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of a "point drag” function or eigensolution. While this fact is of no
particular importance in the classical direct problem, we already know

from the linearized theory that the eigensolution plays an important
role.

In the present discussion, the basic properties of the exact "point-drag"”
solution are explored under the simplest of conditions. In this way,
complications which arise from non-zero cavitation numbers, free surface
effects, or cascade interactions are avoided. The effects of this simple
eigensolution on hydrodynamic forces and cavity shape are discussed.
Finally, we give a tentative example of how this eigensolution might be
used in the design process.
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~ Principal Nomenclature
A cavity detachment point near or at profile nose
Ay cavity detachment point at profile trailing edge
a= (/$; - /$;)/2 see related nomenclature below
b = (/3;'+ /$;)/2 see related nomenclature below
C location of eigensolution singularity on unit
circle
Cp drag coefficient
¢y, 1lift coefficient
Cp(B) pressure coefficient on wetted surface
c profile chord length, ¢ =1
ds element of arc length in z-plane
E strength of eigensolution
F =¢ + iy complex potential in complex F-plane
¢ velocity potential
] stream function
0 stagnation point location
o' point at infinity in z-plane
U free-stream velocity
W intermediate mapping complex plane
wW=u-jiv = %5- complex velocity
Z intermediate mapping complex plane
z =x + 1y complex variable in the physical (x,y) plane
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angle of attack

angular location of stagnation point measured
from negative real axis

complex variable in unit circle plane

normal distance from profile chord

complex semi-circle plane, £ = elB

distance along profile chord

cavity thickness at trailing edge

stagnation point angular location on unit
circle in z plane (cos y = a/b)

angular location of eigensolution singularity
on unit circle

value of ¢ at Ay

value of ¢ at Ay

complex logarithmic hodograph

flow inclination

flow speed

pertains to eigensolution w, or to the
cavity surface

pertains to flat plate solution w,

and other variables specifically
associated with the geometric point O
used on any variable having zero as its
argument or limit

pertains to regular part of solution w;
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Introduction

The present paper bears upon the two-dimensional inverse or design
problem for fully-cavitating hydrofoils in which one specifies the pressure
distribution on the profile wetted surface and then calculates that wetted
surface shape which will satisfy this prescription. This design problem is
certainly not new to airfoil designers and as far as cavity flows are
concerned, both linear and nonlinear design methods have been worked out.
In the realm of nonlinear approaches to the present problem, the very
general method of Yim and Higgins [1]* is worthy of note because it applies
to single foils as well as to cascades of profiles for all cavitation
numbers in the cavity-flow regime. Another approach has been discussed
superficially by Khrabov [2]. Both of these contain far more generality
than is required for this study at zero cavitation number. For the direct
or of f-design problem of exact cavity-flow theory, a good example of the
present level of development is represented by the work of Furuya [3] and
it is clear that now one can do both the design and off-design problems for
fully-cavitating hydrofoils. Thus, one can attempt to tailor the profile
to an entire set of performance goals and failing that he can at least
design for the best compromise among a set of conflicting requirements.

According to many authors [4-7], the inverse problem is not thought
to present much of a challenge at zero cavitation number. In this case,
the classical method of Levi Civita [7] can be applied to an isolated

body. This view is certainly proper as long as one is content, after

*Numbers in square brackets indicate citations in the references listed
below.

.................
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prescribing the pressure in the circle plane, to accept whatever correlation
between points in the circle and physical planes may result. Of course, such
a rudimentary approach does not lead to a useful design procedure.

The motivation for the present investigation is that none of the
literature on the nonlinearized direct and inverse problems we have surveyed
so far [1-8] has made use of the fact the exact theory admits the existence
of a "point drag" or complementary function. While this fact is of no
particular importance in the direct problem, we have already seen in the
case of the linearized inverse problem [9-11] that the complementary function
can play an important role. For the exact inverse theory there has been a
question if a nonlinear eigenéolution exisis or if it does, should it be an
admissible component of the solution [1]? Therefore, in this study, we
explore these questions regarding the exlsternce and usefulress of a “polnt
drag"” or eigensolution in the nonlinear theory under the simplest set of
circumstances and this leads us naturally to the restrictions that the free
streamline flow pertains to an isolated profile and that the flow be at
Zero cavitation number. These simplifications will free us from the
complications arising from non-zero cavitation numbers and other boundaries
in the flow domain such as a free surface or neighboring cascade blades.

