3. put the empty bucket back into the pool

end loop;

Top Level Design of the Producer and Consumer Tasks

In this design, step 1 performed by Producer, and step 3
performed by Consumer need a mutual exclusion since they both access
the common bucket pool. Similarly, step 4 of Producer and step 1 of
Consumer need mutual exclusion since they both manipulate the common
queue. However, the steps of filling and emptying the buckets can
be performed independently, thus decoupling the two processes
significantly.

One can derive a variety of asynchronous data transfer schemes
from this simple model: by replacing the queue module by a module
which implements a priority queue one can implement a line printer
spooler. Similarly by tuning the bucket allocation algorithms in
the bucket pool one can change the performance. Since the queue
package can be implemented as a monitor task containing entries for
appending and removing buckets to the actual queue, one can make
timed entry calls and associate time outs with I/O requests.

3.5.3 Device Support

Most of the device support requirements can be supported via
the combination of low-level features, representation specifica-
tions, tasking and unchecked programming. The nice feature of this

approach, (to be illustrated below) is that it makes assembly level

programming unnecessary. It also makes such programs more portable.

33

In this part we describe how new device drivers can be written
using address clauses, representation specifications, unchecked type
conversion, and tasks. Imagine a device which is attached to a
keyboard, and upon the arrival of a character an interrupt is
signaled to the CPU, and the character is placed at a location (a
byte) in the memory. The following program describes the driver
which returns characters from the keyboard.

package KEY BOARD 10 is
function GET CHAR return CHARACTER;

end KEYBOARD _IO;

package body KEY BOARD 1O is
CHARACTER QUEUE : QUEUE TASK;
CHARACTER LOCATION : CHARACTER;
for CHARACTERLOCATION use at ...;

task KEY BOARD HANDLER is
entry KEY BOARD INTERRUPT;
for KEY BOARD INTERRUPT use at KEY BOARDVECTOR;

end KEYBOARD HANDLER;

task body KEYBOARDHANDLER is
begin

loop
accept KEY BOARD INTERRUPT do

-- put contents of CHARACTER LOCATION into
-- QUEUE TASK

end KEY BOARDINTERRUPT;
end loop;

end KEYBOARDHANDLER;

function GET CHAR return CHARACTER is
begin

-- return the first character from the QUEUE TASK
end GET-CHAR;
end KEY BOARD IO;

3.5.4 Terminal and Screen I/O

Since most of these requirements are highly word-processing
oriented and only one of the applications to be programmed in Ada,
it is highly inappropriate that such requirements be supported by
the language, or its runtime system, when there exists no such
standard set of operations which would be useful in similar
applications. The only rationale for requiring these facilities to
be part of the runtime system is only that it might be more

34

-A

efficient, and convenient from the application programmer's view-
point. However, since Ada does support low level facilities for
programming hardware devices, and interfacing with assembly language
routines, it can be implemented as efficiently in users' code.
Furthermore, in the absence of strict requirements for such func-
tions this task should be undertaken by the application designer who
is more familiar with the overall application and can tailor the
system accordingly.

35
I

.............

SECTION 4

GUIELIESFOR MINIMUM RUNTIME ENVIRONMENT FEATURES

In this section we review the features discussed above and
propose some guidelines for the Ada implementors. For those
features which, for practical reasons, are essential in application
designers' design we propose to the implementors to provide such
features as part of the implementation.

4.1 MEMORY MANAGEMENT

4.1.1 Selective Linking

1. Selective linking should be supported by the Ada
implementor. For all compilation units compiled as
subunits of a package specification or a package body, it
should be possible to link in the directly or transitively
referenced subunits only.

2. It is also recommended that the runtime system, if written
in Ada, should be structured in terms of subunits as far as
possible. As a measure of the support for this feature,
the implementor should indicate the smallest and the
largest amount of space that could possibly be occupied by
the runtime system.

3. The implementor should also provide a reference guide
describing the limitations of the selective linking
mechanism, and explaining the most effective ways of using
these mechanisms.

4.1.2 Free Storage Management

1. The language defined allocator must be supported by the
implementation.

2. Similarly, the generic procedure UNCHECKEDDEALLOCATION
must be provided.

3. Automatic garbage collection is not required, but if it is
* supported, then the pragma CONTROLLED must be provided as

defined in LRM.

36

4.1.3 Free Storage Monitoring

1. Some free storage structuring capabilities would be
preferred, though not strictly necessary. If this feature
is supported, then one suitable mechanism is to provide an
additional attribute which indicates the storage associated
with a particular collection, or simply a function which
returns the size of the entire heap if there is a single
#amorphous' heap.

