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Principal Nomenclature

Al cavity detachment point near or at profile nose

A2  cavity detachment point at profile trailing edge

a - f - 2/2 see related nomenclature below

b - (if'2 + if/2/2 see related nomenclature below

C location of eigensolution singularity on unit

circle

CD drag coefficient

CL lift coefficient

Cp(S) pressure coefficient on wetted surface

c profile chord length, c 1 1

ds element of arc length in z-plane

E strength of eigensolution

F * + i* complex potential in complex F-plane

*velocity potential

istream function

0 stagnation point location

0' point at infinity in z-plane

U free-stream velocity

W intermediate mapping complex plane
dv F

w u - iv dz complex velocity

Z intermediate mapping complex plane

z - x + iy complex variable in the physical (x,y) plane

'.-N
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angle of attack

6 angular location of stagnation point measured

from negative real axis

C complex variable in unit circle plane

- nnormal distance from profile chord

* F; complex semi-circle plane, = B

a distance along profile chord

T cavity thickness at trailing edge

• y stagnation point angular location on unit

circle in C plane (cos y - a/b)

Yc angular location of eigensolution singularity

on unit circle

01 value of 0 at A1

S - 02 value of 0 at A2

" w(C) = e + iln q/U 8 + iT complex logarithmic hodograph

" flow inclination

q flow speed

Subscripts

c pertains to eigensolution wc or to the

cavity surface

0 pertains to flat plate solution wo

and other variables specifically

associated with the geometric point 0

0 used on any variable having zero as its

argument or limit

I pertains to regular part of solution w,

* t
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Introduction

The present paper bears upon the two-dimensional inverse or design

problem for fully-cavitating hydrofoils in which one specifies the pressure

distribution on the profile wetted surface and then calculates that wetted

surface shape which will satisfy this prescription. This design problem is

certainly not new to airfoil designers and as far as cavity flows are

concerned, both linear and nonlinear design methods have been worked out.

In the realm of nonlinear approaches to the present problem, the very

general method of Yim and Higgins [11* is worthy of note because it applies

*to single foils as well as to cascades of profiles for all cavitation

numbers in the cavity-flow regime. Another approach has been discussed

superficially by Khrabov [2]. Both of these contain far more generality

than is required for this study at zero cavitation number. For the direct

or off-design problem of exact cavity-flow theory, a good example of the

present level of development is represented by the work of Furuya [3] and

* it is clear that now one can do both the design and off-design problems for

fully-cavitating hydrofoils. Thus, one can attempt to tailor the profile

to an entire set of performance goals and failing that he can at least

design for the best compromise among a set of conflicting requirements.

According to many authors [4-7], the inverse problem is not thought

* to present much of a challenge at zero cavitation number. In this case,

- the classical method of Levi Civita [7] can be applied to an isolated

-D body. This view is certainly proper as long as one is content, after

.4

*Numbers in square brackets indicate citations in the references listed

below.

.........................



-6- 10 June 1985
BRP: lhz

prescribing the pressure in the circle plane, to accept whatev.r correlation

between points in the circle and physical planes may result. Of course, such

a rudimentary approach does not lead to a useful design procedure.

The motivation for the present investigation is that none of the

literature on the nonlinearized direct and inverse problems we have surveyed

so far [1-8] has made use of the fact the exact theory admits the existence

of a "point drag" or complementary function. While this fact is of no

particular importance in the direct problem, we have already seen in the

case of the linearized inverse problem (9-111 that the complementary function

can play an important role. For the exact inverse theory there has been a

question if a nonlinear eigensolution exiscs or if it does, should it be an

admissible component of the solution [1]? Therefore, in this study, we

explore these questions regarding the existence and usefulvess of a "point

drag" or eigensolution in the nonlinear theory under the simplest set of

circumstances and this leads us naturally to the restrictions that the free

streamline flow pertains to an isolated profile and that the flow be at

zero cavitation number. These simplifications will free us from the

complications arising from non-zero cavitation numbers and other boundaries

in the flow domain such as a free surface or neighboring cascade blades.

In this paper we use the term eigensolution in the sense of thin

airfoil theory as suggested by the work of Van Dyke* because we already

know that the inverse problem in the theory of fully cavitating hydrofoils

is not necessarily unique. Our aim is to find a sufficiently weak

*Perturbation Methods in Fluid Mechanics, The Parabolic Press, Stanford, CA,

pp. 48-54 (1975).

*..-.,. . * .*.,. ,.-. .,., .- , -, ...- . ... ., .. ..* .-.. . , : . . . . . ...
_ _ ~~~~~. . .. . .... , ._ _ ,. . . ". ,, ,,: .". . .' ... -. _.,' ". .-. -.. '. .- ,.. ,.. -. '.. -........ " '
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singularity which can be added to the classical Levi Civita solution and can

then be used to satisfy certain additional physical conditions relating to

the location of the free streamline springing from the hydrofoil nose and

"* thereby provide a unique inverse cavity-flow solution. After we have

constructed the simple eigensolution, we will examine some of its properties.

.- The actual use of this solution in the design process will be presented

* elsewhere, although we will start the process so that the potential usefulness

of the eigensolution in design can be seen.

*l Flow Geometry and Conformal Mappings

As noted above, this study uses Levi Civita's method [7] for the analysis

of the exact inverse problem for a fully cavitating hydrofoil section. The

flow geometry and the principal quantities associated with the flow are

illustrated in Fig. 1. The origin of coordinates in the z = x + iy plane is

taken at the stagnation point on the wetted surface of the hydrofoil. This

point is denoted by 0 in Fig. I. The chordline of the profile is inclined at

the angle a with respect to the x axis and the free-stream velocity U is taken

as being parallel to this axis as illustrated. The flow separation point at

or near the profile nose is the point A1 as illustrated for a sharp-nosed

foil. The "upper" cavity surface is shown as the dashed curve extending from

A1 to the point 0' at downstream infinity. In the case of a round-nose

profile, A1 can lie on the upper wetted surface behind the leading edge. This

case is not illustrated in Fig. 1. The point A2 denotes the location of the

trailing edge of the wetted surface. The lower surface of the cavity leaves

the wetted surface at A2 and extends as shown by the dashed line to the point

0' at downstream infinity.

I..
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Let the coordinates of a typical point on the wetted surface be denoted

. by x and y and those on the upper cavity by x and y as shown in Fig. 1.c c

While the orientation of the profile in the z plane is convenient for the

purposes of analysis, the x-y system is not always a convenient reference

frame for foil and cavity contours. For this purpose we use a coordinate

system with the abscissa along the chordline as shown by the distance a

measured from the profile nose. The ordinates of the wetted surface are

* then given in terms of a as n(a) and the upper cavity ordinates are given

by n (a). At the trailing edge of the profile, the cavity thickness is

n = T. These quantities are also shown in Fig. 1. In the a,n system
c

the stagnation point 0 is located at (Go,n0) as illustrated. The trans-

formation between the (x,y) and (a,n) systems is

+ ina= + in + ze , ()

where z is the complex variable, z = x + iy, and a is the angle-of-attack

as measured by the inclination of the chordline with respect to the x axis

and free-stream velocity U.