In this paper we use the term eigensolution in the sense of thin
airfoil theory as sugge:ted by the work of Van Dyke* because we already
know that the inverse problem in the theory of fully cavitating hydrofoils

is not necessarily unique. Our aim is to find a sufficiently weak

*perturbation Methods in Fluid Mechanics, The Parabolic Press, Stanford, CA,
pp. 48-54 (1975).
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singularity which can be added to the classical Levi Civita solution and can
then be used to satisfy certain additional physical conditions relating to

the location of the free streamline springing from the hydrofoil nose and
thereby provide a unique inverse cavity-flow solution. After we have
constructed the simple eigensolution, we will examine some of its properties.
The actual use of this solution in the design process will be presented
elsewhere, although we will start the process so that the potential usefulness

of the eigensolution in design can be seen.

Flow Geometry and Conformal Mappings

As noted above, this study uses Levi Civita's method [7] for the analysis
of the exact inverse problem for a fully cavitating hydrofoil section. The
flow geometry and the principal quantities associated with the flow are
illustrated in Fig. l. The origin of coordinates in the z = x + iy plane is
taken at the stagnation point on the wetted surface of the hydrofoil. This
point is denoted by O in Fig. 1. The chordline of the profile is inclined at
the angle a with respect to the x axis and the free-stream velocity U is taken
as being parallel to this axis as illustrated. The flow separation point at
or near the profile nose is the point Aj as illustrated for a sharp-nosed
foil. The "upper” cavity surface is shown as the dashed curve extending from
A1 to the point 0' at downstream infinity. In the case of a round-nose
profile, A] can lie on the upper wetted surface behind the leading edge. This
case is not illustrated in Fig. l. The point Ay denotes the location of the
trailing edge of the wetted surface. The lower surface of the cavity leaves

the wetted surface at Ay and extends as shown by the dashed line to the point

0' at downstream infinity.
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Let the coordinates of a typical point on the wetted surface be denoted

by x and ; and those on the upper cavity by X, and y. as shown in Fig. 1.
While the orientation of the profile in the z plane is convenient for the
purposes of analysis, the x-y system is not always a convenient reference
frame for foil and cavity contours. For this purpose we use a coordinate
system with the abscissa along the chordline as shown by the distance ¢
measured from the profile nose. The ordinates of the wetted surface are
then given in terms of ¢ as n(¢) and the upper cavity ordinates are given

by nc(a). At the trailing edge of the profile, the cavity thickness is

nc = T, These quantities are also shown in Fig. 1. 1In the o,n system

the stagnation point 0 is located at (co,no) as illustrated. The trans-

formation between the (x,y) and (o,n) systems is

ia
o+ in = 9, * ino + ze , (1)

where z is the complex variable, z = x + iy, and a is the angle-of-attack
as measured by the inclination of the chordline with respect to the x axis
and free-stream velocity U.

The conformal mappings start with the complex potential in the

z-plane,

F=¢+1ip , (2)

whe-e ¢ is the velocity potential and y is the stream function. As is
customary, we adjust these quantities to make ¢ = 0 at the stagnation
point, O. The stream function is taken to be zero all along the

stagnation streamline. Therefore, the boundaries of the flow can be

represented by a cut all along the real axis in the F-plane as shown in

Fig. 2. Note that the wetted surface extends from the stagnation point

v
v,
v
b
»

L
).
.
(3

...............
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s

at 0 to the trailing edge at A and the lower cavity surface from A3 to o'

must lie along the lower surface of the cut. This is so because downstream

.. .c

from the stagnation point, the velocity potential increases in the flow

NN

»
S

direction and the stream function decreases outwardly from the foil or
cavity surface. On the arc OAj, the flow direction is reversed with a
consequent revrrsal in the gradients of ¢ and ¢ so that the point A; is
on the upper edge of the cut.

