

AFGL-TR-84-0320

MOLECULAR TRANSMISSION BAND MODELS FOR THE UNIFORMLY MIXED AND THE TRACE GASES

Joseph H. Pierluissi Christos E. Maragoudakis

AD-A160 442

The University of Texas at El Paso Electrical Engineering Department El Pase, TX 79968-0523

31 December 1984

Scientific Report No. 1

Approved for public release; distribution unlimited

DTIC FILE COPY

05 5

85

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

; ;

This technical report has been reviewed and is approved for publication.

LEON ARD **ARRETI** Ψ.

Contract Manager

BERTRAM D. SCHURIN Branch Chief

FOR THE COMMANDER

Division Director

This report has been reviewed by the ESD Public Affairs Office (PA) and is releasable to the National Technical Information Service (NTIS).

Qualified requestors may obtain additional copies from the Defense Technical Information Center. All others should apply to the National Technical Information Service.

If your address has changed, or if you wish to be removed from the mailing list, or if the addressee is no longer employed by your organization, please notify AFGL/DAA, Hanscom AFB, MA 01731. This will assist us in maintaining a current mailing list.

REPORT DOCUMENT	TION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
REPORT NUMBER	2. GOVT ACCESSION NO	. 3. RECIPIENT'S CATALOG NUMBER
	AD-A161 4	47
AFGL-TR-84-0320	//////////////////////////////////	
TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED
MOLECULAR TRANSMISSION E	SAND MODELS FOR THE	
UNIFORMLY MIXED AND THE	TRACE GASES	<u>Scientific Report No. 1</u>
		6. PERFORMING ORG. REPORT NUMBER
		A CONTRACT OR CRANT NUMBER()
		CONTRACT ON GRANT NUMBER(4)
Joseph H. Pierluissi and	l	
Christos E. Maragoudaki	.\$	F19628-82-C-0078
PERFORMING ORGANIZATION NAME AND A	DDBESS	10. PROGRAM ELEMENT PROJECT TASK
		AREA & WORK UNIT NUMBERS
The University of Texas	at El Paso	62101F
Electrical Engineering D	Department	76700940
E1 Paso, TX 79968-0523	····	101003/12
CONTROLLING OFFICE NAME AND ADDRE	155	12. REPORT DATE
Air Force Geophysics Lab	oratory	31 December 1984
Hanscom AFB, Massachuset	ts	13. NUMBER OF PAGES
Monitor: L. W. Abreu/OPI		144
MONITORING AGENCY NAME & ADDRESS	t different from Controlling Office)	15. SECURITY CLASS. (of this report)
		Unclassified
		15. DECLASSIFICATION DOWNGRADING
Approved for public rele	ease; distribution unl	imited.
Approved for public rele 7. DISTRIBUTION STATEMENT (of the abetrac	ease; distribution unl e entered in Block 20, 11 different fr	imited.
Approved for public rele 7. DISTRIBUTION STATEMENT (of the abetrac 8. SUPPLEMENTARY NOTES	ease; distribution unl	imited.
Approved for public rele 7. DISTRIBUTION STATEMENT (of the abetrac 8. SUPPLEMENTARY NOTES	ease; distribution unl	imited.
Approved for public rele 7. DISTRIBUTION STATEMENT (of the abetrac 8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse elde if nec	ease; distribution unl t entered in Block 20, if different fr	imited. am Report)
Approved for public rele 7. DISTRIBUTION STATEMENT (of the abetrac 8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse elde if nec Molecular Absorption, Ir Uniformly Mixed Gases, 1	ease; distribution unl e entered in Block 20, if different fr entered, Band Models, Trace Gases	imited. om Report) , Concentration Profiles
Approved for public rele 7. DISTRIBUTION STATEMENT (of the abetrac 8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse side if nec Molecular Absorption, Ir Uniformly Mixed Gases, T	ease; distribution unl e entered in Block 20, if different fr esesery and identify by block number ofrared, Band Models, Frace Gases	imited. om Report)) Concentration Profiles
Approved for public rele 7. DISTRIBUTION STATEMENT (of the abetrac 8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse side if nec Molecular Absorption, Ir Uniformly Mixed Gases, T 0. ABSTRACT (Continue on reverse side if nec	ease; distribution unl e entered in Block 20, if different fr frared, Band Models, Trace Gases	imited. om Report)) Concentration Profiles

٠.

.

۰.

 $\mathbf{\tau}$

.

1.1.1.1.1.1

DD 1 JAN 73 1473 EDITION OF 1 NOV 68 IS OBSOLETE

<u> Alexandre de la constante de </u>

٠.

والمراجعة والمراجع

F

2

F

__^

1

₽,

مان میں ماریک

TABLE OF CONTENTS

· · · · · · · · · · · · · · · · · · ·	
TABLE OF CONTENT	rs
	Page
Summary	1
1. Introduction	2
2. The Transmittance	4
3. Numerical Modeling Method	6
4. Developing Data	8
5. Band Model Development	15
6. Transmittance Comparisons	16
7. Discussion and Conclusions	23
References	26
Appendices	30

iii

Molecular Transmission Band Models for the Uniformly Mixed and the Trace Gases

de de de

or rented

Summary

nt G mech

This report deals with the theory, development and validation of molecular transmission band models for the uniformly mixed (N₂O, CH₂, $(0, 0_2, \text{ and } CO_2)$, and for the trace (NO, NO₂, NH₃, and SO₂) gases. The models were specifically designed for direct incorporation into the LOWTRAN atmospheric transmission code. The transmission function adopted for each gas, acting individually consists of a double exponential function defined by three gas dependent parameters and a single spectrally-dependent parameter. All of these parameters were determined optimally through a numerical procedure that generally incorporates line-by-line and measured transmittance spectra. The resulting nine models were defined at 5/cm⁻¹ intervals throughout their absorber bands, for transmittance calculations of 20 cm⁻⁷ spectral resolution at typical atmospheric conditions. Averaged vertical mixing ratio profiles for these gases were obtained for direct use with the 33-level standard atmospheric models in the calculation of slantpath transmittance. Comparisons are presented between line-by-line and measured transmittance spectra, and between these spectra and model calculations using LOWTRAN 6. \leq

1. Introduction

Since the discovery of the infrared region of the solar spectrum by Herschel¹, an ever increasing number of instruments and systems have been conceived which depend on a knowledge of atmospheric transmittance for their design and implementation. As far as the physical and chemical processes involved in the absorption of energy by the molecules of the atmospheric gases are concerned, they are generally well understood. That is, the monochromatic absorption is governed by Beer's² law, and the broadening of the absorption lines is reasonably-well described by functions such as Doppler³, Lorentz⁴, and Voigt⁵ shapes. Hence, the method of synthesizing atmospheric molecular absorption along a specified path reduces. in principle, to the application of those functions to assumed information on the gas types, their concentration profiles, the atmospheric conditions, the path geometry, the instrument spectral response, and the spectral line parameters. In actuality, such calculations quickly become exceedingly laborious and time consuming for the ordinary user, and efforts are normally made to replace them with analytically simpler, computationally faster and reasonably accurate band transmittance models.

The equation for the mean transmittance over a narrow spectral interval within a band has been evaluated repeatedly over the years for intervals containing from one⁶ to a large number of lines, assuming a variety of line shapes and distributions of line intensities and positions. Of these, the regular⁷ and the random^{8,9} models are the best known. Using a conglomerate of existing theoretical and empirical models and the available data, Altshuler in 1961¹⁰ originated the first comprehensive graphical method for easily estimating atmospheric transmission in the infrared. This pioneering effort was followed by the work of the

AFCRL¹¹ group, who conceived the idea and generated the backbone of what later became the LOWTRAN 2^{12} computer code.

The original AFCRL method for the calculation of atmospheric transmission depended on a nomographic solution involving graphs of the transmission functions, and of the spectral parameters for the individual gases. Of particular attention is the fact that a single transmission function and parameter graph represented the total transmisttance for all the uniformly mixed gases together. At the inception of LOWTRAN 2. the functions and spectral parameters curves for all the gases were digitized for inclusion in the computer code. The temperature dependence of the data, originally neglected in the development of the transmission functions and parameters, was introduced in a later version of the $code^{13,14}$. Considering all the constraints associated with the availability, form, inhomogeneity, and broad spectral coverage of the data, it seems doubtful that more optimal models could have been developed at the time. At the present time it is still reasonable to justify the preservation of the basic transmittance calculation scheme¹⁵, and only bring forth changes required to allow for extensions of the code capabilities into man-made atmospheric absorbers, into spatially variable absorber concentrations, and for the use of modern numerical procedures as well as recent transmittance measurements.

It is generally recognized by the scientific community that the present, most serious limitation of the molecular absorption models in LOWTRAN is the inseparability of the uniformly mixed gases. The existing combined model does not allow for the use of absorber concentrations that depart from the original values assumed for these gases in the model development. A somewhat less serious limitation, albeit highly desirable,

is the absence of band models for estimating the transmittance impact of the trace gases in polluted environments. These needs are addressed in the work reported here, where individual molecular absorption band models are presented for the uniformly mixed gases N_2O , CH_4 , CO, O_2 , and CO_2 , and the trace gases NO, NO_2 , NH_3 , and SO_2 . These models were developed for the most part with a combination of line-by-line transmittance data and laboratory measurements. Both of these data sets were degraded to the 20 cm⁻¹ spectral resolution of the LOWTRAN gaseous transmittance models, before they were incorporated into the modeling procedure. Vertical mixing ratio profiles for these gases are also proposed here, as they were derived from recently available data on atmospheric measurements^{16,17}.

2. The Transmittance Function

The transmittance function adopted in this work has its origin in Beer's law², which states that the monochromatic transmittance τ_{v} at wavenumber v along a path of length Z within an inhomogenous medium with pressure and temperature distributions P(Z) and T(Z), respectively, is

$$\tau_{v} = \exp \left[-\int K(P,T) dU(Z)\right] , \qquad (1)$$

where the integration is to be carried over the path length, K is the absorption coefficient for all contributing lines of a given absorber, and U, is its absorber amount expressable as

$$dU = \rho(Z)dZ , \qquad (2)$$

where ρ is the absorber density. For broadband radiation detected by an instrument of spectral response ϕ_{ν} , the quantity of interest is the weighted mean transmittance τ defined as

$$\tau = \int \tau_{\nu} \phi_{\nu} d\nu / \int \phi_{\nu} d\nu \quad , \tag{3}$$

in which the integration is to be carried over the limits of ϕ . In line-by-line monchromatic calculations of τ_v in Eq. (1), the approximation is commonly made of a horizontally stratified atmosphere, throughout each layer of which uniformity of all parameters may be assumed, such that Eq. (1) becomes

$$\pi_{v} \approx \exp \left[-\int K(P,T)U(Z) \right].$$
(4)

Numerous analytical evaluations of and empirical approximations to Eq. (3) may be found in the literature¹⁸, most of which express τ in terms of absorber and spectral parameters, as well as of meteorological variables. A notable form of these is the model of King¹⁹ given by

$$\tau = g \left[C(P/P_o)^n (T_o/T)^m U \right]$$
(5)

where g is a continuous function to be determined empirically, C is a spectral parameter defined over a spectral interval Δv , n and m are absorber parameters, and the subscript "o" denotes standard conditions of the associated variables for computational convenience Eq. (5) is expressed in LOWTRAN as

$$\tau = f\{X\}, \qquad (6)$$

where

$$X = C' + \log_{10} W , (7)$$

$$C' = \log_{10} C$$
 , (8)

$$W = (P/P_0)^n (T_0/T)^m U$$
 , (9)

and f is the transmittance function, C' is a spectral parameter, and W is the equivalent absorber amount. In the current version of LOWTRAN look up tables of τ versus X are provided for the single function for water vapor and the uniformly mixed gases, and for the function for ozone.

From among the numerous analytical forms of f in Eq. (6) available in the literature a function that has been found²⁰ to approximate reasonably well the transmittance of a variety of gases over a wide range of meteorological conditions and spectral bands, is the double exponential

$$\tau = \exp(-10^{aX})$$
, (10)

where a is another absorber parameter. This function is appealing for use as a universal transmission function because it is analytically simple and reasonably accurate, has only a few parameters, and it is asymptotic to one and to zero, as the argument ranges from minus infinity to infinity (i.e. as the absorber amount increases from zero to infinity). With Eqs. (7) through (9) it provides a general band model function defined by three absorber parameters (a,n,m) and a single spectral parameter (C'). It has been shown in the literature¹⁴ that Eq. (10) leads to a transmittance polynomial proposed earlier²¹ for carbon dioxide and water vapor, which in turn arose from the strong-line limit to the classical random model. However, because of the substantive number of empirical adjustments made to the theory, not much physical significance may be attributed to the values for the parameters set in Eq. (10).