The conformal mappings start with the complex potential in the

*z-plane,

F= +i , (2)

whi-a 0 is the velocity potential and * is the stream function. As is

customary, we adjust these quantities to make * = 0 at the stagnation

point, 0. The stream function is taken to be zero all along the

stagnation streamline. Therefore, the boundaries of the flow can be

represented by a cut all along the real axis in the F-plane as shown in

Fig. 2. Note that the wetted surface extends from the stagnation point

L
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at 0 to the trailing edge at A2 and the lower cavity surface from A2 to 0'

must lie along the lower surface of the cut. This is so because downstream

from the stagnation point, the velocity potential increases in the flow
S.'

direction and the stream function decreases outwardly from the foil or

cavity surface. On the arc OA1, the flow direction is reversed with a

* consequent revrrsal in the gradients of * and so that the point A1 is

on the upper edge of the cut.

One can use the mapping,

W - VF (3)

in Crder to map the F-plane outside the cut into the upper half of the

W-plane. Corresponding points are shown by the locations of 0', Al and

A2 and 0' in Fig. 3. As before, the cavity surfaces are shown as dashed

- lines and the wetted surface is shown by the solid line. Let the values

of * at Al and A2 in the F-plane be *I and *2 respectively. Then these

points are at W - If and W - - and the midpoint of the distance

between A1 and A2 is located at

W-a - 2 (4)2

The distance between this midpoint and A1 is

b - 2 (5)

These distances are also shown in Fig. 3.
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One can now use the mapping

W- 2 (Z + cos y) , (6)

where

Cos a _ 1 T (7)

in order to map Al into Z - + I and A2 into Z - . The point O maps into

Z = cos y as shown in Fig. 4. The significance of the point C, also shown

in this figure, is discussed later. Then the Joukowski transformation,

V~ 11 z (8)

maps the upper half of the Z-plane onto the interior of the unit circle in

the C-plane. The inverse of this mapping mst be

r. =- + - I (9)

* in order to make the point 0' map into the origin of the C-plane. Various

• corresponding points are denoted by Al, A2 and 0 in Fig. 5. The arc of

the unit semi-circle corresponds to the wetted surface. Coordinates on

the wetted surface are given by C - eiB as shown. The stagnation point is

at B y y. The upper surface of the cavity is on the real axis between

Al and 0' and the lower surface of the cavity is on the real axis between

A2 and 0' as marked in Fig. 5. One can now use Eqs. (3) through (8) in

order to write the composite of the preceding mappings as

°a

* D
e

.
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b2[cos y -7 (C +1)] 2 (10)

Then we introduce the complex velocity,

dz

in order to write

-q e - b 2 [cos y - + 1 dz
w qe b [Cos( -) (C (12)w2 + )( C+t dz

or

2 1 dC

wdz dF - b2 [I ( +±) - cos y - 1 - (13)

These quantities are now used to define the logarithmic hodograph or c-plane:

-iw(C) 1 dF w ui8 exp[LnU-i8] . (14)e UB eB ep, [I U (4

Therefore we have

w(C) e 8 + iln I- e + it , (15)
U

#Ti

where T - tn S-. On the free streamlines q - U so that T 0 there. In the

U

C-plane, these free streamlines are on the real axis and at 0' we know that

. e - 0 also. Therefore,

W(0) - 0 (16)

• and w(C) is real when C is real. At the stagnation point q + 0 so that

" - -+ there. The flow directions differ by w on either side of 0 and

.. so the w-plane with the various corresponding boundaries can be

represented as illustrated schematically in Fig. 6.
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We can now use Eqs. (13), (14) and (15) in order to write

b2e-r+i0 8

dz -dx + idy -be U [ + ) -cos ,](¢ - ) . (17)

On the wetted surface C e io and Eq. (17) leads to

2
dx- e [cos y-cos sin B cos e dB

and s (18)

dy " -  e -  [cos y- cos ]sin sin 8 dO

Note that dy/dx - tan 9 as it should if the wetted surface is to be a stream-

" line. On the upper surface of the cavity T - 0 and arg C - w so that Eq. (17)

leads to

dx.- cos e [ ( 1) - cos "](C -) 4

c(19)

- sin 8 [ L (C + - cos Y](C -

" provided that -0.

Returning to Eq. (17), we can write the square of the arc length along

the wetted surface as

2 ~b 2 2

(ds) 2 - dz dz - 2 -- er[cos y - cos a] sin 0 d} 2  ,

-.

V. where we have also made use of Eq. (18) because it applies to the wetted

surface. But from Eq. (15) we have

po
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T Ln - in I -C

so that

ds - 2 - [(cos y - cos ) sin O/V1 -C p(O)Jd (20)

. on the wetted surface of the profile. As we have noted previously, the flow

directions differ by w on either side of 0. Therefore, if the sign of dz is

positive on the arc 0A2, it will be negative along arc OA1. As a result of

this difference ds might have a like sign change in these two regions. Just

how this might occur depends on the form of i1 - Cp(8) in any particular

"" case. Therefore, we will defer consideration of this question to a later

S.-place in the development.

Hydrodynamic Forces

The development of general formulae for the hydrodynamic forces on the

profile depend upon certain properties of the function w(C) which result

from the previously noted fact that w(4) is real when C is real. For then

one can apply Schwartz's principle of symmetry in order to write w(Z) = w(C)

and thereby obtain the analytic continuation of w(C) into the lower half of

the unit circle [6]. Thus we can write for a prescribed modulus,

Sro" I 1 ' 1,

e(O) - iT(B) 0 e(-0) + iT(-B)

.. or

: -: T(-8) - - t(8)

and

0(-0) 0 (0)

-. . ... .- . . € . . * - . - .. . -. *.- - : .- -*- ., .-. .-. ." 5* 4" ' ' ' - '5..' ' ; .- ' . q 5 5.'? ,-. ' - . : -

* .':' * ."J.'::,'V .. , .",:. : ,,_e ." . , '.* C""" ' ., , , . . ., . . , ' . : .



-14- 10 June 1985

BRP:lhz

Hence T is an odd function of 0, or Im. C, and 8 is an even function of 8, or

p*. Im .

Using the result,

mT

e - 1C (21)
p.p

-. as noted above, and the fact that w(C) is now defined inside the unit circle

* one finds [71 from the calculus of residues that

2v b2

CL - [4w'(0) cos y - w''(O)] (22)

and

C b 2  2
C b (23)

where the quantity c is the profile chord which is taken as unity in this

work. The moment can be calculated after the complete solution has been

found.

The Form of wc(C) Near the Stagnation Point

This is also a well known result which we shall review briefly. The

form of w near 0 is dominated by the fact that on a smooth contour W jumps

by the amount w. In particular, as one traces the profile surface, starting

* at Al in Fig. I and then passes through 0 while proceeding to A2 , the jump

is a decrease in 8. This is precisely the behavior exhibited by the real

-* part of the analytic function i~n(C - eiy). However this function by itself

*does not have the proper symmtry needed for admissible forms of W. But if

we subtract from it a similar function which has a like jump at the image of

0 with respect to the real axis in the c-plane, we preserve the necessary

I.

S-
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behavior at 0 and also satisfy the preceding symmetry requirements. Aside

from arbitrary additive constants, this function has the form

iln - y

Finally, we require the w(O) - 0. Because of this condition the resulting

function which provides the flat plate solution is [4]

iy
S + iT - + in ,(24)

with y w - a in the case of an isolated flat-plate profile. For this case,

one can show that this function has the flow direction, 80 a behind the

stagnation point or e8 - w- a ahead of the stagnation point on C - e.

