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1. INTRODUCTION

Since the creation of a light weight composite for the space industry, com-
posite materials have now been widely used in many areas of the industry. Due
to the geometrical and material discontinuity in the composite, stress singular-
ities often occur resulting in the failure of the composite. In order to under-
stand the failure mechanism and to help designing a better composite, it is es-
sential to analyse the nature of stress distribution near a singular point in
the composite. One of the reasons for the slow progress in designing a more du-
rable composite is the lack of rigorous stress analyses near a stress singulari-
ty, especially when the singularity is a three-dimensional one. Even though
many investigations have been carried out on the nature of stress
singularities in 2-dimensional elasticity problems, oniy a relatively little
work has been done in the area of stress singularities in general 3-D problems.
This may be partly due to the complexities of the problem itself. Nevertheless,
in practice, both in the areas of fracture mechanic; and general stress analysis
a knowledge of the 3-D stress singularities would be quite useful. |In an excel-
lent review article on the three dimensional 'stress problem for a cracked plate
Sih [1] discusses at length the difficulties associated with the task of obtain-
ing an analytical solution. Most of the time in analytical studies special ma-
terial properties and geometries that make it possible to reduce the problem to
two dimensions in mathematical terms have been employed. An extensive collec-
tion of such analysis is presented in [2] and further discussions on 3-D analy-
ses can be found in [3]. More recently Parihar and Keer [4,5] have presented
analytical solutions for wedge~shaped cracks, inclusions and stamps in isotropic

materials. Such special probiems serve as extremely useful 'bench mark' tests
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for other more general methods such as the one that would be described herein.
However, in the more general case of a three dimensional singularity in a com-

pletely anisotropic material, obtaining an analytical solution seems quite dif-

ficult except for special cases [6] and numerical methods have to be employed.
The present study is aimed at proposing one such numerical method, viz. a finite
element scheme.

A general numerical procedure for determining 3-D singularities was first de-
veloped by Bazant [7] for harmonic functions and by Bazant and Estenssoro [8,9]
for isotropic élastic materials who used it to study the singularities at the
intersection of free surface and cracks. Their results for a crack orthogonal

to a free surface were in good agreement with the results obtained via a semi-

analytical method by Benthem [10,11]. However no solutions are available for
anisotropic materials. )

The present finite element scheme is an extension of that developed by Bazant
and Estenssoro [9] to incorporate general anisotropic elastic materials, In
Section 2 we present the general formulation of the finite element scheme.
Testing of the method against some known results will be described in Section 3.
In Section b it is applied to study a proSlem in laminated composite materials
and finally in Section 5 we use it to study the possible occurrence of stress
singularities in other 3-D corners.

Let (r,0,9) refer to spherical co-ordinates and consider the region near the
apex of a conical wedge (a notch or a rigid inclusion) in which the apex is the
origin of the co-ordinates, Fig. 1. The lateral surface S, of the conical

wedge is assumed to be generated by radial lines. The cross section of the con-

ical wedge at any constant radius is denoted by §, . The boundary of S ,

-2 -
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which specifies the shape of 5,, is given b} the equation Y(6,¢) = 0. Depend-
ing on whether a notch or a rigid inclusion is being analysed the homogeneous
boundary conditions applicable on S2 will be either traction free condition or
rigidly clamped condition respectively. Since we are interested in the possible
’ stress singularities near the apex, the boundary conditions on S, need not be

E specified.

For the purpose of an asymptotic analysis for possible stress singularities

! at the apex of the conical region we seek non-trivial displacement solutions of
N the form
‘ u=rt (8,4 ()

v =rg(6,9)

we=rh(8,¢)

where (u,v,w) are the components of displacement in (r,8,4) directions respec-

tively. This displacement field is required to satisfy équations'of equilibrium
within the conical region and the relevant homogeneous boundary cénditions on
the lateral surface §,.

A value of A that would satisfy these conditions is called the eigenvalue and
the corresponding functions f(8,¢), g(f,¢) and h(6,¢) are called the eigenfunc-
tions. There are infinitely many such eigenstates [12]. But in the present
case our attention will be confined to those eigenstates that would lead to
stress singularities at the apex. When displacements are of the form given by
equation (1) the stresses are proportional to rx". Hence a stress singulari-
ty occures at the origin when » < 1. On the other hand, for the strain energy

to be bounded at the origin we require A\ > -, However, A < 0 implies that the
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displacements are unbounded at r = 0 which is physically unrealistic wunless a
concentrated load is applied at the wedge apex. Therefore we are primarily in-
terested in eigenvalues A in the range 0 < A < 1. The most important would be
the smallest \ (i.e., closest to 0) which would give rise to the strongest sin-
gularity. If A\ is complex, we are interested in the case where 0 < Re(\) < 1.
During this procedure no particular boundary conditions are prescribed at the
surface S, of the cone. The tacit assumption is that by superposing a suffi-
cient number of eigenstates they can be satisfied.

In order to evaluate A\ ( and f(6,9), g(6,¢) and h(6,¢) ) that would satisfy
the above conditions, Bazant and Estenssoro [9] developed a finite element
scheme based on a variational principle involving those quantities. Even though
they considered only isotropic materials, with a few changes in the details
their approach can be used for general anisotropic material§. In the next sec-
tion we shall present the general formulation. in [9) it has been shown that
the variational principle does not yield a minimum principle and that the re-
sulting system of equations for the determination of A is non symmetric. Those

proofs are valid for the present formulation also.

-4 -
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2. FORMULATION

2.1 VARIATIONAL PRINCIPLE

Normally problems of elasticity can be solved by the use of stationary energy
principles. In the present case too we can base our solution procedure on them.
However, some special considerations and procedures are required due to the fact
that the solutions we seek are not expected to satisfy all the boundary condi-
tions of the problem; they need satisfy only the near field boundary conditions.

For the conical solid shown in Fig. 1 the two boundaries arer = r_ and

0

¥(6,4) = 0 and are denoted by S, and S,,respectively. OQur intention is to

b

1 find a set of eigenfunctions for the displacement field in the form of equation

ii (1) that would satisfy the necessary boundary conditions near the origin - i.e.
on S,. Nothing is said about the boundary conditions at the far end - i.e. on

F; S,. The hope is that by superposing a sufficient number of eigenfunctions,
boundary conditions on S  may be satisfied. In fact the cone shown in Fig. 1
should be considered only as one part of a boundary value problem and'matching'
the solution for the cone with that for the adjoining region on S, is not of
immediate concern,

The eigenfunctions we seek are therefore required to satisfy the governing
differential equations and only some of the boundary conditions of the complete
elasticity problem for the cone. It is due to this reason that some modifica-
tions to the stationary energy principles are needed for the present problem.
These modifications were first proposed by Bazant and Estenssoro [9]. We too
follow their procedure with a slightly different presentation of the rationale

behind the modification.