3. Numerical Modeling Method

The parameters a,n, and m for the spectral bands of each absorber, as well as the C' for each spectral interval within such bands, were obtained numerically from the transmittance data and the meteorological conditions. The numerical optimization was performed by first minimizing the error function ε , as given by

$$\varepsilon = \sum_{i=1}^{I} \sum_{j=1}^{J} [\tau_{i,j} - \tau_{mij}]^2 , \qquad (11)$$

where τ_{ij} and τ_{mlj} represent line-by-line and model transmittances, respectively, i = 1, 2, ..., I is the number of spectral intervals, and j = 1, 2, ..., J is the number of data values. The minimization was carried out by setting the partial derivatives of the error function with respect to the spectral parameters C' to zero, and calculating the C' at every frequency interval for a given set of values of the absorber parameters a,n, and m. Using Eq. (11) the partial derivatives become

$$\frac{\partial \varepsilon}{\partial C} = 2a \ln(10) \sum_{j=1}^{J} D_{ij},$$
 (12)

where:

$$D_{ij} = (\tau_{ij} - \tau_{mij}) \tau_{mij} 10^{F_{ij}}, \qquad (13)$$

$$F_{ij} = a (C'_i + nP'_j + mT'_j + U'_j)$$
, (14)

$$P'_{j} = \log(\frac{P}{P_{0}})$$
, (15)

$$T'_{j} = \log(\frac{T_{0}}{T})$$
 , (16)

$$U''_{j} = \log U \quad . \tag{17}$$

In the second stage of the minimization of the error function in Eq. (11), the partial derivatives were taken with respect to the model parameters a,n, and m. From Eq. (11) the partial derivatives become

$$\frac{\partial \epsilon}{\partial a} = 2 \ln(10) \sum_{i=1}^{\Sigma} \sum_{j=1}^{D} (n P'_{wij} + m T'_{wij} + U'_{wij}), (18)$$

$$\frac{\partial \varepsilon}{\partial n} = 2\ln(10) \sum_{i=1}^{I} \sum_{j=1}^{J} D_{ij} P'_{wij}, \qquad (19)$$

$$\frac{\partial \varepsilon}{\partial m} = 2\ln(10) \sum_{i=1}^{I} \sum_{j=1}^{J} D_{ij} T'_{wij}, \qquad (20)$$

where:

$$P'_{wij} = P'_{j} \frac{\int_{j=1}^{J} W_{F_{ij}} P'_{j}}{\int_{j=1}^{J} W_{F_{ij}}}, \qquad (21)$$

$$T'_{wij} = T'_{j} \frac{\int_{j=1}^{\Sigma} W_{F_{ij}} T'_{j}}{\int_{j=1}^{\Sigma} W_{F_{ij}}}, \qquad (22)$$

$$U'_{wij} = U'_{j} - \frac{\int_{j=1}^{J} W_{F_{ij}} U'_{j}}{\int_{j=1}^{\Sigma} W_{F_{ij}}}, \qquad (23)$$

$$W_{F_{ij}} = \tau^{2} m_{ij} 10^{2F_{ij}} + D_{ij} (1 - 10^{F_{ij}}) , \qquad (24)$$

with P'_j, T'_j and U'_j as specified by Eqs. (15), (16), and (17), respectively.

The optimal model parameters were then computed by using the conjugate gradient algorithm²² DFMCG available in the IBM SSP library. Three other numerical minimization procedures were also tested with the same data 23 , but the one presented here (called "the weighted-average" method) gave the best results.

4. Developing Data

For the most part the parameters of the proposed band models were determined and/or validated through a combination of synthetic and

measured transmittance spectra. The synthetic spectra were generated through line-by-line calculations with FASCODIC²⁴, which in turn used the standard atmospheric profiles²⁵ and the AFGL line parameter compilation^{26,27}. The measured spectra consisted of laboratory measurements available in part as digitized tables in magnetic tapes, and in part as spectral curves or figures in open literature publications and technical reports.

For each absorber in a given band, the transmittance calculations generally consisted of 10 monochromatic spectral curves along homogeneous paths at 10 different pressure levels within the standard atmospheric profiles. These were then degraded at 5 cm⁻¹ intervals through Eq. (3), and the triangular filter function of 20 cm^{-1} full width at half intensity originally adopted in the development of the LOWTRAN molecular absorption models. The absorber vertical concentration for each one of the uniformly mixed gases consisted of the profiles proposed by M.S.H. Smith¹⁷, extrapolated so as to match the 33 altitude increments of the standard atmospheric models of S.L. Valley²⁵. Although the same reference for the vertical concentration profiles was used in connection with the trace gases, the mixing ratios were increased substantially such that polluted environments would be within the range of applicability of the respective band models. A plot of the concentration profiles adopted in LOWTRAN, without the increases for the trace gases, is shown in Fig. (1). In the absence of values beyond 50 km in the reference, the values at 50 km were assumed to remain constant at higher altitudes. Table I provides a numerical listing of the mixing ratios that accompany the models developed for LOWTRAN.

Transmittance calculation were also made using the same method, but for the conditions of the available measurements. In this latter type, the

9

(s)

Ĩ

*	2	•	, T.						-
	,	ſ	. r 1	W-	•	1	u +	Ţ	¢ +
	(- + *	*1 0	01*	+ ا ن	+1C	c i *	£17	C F \$	< + +
c	ουξύ.ε	1, 30 T	1.30000	3.001	1.700	3.220	66°c	1. 500	4 • ° ¢
	0.5500	0.5.0	1.25033	75.	001.1	3.230	2 .)0	1.45)	1 F • C
ĉ	00200		1.20000	2. FCJ	1.701	· · · ·	6c°C	1.400	2.42
~ ~	0.0100		1.10193	1,051	ŪC ∟ •⊧	3.200	5°0à	1. 750	1. t. c
- =	0.030	0.300	1.00000	1.400	1.700	v uc *	יר"י	1.330	7.14
Ś	0.000	0(00266.0	1, 193	1.795	د (د. ۲	2.09	1.300	21.5
ن ا	0.0100	0.300	3. 95010	1.95°	1.700	Cuc • c	0 L ° L	1.300	, <u>11</u>
ر	0,0300	0.200	1.7530	7.4.(1.451	3.277	o(i・c	1.257	111.5
α	0.030.0	COF.0	0.7010	0.700	1.650	いいて *	٥ <i>.</i> .	1.200	7.14
6	0-0300	065.0). < 2 E Q Q	いいよう	1.652	3.225	2.09	1. 130	3.14
0	7.030J	0.55.0	いいしょう いい	い・チビリ	1 - F F	· · · ·	0 C ° C	1.000	7.10
-	0.0100	0.70	1.47503	0.575	1.650	3.157	2.09	C. 900	7.14
2	0.0200	0°300	0.00.00	0 - 2 E Ú	1.450	3.177	ر. ر ر	0 C B °0	7.10
m	0.0300	0.015	3.35320	.555	1. 553	3.150	، 09	ر . ה הב	7.14
7	0.50.0	7.33	1.20011	0 - E	1.570		00. C	ר ה ה אי	7.10
ŝ	C. C2 P5	0.24.0	3. 20019	J .587	1.53)	2.953	06.0	C. # 30	2 .
Ĩ	1-1210	Ú5€°¢	0.001 0	0. 600	1.500	(' ' 0'''	υ ι .	0 C C C C	7.10
5	0-0-5C	0.375	J. QEENN	0.550	1.453	2. AJJ	2.19	0°260	11.5
α	0520.0	0.40	9.01090	0.500	1.405	, 700	°	v€2°v	3.94
σ	010000	0.650	7. JC55 0	J.47⊑	1.350	7.557	2.Ja	0.175	11.5
S	0°020	U(0.100.0	0.310	1.200		cc.c	0.173	2.14
-	0.075	1.353	J. J.C.CE	0° эк г	1.200	2.200	2.39	0 . 155	74°C
5	0.5130	1. 200	C1050°C	0.220	1.100	ι ι ς.	0 C • C	2. 1C 2	11 F . C
m	0.0350	1.730	3.13715	0°•00	1.35.	CC0 •	2.00	ت. 165	3.14
4	0.0400	CC2 • 2	3.00010	0.100	ÚÚÚ - F	1.610	۵℃° ۲	175 °C	11.1
ŝ	J. C6JO	う よちら	0.000.0	Cat . C	0.965	1.457	2.30	3.175	3.10
¢.	0.5500	7.500	9.00010	061°C	C. POO	9. 90.	ۍ. د	.	3.12
5	0.8000	ປີ 1 2 ບົ	0.00010	0.117	0. F15	0.430	0.0°°.	J. 755	7.14
C	1.2000	3.520	3. 100 10	0.130	こ つ お 『 じ	7.167	2 . 13	0.200	3.11
5	1.0000	2.253	0.10010	0.205	0°255	0.055	2.12	3.300	3.16
S	000001	1. 230	7. 90010	0.350	C.100	0.010	5.0°	Crc .7	7.14
5	1.0000	1.030	3.30013	0.350	C. 101	0.010	2°0'	Cre.7	1,1 .
ç	1.000	1.000	0.10010	1.35A	C.100	0.010	2 . 79		7.10

calculations were restricted to measured samples at conditions commonly found in atmospheric profiles. The resulting range of pressure, temperature and absorber amount are shown in Tables II and III under the column headings "CALC". For the gases in Table II both types of transmittance calculations were combined with the measurements during the development of the models. For the gases in Table III only the transmittance data from 100 atmospheric spectral curves were used in the development. The calculations at the conditions of the measurements were used strictly for the verifications of the line-by-line data, and for the validation of the models.

In dealing with measurements, use was made of the relation

$$P = (B - 1)p P_T$$
, (24)

where P is the equivalent atmospheric pressure (used in FASCODIC), B is a constant representing the ratio of the self-broadening ability of the gases to the broadening ability of N_2 , p is the partial pressure of the absorber in the absorption cell, and P_T is the total gaseous pressure of the gas mixture in the cell. The values of B adopted for the transmitttance calculations involving N_2^{O} , CH₄, CO, CO₂, NO, NO₂, NH₃, and SO₂ were, respectively, 1.24, 1.29, 1.02, 0.94, 1.31, 1.00, 1.00, 6.20, and 5.00^{28-36} . Likewise, the absorber amount was calculated using the expression

$$U(atm.cm) = 0.00224M Z \frac{\rho_a}{m_a}$$
, (25)

where ρ_a in g/m³ is the air density, Z in km is the path length, m_a is the molecular weight of air, and M in parts per million by volume is the gas mixing ratio.

RANGE OF MODEL DATA

SPECTRAL RANGE (CM ⁻¹) 425-850 855-1460	ER REFERE CM) FOR CALC. MEASURE
	0.856E-2 To 28,29, 0.300E+5
	0.997E-1 To 1.359E+2
0 -	0.948E-3 To 0.119E+0 3:
0 0	0.962E-3 To 0.829E+2
1 0	0.987E-2 To 3: 0.290E+2

Range of the calculated and measured transmittance data used in the development and validation of the band models for the indicated gaseous absorbers. Table II.

RANGE OF MODEL DATA

ABSORBER	SPECTRAL RANGE	PRESS (AT	IIRE M)	TEMPI	ERATURE	ABSORB (ATM_	ER CM)	REFERENCE FOR
	(Chr ¹)	MEAS.	CALC.	MEAS.	CALC.	MEAS.	CALC.	MEASUREMENTS
AMMONIA (NH ₃)	660-1260 1300-1900	0.163E+0 To	0.102E+0 To	300	217 To	0.935E-2 To	0.962E-2 To	34
		0.0246+0	1.000ET0		000	0. 300 670	U. 100ET1	
CARBON MONOX TDF	1955-2280	0.304E+0 To	0.102E+0 To	300	230 To	0.730E-1 To	0.350E-1 To	28
(co)	4055-4365	1.000E+0	1.000E+0		300	0.143E+3	0.275E+3	
NITRIC	1700-1995	0.136E-1	0.546E-1 To	300	217 To	0.772E-1 To	0.619E-3 To	35
(NO)		0.966E+0	1.000E+0		288	0.310E-0	0.310E+0	;
OXYGEN	7760-8020	0.940E+0	0.102E+0	006	217 TO	0.274E+4 To	0.489E+3	J.
(0 ²)	12930-13190		1.000E+0		300	0.219E+6	0.256E+9	2

Range of the calculated and measured transmittance data used in the validation of the band models for the in-dicated gaseous absorbers. Table III.

.

۰.

Two types of measured laboratory transmittance spectra were available during the development of the band models. One type consisted of tape provided by AFGL, and the other data measured by the authors of the references listed in Tables II and III. These data were available for CO_2 , CH_4 , NO_2 , N_2O , and SO_2 . The spectral range, pressure, temperature and absorber amount characterizing the data samples adopted from the tapes for these gases, are also shown in Table II. These high resolution data were first degraded to the 20 cm⁻¹ resolution, and then combined with the calculated transmittance data, during the determination of the model parameters. For the most part the spectral range for a given band model was dictated by the boundaries of the absorption band, as observed in either the measurements or the calculations. However, for CO_2 several spectral ranges had to be specified within the infrared region because of the large amount of data involved, and because of the desire of keeping the modeling accuracy within one or two percent. The spectral coverage that was found reasonable for use with the numerical determination of a given set of model parameters was 500 cm⁻¹. Using this criterion, CO_2 was modeled through nine different models, as specified in Table II.

The other type of laboratory measured transmittance spectra was available in the form of graphs in research reports and in open literature articles. These data existed for NH_3 , CO, NO and O_2 . Because of their nature they were unsuitable for inclusion in the model development and, hence, they were used for model validation only.

5. Band Model Development

The numerical procedures discussed in a previous section were adopted and used with the available transmittance data in order to determine the band model parameters, a, n, m and the C's for the eleven gases.

The main results of the analyses are summarized in Table IV and V and in the appendices. Table IV presents the modeling results for all those gases for which there were both calculated, and digitized transmittance specta. Table V presents the modeling results for all those gases for which there were only calculated spectra for inclusion in the numerical method. The available graphical data were later used in the model validation. Figures (2) and (3) are composite plots of the transmission curves for the uniformly mixed and for the trace gases, respectively. Individual plots of the transmission functions for these gases may be found in Appendix A. The spectral parameters C' at 5 cm⁻¹ for all the absorber, both in tables and graphical forms, are also provided in Appendix A.

6. Transmittance Comparisons

Before the model parameters were determined comparisons were made between line-by-line calculations and measured transmittance spectra. The transmittance calculations were made with FASCODIC, which used Eq. (4) for homogeneous paths, together with the absorption coefficient most suitable to the atmospheric height of interest. Magnetic tapes containing high resolution measured data were available from AFGL for each one of the five gases CO_2 , CH_4 , $NO_2 N_2O$, and SO_2 . Only graphical representations were available for the measured spectra of the remaining gases NH_3 , CO, NO, and O_2 . The types of comparisons and model developments that were accomplished are summarized in Table VI.