One can use the mapping,
- V= /F (3)
- in c¢rder to map the F-plane outside the cut into the upper half of the
W-plane. Corresponding points are shown by the locations of 0', A and
Ay and o' in Fig. 3. As before, the cavity surfaces are shown as dashed
lines and the wetted surface is shown by the solid line. Let the values
N of ¢ at A) and A7 in the F-plane be ¢; and ¢2 respectively. Then these
“2 points are at W = ¢¢1 and W = - /¢2 and the midpoint of the distance
between A) and Ay is located at

/¢1 - /¢2

f . (4)

W=3a =

The distance between this midpoint and A, is

kel
LA I |

SN bl A

7 78,

b - (5)

8
-

These distances are also shown in Fig. 3.
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One can now use the mapping

By =74

W 3 (Z + cos V) , (6)
where
o, - 7%,
cos y =221, (7)
/¢2 + /¢l

in order to map A} into Z = + 1 and A2 into Z = - 1. The point O maps into
Z = cos Y as shown in Fig. 4. The significance of the point C, also shown

in this figure, is discussed later. Then the Joukowski transformation,

z=-3(c+3 . 8

———— — [
PPN R S e U R At
DA ) AL T T T T .

maps the upper half of the Z-plane onto the interior of the unit circle in

the z-plane. The inverse of this mapping must be

g =-2Z+ 22-1 (9)

ﬁ"’l"ﬂ"v’i

]

in order to make the point o' map into the origin of the f{-plane. Various

-, corresponding points are denoted by A}, A2 and O in Fig. 5. The arc of

the unit semi-circle corresponds to the wetted surface. Coordinates on

A1 NN

the wetted surface are given by ¢ = elB as shown. The stagnation point is
A at B = Y. The upper surface of the cavity is on the real axis between
N A} and 0' and the lower surface of the cavity is on the real axis between
]

Ay and 0' as marked in Fig. 5. One can now use Egs. (3) through (8) in

order to write the composite of the preceding mappings as

AL U R P A P I N S R L R S e e et T am e T e
N by L e T e e N S T e e e




A2 (o 4 8 e e "B e e g e ey Mol e e S oat M Raile ~ath M A s At et A A M S e AR ST i AN S ANV L PILITI As |
.

-11- 10 June 1985
BRP:1hz
2 1 1112
F-b[cosy—-z—(; +-C-)] . (10)

Then we introduce the complex velocity,

w-u-iv-:—i, (11)
in order to write
-10 2 1 1 1, 1d
w = ge -b[cosy-i(; +E)](-C+E)Ed_: , (12)
or
-dF = b2 [ Ly _ 2Ly a
wdz = dF = b [2 (¢ + c) cos v](z ;) el (13)

These quantities are now used to define the logarithmic hodograph or w-plane:

-iw(g) _ 1 dF -10
e TUt8 -Ed—z--%-%e -exp[ln%-ie] . (14)

Therefore we have
m(;)-6+izn%-6+ir , (15)

where T = £n %. On the free streamlines q = U so that t = O there. 1In the

Z-plane, these free streamlines are on the real axis and at 0' we know that

0 = 0 also. Therefore,

w(0) =0 (16)

and w(z) is real when { is real. At the stagnation point q + 0 so that
T + - » there. The flow directions differ by 7 on either side of O and
so the w-plane with the various corresponding boundaries can be

represented as illustrated schematically in Fig. 6.

...............................

----- . .t . -~ et et et L e L A Y Y
. e et

et LT I T TR A A U ST R N Y et T LT e e
N e I S S S S S W S A W W OO LTI K SR TN 8, OR TR, O ER AL




EIRS DR A SR URONE Sir ARSI A O SENE . et it St J it sn S R0 AT (o £ T Wy N e Dl e e n it s b el s e e e e o ]
-12- 10 June 1985
BRP:1hz

We can now use Eqs. (13), (14) and (15) in order to write

2 -1+i@

- =be gl Ly _ -1y dg
dz = dx + idy i [2 (¢ + C) cos v](z C) T - 17)
On the wetted surface ¢ = eis and Eq. (17) leads to
- 2b2 -1
dxsTe [cosy-cos B] sin B cos 6 dB
and . (18)
- 2b2 -
dy--U—eT[cosy-coss]sinssineds |

Note that d;/d; = tan 6 as it should if the wetted surface is to be a stream-~ \
line. On the upper surface of the cavity T = 0 and arg { = nm so that Eq. (17)
leads to
b2 1 1 1y d
dx_ = g~ cos © [—2- (¢ +-;-) -cos v](g -=) &=

i) g’z
(19)

2
b 1 1 1y d
dy, =g sin @ [-i(z; +-;-) - cos v](¢ -E) 25-
provided that ~ 1 € § < 0.