Once again consider the conical region shown in Fig. 1. When it is subjected

to some displacement field a certain traction will result on the boundary S,.
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Let that traction be denoted by p= (pr,pg,p¢). If one were to solve the
complete problem of which this cone is only a part, one would have to match
these tractions and displacements on §, with those of the adjoining region.
But for the purpose of our local analysis consider instead the cone to be sub-

jected to external traction p on S

~

.+ Then the cone should be in equilibrium

and the disp]acement field should satisfy the equations of equilibrium inside
the cone and the relevant boundary conditions on S, and 52' For this situ-

ation we can write the principle of minimum potential energy as

SU - J (ppdu + pgdv + pydw) r'sin 6 dédé = O (2)
S

where

U = [ & drdfde (3)
v

is the total strain energy in the volume V of the cone and

= Er’sin® (k)
where E is the strain energy density. 6 indicates the variations due to kine-
matically admissible variations in the displacement field {(u,v,w). E is a func-
tion of the strains €i] and they in turn are functions of the displacements

and their first derivatives. Therefore we get

6u = fv( Buou + By Sup + el # ‘I’wdf”cb) drdfdé (5)

where the subscripts r,0,o denote partial differentiation. ¢, refers vo the
partial derivative of ® with respect to u, assuming u, Upy UGseneees Wy to
be independent variables and so on.

Equation (2) implies all the equations associated with the problem of elas-

ticity. But the eigenfunctions need not satisfy the far field boundary condi-

-6 -
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tions on S;. Therefore we will modify (2) into a form that would allow those
boundary conditions to be separated out from the others. Substitute (5) into
(2) and integrate the terms containing 6u,, ov, and dw, by parts in the r

direction to yield:

- R (6)
oU + IS] [ d>ur6u + @vrév + q)wrow ] déde
- ’ .
- fs]( Prou + pgév + P oW ) r'sin 9 dod¢ = 0O

where,
- )
U= [, [ 8- @)} su+ Bygdua + B dug (7
3
+ {®,- 3.r.(ti’vl’)} dv + ¢V96v6 + ¢b¢6v¢
?
+ %, - F(<I>w'_)} 5w + <I>w95w9 + @w¢6w¢ ] drdfde

To evaluate ¢, iy Qwr and Qhr first evaluate E”r’ Evr
and E, . Note that bE/aeij = 0;; where o;: is the stress, Since
r J iJ
€] is related to u, wu,,... through the strain - displacement relations in
spherical co-ordinates, E“r"" can be easily evaluated using the chain

rule. We then obtain ¢h »eo+ by the use of (4). When these algebraic ma-

nipulations are carried out we get

th = r2 orr Sin 6 (8)
qu = r2 Org Sin 6
[«

W, = rl Ord sin 6

Substitution of (8) into (6) yields

4' R ‘._ . .. e L .._.’ e e et e .- .} -r S _-_]‘ DRNY - ta e -. .-_'..‘-.;-‘_ _-
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U + fSl[ (0. =P.) du + (0.47Pg) v + (0, 4-Py) 6w ] r’sin 6 dfde = 0

9
which implies
U =0, (10)
Or ® Pr (n-
org = Pg on S,
Ir¢ = Py

Equation (11) is in fact the traction boundary condition on S, . Since we
started with a variational statement that ensured the satisfaction of all the
boundary conditions (i.e. on both $, and Sz) and the equations of equilibri-

um, we conclude that (10) is a variational statement that would ensure the sat-
isfaction of the equations of equilibrium in V and the boundary conditions on
S, only. Therefore the eigenfunctions‘we seek should satisfy the variational
principle (10). It should also be noted that in this derivation no particular
assumption was made regarding the constitutive relation for the elastic material
except that it possesed a strain energy density function.

Let the stresses and the strains be represented by 1-D arrays as follows:

O, = Oppi O, = 0ggi O, = Opy } (12)

Oy ® T8¢ T5 ™ Tpgpt Ty ™ T¢f

€, €ppi €, ® €gpi €, = euy (13)
€, = 2 €9 €5 = 2 €rgpi €4 = 2 €9

4

The material constitutive relation is

Oi -Cijej (”‘)

where Cij is the material stiffness which satisfies

-8 -
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In equation (14) and in the following sections repeated indices imply summation
unless otherwise stated.

As explained earlier, &, ¢hr,... are evaluated by using equation (&)

and treating £ as a function of €ij and then using the chain rule. The re-~-

v sults are:
K ®, =r(o, +0,) sin 8 \ (16)
2 Qhr =r’ o, sin®
¢h0 =r o, sin b
<I>u¢ =r o,
g ¢§. = r(o, cos 6 - o, sin 6)
: ¢Vr -r? o, sin 6
¢V9 =r o, sinf
¢I>v¢ =r o,
®, = -roc, cos 6 - o, sin 6)
®, =r o, sind
; ¢M9 =r o, sinf
E “=ro, j

£9
23

Now we can use the expressions in equation (1) for u, v and w. The strain -

displacement relations yield:

€: = r)‘-]

: T, sl an

where

N NN ]
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2 o= A ) (18)
.E G—z = g6 + f

e3 = f + g cot 6 + gy/sin 6
€L, = hg-hcot9+g¢/sin9

(A\~1)h + f4/sin 6

U
L}

g = (\-1)g + fg /
in (18) subscripts 8 and ¢ refer to differentiation with respect to these vari-
ables. Substitution of (17) into (14) gives:

o = AV, i=,0.,6 (19)

where

It should be noted that in the case of a general anisotropic material,

::- cij = cij (9,¢) and therefore o; = 0 (9.¢) .
= When (19) is subsituted into (16) and then into (7) we get:
- 6U= J, r ol ar (21)
;i where

30 = Sofy 1 Fof + FO3fg + FPory + Gog + GP5gg + 6Pogy (22)

+ Hoh + HOsny + HPoh, } dbde
and

F =[7,+3, - (\+1)7,] sin 6 ) (23)
- O = o, sin 6
. = 7,
X G =3, cos 6§ - (\#2)5, sin 0
~ Y = o, sin §
>
- ¢® = 7,
\O
) H = -3, cos 8 - (M2)o, sin 6
L - 10 -
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sin # (23)
i

Ha "o, ‘ cont'd

Q)

H® = &

Equation (21), when substituted into (10), yields the final variational princi-

ple for the present problem as
U =0 for all  &f, 5g, oh (24)

Bazant and Estenssoro [8,9] who investigated the 3-D stress singularities in
isotropic elastic materials wusing this approach have given the expressions for
F, Fe.... for isotropic materials. We have checked and verified that when
Cij is specialized to jsotropic materials, the expressions given in (23) do in

fact reduce to those given in [8,9] (after minor printing mistakes are corrected

(9).