In connection with the gases for which measured transmittance data were available in tapes, extensive sets of comparisons with line-by-line data were made. Firstly, the monochromatic calculations were degraded

L

ABSORBER	SPECTRAL RANGE	ABSORB	ER MODEL PA	RAMETERS	RMS TRANSMITTANCE
	(CM ⁻¹)	œ	F	E	DEVIATION (%)
CARBON	425-850	0.6176	0.6705	-2.2560	1.84
DIOXIDE	855-1460	0.6810	0.7038	-5.0768	2.18
("")	1820-2830	0.6033	0.7258	-1.6740	2.27
.7.	3070-3755	0.6146	0.6982	-1.8107	1.95
	3760-4105	0.6513	0.8867	-0.5327	2.49
	4535-5375	0.6050	0.7883	-1.320	3.33
	5920-7025	0.6160	0.6899	-0.8152	1.28
	7395-7820	0707 0	0 6035	0.6026	0.30
	8000-8345				
METHANE	1075-1775				
	2370-3230	0.5844	0.7139	-0.4185	1.56
(CH ₄)	4175-4730				
NITROGEN	1540-1670				
DIOXIDE		0.7249	0.3956	-0.0545	2.40
(N0 ₂)	2840-2950				
NITROUS	500-755				
OXIDE	1100-1370	0.7201	0.7203	-0.1836	1.49
(NO ₂)	2105-2630				
SIIT PHITR	420-635				
DIOXIDE	1050-1440	0.8466	0.2135	0.0733	2.38
(so ₂)	2430-2565				
Table I	IV. Band model para	imeters as obtai	lned with t	he num erí cal	

IV. Band model parameters as obtained with the num**eri**cal methods presented in the text, and mixture of calculated and laboratory measured transmittance data.

TRANSMITTANCE DEVIATION (2) RMS ABSORBER MODEL PARAMETERS ø

¢

đ

SPECTRAL RANGE (CM⁻¹)

ABSORBER

0.76	0.71		0.31	0.96
0.5768	0.1716		-0.4702	0.1936
0.8272	0.9267		0.5265	0.9353
0.6043	0.6133		0.6613	0.5641
660-1260 1300-1900	1955-2280	4055-4365	1700-1995	7760-8020 12930-13190
AMMONIA (NH ₃)	CARBON	(00)	NITRIC OXIDE (NO)	OXYGEN (0 ₂)

Band model parameters as obtained with the numerical methods presented in the text, and strictly line-by-line calculated transmittance data. Table V.

ABSORBER	NUMBER OF BANDS MODELED	NUMBER OF BAND MODELS	COMPARI SONS WITH	FIN MODEL DE	AL VELOPMENT	REFERENCE FOR MFASHIREMENTS
			MEASUREMENTS	LINE-BY-LI	NE MIXED	
AMMONIA (NH ₃)	1	Ι	YES	YES	NOT POSSIBLE	34
CARBON DIOXIDE (CC) ₂) 17	6	YES	YES	YES	28,29,30,31
CARBON MONOXIDE (C	20) 2	1	YES	YES	NOT POSSIBLE	28
METHANE (CH ₄)	3	1	YES	YES	YES	28
NITRIC OXIDE (NO)	1	1	YES	YES	NOT POSSIBLE	35
NITROGEN DIOXIDE (NO	2) 3	1	YES	YES	YES	32
NITROUS OXIDE (N ₂ O) 3	-	YES	YES	YES	28
OXYGEN (O ₂)	2	1	YES	YES	NOT POSSIBLE	36
SULPHUR DIOXIDE (S	0 ₂) 3	1	YES	YES	YES	33

Table VI. Summary of the types of model development and validation conducted in the band model generation for the uniformly mixed and the trace gases. to approximately the resolution of the measurements, and compared for all cases in which the conditions of the measurements were close to typical atmospheric environments. The purpose of these comparisons was to establish the source of any observed discrepancies, as possibly originating in the line parameter compilation. These were published in a series of internal progress reports to AFGL (see References 37 through 45). Secondly, both the transmittance calculations and the measurements were degraded to the spectral resolution of LOWTRAN and compared again. For this purpose use was made of Eqs. (3) and (4), with a triangular filter function ϕ of 20 cm⁻¹ full-width at half-intensity. The results of these comparisons were incorporated in the cited references. Samples of these for $\rm CO_2,\ CH_4,\ NO_2,\ N_2O,\ and\ SO_2$ are shown in Appendix B. For comparisons each figure number part "a" compares monochromatic line-by-line calculations with high resolution measurements, while part "b" compares their degraded counterparts.

Once the transmittance comparisons were accomplished, both the tape measurements and the calculated transmittances were put together in a transmittance data bank. The data were then substituted in Eqs. (11) through (24) for the purpose of determining the absorber and spectral model parameters. The model parameters were then used in Eqs. (7) through (10) in order to compare the resulting band models with the degraded line-by-line and/or measured transmittance data. While the complete results of these final comparisons were included in References 37 through 45, some sample comparisons are shown in Appendix C.

In connection with the gases for which measured transmittance spectra were available only in graphical form, the comparisons with line by line calculations were more restrictive. For this purpose the resolution of the calculations was reduced to approximately those of the measurements.

This was followed by an attempt to plot the calculations on the same dimensional scale as the measurements. Appendix D shows some typical cases of such comparisons. Because of this limitation, the models for CO, NH_3 , NO and O_2 were developed strictly using line-by-line calculated transmittance data.

Once the measured and the calculated transmittances for these latter gases were compared, calculations were made using the developed model at the conditions of the measurements. The purpose of this was to determine how well the model predicted the measurements, even though the measurements were not used in the determination of the model parameters. Appendix E contain some typical cases of such comparisons.

7. Discussion and Conclusions

The principal purpose of the work reported here was to develop and validate molecular transmittance band models, with line-by-line calculated and measured transmittance spectra, for the uniformly mixed gases N_2O , CH_4 , CO, O_2 and CO_2 , and for the trace gases NO, NO_2 , NH_3 and SO_2 . Since the models were intended for inclusion in LOWTRAN, they are for 20 cm⁻¹ resolution spectra and are represented by a simple double exponential function characterized at 5 cm⁻¹ intervals by a single spectral parameter. Use was made of well established, nonlinear optimization techniques in the parmeterization of the transmission function. An overall rms average transmittance deviation of 1.68% was obtained between the developing data and the data reproduced with the models.

Because of the availability of two basic forms for the measured data, the process of development and validation took different approaches. Digitized data were available in magnetic tapes for CO_2 , CH_4 , NO_2 , N_2O , and SO_2 . Hence, the models for these gases were developed with a

mixture of line-by-line data computed with FASCODIC, and the measured data. In these cases transmittance comparisons were made between the original high-resolution measurements and line-by-line calculations at similar resolutions, between 20 cm⁻¹ degraded measurements and line-by-line calculations, between degraded line-by-line and band model calculations, and between degraded measurements and band model calculations. Samples of these comparisons are included in the appendices, and show generally excellent agreement.

Graphical data in the forms of spectral curves were available in the literature for NH_3 , CO, NO and O_2 . Since these data were not in digital form the corresponding models were developed using line-by-line calculated transmittances only. In these cases transmittance comparisons were made between the original high resolution measurements and lineby-line calculations at similar resolutions, between degraded line-byline and band model calculations, and between degraded line-byline at the conditions of the measurements and band model calculation. Samples of these comparisons are included in the Appendix, and show generally excellent agreement.

Upon the completion of the band models, these were incorporated into LOWTRAN 6, together with a corresponding set of average vertical mixing ratio profiles. Numerous types of calculations were then made for several types of atmospheric paths, which included the uniformly mixed gases both as separate models and combined, the trace gases for a simulated polluted environment, the model for the uniformly mixed gases presently in LOWTRAN, and all the standard atmosphere models. Appendix F includes samples of transmittance calculations using the models for the uniformly mixed gases, both separately and combined,

for a path tangent to the earth's surface from one end of the U.S. Standard atmosphere to the other, using the proposed vertical mixing ratio profiles. The set of figures also include a comparison between the present model and the proposed models for the uniformly mixed gases, along a vertical path in which use was made in both cases of uniform concentrations of 0.28, 1.6, 0.075, 2.095 x 10^5 , and 330 ppmv for N₂O, CH₄, CO, O₂ and CO₂, respectively. The mean rms deviation over the entire spectrum between the existing and proposed models are 6.51 and 1.24%, for the tangent and vertical paths, respectively.

Transmittance calculations using the models for the trace gases were also made for several types of atmospheric paths and all the standard atmospheres. Samples of these calculations for the case of a slant path in the U.S. Standard atmosphere are included in Appendix G. These calculations were made with the proposed mixing ratio profiles. However, because of the small amount of absorption with the use of the standard profiles, the models for these gases are primarily proposed for use in polluted environments. In such cases the user would insert his her own mixing ratio profile in LOWTRAN, through the proper change in the control cards for this code.

References

- 1. W. Herschel, Investigation of the Powers of the Prismatic Colours to Heat and Illuminate Objects, Phil. Trans. Roy. Soc. London, 90, 284 (1800).
- 2. A. Beer, Ablectüng der Intensitäls und Palarisations Verhältmsse des Lichtringes bei der inneren Konishchen Refraction, Ann. Physik (Poggendorf), 86, 78 (1852).
- 3. J. C. Doppler, Ueber das Farbige Licht der Doppelsterne und Eeiniger Andereer Gestirne des Himmels, Ahandlungen der Konige, Bohmische Gesellschaft der Wissenschaften, 5th ser. 2, 465 (1842).
- 4. H. A. Lorentz, The Absorption and Emission Lines of Gaseous Bodies, Proc. Roy. Acod. Sci., 8, 591 (1906).
- 5. W. Voigt, Uber das Gesetz der Intensitats-verteilung Innerhalb der Linien Eines Gasspektrums, Sitzungsberichte der Akodemie, Munchen, 602 (1912).
- 6. R. Landerberg and F. Reiche, Uber Selektive Absorption, Ann. Phys. 42, 181 (1913).
- 7. W. M. Elsasser, Heat Transfer by Infrared Radiation in the Atmosphere, Howard Meteorological Studies No. 6, Howard University Press (1942).
- H. Mayer, Methods of Opacity Calculations, Los Alamos, NM, Rep. No. LA-647 (1947).
- 9. R. Goody, A Statistical Model for Water-Vapour Absorption, Quart, J. Roy. Meteor. Soc., 78, 165 (1952).
- T. L. Altshuler, Infrared Transmission and Background Radiation by Clear Atmospheres, G.E. Rep. No. 615D199, General Electric Co., PA (1961).
- 11. R. A. McClatchey et al., Optical Properties of the Atmosphere, AFCRL Environmental Research Paper No. 331, AFCRL-70-0527, AD 715270, Air Force Cambridge Research Laboratories, Hascom AFB, MA (1970).
- 12. J. E. A. Selby and R. A. McClatchey, Atmospheric Transmittance from 0.25 to 28.5 µm: Compute Code LOWTRAN2, AFCRL Environmental Research Paper No. 427, Air Force Cambridge Research Laboratories, Hanscom AFB, MA (1972), AFCRL-72-0745, AD 763721.
- J. E. A. Selby and R. A. Mc Clatchey, Computer Code LOWTRAN3, AFCRL Envoronmental Research Paper No. 513, Air Force Cambridge Research Inboratories, Hanscom AFB, MA (1975), AFCRL-TR-75-0255, ADA 017734.
- 14. J. H. Pierluissi, K. Tomiyama and R. B. Gomez, Analysis of the LOWTRAN Transmission functions, Appl. Opts. 18, 1607 (1979)
- F. X. Kneizys et al., Atmospheric Transmittance Radiance: Computer Code LOWTRAN 6, AFGL-TR-83-0187, Air Force Geophysics Laboratory, Hanscom AFB, MA (1983), ADA137786.

- R. D. Hudson, E. I. Reed, and R. D. Bojkow, Eds. The Stratosphere 1981: Theory and Measurements, World Meteorological Organization, NASA/Goddard Space Flight, Greenbelt, MD (1982).
- 17. M. S. H. Smith, Compilation of Atmospheric Gas Concentration Profiles from 0 to 50 km, NASA Langley Research Center, Hampton, VA (1982).
- 18. A. J. LaRocca, Methods of Calculating Atmospheric Transmittance and Radiance in the Infrared, Proc. IEEE, 63, 75 (1975).
- 19. J. I. F. King, Band Absorption Model for Arbitrary Line Variance, J. Quant. Spectra. Radiat. Transfer, 4, 705 (1964).
- 20. J. H. Pierluissi and K. Tomiyama, Numerical Methods for the Generation of Empirical and Analytical Transmittance Function with Application to the Atmospheric Trace Gases, Appl. Opt. 19, 2298 (1980).
- W. L. Smith, Polynomial Representation of Carbon Dioxide and Water Vapor Transmission, NESC-47, National Environmental Satellite Center, Washington, D.C. (1969).
- 22. IBM Manual System/360, Scientific Subroutine Package H20-0205-3, IBM, New York (1959).
- 23. J. M. Jarem and J. H. Pierluissi and M. Maragoudakis, Numerical Methods of Band Modeling and their Application to Atmospheric Nitrous Oxide, Appl. Opt. 23, 406 (1984).
- H. J. P. Smith, et al., FASCODE- Fast Atmospheric Signature Code, AFGL-TR-78-0081, Air Force Geophysics Laboratory, Hanscom AFB, MA (1978), ADA057506.
- 25. S. L. Valley, Ed., Handbook of Geophysics and Space Environment, McGraw-Hill, N.Y. (1956).
- 26. L. S. Rothman, AFGL Atmospheric Absorption Line Parameters Compilation: 1980 Version, Appl. Opt. 20, 791 (1981).
- 27. L. S. Rothman, et al., AFGL Trace Gas Compilation: 1982 Version, Appl. Opts. 22, 1616 (1983).
- 28. D. E. Burch, et al., Infrared Absorption by Carbon Dioxide, Water Vapor, and Minor Atmospheric Constituents, AFCRL-TR-62-698, Air Force Cambridge Research Laboratories, Hanscom AFB, MA (1962).
- D. E. Burch, D. A. Gryvnak and D. Williams, Total Absorptance of Carbon Dioxide in the Infrared", Appl. Opts., 1, 759 (1962).
- 30. D. E. Burch, D. A. Gryvnak and R. R. Patty, Absorption of Infrared Radiation by CO₂ and H₂O II. Absorption by CO₂ Between 8,000 and 10,000 cm⁻¹ (1-1.25 microns), J. Opt. Soc. of Am. 158,335 (1968).