Returning to Eq. (17), we can write the square of the arc length along

the wetted surface as

2 - bz 2
(ds)© = dz dz = {2 F—e-‘r[cos Y - cos B] sin B dB}“ ,

where we have also made use of Eq. (18) because it applies to the wetted

surface, But from Eq. (15) we have
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t=wmilawms/T-C ,
U P
so that
bZ
ds = 2 ﬁ—-[(cos Y - cos B) sin B/V1 - Cp(8)|d8 (20)

on the wetted surface of the profile. As we have noted previously, the flow
directions differ by m on either side of O. Therefore, if the sign of dz is
positive on the arc OAj, it will be negative along arc OA). As a result of
this difference ds might have a like sign change in these two regions. Just
how this might occur depends on the form of /1_—_(?(-57 in any particular
case. Therefore, we will defer consideration of this question to a later

place in the development.

Hydrodynamic Forces

The development of general formulae for the hydrodynamic forces on the
profile depend upon certain properties of the funection w(Z) which result
from the previously noted fact that w(z) is real when Z is real. For then
one can apply Schwartz's principle of symmetry in order to write w(Z) = w(g)
and thereby obtain the analytic continuation of w(g) into the lower half of

the unit ecircle [6]. Thus we can write for a prescribed modulus,

ro = |g] <1,

8(8) - 1t(B) = 6(-B) + it(-8) ,
or

t(-8) = - t(8B)
and

8(-8) = e(8) .

“L. %y m v & & a & . e
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Hence t is an odd function of B, or Im Z, and 6 is an even function of B8, or
Im z. |

Using the result,

‘r ——————
e /1 cp (21)

as noted above, and the fact that w(Z) is now defined inside the unit circle

one finds [7] from the calculus of residues that

2
mb ' X
C. =7 gc (4w (0) cos v - w (0)] (22)
and
; 2
b . mhb ' 2
2 ¢y =3pz [0 @] (23)
-
ii where the quantity c is the profile chord which is taken as unity in this
iz work. The moment can be calculated after the complete solution has been
found.
‘ The Form of w(f) Near the Stagnation Point
ﬂ' This is also a well known result which we shall review briefly. The
. form of w near O is dominated by the fact that on a smooth contour w jumps

by the amount w. In particular, as one traces the profile surface, starting
at A] in Fig. 1 and then passes through O while proceeding to Az, the jump
is a decrease in 6., This is precisely the behavior exhibited by the real
part of the analytic function ifn(g =~ eiY). However this function by itself
does not have the proper symmetry needed for admissible forms of w. But if

we subtract from it a similar function which has a like jump at the image of

O with respect to the real axis in the f-plane, we preserve the necessary

b
-

T T

PN
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behavior at O and also satisfy the preceding symmetry requirements. Aside

from arbitrary additive constants, this function has the form

R
g - e Y

Finally, we require the w(0) = 0. Because of this condition the resulting

function which provides the flat plate solution is [4]

.
¥,
R
R
.
-

iy
w(g) =0 +11 = - q + in *¥—2—— (24)
(o) o o 1 - ;eiY

with Y = 7 = a in the case of an isolated flat-plate profile.

For this case,

= = o behind the

one can show that this function has the flow directionm, 00
stagnation point or 90 = 7 - a ahead of the stagnation point on [ = eis.
Therefore, the wetted surface in the z-plane is a straight line through 0
with its trailing edge inclined at the angle - a with respect to the positive

real axis. Moreover, since 1, vanishes on the real axis in the Z-plane, the

free streamlines have Cp = 0 as required. Thus we can write Eq. (24) as

AN FACCIEERNRE . MR ARG 4 DA

~
L iy
X - - - - e
% w (g) = 7H(B - ¥) - a + ifn |*r z , (24a)
é where
-
» 0 , B<y
. H(B - y) =
1 , B>«

is the Heaviside function.
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The contribution of w to CL and CD follows from Eqs. (22) and (23).

“rom Eqs. (22), (23) and (24) we get

2
b .
CLo = 2% Ue sin a cos a (25)
2
b 2
CDo = 27 Te sin® a (26)

and we see that L/D = cot a as is proper for the flat plate. We can also use

the relationship Cp =] - le to find the pressure distribution on the plate.