Therefore, the wetted surface in the z-plane is a straight line through 0

with its trailing edge inclined at the angle - a with respect to the positive

real axis. Moreover, since To vanishes on the real axis in the ;-plane, the

free streamlines have C - 0 as required. Thus we can write Eq. (24) as

" (C) - eH(O - y) - + ln e(24a)

where

0 < Y
H(O y)

is the Heaviside function. ain

Vo

PP
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The contribution of w 0to C Land C Dfollows from Eqs. (22) and (23).

'm Eqs. (22), (23) and (24) we get

b2
CL -2i-sin acos a (25)

LUc
0

2 b 2
CD -2wI!-sin a (26)

DUc
0

and we see that LID - cot a as is proper for the flat plate. We can also use

the relationship Cp - e Tto find the pressure distribution on the plate.

* The result is

C ~4 sin B sin y (7

P'O (Cos B-Cos Y)2 + (sin 8 sinY2

* From this result, we see that when 8 - y, C~ 1 and when 8-0 or wt,
p0

*~ 0 C~- as required.
p0

Continuing the study of the flat-plate solution, we can rewrite Eq. (24)

* for points on the wetted surface as

w 0 v - a + y + iJn[(e iY - ei8)/(e-iy - ei")]

* in which case

To e -Y e -/1-
e e-y ei i C P
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After some manipulation we find that

Vi C 21cos -cos yl
P0 (Cos Y - Cos a)2 + (sin y + sin 0)2

Next we can put B w i - and y w i - a in this expression and in Eq. (17)

when it is written for points on the wetted surface. That is,

b2 (cos & - cos [(cos cos a)2 + (sin g + sin a)2]sin t dE-. dz =-V-Icos -Cos aI [co -o

- sgn(cos E - cos a) 2 b-2 [sin + sin a sin 2 & - cos a cos sin &]d9

ieWe can dispose of the product - e sgn (cos - cos a) by observing that on

the wetted surface when 0 4 4 4 a the flow direction is 9 - w - a and when

ie -ia
a ( • i, 9 = - a. Therefore in the first of these cases, e - - e and

18 -ia
in the second e - + e . Hence in either of them the product

i8 -l e
-e sgn (cos E - cos a) - e . Next we can introduce d(a + in) - eiadz

from Eq. (1) with the result that

b2 2
d(a + in) - 2 - [sin t + sin a sin2 t - cos a cos & sin t]d .

*" This last result implies that n - 0 as is proper for a flat plate and do is

simply the arc length ds along the wetted surface measured from the profile

nose where a = 0. We can integrate this last equation from a - 0 ( - 0)

to some value, 0 €a 1 (0 4 & i 7), and get

-s 2 '- [(I- cos t)(1 cos a 1 + cossin a l  (28)

.2

°7'-
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EK! The profile is to have unit chord however, so that when w = i, a = s = 1

and

2b 2  1
b 1 •(29)
U 4+w sina

When Eq. (29) is used in Eqs. (25) and (26), one obtains the well known

Rayleigh formulae [121.

Additional properties of the flat-plate solution which are important

for the present considerations relate to the shape of the upper surface of

the cavity. In Fig. 5, C will be on the negative real axis for points on

this part of the cavity. Therefore, let us put C = - c where c is a real

positive number. Then we can use d(o + in) = eidz, and write Eq. (17) in

the form

d(o + in) " -- exp i[a + 8(c)]d{[-L (c + ..) - cos a121
c

But now

exp i[a + 80] - eiU(ei = 
- )/(e i  - Cc)

and so we have

1 b2  2_eia/C3]d .d(a + in) = 2 [4 ia - 2 + (21 sin ct)/c + 2/C 2 dc

2 [ Ce c c C

The integration in this case starts at A where Cc l and a = n 0 and

proceeds to some value of ac ,c corresponding to 1 4 C 4 0. This leads to

the parametric representation of n(a) in terms of Cc which is given by

S

4 4 4 4 4 4 4 4 4-'
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I I b2 ( C) Cos2 a( 2 (30)

c 2 U Cc 2.)2 cos - 23 (30)

and

|_c in '2c + 2 c  (31)

2€c

h
2

Equation (29) gives the value of U - to be used in Eqs. (30) and (31).

It is useful to find the ordinate of the upper surface of the cavity

above the trailing edge of the wetted surface. This can be done by

calculating the quantity

f( c'aC) 1 - c 2 C)1 - 2

f(C = (c'a Lc % cos a - 2

for several values of 4c and prescribed values of a. Then when ac 1 , one

can plot contours of a = constant in an f - ;c plane and note for each value

of a the value of ;c corresponding to f - 2(4 + w sin a). These values of

can then be used in Eq. (31) in order to compute the value of 1c(1) for

each value of a. It was found when these points were plotted in an n (1) - a

plane that a linear relationship fits the data for 0 4 a 4 10*. When a is

measured in degrees, this line has the equation

n (1) - .0294a* . (32a)

The corresponding relationship for a measured in radians is

nc(1) - 1.684a . (32b)

The computed results are tabulated below.
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Table 1. Cavity Thickness at the Trailing Edge of a Flat Plate

°  €c(i) Tnc(1)

0.0 .... .0000

0.5 .1712 .0147

1.0 .1707 .0297
2.0 .1698 .0585
3.0 .1689 .0879
4.0 .1680 .1174
5.0 .1669 .1463
7.0 .1650 .2049
10.1 .1620 .2939

These results will be used in order to start the functional iteration after

the formulation of the theory has been completed. As a final note, we

observe that the cavity thickness at the trailing edge of a flat plate

according to linearized theory [131 is

n (1) = 1.681a

which can be compared to the corresponding expression from Eq. (32b). Within
.1

the range of attack angles considered here the trailing-edge cavity thickness

at zero cavitation number is about the same when estimated by linearized

or nonlinear theory. For larger values of attack angle, we would expect

estimates from linearized theory to exceed nonlinear cavity thicknesses.

The flat-plate function wo(C) is traditionally considered to possess

all of the singular behavior of the function w(C). The shape of the smooth

body is then represented by an analytic function wl(;) which is regular

inside and on the unit circle. It must also satisfy the same symmetry

requirements as are imposed upon w and we must also insist that w (0) - 0.

Then one traditionally puts w(C) - o + wI" As mentioned previously, we

will add to this customary sum a new function, w c(), which is the analog

of the point-drag function of linearized theory. We will now explore the

properties of this eigensolution.