- D. E. Burch et al., Absorption of Infrared Radiant Energy by CO₂ and H₂O. IV. Shapes of Collisioned - Broadened CO₂ Lines", J. Opt. Soc. of Am., 59, 267 (1969).
- D. E. Burch, D. A. Gryvnak and J. D. Pembrook, Infrared Absorption by H₂O, NO₂, and N₂O₄ AFCRL-TR- 75-0420, Air Force Gambridge Research Laboratories, Hanscom AFB (1975), ADA019686.
- D. E. Burch, J. D. Pembrook, and D.A. Gryvnak, Absorption and Emission by SO₂ Between 1050 and 1800 cm⁻¹ (9.5 - 7 μm), U-4947, Philco-Ford Corp., Newport Beach, CA (1971).
- 34. W. L. France and D. Williams, Total Absorptance of Ammonia in the Infrared, J. Opt. Soc. Am., 56, 70 (1966).
- 35. D. L. Ford and J. H. Shaw, Total Absorptance of the NO Fundamental Band, Appl. Opts., 4, 1114, 1965.
- 36. D. E. Burch and D. A. Gryvnak, Strengths, Widths and Shapes of the Oxygen Lines Near 7600 Angstroms, U-4076, Philco-Ford Corp., Newport Beach, CA (1976).
- 37. J. H. Pierlussi and J. M. Jarem, Comparisons Between Calculated Line Spectra and Laboratory Measurements of Transmittance for Nitrous Oxide, PR3-83-AF-134, The University of Texas at El Paso, El Paso TX (March 1983).
- 38. J. H. Pierluissi and J. M. Jarem, Comparisons Between Calculated Line Spectra and Laboratory Measurements of Transmittance for Methane, PR3-83-AF-135, The University of Texas at El Paso, TX (June 1983).
- 39. J. H. Pierluissi and J.M. Jarem, Comparisons Between Calculated Lîne Spectra and Laboratory Measurements of Transmittance for Sulfur Dioxide PR3-83-AF-136, The University of Texas at El Paso, El Paso TX (October 1983).
- 40. J. H. Pierluissi, G. Reza, and J. M. Jarem, Comparisons Between Calculated line Spectra and Laboratory Measurements of Transmittance for Carbon Monoxide, PR3-83-AF-137, The University of Texas at El Paso, El Paso, TX (January 1984).
- J. H. Pierluissi, G. Reza, and J. M. Jarem, Comparisons Between Calculated Line Spectra and Laboratory Measurements of Transmittance for Ammonia, PR3-83-AF-138, The University of Texas at El Paso, El Paso, TX (February 1984).
- 42. J. H. Pierluissi, G. Reza, and J. M. Jarem, Comparisons Between Calculated Line Spectra and Laboratory Measurements of Transmittance for Oxygen, PR3-83-AF-139, The University of Texas at El Paso, El Paso, TX (February 1984).

- 43. J. M Jarem, J. H. Pierluissi, W. L. Ng, and C. E. Maragoudakis, Comparisons Between the Double-Exponential and Measured Transmittance Data for NO₂, N₂O, CH₄, So₂, and CO₂, SR3-84-AF-141, The University of Texas at El Paso, El Paso, TX (June 1984).
- 44. J. H. Pierluissi and C. E. Maragoudakis, Monochromatic Transmittance Comparisons Between the Computer Code FASCODIC and Measured Data for the Carbon Dioxide, 15 μ m Band, SR3-84-AF-142, The University of Texas at El Paso, El Paso, TX (July 1984).
- 45. C. E. Maragoudakis and J. H. Pierluissi, Monochromatic Transmittance Compraisons Between the Computer Code FASCODIC and Measured Data for Carbon Dioxide Between 1800 and 9660 cm⁻¹, SR3-84-AF-143, The University of Texas at El Paso, El Paso, TX (July 1984).

APPENDIX A

Data on the Uniformly Mixed and the Trace Gases

1. Plots of the Transmission Functions

- 2. Spectral Plots of the Spectral Parameter C'
- 3. Tables of the Spectral Paramener C'

Figure A 1

31

Figure A2

Figure A5

. . . .

3.0

2. U

1.0

L0C10 (CW)

--2.0

-3.0

-- ų . Ū

Figure A9

Figure Al0

and the second

Figure A14

Ē

Table Al

C. VALU	S SCE N2C						
WAVE #	C I	KAVE #	С •	KAVF 🖡	C !	679F #	С •
500	-8.0667	755	-6.9862	1350	-3.2635	2335	-2.6895
5.5	-7.2307	1100	-4.6703	1355	-4.1039	2740	-2.7551
510	-6.4149	1105	-3.6918	1360	-5.2761	2345	-2.8837
515	-5,4872	1110	-7.0656	1365	-6.1437	2350	-3.0284
520	-4.7093	1115	-77.96	1370	-7.0070	<u>ភ្លុកត</u>	-3.3746
525	-4.0319	1170	-2.1876	2105	-6.5568	2360	-3.7078
523	-3 1752	1125	-1.8646	2110	-5.0880	2365	-4.0975
5.0	-3.4752	1170	-1.5919	2115	-4-4527	2370	-4.6272
2 N 9 E N 9	-7.6046	1135	-1.3587	2120	-7,9302	2375	-5.2484
- 4.5 E.1 E	-2.0040	1140	-1.1684	2125	-7.4439	2380	-10.0000
	-2+20 7	1140	-1 0286	2130	-2.9701	2785	-10.0000
550	-1.0131	1150	-1.0200	2135	-2-5423	2390	-10.0000
	- [.474]	1166	- 0 0 0 7 1	2100	-2.1616	2795	-7.3571
5	-1.1914	110		2146	-1 2076	2400	-5-0287
54 5	-9.9633	1100	-0.5442 C 0605	2152	-1 4763	2400	-4.3047
570	-0.7923	1100		21_0	-1 1500	240.	- 7 6431
575	-0.6629	1170	-0.9723	2127	- 1. 1. 7. 0	24 10	-: 1026
C R D	-0.5849	11/5	-0.9573	2100	-0.044:	24.10	-2 6122
5 85	-0.5402	1180	-0.9550	2100	-0.9403	2420	-2.10122
sαĵ	-0.4975	1185	-1.0000	2170	-0.2000 c.0000	2420	-2. 1541
595	-0.5148	1190	-1.1070	21/2	0.0234	2430	-1 5776
600	-0.5592	1195	-1.2791	2180	0.27/0	2430	-1.2720
505	-0.6521	1200	-1.4976	2187		2440	-1-3622
610	-7.8148	1205	-1.7281	2 190	0.7104	2443	-1.2010
6 E	-1.0196	1210	-1.9277	2190	0.8929	2430	
£20	-1.2764	1215	-2.0227	2200	1.0.359	2400	
5.25	-1.5873	1220	-1.9577	2205	1.1306	2400	-1.2731
630	-1.0638	1225	-1.7425	2210	1.1097	2467	-1.202
625	-2.3891	1230	-1.5020	2210	1.1807	2470	-1.20-2
64C	-2.8083	1235	-1.2186	2220	1.1803	2475	-1.2044
645	-3.2392	1240	-0.921)	2220	1.1974	2480	-1.2.77
C B B	-3.6934	1245	-(.+ 126	2730	1.2455	2400	-1.6262
655	-4.0682	1250	-0.3429	2230	1.2029	2490	-1.0202
6+3	-4.1366	1255	-0.0769	2240	1.2000	2493	-1.3347
665	-3.9423	1260	0.1509	2245	1.0472	2000	-2.2030
670	-3.7147	1265	C.3215	2250	0.7645	2000	-2. 7300
675	-3.4975	1270	0.4104	2200	0.0000	2010	
180	-3.2602	1275	6.4385	2250	-0.0244	2515	
6 4 5	-3.0976	1283	0.4288	2253	-0.5477	2020	-1 1726
600	-2.9815	1285	0.4185	2270	-1.2202	2020	-1 1707
f G E	-2.9153	1290	6.4570	1215	-2.100/	2030	-0 6377
700	-2.0506	1295	0.4972	2280	-2.930-	2000	
735	-3.0281	1300	0.4987	2200	-3.2107	2340	-0.6303
7 1 0	-7.1264	1305	L.4215	2290		2040	-0 5600
715	-3.2650	1310	0.2360	2290	-2.9000	2000	
720	-7.3906	1315	-0.0319	2300	-2.7541	2000	
725	-3.5717	1370	-0.3774	2205	-2.0324	2700	-0.5009
<u>נורד</u>	-3.8312	1325	-0.7539	2310	-2.70/1	2753	-0.5239
775	-4.1706	1330	- 1. 1534	2375	-2.5004	2070	-0.4743
743	-4.4077	1335	-1.5855	2120	-2.8088	25/5	-0.4471
745	-5.1839	1340	-7.0610	2325	-2.0425	2580	-0.4//9
701	-5 0224	1396	J _ 5 (F 9	∠ <u>:</u>	-Z.DDUD	2000	ニー エレッフモノノ

C. AVTA	E FCF NZC						
WAVE #	с'	WAVE #	C '	WAVF #	۲,	WAVE #	с'
2590	-0.7964	2605	-1.9593	2620	-3.8102		
2595	-1.0942	2610	-2.5140	2625	-4.5825		
2600	-1.4812	2615	-3.1350	2630	-5.5982		

Table A2

C' VAIU	E FCF CH4						
WAVE #	С!	WAVE #	C *	WAVE #	C 1	WAVE #	с'
1075	-8.8866	1330	-C.8781	1565	-3.5992	2430	-3.8712
1040	-8.2246	1335	-0.7559	1590	-3.4937	2435	-3.8692
1085	-7.7940	134C	-C.6628	1595	-3.3676	2440	-3.8777
1390	-7.1734	1345	-0.6128	1600	-3.2230	2445	~ 2.8965
1055	-6.7965	1350	-0.6119	1605	-3.1630	2450	-3.9092
1100	-6.5695	1355	-0.6575	1610	-3.0691	2455	-3.9788
1105	-6.1929	1360	-0.7620	1615	-3.0776	2460	-3.7661
1110	-5,9169	1365	-0.9217	1€20	-3.0872	2465	-3.6900
1115	-5.7452	1370	-1.12€4	1€25	-3.0974	2470	-3.6239
1120	-5.4731	1375	-1.36€0	1630	-3.1223	2475	-3.5597
1125	-5.3001	1380	-1.6352	1635	-3.1285	2480	-3.5193
1130	-5.1872	1385	-1.9264	1640	-3.1212	2485	-3,4906
1135	-4.9672	1390	-2.2266	1645	-3.1333	2490	-3,4415
1140	-4,8474	1395	-2.5123	1650	-3.1674	2495	-3.3770
1145	-4.6939	1400	-2.7472	1655	-3.1668	2500	-2.3579
1150	-4.5210	1405	-2.8829	1660	-3.2433	2505	-3.3427
1155	-4.3377	1410	-2.9129	1665	-3.2398	2510	-3.3208
1160	-4.1346	1415	-2.9145	1670	-3.3135	2515	-3.3048
1165	-3.9322	1420	-2.8854	1675	-3.3975	2520	-3.3136
1170	-3.7339	1425	-2.8508	1680	-3.4427	2525	-3.2904
1175	-3.5077	1430	-2.8512	1685	-3-6434	2530	-3.2545
1180	-3.2719	1435	-2.8202	1690	-3.7528	2535	-3.2241
1105	-3.0296	144C	-2.8023	1695	-3.9466	2540	-3.1453
1190	-2.8124	1445	-2.8004	1700	-4.1940	2545	-3.0187
1195	-2.F199	1450	-2.7800	1705	-4.3362	2550	-2.9427
1200	-2.4479	1455	-2,8175	1710	-4.5539	2555	-2.8630
1205	-2.2502	1460	-2.8413	1715	-4.7410	2560	-2.8146
1213	-2.0541	1465	-2.8943	172C	-4.9155	2565	-2.8604
1215	-1.9800	1470	-2.9876	1725	-5.1345	2570	-2.8922
1220	-1.7092	1475	-3.0668	1730	-5.3908	2575	-2.9650
1225	-1.5791	1480	-3.2424	1735	-5.5592	2580	-2.9959
12 °0	-1.4379	1485	-3.4064	1740	-5.8270	2585	-2.8920
1235	-1.2992	1490	-3.5759	1745	-6.0289	2590	-2.7989
1243	-1.1735	1495	-3.7630	1750	-6.2365	2595	-2.7028
1245	-1.0510	1500	-3.8925	1755	-6.6730	2600	-2.6506
1250	-0.9646	1505	-4.0774	1760	-7.0538	2605	-2.1283
1255	-0.8779	1510	-4.3243	1/65	-7.6216	2010	-2.8420
1260	-0.8002	1515	-4.5964	1770	~8.569/	2017	-2.9304
1265	-0.7574	1520	-3.8654	1//5	-9.8443	2520	72.9522
1270	-0.7356	1525	-3.0974	2370	-6.3069	2020	~ 7566
1275	-0.7478	1530	-2.596/	2275	-7.5442	2030	-2.700
1290	-0.7512	1535	-2.2482	2320	-0.1001	2033	-2.074J
1295	-0.6906	1540	-2.1016	2385	-4.8853	2640	-7 6573
1290	-0.5594	1545	-2.1428	2390 730E	-4.5369	2547	-2.6.33
1295	-3.4417	1550	-7.5281	2390	-4.7202	2130	-2.000
1300	-0.4019	1000	-2.0448	2400	-4.3731	2033	-7 7470
1303	-0.5027	1700	-3.0440	2400	-# 3734	2000	-7.6550
1310	-0.7528	1007		2410		2003	-7.6516
1315	-0.9525	1276	-3-0310	24.10	-4 1160	2675	-2.5701
152)	-1.0431	1777		2420	-7,9986	2690	-2. 4693
1327		1.200	J B 7 Z M V	£ * £	2 8 2 7 C VI	• · · · · ·	

÷ .