2.2 DESCRETI1ZED FORMULATION.

To derive the expressions for a descret%zed (finite element) formulation let
the area containing material bounded by the curve y(6,4) = 0 on the (6,4) plane
be denoted by A and let it be sub-divided into an n number of finite elements.
The values of f(6,¢), g(6,¢) and h(6,4) are taken as the nodal degrees of free-
dom. We can express the integral 5U of equation (22) as the sum of the same in-
tegral taken over each element (provided that the continuity conditions dis-

cussed below are satisfied). Hence
U = = sum (25)

where 50 (m) refers to the result of integrating the same integrand as that
given for U in equation (22) over the area of the mth element, Am) Zin

the above equation as well as in the following steps implies summation over all

- 11 =
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f n elements. Examination of the terms in the integrand of equation (22) shows
: that for equation (25) to hold f, g and h should be C° over A (i.e. only the
functions themseives need be continuous, not the derivatives). This justifies

the choice of the values of the functions as the nodal degrees of freedom. The

AN A NN

intra-element interpolations also need satisfy only function continuity along
the inter-eiement boundaries.
Let X be the vector of nodal degrees of freedom associated with a typical el-

ement and define interpolation functions £(0,¢), Q(e,¢) and E(9,¢) by

£(6,8) = Li(8,0) X; ' (26)
g(6,¢) = Mi(8,0) X;
h(g,4) = N (6,8) X,

In equation (26) as well as in the following steps superscript i on L, Mor N

- and subscript i on X refer to the ith entry in each vector. As has already
been stated repeated indices implie summation.

o Substitution of equation (26) into (18) gives

E

y 7 % (27)

with the 2-D array Eij defined as

5 Eyj = xEJ . 1 (28)
Epj = My + L
; Ejj = L'i + Mjcot 6 + Ni /sin 6
Eyj = Ni - Nj cot 6 + Mi /sin 6
Esj = (\-1) Nj + Li /sin 8 )
. Eg; = (A1) Hj + Lg

where subscripts 6, ¢ on LJ. M and NJ refer to differentiation with re-

spect to that variable. When equation (27) is substituted into (20) we get

o. = §

i X

ii% (29)

- 12 -
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where the 2-D array Sij is given by

Sij = CikEk;j (30)

Now by substituting equation (29) into (23) we can define

F o= P;X; \ (31
FO = pO.x,
Fo = po.x,
G = Q;X;
¥ = @fx, $
% - Q®x;
H = RiX;
Ho = RO;x;
HP = R®;x; J
with
Py = [Sy; +S3; - O+1DS); 1sins \ (32)
Pei = Sg; sin @ '
pe, = Sgj
Q; = S3j cos b - (\+2)Sg; sin @
¥, = s, sine $
e = sy
Ri = =-S,;cosb - (k+2)55i sin 0

RO, = s,; sin @
R®; = 3 )

Using equations (26) and (31) in (22) and integrating over the area of the ele-

ment ‘(m) we finally get

- 13 -
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su® = gx;k @y, (33)
ij

where

K (m) =

I R R ERR TR TR 5

+ RiNT + RING + REN ) d6ae
In matrix notation (33) is

su(m o 55T5 (m)z (35)

Let Xx* be the vector of global degrees of freedom and let 5 be related to

x* through the connectivity matrix E(m) so that

x = pimy*

X (36)
N When this is substituted into equation (35) we get
~ : *T T *

. U m) o oX B(M) K(m)g(l'l'l) X (37
:{ With equations (25) and (37), the governing variational principle (24) can be
:' expressed as
3 50 = T sU(m 55*T5 X*=0 for all &x* (38)
; where

K = = gmTymgm (39)

For equation (38) to hold for all 55* we require

- KXx*=0 (40)

Equation (40) identifies K as being similar to the 'giobal stiffness matrix' in

standard finite element analysis and it follows that E(m) is similar to the

'element stiffness matrix'. Hereafter 5 and Efm) will be referred to by those
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names. It should be noted that equation (39) is only symbolic and in practice
the formation of K from ﬁ(m) is acomplished through the usual assembly proce-
dures.

Elements of K depend on A and to derive a characteristic equation for A we

note that for equation (4O) to have a non-trivial solution
lKl=0 (41)

This provides the eigenequation for A.

2.3 THE ELEMENT

The expressions needed for evaluating the element stiffness matrix have been
given in the previous section, For actual numerical implementation of the
scheme one has to decide on a particular 2-0 element. Since only the functions
f, g and h are required to be continuous, any element type normally used in 2-D
stress analysis can be picked for this purpose. '

In [8,9] a b-node quadrilateral based on the same variational principle has
been used to investigate 3-D stress singularities in isotropic materials. The
results showed fairly large errors and meshes with a substantial number of ele-
ments were required to achieve a reasonable degree of accuracy. However it was
possible to.exploit the convergence pattern of the results to extrapolate them
and find accurate solutions. When a symmetry of the geometry and of the materi-
al property exist, one can make use of the symmetiry by considering only one half
of the problem. But in the case of a general anisotropic material such symmetry
would be lacking and the full problem will have to be analysed. This will make
it difficult to use very fine meshes and therefore it was decided to use a high=-
er order element for the present study. It would enable reasonable accuracies

to be realized without having to use a large number of elements.
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The chosen element is an B-node isoparametric quadrilateral with nodes at the
four corners and the mid-sides. The interpolations are quadratic and curved
sides are admissible. Following standard 2-D finite element procedures all in-
tegrations are performed numerically on a parent plane onto which the element is
mapped as a unit square. This element is now standard and details of the inter-
polation functions and numerical integration are found in any standard text book
on finite elements, (for example, see chapters 7 and 8 of [14]).