.. %
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A Simple Eigensolution

The complementary function w - 0 + iT , is to be determined from the

requirements that T - 0 on the cavity and the foil, 9 = 0 along the" C C

stagnation streamline and that w vanishes at infinity. A function of thec

form which satisfies these conditions can be found most easily by considering

the flow in the F-plane, Fig. 2. If we take

W = + iT - (33)c c c €

where E is a real constant, we have a function which satisfies the necessary

requirements. The two conditions w (-) = 0 and q = U on both the cavity and
C

the profile wetted surface can be satisfied by any member of the family of

functions having the form F- , 0 < m < 1. But the condition 6 0 0 along the

entire stagnation streamline can be satisfied only when m = 1/2. This choice

for the complementary function seems to offer the advantage that it will

*. cause less alteration of the upstream flow field inclination than other

possibilities. Moreover, it is the only choice from amongst the functions

F-m which gives the correct branching of the flow and it appears to be the

most convenient choice for further analysis. Consequently, we shall adopt

this functional form for the simple eigensolution in this work. The word

simple indicates that the branch point for this solution is coincident

with the stagnation point at 0 in Fig. 1. We shall generalize this result

later.

|- .* * - - ~ .. * . . . .
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It has been noted by 0. Furuya* that Eq. (33) is just the single-spiral-

vortex function proposed by Tulin as a useful representation for cavity

termination in the direct problem at non-zero cavitation numbers [14]. The

small-scale structure of this function is responsible for its name as

discussed by Tulin on p. 21 of Ref. [14]. In connection with the present

application, we may also mention Tulin's double spiral vortex model [14]

which we shall write as

W 6c + iTc = D n VF =D[n Vr + i(ar F)]
cd cd d2

where D is a real constant and r = IFl. At points in the physical plane

which are far removed from the profile and the cavity, F - U and w is
z cd

not bounded at the point 0'. As it stands, this form of the double-spiral

vortex violates Eq. (16) and it will generally not produce a null pressure

coefficient everywhere on the wetted surface. Therefore, it is not an

admissible candidate for an eigenfunction. This is not to say that other

logarithmic forms for an eigenfunction can not be acceptable. This writer

has not found one as yet, however. Therefore, we shall content ourselves

with the form of w prescribed by Eq. (33) and restrict the present analysisc
to eigensolutions of this form.

Equation (10) can be used to represent ci in the C-plane as

WcE -2E i)(4
'c =b[cos y (C +)] b( - eiY)(c- e -i ') (34)

*Private Communication (March 1985).

.

°.... . .. . . . . . . . . . ........... °.. .. °......
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In the c-plane w (0) - 0 and when C is real, w is real. Moreover, w C()

is an analytic function which is regular inside the unit circle and which

±iY
has simple poles at € e Note from Eq. (34) that on the "nose cavity"

8 + 0+ as c - 0 and on the "tail cavity" 8 + 0- as + + 0, as
C C

illustrated in Fig. 1 also. From Eq. (14), w - Ue c and we see that
c

the structure of w leads to an essential singularity in w at the
c c

stagnation point 0. The complex velocity w is bounded at this point
C

however*, and a smooth foil contour will pass through z - 0 as will be
. . eiB

*'- shown below. At points on the unit circle, - , we have

T -0 (35)

and

8(8)- E C -Ec bicos y - cos 8] 2b sin Y sin Y.-.. (36)
2 2

*For points on the unit circle very near the stagnation point, y - y, let

B - e with e << 1. Then

E
* W (y,e) -c .b[sin y + -cos TI

and to 0.(-1) wc "exp - Web sin y. Therefore IwcI = ( 1 as e + 0.

iyNext consider an interior point, 4 - re Now let r - 1 p with

0 p 1. Then to iE t inq c/U. Consequently,0 < I TentoO~p-l' , ,.,in -) c

q /U - exp - E/pb sin y and q /U o 0 as p + 0. Appropriate linear

combinations of these two cases can be used to consider other limiting

paths but these give no new information about the boundedness of q c/U.

A..
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Since T - 0 on the wetted surface, we expect w to make no contributionc c

to the lift although the singularity at the stagnation point should lead to

a drag force. Making use of Eqs. (22), (23) and (34), we find that

C L 0
Lc

and

E2

CD 2w-r .
U cc

From Eq. (36) we see that the flow direction is not defined at the

stagnation point, 8 = y. If 8 < y however,

E
c b[cos 8 - cos Y]

.- along the arc OA2. If 8 > Y

c - b[cos y -cos] > 0

along the arc OA1. Therefore 0 changes sign at y y and as noted
c

previously, the real part of w has a jump of w as it passes through 0.

In view of Eq. (15) which requires that T - Inq/U, this situation suggests

a strong similarity between Fabula's "step-profile" solution for the

linearized theory [15] and the present eigensolution. The present

application and those of Refs. [131 and [151 are different, however.

Simple Eigensolution Geometry

The shape of the wetted and cavity surfaces follows from the

relationships of Eq. (14) which can be expressed as

dF iw d(V'F 2 ) iEI/F
dzn- e c U eUU

"°~
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If we put t - E/F, we find for a profile of unit chord that

CD

dz- 2E2 1
3 eitdt d T d t dt

U t 3Wt

which has the indefinite integral,

z - { -+i e- + e t dt} (37)

Completion of this integration can be carried out in four parts starting from

either side of the stagnation point where z - 0 and t +

For example, on the arc OAI we recall that B y y. Put t - tl, y - i - 6

and BI - El then

t. b(cos - cos 6)

Because 0 4 91 4 6, we have

E t
b(1 - cos 6) 1

After separating Eq. (37) into real and imaginary parts, we find for this

part of the wetted surface, the coordinates

E2 cos t sin t

x 2 t Ci(t
1

and (38)

E2 Li t Cos t
1 1it 1~

*~~~ +~ - +' Si .*. * . .~

-tot(t
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- On the rest of the wetted surface, that is, on arc 0A2 between the stagnation

*point and thetai, eknow that 4y andwe Put t t2 , y v-6 and

02 -iT-9 2 . Then

Et 2  b[cos 6 -cos 2 ]

Ithis case, 6 4 92 4 w and it follows that

w~ 2  W( + co 6)

Then we have

2 c..os t2 sin t 2  C j

*and .(39)

y E 2 sin t Cos t +S
____- - +i(t2)

* On the cavity surface A10' the integration starts at -- 1 and ends

somewhere between I -- and ~ 0. Note that the value of t at - 1

equals that of t1 when B-0. So that if we Put t =t 3 , y w r 6 and

3, wehaveE

-b[.(3 +i) -Cos Y]

3

then the upper cavity joins the nose arc of the wetted surface and its

coordinates are
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•3 x E 2  cos t3  sin t 3 +' 3 t U- 3  t 3 + i ( t 3 )

*and (40)

E 2  sin t 3  Cos t_3

Y3 t  +  3 + Si(t 3 ) -2

In this case

O<t 4 E
c b(1 - cos 6)

Finally, the cavity surface from the trailing edge is obtained by

putting t - - t 4 , y = - 6 and 4 - C4, where 0 4 ;4 4 1. Therefore

Et 4

b[cos 6 -21 (;4 +

a nd

E0 < t 4  b(1 + cos 6)

Then we have

2  cos t sin t

x~co E 4+

4 -2 i(t4)]t 4C
44

and .(41)

E y E2  sin t4 4 Cos t4
P U 4

4

As we found for the upper cavity, the lower cavity surface starts smoothly

from the wetted surface.

I
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Equations (38), (39), (40) and (41) will provide the shape of the

wetted surface and the cavity surfaces for the simple complementary function

of Eq. (34). These equations contain the undetermined ratio E2/U, however.

* We shall consider the ratio E/b, which determines the strength of the

* complementary solution, as a parameter which we can prescribe -- at least

for the time being. We also consider the value of y (or 6) to be known.