The result is

C = 4 gsin B sin v . (27)

P (cos B - cos y)z + (sin g + sin 7)2

From this result, we see that when B = vy, Cp = ] and when 8 = 0 or =,
o

Cp = (0 as required.

o
Continuing the study of the flat-plate solution, we can rewrite Eq. (24)

for points on the wetted surface as
w =T -a+y+ U,n[(eiY - eiB)/(e-iY - eis)] R

in which case

-/l-C .
P
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Af ter some manipulation we find that

T c - 2|cos B - cos vl
2 2
Po (cos y - cos B)“ + (sin y + sin B)

Next we can put B =7 - § and Y =7 - g in this expression and in Eq. (17)

when it is written for points on the wetted surface. That is,

EE_(cos E -cos a) 16

2 2
dz = - T Teos £ = cos a e [(cos £ - cos a)® + (sin £ + sin a)“]sin & dg

2
[sin E + sin a sin2 E —cos a cos £ s8in E]de

C.‘Ic‘

= - eiesgn(cos E -cos a) 2

We can dispose of the product - eie sgn (cos £ ~ cos a) by observing that on
the wetted surface when 0 < £ < a the flow direction is 6 = * — a and when
a <E<n, 8§ =~ qa, Therefore in the first of these cases, e16 = - @ and

in the second eie = 4 e—ia. Hence in either of them the product

i® ia

- sgn (cos £ - cos a) = e **. Next we can introduce d(¢ + in) = eiadz

from Eq. (1) with the result that

2
d(o +1in) = 2 %—-[sin E +sina sin2 §E - cos a cos £ sin E]dE .
This last result implies that n = 0 as is proper for a flat plate and do is
simply the arc length ds along the wetted surface measured from the profile
nose where 0 = 0. We can integrate this last equation from ¢ = 0 (§ = 0)
to some value, 0 € 0 <1 (0 < £ < 7), and get

2
s =25 [(1-cos £)(1 -2 (1 +cos £]) + (g -stn’ §) DI | (28)

.......

e B B B B
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.............

U
»'




~r—vr v A v v,
L A crtete S e e

YT [ A}

P R

o v v

bl

RS "A.?'

Y

a( e

TS it o A
‘e ,-'n"'l"-‘ :

LIAJ
)

Tty

(I

Al i |

.‘.._1,-."'..">‘ LR A i PNt N Al el Sulh Rk Sl Vg Wl A Sudl Nl SEIR SN S i e i il SN sl B et arii e it -

-18- 10 June 1985
BRP:1hz

The profile is to have unit chord however, so that when £ = v, g = s = |]

and

2

b” 1
U

%+ 7 8in a (29)

When Eq. (29) is used in Eqs. (25) and (26), one obtains the well known
Rayleigh formulae [12].

Additional properties of the flat-plate solution which are important
for the present considerations relate to the shape of the upper surface of
the cavity. In Fig. 5, g will be on the negative real axis for points on
this part of the cavity. Therefore, let us put § = - ;C where_;c is a real

positive mumber. Then we can use d(o + in) = eiadz, and write Eq. (17) in

the form
b2 1 1 2
d(o + 1in) = T exP i[a + eo(cc)]d{[§ (;c + E—J - cos a]“} .
c
But now

exp tfa+ 06 ] =e el - )/(e - g )
and so we have

2

d(o + in) = % %— [z:ce'jL

3

M

a 2 ia
2+ (21 sin a)/g_ + 2/;C e /g ]dcc .

The integration in this case starts at A, where ;c =] and 6 = n = 0 and

1

proceeds to some value of G.sNy corresponding to 1 € £ < 0. This leads to

the parametric representation of nc(cc) in terms of Cc which is given by
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2 2
2(1-¢ ) [(1+g)
g =22 < £ cos a -2 (30)
c 20 z 2
c c
and
1 b2 -z
n. =5-U—sina — Zzncc 3n
b2
Equation (29) gives the value of ﬁ—-to be used in Eqs. (30) and (31).