Numerical integration is performed using Gauss quadrature rule on a grid of
ng X ng integration stations. In a general anisotropic material the ele-
ments of the material stiffness matrix cij also are functions of 6 and ¢ and
at every integration station they too have to be evaluated. The transformation
is that corresponding to a Lth order tensor and the transformation matrix con-

tains terms like cos 0, cos ¢, sin 8 and sin ¢. Therefore C;: will display a

ij
strong dependence on these terms and their higher powers. The terms Eij also

contain these trigonometric functions. Examination of the expressions involved
show that terms like 1/sin 6 also are present. This leads to some difficulties
numerically in evaluating the integrals accurately especially in the region near
the pole of the coordinate system where § = 0. Since a prior estimate of the
number of integration stations is not possible, the choice of integration sta-
tions has to be based on numerical testing. In the following sections where
test and example problems are presented, we will illustrate the effect of vary-

ing the number of Gauss integration stations and discuss the choice of optimal

number of integration stations.
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2.4 EVALUATION OF A

The details of computing A for a given problem is simple. The domain occu-
pied by the material in the (6,¢) plane is subdivided into a finite element
mesh. For a particular value of A\, element stiffnesses are computed and are
then assembled into the global stiffness matrix 5. Boundary conditions are im-
posed by eliminating rows and columns corresponding to degrees of freedom pre-
scribed to be zero in the global stiffness matrix. Finally | K | is computed.
The eigenvalue A (for which | K | = 0) is determined by plotting | K | vs. A.
For the test probiems and the example problems discussed herein these curves

were smooth and no difficulties were encountered in implementing this scheme.
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3. TEST PROBLEMS

AR T 1

The performance of the 8-node element was tested by using it to solve two
E! different problems with known solutions. These tests and their results are de-

o scribed below.

3.1 3-D CRACK IN ISOTROPIC MATERIALS

The probliem of stress singularities at the tip of a quarter infinite crack in
an isotropic half space with the crack front normal to the free surface, Fig.
2a, was first studied by Benthem [10]. Using a semi analytical-numerical tech-
nique he evaluated the eigenvalue A corresponding to a state of symmetric defor-

mation for different valuec of the Poisson's ratio v. These results were subse-

quently verified by Bazant and Estenssoro [9] who proposed the variational
principle used in the present study and developed a L-node quadrilateral element
for isotropic materials. in addition they also reported the eigenvalues for an-
tisymmetric deformations. Later Benthem [11] verified these results using a fi-~
:1 nite difference scheme. Another study of the same probiem has been reported by
fg Kawai et al. [13]. While confirming the results of [10] they also reported the
. detection of additional stronger singularities. But that has not been verified
in subsequent work [9] and now it is generally believed that the results of Ben-
- them [11] and Bazant and Estenssoro [9] are correct [3]. In our first test the
8-node element was used to solve the same problem and the results were compared
against those from [9,11].
The domain of interest in the (f,$) plane is a rectangle bounded by =0,
- G=r/2, ¢=0 and ¢=m, Fig. 2b. Only one half of the problem was analysed using
the symmetry of the geometry. The domain was sub-divided into (ng X n¢) el-

ements; ng in the 8 direction and Ny in the ¢ direction. At nodes on the

boundary AB corresponding to the plane of symmetry ¢=r, the symmetric or anti-
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symmetric boundary conditions were imposed depending on the case to be analysed.
The symmetric boundary conditions are: w=0, 09¢=0, ar¢-0 and the anti-symme-
tric boundary conditions are: u=0, v=0, a¢¢=0. 0f these only the displace-
ment boundary conditions are imposed explicitly. The stress free conditions are
the natural boundary conditions of the variational principle and will be auto-
matically satisfied if the corresponding dis,lacement component is not pre-
scribed. No displacement boundary conditions are prescribed on the other bound-
aries (i.e. OA, BC and CO in Fig. 2b) so that the corresponding surfaces remain
traction free.

The work of Bazant and Estenssoro [9] shows that the 4-node quadrilateral el-
ement based on the present variational principle would produce the same results
as those reported in [10,11] for this problem. As the approaches used in
[10,11] are quite different from that in [9) it strongly suggests that those re-
sults are accurate. Therefore it is reasonable to expect that the 8-node ele-

ment too would yield the same results. The more important aspect of this test

s was to compare the errors and the convergence of the B8-node element against
those for the L-node element. However, the first task was to decide upon the
number of integration stétions ng to be used for this problem and for that

purpose one particular case (corresponding to »=0.3 and anti-symmetric deforma-

tion) was run with varying values for ng-- The results are presented in Table
1. On the basis of the rapidity of convergence to a steady value nG-h was
chosen as the optimal order of integration for this problem and was used in the
subsequent runs.

The results presented in Table 1 suggest that a mesh of (3x6) shouid produce
values for A within 1% of the 'correct' value. Therefore in the next step of
computing values of A corresponding to different values of v the mesh of (3x6)

was used. As an additional check though, a mesh of (4x8) also was used. Subdi-
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visions were made uniform since it is reported in [9] that non uniform gfids are
not more effective than uniform grids. The number of elements in the ¢ direc-

tion (n¢) was always kept equal to twice that in the 6 direction (ng) so

that the finite elements would have equal side lengths on the (6,¢) plane.

Ii For the above two meshes and different values of v, the computed values of A
for both symmetric and anti~symmetric deformations are presented in Table 2.
The corresponding 'extrapolated values' from [9] and the values from [11] are
also presented in Table 2 for comparision and excellent agreement is evident.
What is more important though is the remarkably rapid rate of convergence exhib-

ited by the 8-node element when compared with that for the L-node element, To

see this the results in Tablie 2 have to be compared with those in Fig. 8 of [9].
Comparision should be based on the total number of degrees of freedom (which is
the same as the total number of equations) because that is the primary factor
that determines the computational effort invoived. As a result of this rapid
convergence the need to extrapolate the results using convergence characteris-
tics reported in [9] can be eliminated and reasonably accurate results can be

directly obtained from a relatively coarse finite element mesh.

3.2 AXISYMMETRIC NOTCH IN TRANSVERSELY ISOTROPIC MATERIAL

The second test problem was chosen with the intention of studying the per-
formance of the element (and in fact of the whole finite element scheme) when
the material is anisotropic. The geometry is assumed to be axisymmetric and the
conical notch is defined by 6 = 6, Fig. 3. The region 0<0<f, is occupied
by the material which is transversely isotropic with respect to the z axis. In
(6] analytical solutions are obtained for this problem for both traction free
and rigidly clamped boundary conditions on the surface 6 = 6 . When the ma-

terial is transversely isotropic, there are five independent elastic constants

- 20 -
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for cij' For a test problem we have selected the following special class of

transversely isotropic materials in which cij depends on four parameters u, v,

B and v:
- C,, = (5+2u) B W (42)
. Coo = (3 + 20/ 8°

cl4 = K >

: - s
. C,, -C,,= 2vu J
where
6= 2uv/(1-2v) . (43)

This class of materiafs has the property that the 'eigenvalues of the elasticity
constants' are repeated [15]. Moreover, when + =8 = 1 we have isotropic ma-
terials. We chose 6 = 37/L4 and considered the traction-free boundary condi-
tion.