Therefore, we need to "scale" our results in order to obtain a profile of

unit chord. Since we anticipate that the complementary function can

". produce a rounding of the wetted surface nose, the scaling procedure must

* account for this possibility. Accordingly, we shall need to determine

explicitly the location of the apex of the wetted surface nose with respect

to the profile chordline.

Figure 1 shows the chordline for the sharp-nose or for the round-nose

case when the upper cavity separates at the leading edge with respect to

the hydrofoil chord. The geometry for the rounded nose with the separation

point on the upper wetted surface behind the apex of the wetted surface

contour is illustrated in Fig. 7. The apex is located at the origin of

a, n coordinates in this illustration with the n axis being tangent to

the contour at this point. Denote the x, y coordinates of this point by

Xa, ya. Then since the a-axis is normal to the n axis, we see that at the

* - apex the slope of the contour is

dy
-a tan -a) -cot a • (42).. dx

; a

We will restrict our attention to those cases in which the apex is on the

I arc OAI. Let t - tl - ta at the apex. Then from the equations preceding

*" Eq. (38), which define tj, we have

p=

.":;*..~*:*-~-,*.**...~4§:2*>4j>; ~* * .
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ta" b(cos a E-cos 6 ) 0 a 4 6, (43)

and Eq. (43) can then be used in Eqs. (38) to define xa and Ya once the value

of &a (or Ba) has been found. Thus, we must determine the unknowns E2/U and

&a in terms of the prescribed quantities E/b and 6(or y). Two conditions

are available for this purpose. The first is given by Eq. (42). The second

will be that 'he profile has a unit chord.

An alternate form of Eq. (42) is

cos a - sin ta

and , (44)

sin a - cos t

a

which follows from the complex equation just above Eq. (37) when we put

t - ta. We will use Eq. (43) as the appropriate expression for the slope

of the foil contour at the apex. Now let us differentiate Eq. (1) so

that

" eia
d(o + in) eadz

Then from the complex equation just preceding Eq. (37) we have

-t( 2E2 I iti e d + in) - U t3 e dt(45)

t3

0 Starting from 0 where (0,n) (aono), we integrate Eq. (45) to A2 , where

(o,n) (1,0). This step gives

-
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oing2 o t w sint 1
e a o- ir,) U t t + ci(t')

0 t

- [sin t +Cos t~

t + Si(tt)

where

E

ta b(cos 9 a - Cos 6)

OAI . This step results in

0) E2  cos t a  sin t a

-e-ia(y° + i°) U- L a2 
- ta + Ci(ta)

+ ta + ta a + Si(ta) -2

t a

€0a
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* Eliminating the sum co+ in0 from these two equations, we get

-2Cos a- F -f(ta)
E2

and .(46) *

U 2sin a - G -g(t a)
E

In Eqs. (46) we have

x U Cos t sin t

F 2-~- 2 t + i(tt)
E t ~ t

and (47)

y U sin t CoB t
t t __

Gm- = + S~

t

which contain known quantities because tt is known. The remaining pair of

functions,

Cos t sin t

f(ta) 2 a ta + Ci(ta)

a

and ,(48)

sin t Cos t
g(t) a + a + Si(t) 'f

a

contains ta which depends upon the unknown, Oa wT &a. Thus, Eqs. (46) are

* two simultaneous equations containing the quantities UIE2, a and $a which

* must be determined. Therefore, Eqs. (44) and (46) form a determinate system

*The F introduced here is not to be confused with F -*+ ii* from Eq. (2).

OR - - ~ .- . . . . . . . . . . . .
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which can be solved by iteration. In order to do this, we can write the

complete system as

G - g(t a )
tan a - f(ta ) a (49)

cot t -tan a (50)a

and

U F - f(ta) G - g(t )

E 2 cos a sin a (51)

In the derivation of this system we have assumed that the apex, Za, is

on the arc OA1. On the other hand, we specify the quantities E/b and

y - 6. We must now determine whether or not our assumption regarding

the location of za can restrict possible choices for the parameters E/b and

*I 6. In particular, we recall that, as is true for the quantity &1, we must

[. also require that 0 < a < 6, as noted in Eq. (45). The limiting condition,

corresponding to the coincidence of the apex and cavity separation point at

* the nose of the profile corresponds to &a - 0. In this case, the smallest

value of t1 for any choice of E/b will be found when

ta rain _ b( -E 6)

On the other hand, by inspection of Eqs. (47) and (48), we see that the

largest values of f and g are found for ta - tmin. The values of F and G

are also obtained from the smallest value of t 2 because tt is calculated

from t 2 with w2 r, namely:

.0'

O.



4..-7 

'
-33- 10 June 1985

BRP:lhz

E
, b(1 + cos 6)

Let us compare the values of F with f and G with g. Suppose that E/b is

selected so that cos ta - cos tt - 1, sin ta - ta and sin tt U tt. Let

6 << 1. In this case we can see that

F al min 26 2 G alin__1__6

T t d) 1 - and - =

For example, if 6 = .1, we would estimate F/f - (20)4 and Gig (20)2. These

estimates imply that both E/b and 6 are significantly smaller than unity.

In the applications contemplated, E/b will probably be less than unity

although 6 might conceivably approach or exceed unity. Therefore, we shall

consider the ratio,

ta
Iamin 1 + cos 6

t 1 -cos6 n[' t
which permits us to consider roughly the ratios of F to f and of G to g

for various values of 6. In particular, we can solve for cos 6 and obtain

cos 6 n -
:7~ n+ 1

which permits us to plot a curve of n = (tal it) versus 6 as shown in
min

Fig. 8. This curve illustrates the effect that the choice of stagnation

point location has on the ratio, n. The value of n in turn gives a rough

indication of how large the ratios F/f and G/g will be.

So
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It appears for most cases that these ratios will be very large and

one need not solve Eqs. (49) and (50) by iteration. Instead one can

obtain an accurate value of a from

tan a L.2 (49a)F

and he can then determine U/E2 from

U- F (51a)

E 2  cos a

Should cases arise in which Eqs. (49a) and (51a) are not accurate, they can

be used advantageously to start the iteration. In order to illustrate these

points and in order to show a profile shape derived from the complementary

solution, we have prepared the following numerical example.

We started the calculation by selecting 6 = 70 ° and E/b - .01.

Figure 8 shows that n A 2. The values t .01520 and tt M .00745

follow from the formulae for these quantities. From Eqs. (47) we find that

F - 18,004 and G - 266.83. Equations (49a) and (51a) lead to tan a - .01482

and U/E 2 - 18,006. From the formulae just after Eq. (36) we have for the

cavity drag due to a profile of unit chord

CD , 2w E--- .00035
c

as the contribution for this point-drag profile. The value of ta can now

be found from Eq. (50). It is ta - 1.556. Equation (43) can now be used

to find that -a 
= 69.61% Note that for this case the apex is almost

coinL lent with the stagnation point. Because Eq. (35a) shows the

*j !.%. :** *- =*..

.Li.~
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complementary function to be at the stagnation point this result is

expected. The fact that the apex is not exactly at 6 = 70* is due only

to the inclination, a = .85@, between the chord line and the x axis.