.

C' VALU	E FCF CH4		_				C I
WAVE #	C'	WAVE 4	C !	WAVE #	C 1	WAVE #	
2685	-2.4426	2940	-1.1031	3195	-3.2413	4320	-1.6535
2690	-2.4463	2945	-1.0795	3200	-3.5058	4325	-1.6165
2695	-2.4194	2950	-1.0687	3205	-3.9508	4330	-1.8417
2700	-2.4578	2955	-1.069?	3210	-4,5133	4335	-1.7697
2705	-2 4894	2960	-1.0904	3215	-5.3536	4340	-1.6346
2703	-7 1639	2965	-1.1166	2220	-8.0815	4345	-1.5589
2710	-2 4925	2000	-1 1-11	3225	-8-9081	4350	-1.5466
2713	-2.4020	2370	-1 1051	7270	-9.8155	4765	-1.5604
2770	-2.49.30	2370	-1 1211	1105	-8 7367	4760	-1.6707
2720	-2.4381	2300	1 2021	4102	-10.0000	4265	-1.6867
2730	-2.4123	2900	- 1.2021	4110	- 10.0000	1370	-1.7593
2715	-2.3654	299U	-1.2710	4110		4370	-1 8(51
2743	-2.2698	2995	-1.1902	4120		4373	-1 6167
2745	-2.2387	3000	-0.9/15	4125	-4.2424	4369	
2750	-2.2364	3005	-0.6654	4130	-3.7640	4385	-1.8-15
2755	-2.2029	3010	$-C_41C3$	4135	-3.3255	4390	
2763	-2.1780	3015	$-C_{2}3011$	4140	-3.0103	4395	-1.2547
2765	-2.1433	3020	-0.5049	4145	-2.7726	4400	-1.807
2770	-2.0355	3025	-0.8659	4 15 C	-2.5510	4405	-1.6651
2775	-1.9459	3030	-1.1777	4 155	-2.3949	44 10	-1.8923
7780	-1.8723	3035	-1.7847	4 1E C	-2.2318	4415	-1.9081
7785	-1.7936	2040	-1.4359	4165	-2.1080	4420	-1.9025
279.1	-1.7639	2045	-1.3908	4170	-2.0086	4425	-1.9451
7705	-1 7782	2050	-1.2992	417=	-1.9290	4430	-1.9924
20.0.3	-1 9922	3055	-1.1923	4180	-1.8902	4435	-2.0321
2000		3060	-1 0951	4185	-1-8750	4440	-2.0816
2007	-1-7010	3065	-1 0213	4 19 0	-1.8700	4445	-2.1026
2515	-1.0006	2000	-0 0579	J 195	-1.8476	4450	-2.1137
2815	-1.0300	2070		1200	-1 7390	4455	-5,1351
2820	-1.0109	3070	-0.9259 C 0007	4200	-1 5720	5060	-2.1629
2925	-1.5975	3080	-0.9207	420.		1165	-7 1876
2830	-1.0545	2040	-0.9292	4210	-1.4204	9405	-7 2740
2835	-1.//42	3690	-0-9725	4210	-1.346	4470	-7 7660
2840	-1.8937	3095	-1.0126	4226	-1.3/91	4473	-2.2.300
2845	-1.9544	3100	-1.0750	4225	-1.5132	4480	
2850	-1.9942	3105	-1.1149	4230		4485	-2.4970
2855	-1.7761	3110	-1.1636	4235	-1.728	4490	-2244
2860	-1.6392	2115	-1.2059	4240	-1.6684	4495	-2.7641
2865	-1.5236	3120	-1.2638	4245	-1.54.12	4-00	-2.8912
2870	-1.4551	3125	-1.3327	4250	-1.4447	4505	-3.0328
2275	-1.4221	3130	-1.4079	4255	-1.3773	4510	-3.1944
2880	-1.4245	3135	-1.4983	4 2 € C	-1.3490	4515	-3.3877
2885	-1.4174	3140	-1.5711	4265	-1.3642	4520	-3.4566
7890	-1.4177	3145	-1.6872	4270	-1.4016	4525	-3.1662
2005	-1.3776	3150	-1.7870	4275	-1.4717	4530	-2.7253
2903	-1.3349	7155	-1.9266	4280	-1.5836	4535	-2.3992
2905	-1.2909	3160	-2.0774	4285	-1.6984	4540	-2.2214
2915	-1-2470	3165	-2.2119	4290	-1.8085	4545	-2.2022
2915	-1.2162	3170	-2.3875	4295	-1.8486	4550	-2.3578
7971	-1.1850	-175	-2.5155	4300	-1.7464	4555	-2.7449
2025	-1.1677	3180	-2.6822	4705	-1.6338	4560	-3.2639
2020	-1.1449	7185	-2.8772	4710	-1.5555	4565	-3.9311
2935	-1,1229	7190	- 7, 0032	4215	-1.5552	4570	-4.1470

C. AVI	E FCE CH4						
NA75 #	C *	RAVE #	C !	KAVE #	с•	WAVE #	C 1
4575	-3.9351	4615	-3.4140	4655	-4.3518	4695	-10.0000
# 5 80	-3.7471	4620	-3,4908	4660	-4.6486	4700	-10.0000
4585	-3.6245	4€25	-3.5164	4665	-4.8778	4705	-10.0000
4590	-3.4791	4630	-3.5944	4670	-5.2542	4710	-10.0000
4595	-3.4710	4635	-3.7403	4675	-5.7834	4715	-10.0000
4500	-3.4210	4640	-3.8192	4680	-6.3451	4720	-7.7337
4605	-3.4125	4645	-4.0177	4685	-7.7212	4725	-7.9729
4610	-3.4475	4650	-4.1837	4690	-10.0000	4770	-7.7677

C' VALUI	E FCF CC						
NAVE #	C !	WAVE #	C !	WAVE #	С!	WAVE #	· · ·
1955	-8.2642	2120	-0.4268	4055	-8.6139	4220	-2.7531
1960	-7.5767	2125	-C.4657	4060	-7.9747	4225	-2.7023
1965	-6.9972	2130	-0.5571	4065	-7.5250	4230	-2.6635
1970	-6.5408	2135	-0.6573	4070	-7.1931	4235	-2.6440
1975	-6.1219	2140	-C.74C4	4075	-6.8596	4240	-2.6550
1980	-5.6734	2145	-0.7523	4080	-6.5741	4245	-2.7225
1985	-5.2658	2150	-0.6601	4085	-6.2922	4250	-2.8161
1990	-4.8686	2155	-0.5380	4090	-6.0098	4255	-2.9015
1995	-4.4918	2160	-0.4211	4095	-5.7669	4260	-2.9241
2000	-4.1423	2165	-C.3367	4100	-5.5345	4265	-2.8228
2005	-3.8133	2170	-0.3167	4105	-5.3229	4270	-2.6726
2010	-3.4998	2175	-(.3320	4110	-5.1461	4275	-2.5320
2015	-3.2104	2180	-0,3753	4115	-4.9882	4280	-2.4291
2020	-2.9443	2185	-C.4489	4120	-4.8493	4285	-2.3772
2025	-2.7139	2190	-0.5438	4125	-4.7239	4290	-2.3732
2030	-2.5084	2195	-0.6653	4130	-4.6064	4295	-2.3995
2035	-2.3109	2200	-0.8052	4135	-4.5009	4300	-2.4574
2040	-2.1245	2205	-0.9690	4 1 4 0	-4.4071	4305	-2.5486
2045	-1.9387	2210	-1,1506	4145	-4.332?	4310	-2.6664
20=0	-1.7608	2215	-1.3522	4150	-4.2561	4215	-2.8209
2055	-1.6054	2220	-1.5791	4155	-4.1926	4320	-3.0129
2060	-1.4733	2225	-1.8248	4 1 C C	-4.0956	4325	-3.2516
2065	-1.3594	2230	-2.1073	4165	-3,9611	4330	-3.5482
2070	-1-2540	2235	-2.4246	417C	-3.7984	4335	-3,9165
2075	-1.1480	2240	-2.7877	4175	-3.6314	434C	-4.3714
2080	-1.0341	2245	-3.2152	4180	-3.4757	4745	-4.9726
2085	-0.9216	2250	- 7.7089	<u>4185</u>	-3.3408	4350	-r,6394
2090	-0.9189	2255	-4.2832	4190	-3.2237	4755	-6.5163
2095	-0.7235	2260	-4.9518	4195	-3.1219	4360	-7.6063
2100	-0.6362	2265	-5.7251	4200	-3.0325	4365	-9,3575
2105	-0.5549	2270	-6.5319	4205	-2.9494		
2110	-0.4856	2275	-7.4879	4210	-2.8765		
2115	-0.4401	2280	-9.0885	4215	-2.8117		

have been

C. VALU	E FCR 02						
写真ソ府 兼	с•	NAVE #	С!	WAVE #	C !	WAVE #	C'
7745	-9.8136	7895	-6.9936	12935	-9.7871	13070	-5.6969
7765	-9.7772	7900	-7.0519	12940	-9.6557	13075	-5.5923
7770	-9.5680	7905	-7.0597	12945	-9.6106	13080	-5.5076
7775	-9.4595	7910	-7.0680	12950	-9.5142	13085	-5.4002
7780	-9.3502	7915	-7.1242	12955	-9.4763	13090	-5.3413
7785	-9.1411	7920	-7.2(88	12960	-9.4163	13095	-5.2826
7790	-9.0476	7925	-7.3265	12965	-9.2348	13100	-5.2458
7705	-8.8628	7930	-7.4673	12970	-9.1088	13105	-5.2877
7800	-8.7351	7935	-7.6326	12975	- 8.7946	13110	-5.3743
7805	-8.5838	7940	-7.8110	12980	-8.5876	13115	-5.4654
7810	-R.4282	7945	-8.0096	12985	-8.3128	13120	-5.5262
7815	-8.3271	7950	-8.2104	12990	-8.0945	13125	-5.4429
7820	-8.1958	7955	-8.4036	12995	-7.9127	13130	-5.2430
זראר	-8.0938	7960	-8.5853	13000	-7.7229	13135	-5.0284
7233	-7.9652	7965	-8.7252	13005	-7.5860	13140	-4.8464
2635	-7.8371	7970	-8.8511	13010	-7.4215	13145	-4.7534
7840	-7.7476	7975	-8.9427	13015	-7.2726	13150	-4.7825
7045	-7.6431	7980	-9.0375	13020	-7.1179	13155	-4.9462
7850	-7.5736	7985	-9.1228	13025	-6.9516	13160	-5.2290
7855	-7.5149	7990	-9.2246	13030	-6.8075	13165	-5.6440
7960	-7,4194	7995	-9.3291	13035	-6.6413	13170	-6.1889
7965	-7.2688	0 0.0 3	-9.4436	13040	-6.5043	13175	-6.8427
7470	-7.0722	8005	-9.5716	13045	-6.3519	13180	-7.7731
7875	-6.8815	£010	-9.6951	13050	-6.2112	13185	-9.1688
7880	-6.7627	8015	-9.8408	13055	-6.0839	13190	-9.6893
7885	-6.8055	£ C 2 C	-9.9759	13060	-5.9337		
7007	5 011h	11020	-0 0006	13665	-5 8321		

. . . .