In the (6,9) plane the material occupies a rectangular domain given by
(0<8<6,; 0s¢<2m) with the two boundaries ¢=0 and ¢=2r having the same dis-
placements. In general the finite element mesh would have to cover this area.
However, the axisymmetry of the present problem can be used to significantly re-
duce the magnitude of the computational effort. On any plane through the 2z axis
symmetric boundary conditions (viz. w=0, °9¢=°r¢'°) should be satisfied.
Further, the non-2ero displacements u and v should be independent of ¢. This
enables us to confine the analysis to just one strip of elements in the § direc-
tion. The number of elements in that strip is ng. Through appropriate assem-
bly procedures the same nodal degree of freedom is assigned to the value of
f(6,9) or g{6,94) at all nodes at the same ¢ level. Symmetric boundary condi-

tions are prescribed at the two sides; and at the top (i.e. at 6=0) the axisym-
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metric conditions (viz. u=0, w=0) are imposed. The bottom boundary 6=6  is
left traction free. The width of the strip of elements is adjusted accordin§ to
Ng so as to result in square elements.

The material constants cij can be normalized by dividing by wu. Therefore
the results would depend only on v,8 and ¥. In the first case, for a particular
set of their values (v=0.3, B=1.5, y=0.5) A was computed using different numbers
of integration stations and different meshes. The results are presented in Ta
ble 3. As described in the case of test problem 1, in this case too an optimal
value for ng was selected as 4. A mesh with 4 elements gives results accurate
within 0.1%, This combination was then used to compute values of A correspond-
ing to other values of v, f and ¥ and the results are given in Table 4 along
with the analytical solutions from [6]. The special case of B = vy = | corre-
sponds to isotropic materials and the value of A for that case has been reported
in [16]. The agreement between the finite element results and the analytical
results is quite encou-aging and reinforces the belief that the finite element
scheme and the 8-node element would perform satisfactorily even in the case of
anisotropic materials. Once again, the remarkable rapidity with which the re-

sults converge as evident from Table 3 should be noted.

-22_




o e . A BT JM A M S e S ee /Ol e~ T S A et P S St S il el g e M A e Ml A M S g Al A e e o Se et §

L. AN APPLICATION TO COMPOSITE MATERIALS

The use of light .weight composite materials in industrial applications is
steadily increasing. In areas where weight is a crucial factor such as space-
craft designs, one would like to be able to exploit the strength of the materi-
als to the fullest possible extent and the availablity of relevant design infor-

mation assumes great importance. Failure criteria are among those highly

desired material parameters. In the case of laminated composites experimental
observations indicate that failure may occur along the interface between the
layers or transverse to the layers. It is well known that stress singularities

occur at the free-edge of the interface between two dissimilar materials and

o aun ni g

they, no doubt, play an active role in initiating these failures. As such, de-

velopment of failure criteria requires a sound understanding of the nature of

stress singularities that would be present at the interface and it has been the
subject of many recent investigations, (e.g. see [17-19]).

Consider the case where a transverse crack is already present at the free
surface of a laminated composite. It may have resulted from a material imper-
fection or from a fabrication error. Or else it may have been initiated by the
above mentioned free-edge stress singularities arising as a result of external
loading. In Fig. & such a crack which is normal to and ends at the interfaces
is shown by the shaded area. The presence of this crack would affect the local
stress field and the nature of stress singularities. In fact it would give rise
to a new stress singularity (i.e. in addition to those that would occur along
free-edges such as MN) along the transverse crack edge MQ. A similar situation
would occur with any other orientation of the crack, and in particular with a
crack along the interface which could result from delamination. But for the
purpose of the present discussion we shall confine our attention to the crack
shown in Fig. L. The singularity along MQ would now control, at least locally,
the process of material failure and as such merits investigation.
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Even though in principle the singularity at a point on MQ is 3-dimensional,
as a first approximation its analysis may be reduced to a 2- dimensional problem
provided that the point 1is sufficiently away from the free surface. This has
been done in [19] and also given therein is an account of relevant previous work
on 2-dimensional problems. Iin the present study we direct our attention to the
nature of the 3-dimensional stress singularity at the point M.

In the immediate neighbourhood of the point M the problem of stress singular-
ities is very much similar to the problem of quarter infinite crack in a half
space discussed in Section 3 except for the fact that the material is neither
homogeneous nor isotropic. The region (x<0, 2z20) is occupied by the material of
layer 2 while the regions (x>0,y>0,2z20) and (x>0,y<0,220) are occupied by the
material of layer 1, it should also be noted that even though in Section 3 it
was possible to confine the analysis to only one half of the problem by exploit~
ing symmetry, in the present case the material will not exhibit such symmetry in
general and therefore the full probiem has to be analysed. ' Once these points
are identified the analysis can be performed in a mannar quite parallel to that
employed previously.

The domain occupied by the material in (8,4) plane is the rectangle (0<8<$n/2,
O<op<27) . In this, the two regions (0s8<w/2, 0<¢<n/2) and (0s6<w/2, 3m/2<¢<2m)
correspond to material 1 and the region (0s8swm/2, w/2<¢<3m/2) corresponds to ma-
terial 2. The entire region is subdivided into (“9 X n¢) finite elements.

For this problem Ng was made equal to &4ng so that square elements would re-
sult. It also ensures that each element would lie entirely within one material.
During the computation care has been exercised in assigning the correct material
properties to each finite element.

The remaining steps are routine. The element stiffnesses are computed for a

given A and assembled into the global stiffness matrix. The boundary conditions

B As
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are all traction free conditions and none needs to be imposed explicitly. The

eiéenvalue A is obtained by plotting the determinant of the global stiffness ma-
trix against corresponding value of A.

As explained in Section 3 the first task is to select the optimal order of
Gauss integration ng. Like in the test problems, this is done by carrying out
numerical tests to study the convergence of the results as the mesh is refined
and ng is varied. Once optimal ng is selected a mesh that could be expected
to yield 'sufficiently accurate' results can be selected and used for analysing
the remaining cases of the same type. What is 'sufficiently accurate' is, of
course, subjective and would depend to a great extent on the intended applica-
tion of the result. It would also be controlied by physical limitations of
available computing capacity.