Once U/E2 has been found, the values of xt and yt can be found from

Eqs. (47). The values are xt = .99989 and Yt - .01482. Now one can

use the conditions that in Eqs. (1), (xt,yt) + (o=1,n=O) and

-(xa,Ya) (o=O,n=O). These lead to a system of equations from which

- oo and no can be eliminated and one finds that

x =x -cosax - sin t

y =y + sinca y + cos t
a t t a

When the above values of xt and a were used in these equations, the values of

xa and Ya were found to be zero to within five decimal places. This result

* is consistent with the location of Ea noted previously. Continuing with

Eqs. (1), we can use the fact that xa = Ya = 0 to see that it must also

follow that o = no = 0. Accordingly, the form of Eqs. (1) for the present

* calculations is

a = .99989x - .014796y

n = .014796x + .999989y

The next phase of the calculations is the evaluation of the equations

for the wetted surface and cavity contours in accordance with Eqs. (38),

(39) and (40). The result of these calculations is shown in Fig. 9. In

this figure, the chordline distance, a, has been labeled as X and the

ordinate, n, has been labeled as Y. Note that the Y-scale is magnified

five times compared to that of the X-scale. The trailing edge of the

S " . ." , ." . . .,.-. ' -. ,,.. ; .. ''' . ' .. , ,,., ''' . '''' . ' ,,,,.,='''",. '' .... " -. ,,.',' -;, -i - '' - ' ,'
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wetted surface is at X 1 1. The upper surface separation point is at

a = X = .240. The cavity thickness at X - 1 is Y = T = .02980. This

point is marked to the same scale as the X-scale by the dot and the line

at X - I in order to give an idea of the actual thickness of this example

of a point-drag profile. Finally we can calculate the value of c(1)

in this example in order to compare it with the values found previously for

the flat-plate. It is found from the value of t = (E/b)/[( c + 1/4c )/2 cos y]!cc c
at a = 1. The calculations indicated give 4 c(1) = .3290 which is roughly two

times the value from Table 1.

*The Eigensolution

Our desire to retain as much simplicity as possible in the preceding

analysis of the complementary function has caused us to place the point-drag

singularity at the stagnation point, and that is why we call it the simple

eigensolution. This restriction on the location of the point of application

has allowed us to show that such a solution exists, that it definitely leads

to a smoothly rounded profile nose and that it will cause an incremental

thickening of the cavity depending on its strength, E. Of course, we need

not restrict ourselves to the stagnation point as being the location of the

point-drag singularity.

For example, suppose we choose some other point C on the wetted surface.

Such a point is illustrated in Fig. 5 and it happens to be located between

the upper cavity separation point and the stagnation point, although C could

just as well be at some other wetted-surface location. The main idea is that

now y - y at the location of the point-drag singularity and if we simply
ci

replace Eq. (34) by the modified expression,

--
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E - 2E;
c b[ 1 + 1 iY -iY

CO r 2 ~ ~ b(C- e C)(C- e C

iYc  -iyc
iE [.e e C.] (34a)b s.in Yc I iyc -iycI

c. - e c - e

we still have a function which satisfies those conditions needed for a

complementary solution. It is clear that in the ,-plane, w (0) = 0 is in

*agreement with Eq. (16). Moreover, when C is real w is real and on the

unit circle T - 0 everywhere except possibly at the simple poles,
C

±iyc
C e . From Eqs. (22) and (23) it follows that

• . E2

CD a 2,f- (52)DUc
c

as before. On the other hand, because of the displacement of the point C

away from 0, a lift force is produced and we find that now

" C-c Y - Yc 8wbE c + cC L U-c sin sin 2 Uc 2 sin 2 (53)

where y - - 6 and yc w - 6c in accordance with previous convention. The

profile chord, c, should be set at unity in Eqs. (52) and (53). Equation (53)

*i shows that CL - 0 when 6c - 6. But 6c < 6 when the point C moves toward

. the point Al and a negative lift results. In the limit as 6c 0, we have

8?r bE 2 6
C --- sin 2
L Uc 2c

2'

*.* .* . . .. - . * U .*-..
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If C is between 0 and A2 a positive lift is produced and in the limit when C

is coincident with A2 we have

8wbE 2 6
L Uc 2

If one were to let E be negative the sign of the foregoing trends with

respect to CL would be reversed. We must insist however, that E > 0 because

this function produces a thickening of the cavity and because then

W'(0) - - 2E/b. Similarly, we have also found that w'(0) - - 2 sin y.
c 0

Thus, the effect of adding w and w increases the net drag. Neither of these
o c

functions can act to reduce it. Accordingly, we shall take Eq. (34a) as the

*appropriate form of the eigensolution which has been sought. Since both of

Eqs. (34) have simple poles on the contour I€ 1, they can be thought of as

*i elementary solutions. But as we have seen in the case of the simple eigen-

- solution, the pole at y y does not lead to an unbounded value of qc/U.

Indeed, 0 4 qc/U 1 1 in the neighborhood of B ± y, which can be taken to

*i be at any point on the wetted surface when 8 = + yc"

" Some Profile Geometry and the Flow

In any inverse design procedure, one starts the calculation by

prescribing the pressure distribution or the magnitude of the velocity

* along the periphery of the profile. Of course, that is almost like

". having the solution at the outset; but not quite, because one does not

know the relationship between points along the hydrofoil arc length, s,

and corresponding points on the semi-circle in the ; plane.

. Nevertheless, referring to Fig. 7, we can measure the arc length s from

the point A2 at the cavity-trailing edge separation point. Then the

22* arc length increases from A2 until one reaches the stagnation point 0 in

......... *- . . .. . . . . . .

* * . . . . . * . * ***
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in Fig. 7. At 0 the arc length will be designated by s . Continuing along0

the periphery, one rounds the nose of the foil and arrives at the separation

point A . At Lbis point, the arc length is sI. Finally we proceed along

the upper surface of the cavity until we arrive at the point s2, a distance

T directly above the trailing edge, A 2 . The distance T is measured

perpendicularly to the profile chordline. Thus, it is parallel to the ,

axis in Fig. 7. Clearly, 0 < s < s1 < s2

A schematic diagram showing the flow speed on the wetted-surface arc

and the upper surface of the cavity is illustrated in Fig. 10. This figure

shows rather clearly that the designer does not have as much freedom with

regard to the pressure distribution prescription as he might wish. For

example, we know that jq/Ul 1 at s - 0, s - s I and in the interval,

Ss 1 s 4 s 2 . Moreover we take the values of q/U < 0 in the interval

- 0 4 s 4 s because the flow direction on the wetted surface points in the
0

direction opposite to the positive sense of s. Between s 4 s 4 s 2 the

opposite situation holds and we count q/U > 0 in this interval. At no

point in the flow can q/U > 1.

Since we prescribe the magnitude of q/U everywhere this is the same as

prescribing the lift coefficient CL . The prescribed value of C can be
L L

used to fix the relative position of the stagnation point s with respect
0

to point a2 if the distribution q(s)/U is not too firmly fixed. One need

only use the well-known Kutta-Joukowsky formula,

'.- s2
1 r
" cCL f (q/U)ds

0
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where c is the profile chord and r is the circulation. But we can write

r (A 2 41)U

where

s

6 -( f 0 ,s)d
0 0

and

s)

%2(SoS 2) - I q ds + (s2 -s)
S

0

"" Generally one will need to solve for the ratios s Is and s Is numerically,
o2 2

starting the iteration by supposing that possibly A1 and that part of A1 2

between s and s are triangular areas. Indeed, we will see below that tre
0 1

- area A must be rather closely specified in advance so that the chief freedom
2

to be exercised by the designer is associated with A1 . The thought behind

these observations is that whatever the approach, the design CL and the
oL

distribution q(s)/U must be consistently prescribed.