C

l

C' VALUS	FCR CC2						
NAVE #	С 1	WAVE #	C 1	WAVE #	С!	WAVF #	C !
425	-8.6068	680	0.0066	935	-4.4213	1190	-9.3754
420	-8.4323	685	-C.12€9	540	-4.3198	1195	- 8.7756
435	-8.9708	690	-C.2994	945	-4.2786	1200	-8.0904
440	-8.3978	695	-C.4934	950	-4.2843	1205	-7.4827
445	-9.0449	700	-0.7101	95 5	-4.3099	1210	-6.9585
450	-8.9544	705	-0.9087	960	-4.3210	1215	-6.5095
455	-8.6127	710	-1.1004	965	-4.2769	1220	-6.1194
460	-8.4076	715	-1.2694	970	-4.2229	1225	-5.7824
465	-8.2710	720	-1.4CE4	975	-4.2179	1230	-5.4910
470	-8.0391	725	-1.5622	980	-4.2950	1235	-5.2532
475	-7.9485	730	-1.6810	9 <u>6 6</u>	-4.4789	1240	-5.0840
490	-7.9638	735	-1.7841	<u>990</u>	-4.7550	1245	-4.9920
485	-7.7849	740	-1.8073	Ç Ç Ę	-5.0902	1250	-4.9577
490	-7.6278	745	-2.0274	1000	-5.4329	1255	-4.9638
495	-7.1418	750	-2.2070	1005	-5.6689	1260	-4.9741
500	-6.7823	755	-2.4264	1010	-5.6608	1265	-4,9555
505	-6.3826	760	-2.676?	1015	-5.4582	1270	-4.9466
510	-6.0323	765	-2.9312	1020	-5.1969	1275	-4.0774
515	-5.7501	770	-7.1896	1025	-4.9419	1280	-5.C719
520	-5-5249	775	-3.4262	1030	-4.7106	1285	-5.2558
575	-5.3304	780	-7.5979	1035	-4.5094	1290	-5.5213
530	-5.0105	785	-3.7051	1040	-4.3409	1295	-5.8633
575	-4.7703	795	-3.7372	1045	-4.2211	1300	-6.2877
540	-4-5714	795	-3.7983	1050	-4.1563	1305	-6.7878
545	-4.3919	608	-3.9154	1055	-4.1259	1310	-7.2602
553	-4.2974	805	-4.0520	1060	-4.1109	1315	-7.2940
555	-4.1370	810	-4.2567	1065	-4.0803	1320	-6.8524
560	-3.8761	E15	-4.4661	1070	-4.0211	1325	-6.3372
5.65	-3,5936	820	-4.6670	1075	-3.9824	1230	-5.8854
570	-3.2852	825	-4.9226	1080	-4.0053	1335	-5.5065
575	-3.0016	630	-5.2203	1085	-4.1221	134C	-5.2011
580	-2.7303	835	-5 5597	1090	-4.3504	1345	-4.9776
5.85	-2.4868	840	-5.9075	1095	-4.6741	1350	-4.8471
FQA	-2.2741	£4=	-E.2130	1100	-5.0826	1365	-4.7885
595	-2.0936	650	-6.4719	1105	-5.5857	1360	-4.7783
600	-1.9424	855	-5.8310	1110	-6.2301	1365	-4.7815
605	-1.8092	860	-5.8948	1115	-7.0823	1370	-4.7538
610	-1-6843	2 4 3	-5.9503	1120	-8.1344	1375	-4.7228
615	-1.5372	870	-6.0217	1125	-8.8601	1380	-4.7259
620	-1.3803	875	-6.0392	1130	-9.0457	1385	-4.7860
625	-1.2043	680	-5,9855	1135	-9.1231	1390	-4.9231
630	-0.9933	FDE	-5.8620	1140	-9.0728	1305	-5.1270
635	-0.7724	890	-5.6934	1145	-9.1413	1400	-5,3831
640	-0.5509	875	-5.5083	1150	-9.1221	1405	-5.6849
645	-0.3465	900	-5.2473	1155	-9.1882	1410	-6.0351
650	-0.1785	905	-5.2028	1160	-9.275?	1415	-f.4437
655	-3.0473	910	-5.0799	1165	-9.22.77	1420	- E. 9160
660	0.0449	915	-4.9623	1170	-9.3604	1425	-7.4815
665	0.1114	920	-4.8379	1175	-9.3059	1430	-8.1437
670	0.1367	925	-4.703?	1180	-9.5455	1435	- 8.9449
675	0.0910	930	-4.5584	1185	-9.5567	1440	-9.F°64

CI VALD	E FCF CC2						- •
መላህም #	C !	WAVE #	C *	WAVE #	C *	KAVF #	C •
1445	-9.7726	2055	-3.2100	2310	0.4396	2565	-5.9818
1450	-7.7872	2060	-3.1041	2315	0.6260	2570	-6.0065
1455	-9 6974	2065	-3.0411	2320	0.8081	2575	-5.9747
1423	0 7070	2070	-3 0//71	2225	0.9681	2580	-5,8741
1469	- 7. 7232	2070	-3.1077	5330	1 0859	25.85	-5.7230
1420	-4,7200	2070	-3.1077	2220	1 15 7 2	2590	-5.5F20
1325	-8.1184	2090	-3.2367	2335	1 1061	2.00	- 5 4 7 5 9
1930	-7.6555	2085	- 3-4214	2340	1.1051	2	E 3700
1035	-7.1673	2090	-3.6115	2345	1.20.39	2600	
1940	-6,7226	2095	-3.7542	2350	1.2255	2605	-5-16/9
1245	-6.3423	2100	-3.8666	2355	1.2587	26 10	-5.3827
1850	-6.0410	2105	-3.9338	2360	1.2473	2615	-5.3837
1055	-5,9154	2110	-4.0079	2365	1.1457	2620	-5,3460
1861	-5.6519	2115	-4.0962	2370	C.9139	2625	-5.3186
1065	_5 5196	5120	-4.2142	2375	0.5250	2630	-5,2394
1071	-5 7950	2120	-4. 1477	2380	C.0177	2635	-5.4320
1070	E 1070	2120	-1 2670	2785	-0-5796	2640	-5.6095
1875	22/9	21.30	-4-2070	2300	-1 3944	2645	-5,8446
1420	-5.0238	2 1,10	-4.4750	2390	_7 39H1	2650	-6.0002
1885	-4.7865	2140	-4.0018	223.	-2+3841	2050	-6.3399
1430	-4343	2145	-4.8204	2400	-2.1244	2650	-6 5/199
1895	-4.2846	2150	-4.9499	2405	-2.3204	2000	
1900	-4.0560	2155	-4.9862	2410	-3.0689	2000	- 6 0 2 5 0
1905	-3.8717	2160	-5.3171	2415	-3.2120	2070	-0.9379
1910	-3.7624	2165	-5.0282	2420	-3.3353	2675	-7.1219
1915	-3.7231	2170	-5.0580	2425	-3.4510	2680	-7.2818
1320	-3.7335	2175	-5.0358	2430	-3.5566	2685	-7.3984
1925	-3.8312	2180	-4.9465	2435	-3.6518	2690	-7.4881
1930	-3 0854	2185	-4.7816	244C	-3.7460	2695	-7.5452
1935	-4 1930	2190	-4.5538	2445	-3.8500	2700	-7.5994
1040	-1 4995	2195	-4-2975	2450	-3.9680	2705	-7.6445
1045	-4 7394	2200	-4.0286	2455	-4.0981	2710	-7.6734
1050	-1 6902	2205	-3.7528	2460	-4.2259	2715	-7.6422
1055	-4.0532	5210	-3 4715	2465	-4.3369	2720	-7.5057
1955	-4.7497	2210	-7 1600	2400	-4.4329	2725	-7.2650
1950	-4.9392	2210	-2 00/11	5476	-4.5305	2730	-6.9975
1700	-4.9/5/	2220	-3 4107	2490	-4 6264	2735	-F. 7749
1975	-5.1129	2223		2400	-11 7/138	2740	-6.6398
1975	-5.3330	2230	- 2. 3212	2400		2745	-6.5575
1980	-5.6093	2230	-2.0435	2430	- 5 0042	2750	-6 5012
1945	-5,8852	2240	-1.7894	2473	- 3.0243 E 11/10	2755	-6 6192
1990	-6.0581	2245	-1.5531	2500		2733	-6.6155
1905	-6.0274	2250	-1.3382	2505	-3.23/1	2700	-0.0135
2000	-5.8356	2255	-1.1515	2510	-5-2781	2700	
2005	-5.5989	2260	-(,999)	2515	-5.3209	2770	-0.0001
2010	-5.3738	2265	-0.8833	2520	-5.4120	2775	-6.6:82
2015	-5.1661	2270	-0.8006	2525	-5.5352	2780	-6.1736
2020	-4.9472	2275	- C. 7227	2530	-5.3347	2795	-7.0009
2025	-4.7020	2280	-0.6288	2535	-5.4523	2790	-7.2896
2010	-4.4354	2285	- (.4977	2540	-5.5633	2795	-7.6327
2020	-4.1439	2290	-0.3249	2545	-5.6646	2800	-7.9767
2010	-3,8561	2295	-0.1349	2550	-5.7593	2805	-8.2633
5 - H E		2300	0.0576	7555	-5.8461	2810	-8.4744
2040	-7 3604	2200	6.2487	2560	-5.9229	2815	-9.5455
ر، ۳۰ <u>(</u> ۲۰۰		Z J V	1 • A - V I	e			

÷.

Ł

•.*

57

••••

. . . .

C! VALUE	FCF CC2				.	rs (s. 10) 17: 24	C1
KAVE #	C !	NAVE #	C •	WAVE #		WAVE *	
2820	-8,5813	3310	-5.3068	3565	-1.5992	0182U	
2825	-8.6025	3315	-5.2546	3570	-1.4873	2825	
2830	-8.6459	3320	-5.2991	3575	-1.3646	28.30	0-46
3070	-9.8006	3325	-5.3819	0335	-1.2260	7835	-5.1454
3075	-9.5049	3330	-5.4615	3585	-1.0721	3840	-5.3274
3080	-9.1347	2335	-5.4117	3590	-0.9281	3845	-5.5863
30.95	-8.7254	3340	-5.2107	3595	-0.8379	3850	-5.8889
3390	-8.4410	3345	-5.0103	3600	-0.8123	2855	-6.1770
3.305	-9 1781	3350	-4.8232	3605	-0.8261	3860	-6.3555
2101	-9 0192	3355	-4.7571	2610	-0.8483	3865	-6.4096
3100	-7 6791	3360	-4.6850	3615	-0.8305	3970	-6.4371
2110	-7.9301	3365	-11 7385	3620	-0.7792	2875	-6.5112
3110	-7.0770	3305	-1 8767	7675	-0.7626	3880	-F. FE80
3117	7.030	2370	-5 10.00	3630	-0.8228	3885	-6.9183
120	-7349	23/2	- 5 0015	3635	8088 1-	1890	-7.2418
3125	-7.2962	3300	4010 c 7750	5640	-1 2503	2895	-7.5827
3130	-/.0244	2380		2040	-1 53/17	1900	-7 8704
3135	-6.7556	2.190	-0.2220	3043	-1-3347	3075	- 6 (65 1
3140	-6.4888	2395	-5.5681	2020	1 00 7 7	3010	-6 1705
3145	-6,2443	3400	-6.912/	3000	-1.903/	3910	
3150	-6.0422	3405	-6.8919	3660	-2.071-	3913	- 6.2000 0.0554
3155	-5.9088	3410	-6,6972	3665	-2.0375	3920	
3160	-5.8590	3415	-6.5012	3670	-1.8975	2920	
3165	-5.890	3420	-6.3123	3675	-1.6905	2930	-8.4304 6.3000
3173	-5.9850	3425	-6.1091	3680	-1.4497	3935	-8.3920
3175	-6.0949	3430	-5.8641	3685	-1.2048	3940	-8.2785
3180	-6.1164	2435	-5.6869	3690	-C.9831	3945	-8.0499
1185	-6.0207	3440	-5.3057	3695	-0.8125	3950	-1.1431
3190	-5.8592	3445	-5.0340	3700	-0.7157	3955	-7.4140
3195	-5.7110	3450	-4.7826	3705	-0.6707	3960	-7.1153
3200	-5.6328	3455	-4.5476	3710	-0.6532	3965	-6.8861
3205	-5.6369	3460	-4.3277	3715	-0.6297	3970	-6.7422
3210	-5.7274	3465	-4.1224	3720	-0.5706	3975	-6.6786
3215	-5.9069	3470	-3.9333	3725	-0.5263	3980	-6.6774
1223	-6.1720	3475	- 3.7675	3730	-0.5489	2985	-6.7053
1225	-6.5203	3480	-3.6324	3735	-0.6857	3e90	-€.7090
1210	-6.9586	2485	-7.5167	374C	-0.9793	3995	-6.6794
3775	-7.4776	3490	-3.4043	3745	-1.3962	4000	-F. FC55
3740	-8.0607	3495	-2.2744	3750	-1.8673	4005	-6.4827
3745	-8.5514	7500	-3.1180	2755	-2.3655	4010	-6.3454
125)	-8.7011	3505	-2.9557	3760	-3.5436	4015	-6.2401
2055	-9 11232	3510	-7.8254	3765	-4-0424	4020	-f. 1992
326.)	-7 9274	7515	-2.7769	3770	-4.4084	4025	-6.2576
3265	-7 (159	== 20	-2.6721	7775	-4.6849	4030	-6.4837
2270	-7 2026	3575	-2.6084	3780	~4.8667	4035	-F. 8490
327U 377E	-7 1040	2530	-2 5105	3785	-4.9516	4040	-7.4312
3 (/* 7 10 1	-7 0503	2000 2000	-2.1772	790	-4.9790	4045	-8.4606
2200	-6 7605	3510	-7 7717	3795	-4.9927	4050	-0.7.64
2277	-6 4000	3540	-7.0566	22345	-5.0207	4055	- \$. 8771
3290	-0.4022	194. 1660	-1 CFC1	30.00	-5-0596	4060	-5, 8840
3235	-E-7405	2729		5 G 1 C	-5,0059	40.65	-0 0550
1100	-7./// E 4/EC	1000	- 1 7110	3615	-5 1019	4000	-10.0000

.