4.1.4 Free Storage Structuring

1. A single heap is acceptable. If a separate heap is desired
for one or more collections it can be easily implemented in
the application code.

4.1.5 Target Memory Control

1. The implementor must provide for a mechanism for
controlling the target memory size. The preferred
mechanism is the pragma MEMORYSIZE, however the
documentation must describe thils capability, and how it can
be controlled.

4.1.6 Addressing Limitations

1. At this point we are not in a position to impose guidelines
regarding the addressing limitations required for
subprograms, packages, and tasks. The reason for this is
that we do not yet have any definite 'feel' for the numbers
which would be required by the final JAMPS application
code.

4.2 PROCESSOR MANAGEMENT

4.2.1 Size of Task Population

1. The current design of JAMPS requires about 20 active
processes. Since most of the common shared structures have
to be represented as tasks it is recommended that an Ada
implementation allow at least 60 active tasks.

37

S%

4.2.2 Task Priorities

1. The implementation must support at least 10 levels of
priorities, or alternatively allow the priority range to be
redefined with at least 10 levels.

2. The scheduling rules for task of undefined priority should
be clearly described.

4.2.3 Task Dispatching

1. It is recommended that the typical task switching times be
comparable or better than the current task process
switching times available to the UNIX* implementation.

2. Special optimizations for interrupt handling tasks should
be provided. Especially useful would be the elimination of
interrupt handling tasks.

3. Should provide a predefined library package which
implements a semaphore or signaling scheme. The body of
such a package should be written in assembly language, but
an equivalent Ada source should also be provided for
portability reasons.

4.3 OVERLAY MANAGEMENT

No special guidelines.

4.4 FAULT TOLERANCE

i. The implementation should recognize all fault related

interrupts.

2. Some support for a watchdog timer should be provided.

3. There should be some mechanism for equating interrupts with
exceptions.

*UNIX is a trademark of Bell Laboratories.

38

4.5 SECURITY

none

4.6 INPUT/OUTPUT

4.6.1 File System

1. Should support character string oriented file names,
without any explicit notion of extensions or versions.

2. The length of file name should not be unreasonably small
(e.g. 15 characters would be considered reasonable).

3. Should provide a tree-structured hierarchical naming
structure for organizing files.

4. Should provide operations for creating and deleting nodes
or directories in the tree-structures.

5. Should provide operations for searching and listing files
in the nodes of the tree structured system.

6. Should provide operations for mounting and dismounting file
systems (i.e. associating peripheral devices and files).

4.6.2 Asynchronous I/O

none

4.6.3 Device Support

The implementation should support all interrupts necessary to
interface with the devices, and all representation and address
clauses should be supported together with unchecked conversion for
all types supported by the implementation.

V.

4.6.4 Terminal and Screen I/0

Since terminals are treated as devices which can be interfaced
in the regular manner no special support is necessary.

39

4.

4.7 PRAGMAS AND REPRESENTATION ISSUES

4.7.1 Pragmas

1. The implementation must support the pragma INLINE.

2. pragma INTERFACE should be provided for the target
computer's assembly language. In addition the
documentation must indicate the parameter passing
convention and the types to which parameter passing is
limited.

3. pragma MEMORY SIZE should be supported.

4. pragma OPTIMIZE should be provided.

5. pragma PACK should be supported.

6. pragma PRIORITY should be provided and the range of
priorities must be at least 10.

7. pragma SUPPRESS should be supported.

8. pragma SYSTEM NAME should be supported and the type
declaration of SYSTEM.NAME should be modifiable.

4.7.2 Representation Clauses

1. An implementation must support address clauses for named
objects (constants and variables), and entries. The
implementation need not support address clauses for package
objects, subprogram objects, and task objects.

2. Representation specifications for types must be supported.
This includes: pragma PACK, length clauses, enumeration
representation clauses, and record representation clauses.

.I-

40

SECTION 5

CONCLUSION~S

In this report we have presented some of the guidelines for
runtime features necessary for the design of JAMPS. We have
refrained from making any guidelines which suggest any minimum or
maximum capacity requirements on Ada implementations. We do realize
that without these guidelines it would be very difficult to select a
suitable Ada runtime environment. However, without a detailed
design for JAMPS, any figure or guideline we suggest could be
meaningless. Thus a necessary step in the acquisition of an Ada
runtime environment for JAMPS would be to arrive at a sufficiently
detailed design. This Ada design, possibly expressed in an Ada PDL,
could give a much more reasonable estimate for the required capacity
of the runtime system.