For the purpose of a numerical example, we assume that each layer in the com-
posite is made of a fiber reinforced material which can be regarded as an ortho-
tropic material whose material symmetry is with respact to the Koo X, X,
axes where x =x and x, axis is the fiber direction which makes an angle «
with the negative y axis as shown in Fig. b. We further assume that each layer
is made of the same material although the ply angle a may vary from layer to
layer. The value of a corresponding to layer | is a  and that corresponding
to layer 2 is a,. Referring to the (x,,x,,x,) axes let the orthotropic
material have the following material properties corresponding to T300/5208 gra-
phite/epoxy given in [20]. This is the same as the material referred to as com-

posite T in [18,19].

E, = E, = 1.54x10° psi ) (bd)
E, = 22.0x10° psi ?

G,,=G,, =G, =0.81x10° psi

12 23 3

Y,y m V=V, ™ 0.28
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In the above equation E; are the Young's moduli, G;; are the shear moduli

and vij are the Poisson's ratios [21]. They can be used to compute the ma-
terial compliance matrix [21,22] which when inverted using the relations given
in [21] vyields the material stiffness matrix referred to the (x,0x,,x,)

axes. Then the material stiffnéss matrix cij referred to the (x,y,2) axes can

be obtained by an appropriate co-ordinate transformation. The use of ply angle

a, will result in C;

i corresponding to material 1 while a, will result in

2

cij for material 2.

For the purpose of selecting an optimal value for ng we used the particular
case with a,=m/2, a,=0. This choice restored material symmetry with respect
to the y=0 plane and thus allowed the analysis of only one half of the pretlem
as in Section 3. That way the refinement of the mesh could be carried further
than it would have been possible if the full problem had to be analysed. Atten-
tion was focused only on the smallest admissible value of . The results are
presented in Table 5. On the basis of rapid convergence to a steady value
ng = 6 was chosen as being optima! for this type of problem. The need for
more integration stations than that required in the isotropic case diséussed in
Section 3 i; perhaps a reflection of the higher degree of anisotropy involved.
However, examination of the results in Table 5 indicate that even in this highly
anisotropic problem the numeérical scheme performs satisfactorily.

A mesh of (3x12) was selected for use in arilysing other (a,/a,) combina-
tions. They would lack the material symmetry about the plane y=0 required to
confine the analysis to one half of the problem and would necessitate the analy-
sis of the full problem. The available computing capacity did not permit the
use of a more refined mesh, However, based on the results of the above test
probiem and also on the convergence pattern displiayed by the results correspond-

ing to other ply angle combinations we feel that the results from the (3x12)
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mesh would be accurate to within at least 2%. In fact in most of the cases the
error would be less than 1%. Proper verification of that estimate requires a
reliable analytical result or at least a result from a different numerical pro-
cedure either of which to the authors' knowledge is not available as yet. The
results from a mesh of (3x12) for different ply angle combinations are presented
in Table 6. For comparision, in the same table we have provided within paren-
thesis the results from a mesh of (2x8). The small differences between the two
sets of results lend support to the belief that the results are reasonably accu-
rate. In view of the symmetry property that the A corresponding to (a,/az)

is the same as that for ('“1/'“2) only the values of A for 0Sai1Sw/2 are pre-

sented. They vary from 0.3016 (for 0/90 combination) to 0.4572 (f=r 90/60 com-
bination) . The strongest singularity occurs for the combination (0/90) and the
corresponding order of stress singularity, 1-\, is -0.6984. In [19] the two-di-
mensional singularity at a point sufficiently away from the free surface was

studied and it is shown that the strongest singularity in that case also occurs

for the (0/90) combination.

. "r.'.?'.'.'“ LA AL




A R T A - - .
M L, oV e T . ~l h' - -
AR I R I, AP SO ORI U S .P__Ld,A Al gt ot

5. STRESS SINGULARITIES AT OTHER THREE-DIMENS!IONAL CORNERS

As a further example, in this section the present numerical scheme is used to
investigate the possible occurence of stress singularities in other 3-D corners.
The problem of a corner formed by three mutually perpendicular planes is consid-
ered in the computations. The three planes are defined by ¢ = 0; ¢ = n/2 and
6 = n/2. (See Figure 5). Two different gituations arise depending on which
part is occupied by material and which part is void. Let the region
(0o <n/2, 06 < m/2) be denoted by R. One problem is when R is void and
the rest of the space is occupied by the material. Hereafter it will be refer-
red to as the 'exterjor problem'. The other problem arises when the situation
is reversed, i.e., R is occupied by the material while the rest is void. [
will be referred to as the 'interior problem'.

Two materials are used in the sample computations: isotropic material (with
Poisson's ratios of 0 and 0.3) and the material referred to as composite-T in
Section L with properties given by equation (L&4). In the latter case the x,
axis is taken to be in the 2z direction so that material properties are rotation-
ally symmetric about the 2 axis. This enables the analysis to be confined to
one half of the problem ana be performed separately for symmetric and antisymme-

tric modes of deformation.

5.1 EXTERIOR PROBLEM

One half of the domain of interest is shown in Figure 6(a). The number of
elements in the 6 direction between 0 and =/2 is the same as that between 7/2
and 7 and is denoted by ng. The number of elements in the ¢ direction between
0 and /b is ngy while that between m/b and 7 is ng,. In order to have
square e ¢ ients on the 6-¢ plane the ratio NGiNg|iNgy was maintained at

2:1:3.
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The coarse mesh had (ng,ngj,ngy) = (2,1,3) and the refined mesh

(4,2,6) . Based on the experience gained from the computations of the previous
problems it is believed that the latter mesh would produce results within 2% of
the exact value. However the large size of the domain prevented any further re-
f inements. The coarse mesh was first used to scan the real axis from 0 to 1.0

in search of a root A. When one was located the refined mesh was used to com-

pute its value more accurately. Previous experience suggested that ng =5
should be adequate (where ng is the number of Gauss integration stations).
But for purposes of comparision calculations were performed using other values
of ng also. The results obtained for both isotropic and composite-T materials
are presented in Table 7. In each case two symmetric and one anti-symmetric
roots were observed on the real axis between O and 1.0. They all would give

rise to stress singularities.

5.2 INTERIOR PROBLEM

Shown in Figure 6(b) is one half of the domain of interest for this problem
on the 9-¢ plane. The number of elements in the 6 direction is ng and that in
the ¢ direction is Ng- Ratio ng:ng was maintained at 2:1 so that square
elements would result. in order to obtain the same size of elements as in the
exterior problem (ng,n¢) = (2,1) was used for the coarse mesh while (4,2)
was plianned for the refined mesh. However in the cases of both isotropic and
composite-T materials a search using the coarse mesh revealed that there are no
real roots of X\ capable of causing stress singularities (i.e. between O and
1.0).