CI VALUP FC	F CC2				C 1		C!
ፍላለጅ #	C ! K	AVE #	C *	WAVE 4	2 2065	NAVE #	-7 0561
4175 -10.	0000	4755	-4.7213	5010	-3.3950	5070	
4090 -10.	0000	4760	-4.5868	EC 15	-3.8527	2270	-0.7500
4085 -10.	0000	4765	-4.4594	5C2C	-4.2541	7273	-6.4771
1090 -10.	0000	4770	-4.3387	5025	-4.5682	5280	-6.1990
4095 -9.	9764	4775	-4.2219	5030	-4.7376	5285	-5.9593
8183 -10.	0.000	4780	-4.1002	5035	-4.7524	5290	-5.7560
4105 0	9822	4785	-7.9812	5 C 4 C	-4.6733	5295	-5.5370
4135 -24	6003	4790	-7.8876	5045	-4.5170	5300	-5.2836
4535 576	0000	1795	-7.8207	5050	-4.3123	5305	-5.0966
4040 - 74	5702	4600	-3.7673	5055	-4.0991	5310	-4.9583
4545 764	2250	4000	-3 7120	FCFC	-3.8565	5315	-4.9126
4551 -8.	2034	4605	-2 6723	FC6F	-7.6219	F320	-5.0022
yere -7.	4090	4810		6070	-7.3909	5325	-5.1370
4560 -7,	,7157	4817	- 3. 4912	5070	-3 1785	£ 3 3 0	-5.3465
4565 -7.	.6145	4820	-3.3444	5073		E 3 3 6	-5.6279
4570 -7	.5964	4825	- 1. 1983		-3.0105	6380	9764
4575 -7	.5942	0634	-2.0732	5685	-2.910*	63/15	-6 3695
4580 -7	.5256	4835	-3.0262	5090	-2.8788	5343 5350	
4585 -7	.3190	484C	-3.0078	5095	-2.8286	5350	-C.9FU2
4500 -6	9986	4845	-3.0123	5100	-2.7912	5355	- /. 6823
4595 -6	6884	4850	-3.0213	5105	-2.7207	5360	-8.2701
4635 -6	4102	4855	-2.9957	5110	-2.6729	5365	-8.642/
4600 -6	1769	4860	-2.9261	5115	-2.6858	5370	-9.0728
4600	0092	11865	-2.8770	5120	-2.7745	5375	-9.5366
4510 -3	• 7502 cu 0 1	4820	-2.8887	5125	-2.9414	5920	-8,9954
4515 -0	• C 4 Z 1 74 0 0	1975	-7.9857	f 130	-3.1445	5925	-8.5140
4620 70	7977	46.70	-3.1609	5135	-3.3617	5930	-8.2066
4625 -7	. / 20 ,	4000	-3 3603	5140	-3.5954	5935	-7.9742
4630 -5	. / 189	4003	-3 5469	E 145	-3-8508	£940	-7.8579
4635 -5	./108	4690	-3.6750	5150	-4.1779	5945	-7.8073
4640 -5	.000%	4897	- 3.07.5	C 155	-4.5122	5950	-7.7894
4645 -5	.5955	4900	- 3. 7400	F 160	-4.8985	5955	-7.7466
4650 -5	.5686	4905	-3.7704	_ 1CV	-5 3026	5960	-7.709
1655 -5	.6287	4510	-3.7555	5 100 E 170	-0.0420	F065	-7.6393
4660 -5	. 8000	4915	-3./113	5176	-3.0737 2.0730	5070	-7.5589
4665 -6	.0855	4920	-3.6368	= 1/3	-0.47.34	6075	-7.5697
4670 -6	.4398	4925	-3,5277	5180	-/.0/10	5090	-7 5200
4675 -6	.7793	493C	-3.3812	5185	-7.5042	5900 5005	-7 3008
1683 -6	.9427	4935	-3.2020	5 190	-7.60.34	2200	-7.1706
4685 -6	\$.9205	4940	-3.0043	5195	-7.5143	2990	-6.0610
1690 -F	. 8363	4945	-2.8020	5200	-7.4358	5995	-0.9010
4605 -6	5.7059	4950	-2.€122	5205	-7.4089	6000	- 6. / 603
4700 -6	5.5272	4955	-2.4524	5210	-7.3969	6005	-0.09/2
1765 -1	6.2903	4960	-2.3405	5215	-7.3813	6010	-6.6/30
4702 -1	5.0085	4965	-2.2838	5220	-7.3018	6015	-6.6775
4715 -	5 7274	4970	-2.2521	5225	-7.1858	6020	-6.6495
4112 -	5 4777	4975	-2.2319	5230	-7.0633	6025	-t.5292
シブスシー ニー ルコンピー・	5 3 77 7	LIGAN	-2.1960	5235	-6.996?	€030	-6.3435
4725 -	3.2(/ <u>6</u> E 16/1	4 900	-2.1562	F24C	~6.9905	E035	-6.1371
4730 -	つ。 (つりし)	8007 8007	-2 1732	F745	-7.0319	E040	-5.9268
4735 -	して 1010日 1010日 1011日 101	4376	-2 -7 -2	E3E0	-7.1331	£045	-5.7254
4740 -	5.0219	4333	-2.2713	5755	-7.2054	£050	-5.5433
4745 -	4.9579	5000	-2.3470	C C C C C	-7 1956	6055	-5.4023
4750 -	4.9555	5005	-2.9382	200	- F. (* 10	•• v J.I	

.

59

C' VALDE	FCR CC2						
KAVE #	C!	WAVE #	C *	WAVE #	C !	WAVE #	C !
6060	-5.3292	6315	-4.8634	£570	-7.5010	6825	-10.0000
6065	-5.3090	6320	- 4 6378	6575	-8-1628	6830	-10.0000
6070	-5 3171	6325	-1 1559	6550	-8 9951	6635	-9 4 (90
0070	-343171	C320	-4.4339	COCO	-0.0031	6040	
6975	-2.3193	6330	-4.3360	6363	-9.8931	6840	-8.8272
6080	-5.2705	6335	-4.2752	6590	-10.0000	6845	-8.3057
6085	-5.2085	€340	-4.2461	6595	-10.0000	6850	-7.8885
6090	-5.1835	6345	-4.2257	€600	-10.0000	6855	-7.5044
6095	-5.2186	6350	-4,1768	6605	-10,0000	6860	-7, 1560
6100	-5. 3367	6355	-4.1068	6610	-10.0000	6865	-6.8292
6105	-5 5205	6360	-1 0713	6615	-10 0000	6970	-6 5250
6110	- J. (J. J. (J. J. (J. (J. (J. (J. (J. (J	6366	-4.0743	6613		6070	- C - 1 2 3 0
0110	-7.1125	0.300	-4.1193	6 n 2 U	-10.0000	C150	-0.2401
6115	-6.0228	6370	-4.2732	1625	-10.0000	6880	-5.9904
6120	-6.2150	€375	-4.5464	6630	-9.4967	6885	-5.7533
6125	-6.2857	€380	-4.9256	6635	-8.9198	6890	-5.5295
6130	-6.2634	6385	-5.4090	6640	-8.5081	6895	-5.3135
6135	-6.2250	€390	-F.C184	6645	-8-1255	6900	-5.1058
6143	-6.2234	6395	-6.7985	665C	-7.8286	6905	-4.0152
6145	-6 2616	6400	-7 7079	4455	-7 5/79	6010	-11 7167
6143	-0.2010	6400		6660	-7.3470	6015	-4.7403
0120	-0.2931	6400	- 2.3437	CCCL	-7.1467	0913	-4.0074
6155	-6.2508	E41C	-8.5160	6665	-6.7853	6920	-4.4937
6160	-6.0971	€415	-8.6106	6670	-6.5537	6925	-4.3928
F165	-5.8679	E420	-8.8175	6675	-6.3931	6930	-4.2838
6170	-5.6195	6425	-9.1922	6660	-6.4107	6935	-4.1626
6175	-5. 3906	6430	-9.6775	EE85	-6.5087	6940	-4.0387
6180	-5.1944	6435	-9.7423	6690	-6-6607	6945	-7.9795
6105	-5 0016	6400	-6 1060	6605	-6 0006	6050	-3 6613
C 1C C 4 100	- 3. UZ IC	6440	-3.1900	6000	-7.3100	69.0	
6190	-4.8000	0440	-F.4120	6766	-7.2104	0930	- 3.60J1
N 195	-4-6919	6450	-7.7499	6705	-1.4445	n 4 n U	-3.8647
6200	-4.5255	6455	-7.1685	£710	-7.6303	6965	-3.8625
6205	-4.3785	€460	-6.6817	6715	-7.6346	€970	-3.8099
6210	-4.2879	6465	-6.2701	6720	-7.4521	6975	-3.7351
6215	-4.2583	€470	-5.9301	6725	-7.2211	6980	- 3. 7 179
6220	-4.2636	6475	-5.6567	6730	-7.0043	6985	-1 5540
6225	-1.2768	6480	-5 4521	6735	-6.7903	6990	-1 2312
6223		6405	-5 3360	6700	-6 5666	6006	-11 7622
6230	-4.2404	6453	-0.02C7	6740	-0.0000	7000	-4.7832
523D	-4.1553	1490	-7.2118	r /40	-0-3499	7000	4270
6240	-4.1586	6495	-5.2630	F750	-6.1534	7005	-6.4200
6245	-4.2079	€500	-5.2547	6755	-5-9988	7010	-8.1414
6250	-4.3651	6505	-5.2083	6760	-5.9033	7015	-9.0451
6255	-4.6407	6510	-5.1296	6765	-5.8760	7020	-9.5326
6260	-5.0141	6515	-5-0823	6770	-5-8693	7025	- 9, 8301
6265	-5.4710	£520	-5.0914	6775	-5.8277	7795	-9.9472
6777	-6.0.15	6525	-5 1806	6780	-5,7262	71.00	-0.6071
6275	_6 5173	6620	_5 3573	6700	-5 6363	7400	- 6 0303
12/J 6060	-0.21/2	C 1 3 U 4 E 1 E	- 0.JUU 6. 6400			7405	-5.4/4/
- /	-0.7829	0.0.57	-5.5600	r /90	-3.5865	7410	4248
FZQE	-6.6805	€540	-5.7877	F795	-5.6665	7415	-7.8906
£.50)	-6.4190	6545	-5.9936	6800	-5.9229	7420	-7.4477
6295	-6.0793	€550	-6.1720	6805	-6.3399	7425	-7.0750
6300	-5.7434	6555	-6.3801	£810	-7.0180	7430	-6.7698
~3C=	-5.4204	6560	-6.6371	6915	-8.4230	7475	-6 5338
6310	-5.1265	6565	- F. 99F4	F 8 2 C	- 10,0000	7443	-6 3739

C' VALU	E FCF CC2						
SAVE #	C !	WAVE #	C 1	WAVE #	С'	WAVE #	C *
7445	-6.2980	7630	-7.2957	7815	-10.0000	8175	-5.3426
7450	-6.2739	7635	-F.2799	7820	-9.7837	8180	-5.3061
7455	-6.2726	7640	-9.9457	5003	-8.0071	8185	-5.2648
74€0	-6.2555	7645	-10.0000	5003	-8.3143	8 190	-5.1864
7465	-6.1989	7650	-10.0000	EC 10	-8,9433	£195	-5.0876
7470	-6.1529	7655	-10.0000	8015	-9.8283	8200	-5.0226
7475	-6.1654	7660	-10.0000	8020	-10.0000	8205	-5.0397
7480	-6.2594	7665	-10.0000	8025	-10.0000	8210	-5.1905
7485	-6.4610	7670	-10.0000	8030	-10.0000	8215	-5.4858
7490	-6.7905	7675	-10.0000	8035	-9.5350	£220	-5.9101
7495	-7.2235	7680	-9.2766	EC40	-8.9686	8225	-6,4851
7500	-7.8191	7685	- 8.6201	8045	-8.5329	8230	-6.7862
7505	-8.5850	7690	-8.0764	6050	-8.1920	8235	-6.5368
7513	-9.6084	7695	-7.6374	8055	-7.9237	8240	-f.2765
7515	-10.0000	7700	-7.2752	8060	-7.6797	8245	-6.0398
7520	-10.0000	7705	-6.9802	8065	-7.5039	8250	-5.8260
7525	-9.9199	7710	-6.7578	8070	-7.3667	8255	-5.6397
7530	-9.1093	7715	-6.6163	8075	-7.2856	8260	4799
7535	-8.4490	7720	-6.5546	8080	-7.1969	8265	-5.3438
7540	-7.9158	7725	-F.5392	8685	-7.0745	8270	-5.2274
7545	-7.4364	7730	-6.5397	00033	-6.9330	8275	-5.1411
7550	-7.0400	7735	-F.5132	8095	-6.7926	8280	-5.0917
7555	-6.6958	7740	-6.4531	8100	-6.6818	6285	-5.0473
7560	-6.4131	7745	-6.4161	8105	-6.6144	8290	-4.9820
7565	-6.1855	7750	-6.4482	E 110	-6.5643	8295	-4.9114
7570	-6.0158	7755	-6.5683	8115	-6.5183	8300	-4.8634
7575	-5.9123	7760	-5.8086	F 120	-6.4910	8305	-4.8844
7580	-5.8700	7765	-7.1762	8125	-6.4481	8310	-5.0363
7585	-5.8530	7770	-7.6772	E130	-6.3567	E315	-5.3351
7590	-5.8340	7775	-8.3574	8135	-6.2177	P320	-5.7802
7595	-5.7866	7780	-9.2188	E 14 C	-6.0566	8325	-6.5387
7600	-5.7224	7785	-10.0000	8145	-5.9096	6330	-8.3735
7665	-5.7348	7790	-10.0000	£150	-5.7975	8335	-9.9977
7610	-5.7653	7795	-10.0000	8155	-5.7093	8340	-10.0000
7615	-5.9281	7800	-10.0000	£ 160	-5.6165	8345	-9.8473
7620	-6.2234	7805	-10.0000	£165	-5-5127		
7625	-6 6646	7810	-9.95CS	£ 170	-5.4124		

C' VALUE PCF NC						
₩5VE # Ст	WAVE #	۲.	WAVE #	۲,	WAVE #	C 1
1700 -5.1830	1775	-3.03€R	1850	-0.5488	1925	-C.7C62
1705 -5.0434	1780	-2.7282	1855	-0.5673	1930	-0.8751
1710 -5.4919	1785	-2.4448	1660	-0.6076	1035	-1.0852
1715 -5.1001	1790	-2.1791	1865	-C.6791	1940	-1.3406
1720 -6.4802	1795	-1.9315	1870	-0.7553	1945	-1.6473
1725 -6.0647	1800	-1.7046	1875	-0.7811	19=0	-2.0068
1730 -5.7193	1805	-1.4984	1880	-0.7711	1955	-2.4335
1735 -5,3955	1810	-1.3133	1885	-0.6840	1960	-2.9068
1743 -5.1475	1815	-1.1496	1890	-0.5704	1965	-3.4595
1745 -4.8233	1820	-1.0036	1895	-0.4791	1970	-4.0370
1750 -4.5194	1825	-0.8776	1900	-0.4138	1975	-4.6795
1755 -4.3184	1830	-0.7699	1905	-C.3950	1980	-4.7664
1760 -3.9664	1835	-0.0811	1910	-0.4189	1985	-4.7903
1765 -3.7045	1840	-0.6124	1915	-0.4794	1990	-4.6311
1770 -3.3398	1845	-0.5667	1920	-0.5751	1995	-4.4528

ľ.