A detailed design effort for JAMPS may also quite possibly
expose some new requirements and a solution attempt may impose some
further guidelines regarding certain features.

41

-77

LIST OF REFERENCES

[1] Reference Manual for the Ada Programming Language, U.S. DoD 1982

[2] Grover, V., Rajeev, S., "Notes on the Ada Runtime Kit",
SofTech Technical Report 9074-4, 1983.

[3] Hlilfinger, P. N., "Implementation Strategies for Ada Tasking Idioms",
Proceedings of the AdaTEC Conference on Ada, Arlington, VA,
October 1982.

(4] Howe, R. G., "A Study of the Feasibility of Duplicating JAMPS Applications
in the Ada Programming Language", MITRE Technical Report MTR 9167, MITRE
Corp., Bedford, MA, January 1984. ESD-TR-84-160, ADA140884.

[5] Kamrad, J. Michael, "Runtime Organization for the Ada Language System
Programs", Ada Letters, Vol. 3, No. 3, 1983.

[6] Lomuto, N., "Options in Ada Implementations", SofTech Technical Report

9074-2, 1983.

[71 Wirth, N., "Programming in Modula", Springer-Verlag, 1983.

43

,%
- - -* * °.

DISTRIBUTION LIST

*)INTERNAL D-67 (Continued)

D1 0 R. G. Howe (10)
G. S. Maday

A. J. Tachmindji R. L. Micol
R. W. Miller

D-36 P. L. Mintz
C. D. Poindexter

J. B. Glore S. M4. Rauseo
D. A. Spaeth

D-45 E. J. Tefft

G. A. Huff D-70

D-46 E. L. Lafferty
D. A. MacQueen

S. M4. Maciorowski R. Sylvester

D-60 D-73

J. W. Shay J. A. Clapp

N. E. Bolen S. J. Cohen
W. W. Farr

D-63 M4. Gerhardt
E. C. Grund

G. Knapp R. L. Hamilton
M. Hazel

D-65 R. F. Hilliard
S. D. Litvintchouk

J. H. Galia D. G. Miller

S. W. Tavan R. G. Munck
C. J. Righini

D-66 T. F. Saunders
K. A. Younger

R. L. Chagnon
D-75.

6 D-67
R. T. Jordan

C. J. Carter 14. M4. Zuk

D. P Crowsen
H. C. Floyd
E. J. Hammond
G. E. Hastings

45

DISTRIBUTION LIST (Continued)

INTERNAL (Continued) EXTERNAL

D-77 Air Force Armament Laboratory
Eglin AFB, FL 32542

J. M. Apicco
G. R. Lacroix C. M. Anderson
A. Sateriale

Air Force Space Division
D-1O1 Directorate of Computer Resources

Box 92960 Worldway Postal Center
E. K. Kriegel Los Angeles, CA 90009
J. Riatta
L. C. Scannell Lt. Col. E. Koss, Director
K. Zeh
- ZArmy

Deputy Director
Ada/STARS Joint Program Office

PROJECT 3D-139 (400 AN) Pentagon
Washington, DC 20301

Electronic Systems Division
Hanscom Air Force Base Lt. Col. R. Stanley, USA
Bedford, MA 01731

Boston University

TCRB College of Engineering
110 Cummington Street

B. J. Hopkins Boston, MA 02215
Lt. J. Graves
Lt. M. K. Paniszczyn Dr. M. Ruane

Dr. R. Vidale
ALSE

Language Control Facility
W. Letendre Wright Patterson AFB
Lt. A. Steadman Dayton, OH
Lt. M. Ziemba

G. Castor
Langley AFB P. Knoop
Hampton, VA 23665

Naval Ocean Systems Center
TAC/TAFIG Code 423

San Diego, CA 92152
Lt. Col. E. Masek

H. Mumm

46

.-.-- h.. .'.. " " " " "m " ' "

DISTRIBUTION LIST (Concluded)

EXTERNAL (Concluded)

WIS Program Office Defense Technical Information Ctr

The MITRE Corporation Cameron Station

D Building Alexandria, VA 22314 (12)

Burlington Road
Bedford, MA 01730 AFGL/SULL

Research Library

Maj. R. Davis Hanscom AFB, MA 01731

Capt. P. Saunders

SofTech, Inc.
460 Totten Pond Road
Waltham, MA 02254

Ms. C. Braun (15)

47

v

FILMED

12-85

DTIC