Attention was then focused on complex roots of A to see whether there exists

a A\ whose real part is between 0 and 1.0. Computations were carried out using

complex arithmatic and appropriate changes of the relevant variables from real
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to complex. A rectangular region on the complex A plane was scanned for roots.
The search was performed by subdividing the region into a grid of small rectan-
gles and then checking each of them to see whether a line corresponding to
Re(JKI) = 0 and/or Im(]JK}) = O would be present inside it. (Re and Im stand
for the Real part and the Imaginary part respectively). This was determined by
comparing the signs of the relevant quantity (i.e. either Re(lK]) or Im(jK|) as
the case may be) at the four corners. If the sign changes among the four cor-
ners then it would be concluded that the corresponding line passes through the
rectangle. By searching each small rectangle this way, it was possible to trace
the locus of the lines Re(|§|)-0 and Im(|§|)-0. Where they intersect is a root
of A. To illustrate the type of plot one wculd obtain, the results correspond-
ing to composite-T material are given in Figures 7 and 8. Within the region
scanned no roots capable of causing stress singularities were found even though
some roots, both real and complex, were present in the region Re(A) > 1.0.
(Note that A\ = 0 corresponds to a rigid body translation while A = ) produces a
rigid body rotation and both of them produce no stresses). In the case of iso-
tropic materials with v=0 and 0.3 a similar situation prevailed. Correspond-
ing plots of Re(lsl)-o and Im(JK}) =0 were'qualitatively similar to Figs. 7 and 8

and hence are not presented here. They can be found in [23].
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6. CONCLUDING REMARKS

Assuming that the displacements in an anisotropic material is propor-

tional to rx

a finite element scheme is proposed to determine the eigenvalue
A Since the stress is proportional to krr=1 where k  is the proportionality
factor, the stress is singular when Re(A\) < 1. A is a root of the determinant
of the matrix K in Eq. (LO). The proportionality factor k has to be deter-
mined by considering the complete boundary conditions which include the boundary
S, in Fig. 1. I1f k happens to be zero, there is no stress singularity at
r=0even if Re(A\) < 1. Thus the existence of a singularity is not certain un-
til the complete boundary conditions are considered. If a singularity exists,
f: the solution obtained here provides the order of stress singuliarity and, if one
desires, the stress distribution near r = 0 except the proportionality factor
k.
Complications arise when A is a multiple root of the determinant of K.
The related problem for two dimensional cases has been investigated in [24,25]

for isotropic materials and in [26] for anisotropic materials. It was shown

R that in addition to the A7l singularity the stress may have the

PA-] (In r) singularity. The conditions for which the stress has the
- P21 (n ) singularity were given in [24]. The same conditions apply to the
matrix K even though our problem is a three-dimensional one. No multiple

roots are found in the examples presented here nor in other three-dimensional
problems reported in the literature except in [6]. Even in the case of multiple
roots of |K], if the curves Re(|K|)=0 and Im(JK})=0 are piotted on the complex
plane as in Figs. 7 and 8, a root of multiplicity m would present itself as a
common point of intersection of m curves of Re(]K|)=0 and m curves of

Im(JK}) =0.
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Another complication arises when the conical wedge surface S  in Fig. 1,
is not traction free and the matrix K is singular. in this case the right

hand side of Eq. (40) is non-zero and a solution may not exist. A modified so-

lution would give a singularity of the form k*0n r)  in which k" is a con-
stant. The related problem for two-dimensional cases has been studied in
[27-29] for isotropic materials and in [30] for anisotropic materials. It

should be pointed out that, unlike the constant k mentioned earlier which is
indeterminate until the complete boundary conditions are considered, k* here

can be determined without solving the comrlete boundary value problem [30].
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Appendix A

LiST OF COMPUTER PROGRAMS DEVELOPED FOR THIS STUDY

Program: CON.NOTCH

This program is for analysing the possible stress singularities at the
apex of conical regions in transversely isotropic materials using 8-node
quadrilateral finite elements. The conical region can be defined either as
having one conical boundary or as having two conical boundaries with ma-
terial in between them. Either traction free or rigidly clamped conditions
can be imposed on each boundary. The wuser has control over the number of
elements and the order of integration. The program can be used either to
locate a real root in a specified interval on the real axis or to compute

the determinants corresponding to given real values of A.

Program: D3.CRACK.HALF

This is for the analysis of possible stress singularity at the tip of
the transverse crack in a composite laminate shown in Fig. k. Material
properties are assumed to be such that there is symmetry and only one half
of the problem is analysed. 8-node quadrilateral finite elements are used.
The user can vary the mesh details and the order of Gauss integration. The
program is capable of either searching for a real root within a given in-
terval of the real axis to a specified accbracy or of just computing the

determinants for specified real values of A,
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The same program can be used to analyse the 3-D crack in an isotropic
half space also by assigning isotropic material properties to both layers

of the composite.

(3) __Program:_ D3.CRACK.FULL

This is for the analysis of possible 3-D stress singularities at the tip
of a crack in a laminated composite. No material property symmetries are
assumed and the full problem is analysed. The crack can be either normal
to the interface or along the interface. Mesh is generated using 8-node
elements. Mesh details and the ordér of Gauss integration are user defina-

ble. The program can either search for a real root in a given interval of

the real axis to a specified accuracy or just compute the determinants cor-

responding to given real values of A.

(4) _Program:_ D3.CORNER.EXT

The exterior probiem for a 3-D corner formed by 3 mutually perpendicular |
planes is analysed for the possible occurence of stress singularities by
this program. Mesh is generated for 8-node gquadrilateral elements. Mesh
parameters and the order of Gauss integration are user definable. Material
is required to have properties symmetric with respect to the plane of geo-
metric symmetry for the problem. Apalysis is performed for either the sym-
metric or anti-symmetric mode and the program can either search for a real
root within a specified region on the real axis to a specified accuracy or

compute the determinants corresponding to given real values of A,

(5) _Program:__D3.CORNER.INT

Similar to D3.CORNER.EXT except that this analyses the interior probliem.
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(6) _Program:_ D3.CORNER.INT.CMPLX

:
:

Similar to D3.CORNER.INT except that the search for a root 1is carried
out on the complex plane. Program produces the plots of the Jlocii of
Re(lKf) = 0 and of Im(RK]) = 0 in a specified region on the complex
plane.‘ Points of intersection of the two types of lines indicate locations
of roots. An option to refine the root upto a specified accuracy also is

available.
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S
'\-':: Number of

Gauss Mesh* ng x n
- Integration (Total number of BOF)
- Stations
- 2 x b 3 x6 L x 8

e (1) (219) (363)
B 3 0.3890 0.3883 0.3879
;; L 0.3946 0.3912 0.3911,
= 5 0.3970 0.3929 0.3920
3 6 0.3991 0.3941 0.3932
8 0.4014 0.3955 0.3943
10 0.4029 0.3964 0.3950
':::: *Mesh is for one half of the problem.
.
_ Table 1 Values of A for 3-D crack, Fig. 2a, in
- isotropic half space under an anti-

symmetric deformation; v = 0.3.