CI VALU	E FCF NC2						
WAVE #	С !	NAVE #	C '	WAVE #	۲)	WAVE #	C'
1540	-2.9612	1605	1.2926	1670	-2.4451	2900	-0.0934
1545	-2.1733	1610	1.3006	2840	-2-8320	2905	-C.C723
1550	-1.5514	1615	1.3128	2845	-2.3736	2010	-0.0267
1555	-1.0260	1620	1.3449	2850	-1.9565	2915	0.0016
15F0	-0.5817	1625	1.3656	2855	-1.5769	2920	-0.0394
1565	-0.2030	1630	1.3245	2860	-1.2400	2925	-C.1700
1570	0.1231	1635	1.1868	2865	-0.9384	2930	-C.4141
1575	0.4098	1640	0.9310	2870	-0.6781	2935	-0.7861
1563	0.6653	1645	0.5907	2875	-0.4630	2940	-1.2951
1585	0.8895	1650	0.2056	2880	-0.2944	2945	-2.0379
1590	1.0716	1655	-0.2337	2885	-C.1783	2950	-3.0984
1595	1.2025	1660	-0.7633	2890	-0.1213		
1600	1.2697	1665	-1.4541	2895	-0.1033		

فمعمده

Ĩ

-

...

•

÷

.

- .

C' VALUE	FCR NH3						
WAVF #	С!	WAVE #	C'	WAVE #	C '	WAVE #	
660	-4.9341	915	-0.5100	1170	-1.6841	1460	-2.1212
665	-4.7768	920	-0.1627	1175	-1.7984	1465	-2.0140
670	-4.5938	925	0.0595	1160	-1.9437	1470	-1.8868
675	-4.3749	930	0.1488	1185	-2.0432	1475	-1.8353
680	-4.1982	935	0.0281	1190	-2.1450	1480	-1.7307
685	-4-0293	940	-C.2419	1195	-2.2407	1485	-1.6113
690	-3.8234	945	-0.5056	1200	-2.4288	1490	-1.5590
695	-3,6327	95C	-0.4987	1205	-2.5620	1495	-1.4€23
700	-3.4693	955	-C.2867	1210	-2.7198	1500	-1.3716
705	-3. 7029	960	-0.0587	1215	-2.9606	1505	-1.3386
710	-3, 1214	965	C.0428	1220	-3.1045	1510	-1.2717
715	-2.9817	970	-0.1298	1225	-3.2475	1515	-1.2039
773	-2.8317	975	-C.4164	1230	-3.4040	1520	-1.1798
775	-2.6983	980	-0.7749	1235	-3.6805	1525	-1.1452
730	-2.5246	985	-1.1858	1240	-3.8494	1530	-1.1172
735	-2 3530	990	-1.1686	1245	-4.0514	1535	-1.1408
73.	-2 - 2 - 2 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	095	-1.0070	1250	-4.3797	1540	-1.1639
740	-2.2043	1000	-0.0172	1255	-4.5783	1545	-1.1725
743	-2.0791	1605	-0.8298	1260	-4.7647	1550	-1.2132
750		1010	-0 7863	1300	7,3952	1555	-1.2481
760	-1-7400	1015	-1.7886	1305	- , 1910	1560	-1.2675
700	-1.6151	1070	- 6 7423	1310	-7.4919	1565	-1.3185
(7) 770	-1 4015	1020	-C 60FU	1:15	-7.2079	1570	-1.3827
770	-1 2763	102.0	-0 6174	1320	-7.6170	1575	-1.4162
7/2	-1-3586	1035	-0 5505	1725	-7.2198	1580	-1.4494
700	1 2040	1000	-0 5353	1730	-6-8949	1585	-1.4850
700	-1.1503	1040	-0 5005	1335	-6.5680	1590	-1.4669
790	1 1005	1045	-0 5341	1740	-F. 3074	1595	-1.4293
930	-1.120	1055	-0 5589	1-4-	-6.0441	1600	-1.3651
800	-1.0024	10.0	-1 5597	1350	-5.7972	1605	-1.1944
010		1065	-0.5463	1355	-5.5944	1610	-0.9926
010	-0.9223	1000	-0 5302	1360	-5.3634	1615	-0.7724
070	-0.0160	1075	-0 5105	1965	-5.1414	1620	-0.5642
5/5	-0.0102	1080	-0 -207	1370	-4.8800	1625	-0.4127
820 0 0 0		1085	-0.5574	1:75	-4.6796	16:30	-0.3624
075	-0.674-	1090	-0.6223	1380	-4.5039	1635	-0.3733
an 1	-0,0369	1095	-0-6887	1365	-4.3317	1640	-0.4224
54J 015	-0.0309	1100	- (7464	1790	-4.1864	1645	-0.4976
050	-0.20	1105	-0.7807	1395	-4.0550	1650	-0.5992
055	-0.7933	1110	-0.8110	1400	-3.8773	1655	- 0.7177
067	-0.9461	1115	-C. 6369	1405	-3.6570	1660	-0.8393
065		1120	-0.8775	1410	-3.4705	1665	-0.9737
07.7	-0.9816	1125	-0.0557	1415	-3.3075	1670	-1.1044
075	-1 0600	1170	-1.0419	1420	-3.1389	1675	-1.1958
201 201	-1 0776	1175	-1.1319	1425	-2.9977	1680	-1.2569
0 C J 0 C K	-1 2029	1140	-1 1077	1470	-2-8696	1685	-1.2831
<u>0000</u>	-1.0388	1145	-1.2769	1435	-2.7134	1693	-1.2384
0 ° V Q C C	-1.1118	1150	-1.3430	1440	-2.5520	1695	-1.1918
933	-1,1490	1155	-1.4061	1445	-2.4479	1700	-1.1441
200	-1.1007	1160	-1.4710	1450	-2.3261	1705	-1.0739
911	-).8998	1165	-1.5791	1455	-2.1880	1710	-1.0268

C VALUE FOR NH3		(1	WAVE #	ر،	WAVE #	с•
	4925 +	-1 000g	1815	-1.6031	1865	-2.2126
1711.0058	1703	-1.1756	1820	-1.6977	1870	-2.1714
1720 -1.0062	1775		1825	-1.8202	1875	-2.1603
1725 -1.0087	1790	-1 2036	1830	-1.8948	1880	-2.2731
1/30 -1.0004	1785	-1.2444	1835	-1.9623	1885	-2.4550
1740 -0 6503	1790	-1-2782	1840	-2.0170	1890	-2.6636
1746 -0.3303	1795	- 1. 74 10	1845	-2.0618	1895	-2.8875
	1800	-1.4087	1850	-2.1687	1900	-3.1030
1755 -1 0538	1805	-1.4636	1855	-2.2396		
1760 -1.0781	1810	-1.5330	1860	-2.2434		

C VALUE FCF SUZ								
WAVE #	C *	WAVE #	۲,	WAVE #	C1	KAUF #	C I	
420	-5.2563	610	-2.1065	1210	-0.7019	1000	-1.0612	
425	-4.4248	615	-2.5705	1215	-0-8299	1005		
430	-3.7369	620	-3.1238	1220	-0.9729	1400	-1.7715	
435	-3.0917	625	-3.7691	1225	-1 1305	1410	-2.0689	
440	-2.5200	630	-4.5753	1230	-1 3036	1413	- :- 0225	
445	-2.0303	635	-5.7012	1235		1420	- 3. 3542	
450	-1.6307	1050	-2.4522	1240	-1 7000	1420	-2.7239	
455	-1.3056	1055	-2.1783	1245	-1 0306	1430	-4.1986	
450	-1.0373	1060	-1.9317	1250	-7 1906	1433	-4.7852	
465	-0.8189	1065	-1.7073	1255	-2 1950	1440	-5.6390	
470	-0.6395	1070	-1.5004	1260	-2 6612	24.30	-6.1933	
475	-0.4880	1075	-1.3136	1265	-7 7176	2430	-5-3530	
480	-0.3574	1080	-1.1444	1270	-3 0776	2440	-4.8802	
485	-0.2369	1085	-0.9901	1276	-3.72;9	2443	-4.1286	
490	-0.1237	1090	-0.8505	1280	-5 2561	2470	-2.9022	
49 E	-0.0261	1095	- C. 7238	1285	-11 7087	2400	-2.3525	
500	0.0250	1100	-0.6083	1290	-11110	2400		
505	0.0186	1105	-0.5025	1295	-7 65 65	2405	-1.51/8	
510	-0.0194	1110	-0.4016	1300	-7 1967	2470	-1.2295	
5 1 5	-0.0659	1115	-0-3047	1305		24/5	-1.0082	
520	-3.0638	1120	-0.2112	1310		2480	-0.8484	
525	-0.0065	1125	-C. 12F3	1716	-1 2000	2480	-0.7634	
530	0.0468	1130	-0.0656	1720	-1.3069	2490	-9.7340	
535	0.0682	1135	$-C_{-}0414$	1325	-0+00000 -0 0/11	2495	-0.7203	
54C	0.0355	1140	-0.0509	1370	- 1.0412	2000	-0.7167	
545	-0.0431	1145	-0.0731	1775	0 6710	2000	-0.7047	
550	-).1334	1150	-0.0802	1340	0.00712	2710	-0.7297	
555	-0.2175	1155	-0.0483	1745		2515	-0.8391	
560	-0.2954	1160	2.00.2	1750	1 11/15	2020	-1.0472	
545	-0.3738	1165	0.0339	1355	1 1070	¥020 0500	-1.3607	
570	-J.4588	1170	0.0249	1760	1 1300	2730	-1.7720	
575	-0.5571	1175	-0.0296	1765	1 1227	2030	-2.2957	
580	-0.6729	1180	-0.1170	1770	1 1450	2~40	-2.0566	
585	-0.8131	1185	-C.2141	1775	1 1007	2040	-4.1073	
590	-0.9805	1190	-0.3069	1380	1 96 1 7	2759	-4337	
595	-1.1831	1195	-0.3968	1705	0 7107	2000	-4.9481	
630	-1.4334	1200	-0.4881	1790	0. 7.01	2750	-2.4542	
605	-1.7354	1205	-0.5881	1395		2000	-1.2445	
				142.	V. Z 122			

APPENDIX B

Sample Comparison Between High-Resolution and Degraded Line-By - Line Calculations and Measured Transmittance Spectra for CO_2 , CH_4 , NO_2 , N_2O and SO_2 .

• • • • . . . <u>.</u> .

APPENDIX C

Sample Comparisons Between Degraded Line-By-Line or Measured Transmittance Spectra, and Band Model Calculations for CO_2 , CH_4 , NO_2 , N_2O and SO_2 .

.

٠.-

•

.

•

Contract and a

Figure C22. Comparison between $20cm^{-1}$ degraded NO2 line-by-line transmittance spectra (-) and proposed band model calculations (X).

APPENDIX D

Sample Comparison Between Medium or High-Resolution Line-By-Line Calculations and Measured Transmittance Spectra CO, NH₃, NO and O_2 .

Figure D1(a). Medium resolution CO measured transmittance spectra.

Figure D2(a). Medium resolution CO measured Transmittance spectra.

Medium resolution CO line-by-line calculated spectra at the conditions of Fig. D2(a). Figure D2(b).

Figure D3(a). High resolution NH₃ measured transmittance spectra.

High resolution NH3 line-by-line calculated spectra at the conditions of Fig.D3(a).

No.

K

APPENDIX E

Sample Comparisons Between Degraded Line-By-Line or Measured Transmittance Spectra and Band Model Calculations for CO, NH₃,

and 0_2 .

.

.

APPENDIX F

Sample Comparisons Between the Proposed Individual Models for the Uniformly Mixed Gases (N₂O, CH₄, CO, O₂, and CO₂) and the Present LOWTRAN 6 Single Model.

1

Transmittance of N_2O calculated with the proposed model for a vertical path through the U.S. Sfandard atmosphere.

•

· - - · ·

for the uniformly mixed gases for a path tangent to the earth's surface and extending from one end to the other in the U.S. Standard atmosphere. Transmittance difference between the proposed and the existing models Fig. F9.

APPENDIX G

Sample Calculations showing the Individual and Combined Effect of the Trace Gases along a Vertical and a Tangent Path in the U.S. Standard Atmosphere.

١.,

1. 1. 1. 1. 1.

5.2

•

.

Transmittance of the combined trace gases (NO, NO₂, NH₃, SO₂) with the proposed models for a path tangent to the earth's surface and extending from one end to the other in the U.S. Standard atmosphere.

٦ .

140