We now turn to the properties of the flow in the neighborhoods of so

and s 1 because at s the flow on the wetted surface is a stagnation flow and

- at s1 it is constrained by the requirement for smooth separation. For

simplicity's sake we shall shift our reference point from A2 to the point 0

and measure the arc length s from 0. This means that the distance along the

. arc from 0 to A is sI - s and we will normalize all intermediate distances
1 0

s by writing x = s0(sI -

-s.

Sb

................. .- *. ... . .

* *. . *.. .-
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Then it is known for a potential-flow stagnation point on a flat wall

that the streamlines are equilateral hyperbolas having their separatrices

as the straight wall and the normal to the wall through the stagnation point.

It is also known from linearized theory [9], and it can also be shown for the

exact theory, that if x - 1 is a separation point then C (x) - V1 - x. A
p

specific example of this general behavior can be seen by referring to the

various formulae for the flat-plate velocity and pressure distributions

given above in the discussion surrounding w . In particular, it is easilyO

seen that dz/d = 0 at the separation points C 1. Consequently curves

of q/U and C will have vertical tangents at the separation points. In
p

response to these requirements we shall consider a one-parameter family of

speed distributions on the forward part of the wetted surface; namely,

q(x)/U - x [1 - a V -x 2 (I - 1 ) , (0 4 x ( (54)

Although this is a rather special class of velocity distributions, it

probably contains as much generality as one usually needs because most often

the arc length from s o to s 1 is very small compared to the total arc length

2 * Therefore the curves of q(x)/U will be very steep and the shape of one

choice of distribution would hardly be discernible from some other choice,

provided that the required conditions at x - 0 and x = I are satisfied.

Plots of Eq. (54) are given for a highly stretched length scale in Fig. 11.

This specification and cavity surface velocity for s I 4 s s makes

the entire pressure distribution on the upper surface of the profile fairly

well defined. In order that these results can be used conveniently in the

process of reconciling the design CL with q(s)/U, Eq. (54) should be

expressed in terms of the arc-length coordinates defined in Fig. 10.

Normalizing all distances by s2 we can write

* . . . . . *.' K - . 2 .



- :. ' :'. ". o .!' .': . --- .' = - L 5 . - - - - ._- e ° . f .°L - i ' i..I _W .. 2 y T =. S -I .' .. .. V *W W T.: V

. -42- 10 June 1985
BRP:lhz

x - 0)( 2 (55)

Having prescribed the velocity distribution for points on the periphery

of the profile, one can now use Eq. (20) in order to derive the circle-to-

profile correlation between s and s2 albeit with some degree of ambiguity

until the entire problem has been formulated and solved. For this

correlation, we will write Eq. (20) in the form,

S(s) ds = 2 b2 (cos y - cos $)sin 8 d8 = d[(cos y - cos ) (56)
co U [

where Eq. (54) defines q(s)/U in the interval, s 0 s 4 sI and in the

- interval, s 1 s 4 s2' we have q(s)/U - 1. Moreover, at this point we know

• that when s - s , 8 - Y and when s Sl, 8 - w. From Eq. (55) we can put

(s- o)dX - ds

"" and we can integrate Eq. (56) from s (x - 0) to x and the right-hand side of
0

Eq. (56) from 8 = y to 8. Therefore the integral of Eq. (56) is

2 23/2 2 4 2-. ~ 0s oiX 1-( - x ) . b co 1)2
(91 - a(- - (Cos y - cos ) (57)

* When 8 w it and x 1 1, Eq. (57) becomes

2

Cs1 - sa)( -6) " 2 !L (1 + cos Y)2 . (58)

.

.°,. . .

' " "" "" ', i" "" ." " ""~ -"' "' " " . - " ** " -:" " * '"" "" " " •" "-" "- - -- ".-" " "-". .".- -... .-.-. '- -.-. "" "". -"" "e~e '- ,- 
"e

o-...,'.. - ." .-. " .- "e '. "" -",-". . .- -- -* * .--4 " , .~ .. . '. -4'. . '- _ . -. -_ . . .' % -,-.
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Proceeding to the arc sI 1 s s2 along the upper surface of the cavity

one may start at the point B w r on the circle [€ - 1 and move along the

negative real axis toward € = - r - 0. The velocity q/U - I everywhere

along this arc and Eqs. (19) can be used to find the differential arc-length

correlation,

h2d

where we have taken the positive square root in view of the fact that r has

*. been defined as a positive quantity. Starting the integration at s - s 1 and

r - 1, we find

°2

:- b22 s{- -)[ (i+ + cos y] (1 '1 + r) + cos y]) (60)

i' .U -4

If r - r2 when s =s2 we can sum this special case of Eq. (60) and Eq. (58)

in order to get expressions for A2 in the profile and C planes. As implied

from the outset, the considerations of this section apply to the inverse

problem as a whole and we could extend the above considerations to deduce

a correlation like (57) for the interval between A and 0. We shall not
2

complete the analysis here, however.

The Role of the Eigensolution

Returning to the eigensolution as given by Eq. (34a), we recall that

except for the simple poles at e e c, the imaginary part of w is zeroc

everywhere on the unit circle and the real part suffers a jump of magnitude

w at ± Vc on the unit circle. On the other hand, we have found that the

complex velocity has an isolated essential singularity at these poles (see

* . ..*..
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p. 22 above). Moreover, because of this fact we observed that q c/U is

bounded, being in the interval [0,1]. Therefore by appealing to a theorem

of Weirestrass*, we shall assign the value q /U - I at the points yc - ± 1

on - 1. We have also seen from an exploration of the flow due to an

isolated eigensolution that the resulting profile is smooth and that its

wetted surface is smooth. When the flat plate function w and eigenfunction
0

Wc are combined, the resulting profile will also have a stagnation point at

y " y, as we shall discuss below.

As we have remarked above, our plan is to write the logarithmic

hodograph as the sum of the flat plate function w , the eigenfunction w
0 c

and a regular function w*" Thus

W) + W + W1 = e + e + e + ifn [qo (61)o c 1 o c 1 ] "UU

SConsequently,

0" U3 (62)
UU 3

- The composite function, q/U, is prescribed from the outset. Equation (54)

which has been defined over the arc length s in the interval ISoSl]

* corresponding to the normalized variable x in the interval [0,1], provides

*" *See for example, Copson, E. T., Theory of Functions of a Complex Variable

Oxford University Press, 1946, p. 81; or Tichmarsh, The Theory of Functions,
* 2nd Edition, Oxford, 1949, pp. 93-94.