::}_‘
o
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value Symmetric Deformation Anti-symmetric Deformation
of
v 8-node element from from 8-node element from from
ng = b Bazant &|Benthem ng = b Bazant & }Benthem
Estenssoro| [11] Estenssorg] [11)
mesh mesh (9] mesh mesh (9]
r (3x6) (Lx8) (3x6) (Lx8)
y 0 0.5010 0.5003 0.5 0.5 0.4985 0.4983 0.5 0.5
g 0.1 {0.5107 |0.5099 - - 0.4492 [0.4L92 |0.452 -
0.1510.5173 0.5166 0.5164 0.5164 0.4316 0.4315 0.435 0.4332
) 0.3 10.5487 0.5478 0.5477 0.5477 0.3912 0.3911 0.402 0.3927
b
t 0.4 |0.5883 0.5869 0.5868 0.5868 0.3703 0.3701 0.396 0.3714

it Eaave

P
»r~"’-"'

v

R
S

Lo a0 -
R . . o

Table 2 Comparison of A for 3-D crack, Fig. 2a,

in jisotropic materials using the present

8-node element with those reported in [9,11].
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Nunmber of
Gayss

Number of Elements ng
Integration
Stations n, 2 3 b 5 6
3 0.5999 0.5309 0.5292 0.5299 0.5298
L 0.5881 0.5306 0.5293 0.5299 0.5298
5 0.5880 0.5307 0.5293 0.5299 0.5298
Table 3 Values of A for a conical notch (Fig. 3, 8, =37m/4)

in a tranversely isotropic material (v=0.3, B=1.5,
H=1, Y=0.5) using 8-node element with different
numbers of Gauss integration stations and different

meshes.
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:',F_v*_‘?_'.'. (ol A A M A e g Al T T Tt Sl Safh Al Ak AR M A I S B Gl aARAR Al B A T A AN S A e e Sl

.......

Y

Material Properties Using 8-node Analytical
finite elements solution
v B ¥ ng=k; ngeb from [6]
]
¢
0.3 1.0 1.0 0.8014 0.8012%
1.0 2.0 0.9LLS 0.9437
1.5 0.5 0.5293 0.5296
1.5 2.0 0.8529 0.8533
0.5 0.5 0.9160 0.9131
L Xthis case corresponds to isotropic material and

agrees with the analytical solution for isotropic
cones reported in [16]

o am Ad ian an A o

Table 4 Comparison of A for the conical notch, Fig. 3, in
a transversely isotropic material using 8-node finite
element with the analytical solution reported in (6]
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~ Number of .
y Gauss Mesh ng X ng
Integration
[ Statious ng 2x8 Ix12 Lx16 5x20
' 3 0.4220 0.4353 0.4393 0.4412
i L 0.4394 0.4k426 0.LLLE 0.4LL58
E, 5 0.4L4LE 0.4469 0.4L82 0.44L8L
4
: 6 0.44L87 0.4498 0.4505 0.4502
8 0.4520 0.4533 0.4533 0.4524
10 0.4555 0.4555 0.4550 0.4538
: 16 0.4597 0.4589 0.4578 0.4560
24 0.4623 0.4611 0.4595 0.4575

*only one half of this mesh was analysed by using symmetry

Table 5 Values of A for (90/0) composite, Fig. 4, for varying
number of Gauss integration stations and different
meshes.




%
o° 30° 60° 90°
o
2
-60° 0.404L8 0.4416
(0.4089) (0. LLgk)
-30° 0.3881 1 0.4352
(0.3904) (0.4377)
0° 0.3860 0.3872 0.4128 0.4497
(0.3909) (0.3914) (0.4190) (0.L4L8L)
30° 0.3514 0.3911 0.4020 0.4L77
(0.3557) (0.3974) (0:h091) (0.L463)
60° 0.3171 0.4067 0.4264 0.4572
(0.3181) (0.4128) (0.4356) (0.4602)
90° 0.3016 0.4115 0.4293 0.4550
(0.2998) (0.4206) (0.4362) (0.4549)

Jable 6 Values of smallest A for (a,/a,) composite,
Fig. 4, obtained from a (3x12) mesh. X obtained
from a (2x8) mesh are shown in parentheses.
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F; Number of
. Mode Gauss Material
' Integration
Stations |sotropic Isotropic Composite
n v=20 v =20.3 -7
G
Symmetric 5 0.7118 0.7660 0.7312
(0.7254) (0.7803) (0.7457)
10 0.7122 0.7668 0.7315
(0.7269) (0.7824) (0.7440)
Symmetric 5 0.8554 0.7805 0.8157
(0.8643) (0.7928) (0.8350)
10 0.8559 0.7809 0.8165
(0.8654) (0.7934) (0.8356)
Anti-symm. 5 0.7140 0.7667 0.7623
(0.7294) (0.7807) (0.7680)
10 0.7141 0.7671 0.7663
(0.7301) (0.7823) (0.77u4)

Table 7 Values of real A within (0, 1.0) for 3-D corner
exterior problem, Fig. 5a, computed on a (4,2,6)
mesh. Results from a (2,1,3) mesh are shown in
parentheses.
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Fig. 1 Three dimensional conical notch/
inclusion and the associated
spherical coordinate system
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Fig. 2a Quarter-infinite crack in half space.
Material is in 0 € 6 < w/2.
Free surface is 6 = m/2 while crack
surfaces are ¢ = 0 and 27.
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I—— n¢ elements -

ol
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Fig. 2b Mesh for half of the problem with a
typical 8-node element.
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3 2Axisymmetric conical notch
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(a) Exterior Problem

(b) 1Interior Problem

Fig. 5 Three dimensional corner formed
by 3 mutually perpendicular planes.
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Fig. 6b Half of the domain of interest for 3-D
corner interior problem of Fig. 5b.
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