- .:...- ... ....... -. -...... . .- .... .. . .. . . ,- .. . .... . ... .. --........... . ... . .-.. ... .~ .~
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an example of such a composite function. The flat plate function, qo/U, has

been worked out on p. 17. Here it will be written as

qo 0 ,2(- cos 1 + cos Y) (63)

U - cos B + cos y)2 + (sin 8 + sin Y)2 (

where the absolute sign in the numerator from p. 16 has been replaced by

" ordinary brackets and we have made other changes which apply in the interval

y w. Since q c/U I 1 on I 1 the function q1/U follows from Eq. (62)

rewritten as q /U - (q/U)/(q /U). For the example at hand, the result of this
0

transposition can not be used until we transform Eq. (63) from the C plane

into the arc length in the interval [so'S11 with the help of Eq. (57). In
.0

particular, we find that

2 2 2 2
sin I - (R -cos Y) sin y +2R cos -R , (64)

where

2 U 2 23/2 2 4
R2  U - (1- (1- x+) xb= 2 s - 2o [ - 3 - 2 - + 4 - ]

Equation (64) enables us to write Eq. (63) in terms of arc length as

0 2Rq = 2 (65)
!]. U 2 + i l 2  R2

R.sin y + sin y + 2R cos y -

- ..
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* Then it follows from Eq. (62) that

:::~~ x-€s oX1--2 (1 -2)])-
- f(s s)x[i - a(

{2R/[R 2 + sin y +V sin 2 y + 2R cos R 2 (66)

* As is true of qo/U and qc/U, the function q /U when represented in the € plane

can be continued to the arc of the unit circle in the lower half of the

. C-plane in accordance with the formulas at the bottom of p. 13.

Now that the well behaved function q /U has been found along the arc OA,
11

we may return to Eq. (61) and note that the real part of w(C) is not yet

known completely even in this interval. It will be known however, if we can

find 8 But its complex conjugate T has just been found. Of course, we do

i& not know T at all points of the unit circle because in this example we have

* have not prescribed the entire pressure distribution on the wetted surface,

t- although the way in which this can be done is certainly clear. Once that

step has been carried out, T1 will be known on the unit circle and its

conjugate 81 can be calculated using the customary representation of

-- 1 (;) as a Laurent expansion, as employed by Yoshihara [81 for example.

Procedures which are preferable for practical engineering calculations are

usually based on the Poisson integral formula or related methods. Examples

of interest for the present inverse theory are given by Theodorsen and

Garrick [16] and by Parkin and Peebles [17], among others. Further

discussion of these matters is beyond the scope of this report.
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, In the course of designing a profile, the quantities which one specifies

from the start are the design lift coefficient CL, the pressure (velocity)

distribution on the wetted surface, the cavity thickness at the trailing edge

and perhaps the separation point of the upper surface of the cavity near the

nose. The purpose of the eigensolution is to provide the necessary degrees

of freedom which will permit the control of the cavity geometry as indicated.

Added degrees of freedom can be incorporated in the prescribed pressure

distribution if a parametric approach is used. It might be possible to lower

the cavity drag somewhat by adjusting them although the prescription of

*" cavity thickness is probably more important in this regard. The outcome of

the design process will be coordinates of the profile and cavity shape,

including the separation point; the attack angle, a; and the drag coefficient

- CD . The eigensolution strength, E/b, will also be determined in the course

* of the calculations.

Conclusions

The chief finding of this paper is that one can construct many singular

eigensolutions for the exact inverse problem of two-dimensional cavity flow at

zero cavitation number. From among these, we have chosen that single

eigensolution which provides the correct branching of the flow at its

singularity, it also appears to offer the least disturbance to the upstream

flow field inclination of any cavity flow which does not already include a

point-drag solution as one of its elements. This particular choice also seems

to offer the greatest analytical convenience. The physical conditions

satisfied by this eigensolution are:

1 ii-' '- '. '.> '.
-  
'-.-''-.*.- '..-. ,- - -. '. .---.-. . . ..".-.". . ..-. .". . ..-,- -" , ,. ",.." * "..'-" - -

• " '- - , .a .' _ : , '. , '.'. ' , -'. '. ,_ -- ' _. - -. . _- _ h . ; %,*a ..-.. , , ._ ._
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(1) At points on the cavity and on the wetted surface of the

profile, the flow velocity is equal in magnitude to the

free-stream velocity. Consequently, except for the

singular point the pressure coefficient is zero on the

wetted and cavity surfaces.

(2) The point-drag solution vanishes at infinity, but it

does have a bounded essential singularity on the wetted

surface and it produces no singular velocities or

pressures in the flow.

(3) This function produces no additional flow inclination

on the entire upstream stagnation streamline.

A specific example of the flow geometry represented by an isolated

eigensolution has been given above to show how this function can produce

* round-nosed profiles. In general, it is found that the point-drag solution

*produces a widening of the cavity which is directly proportional to its

". strength. An incremental cavity drag accompanies this widening and this

drag is proportional to the square of the eigensolution strength. No lift

*is produced by the point-drag function when its location coincides with

that of the stagnation point on the profile surface. In contrast to the

linearized theory, the complementary function singularity need not be at

. the stagnation point. In these cases, the incremental cavity drag is

. not changed from its value when the singularity is at the stagnation point.

*. But when the singularity is located between the stagnation point and the

upper separation point a negative incremental lift is produced. If the

singularity is on the lower surface, downstream of the stagnation point,

* *--. .* .



-49- 10 June 1985

BRP:lhz

a positive lift increment is found. Whether or not it is better to position

the eigensolution at some point on the profile instead of at the stagnation

point remains to be studied.

As a result of these findings, it appears that an eigensolution exists

for the nonlinear theory of cavity flow at zero cavitation number and that

it is now most likely that a similar eigensolution can be found for such

fully cavitating flows at cavitation numbers which are greater than zero.

The results found so far suggest that the nonlinearized theory and the

linearized theories parallel one another very closely as far as the nature

of their point drag solutions are concerned. But the present results exhibit

some featues which are lost in the process of linearization.

IF.t
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Z =x+ iy, a + 1 =a0 + i,70 ze la

z - PLANE

0 (x

0'

0 0'

Figure 1. Profile and cavity geometry in the physical
or z-plane at zero cavitation number.
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F-PLANEF +

2

Figure 2. Profile and cavity surfaces at zero cavitation number
in the plane of the complex potential, F *+ i*.
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WPANE

I-- - - - -- - - 0'
0 2 A1

W = f F 2a L V/7-JW-
2

Figure 3. The mapping W = F maps the flow outside the cut in
the F plane into the upper half W plane.
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-aW = b {Z +a I}

Z- PLANE

01A 2  Al_
-1 0 ! 0-0

aC

Figure 4. The wetted surface lies between -1 and +1 in the
complex Z plane.
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Z t- (+ =-Z + Z_

, F = b2 [_ ( + 1) -Cos"
Z0

L C-PLANE WETED SURFACE

-1 0' +1

UPPER CAVITY LOWER CAVITY

* Figuie 5. The Joukowski transformation maps the flow from the
upper half of the Z-plane into the interior of the
upper unit semi-circle with the point at infinity
at the origin.

K

,°

uI

.c*!~' ... AP ~*.. * 0
-- - - .' 5 1',~W** ~ -



10 June 1985
-57- BRP:lhz

A2  01l A

AT 2

= n(qIU)

Figure 6. Schematic diagram of the complex logarithmic hodograph
in the (u-plane.
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A* Y

Figure 7. The geometry of a round-nosed pro-file of unit chord
showing the origin of a - nj coordinates at the apex
of the wetted surface corresponding to (xa a in
z-plane coordinates.
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Figure 11. A one-parameter family of velocity and pressure distributions
over the nose arc of a hydrofoil.
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