It is useful to find the ordinate of the upper surface of the cavity
above the trailing edge of the wetted surface. This can be done by

calculating the quantity

(1-2) (-2

z, Z,

f(;c,a) = cos a - 2

for several values of Cc and prescribed values of a. Then when o, = 1, one
can plot contours of a = constant in an f - ;c plane and note for each value
of a the value of ;c corresponding to £ = 2(4 + 7 sin a). These values of

g, can then be used in Eq. (31) in order to compute the value of nc(l) for
each value of a. It was found when these points were plotted in an nc(l) -a
plane that a linear relationship fits the data for 0 < a < 10°. When a is

measured in degrees, this line has the equation

nc(l) = .0294a° . (32a)

The corresponding relationship for a measured in radians is

nc(l) = 1.684a . (32b)

The computed results are tabulated below.
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Table 1. Cavity Thickness at the Trailing Edge of a Flat Plate

) a’ ge(l) ne(l)
: 0.0 _— .0000
. 0.5 1712 0147
I 1.0 .1707 .0297
. 2.0 .1698 .0585
. 3.0 .1689 .0879
. 4.0 .1680 1174
. 5.0 .1669 .1463
: 7.0 .1650 .2049
' 10.1 .1620 .2939
:

These results will be used in order to start the functional iteration after

'
v

the formulation of the theory has been completed. As a final note, we
observe that the cavity thickness at the trailing edge of a flat plate

according to linearized theory ([13] is

nc(l) = 1.68la ,

which can be compared to the corresponding expression from Eq. (32b). Within
the range of attack angles considered here the trailing-edge cavity thickness
at zero cavitation number is about the same when estimated by linearized
or nonlinear theory. For larger values of attack angle, we would expect
estimates from linearized theory to exceed nonlinear cavity thicknesses.

The flat-plate function w,(g) is traditionally considered to possess

all of the singular behavior of the function w(g). The shape of the smooth
body is then represented by an analytic function w)(g) which is regular
inside and on the unit circle. It must also satisfy the same symmetry
requirements as are imposed upon 0 and we must also insist that wl(O) = 0.

Then one traditionally puts w(g) = w, +w As mentioned previously, we

1.
will add to this customary sum a new function, wc(c), which is the analog
of the point-drag function of linearized theory. We will now explore the

properties of this eigensolution.

. . T T T T e e e T e R T N e Sy Y N Oy e e
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A Simple Eigensolution

The complementary function wc = ec + irc, is to be determined from the
requirements that Tc = 0 on the cavity and the foil, Bc = 0 along the
stagnation streamline and that wc vanishes at infinity. A function of the
form which satisfies these conditions can be found most easily by considering
the flow in the F-plane, Fig. 2. If we take

E

w, =8, +it ==
F

(33)

-

where E is a real constant, we have a function which satisfies the necessary
requirements. The two conditions wc(v) = 0 and q, = U on both the cavity and
the profile wetted surface can be satisfied by any member of the family of
functions having the form qu, 0 <m < 1l. But the condition ec = 0 along the
entire stagnation streamline can be satisfied only when m = 1/2. This choice
for the complementary function seems to offer the advantage that it will
cause less alteration of the upstream flow field inclination than other
possibilities. Moreover, it is the only choice from amongst the functions

F " which gives the correct branching of the flow and it appears to be the
most convenient choice for further analysis. Consequently, we shall adopt
this functional form for the simple eigensolution in this work. The word
simple indicates that the branch point for this solution is coincident

with the stagnation point at 0 in Fig. l. We shall generalize this result

later.
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It has been noted by O. Furuya* that Eq. (33) is just the single-spiral-
vortex function proposed by Tulin as a useful representation for cavity
termination in the direct problem at non-zero cavitation numbers {14]. The
small-scale structure of this function is responsible for its name as
discussed by Tulin on p. 21 of Ref. [l4]. In connection with the present
application, we may also mention Tulin's double spiral vortex model [l4]
which we shall write as

w =86 +it =D n/F = D[an /r + i(2EEE)] |
d 4 2

where D is a real constant and r = |F|. At points in the physical plane
which are far removed from the profile and the cavity, F ~ Uz and de is

not bounded at the point 0'. As it stands, this form of the double-spiral
vortex violates Eq. (16) and it will generally not produce a null pressure
coefficient everywhere on the wetted surface. Therefore, it is not an
admissible candidate for an eigenfunction. This is not to say that other
logarithmic forms for an eigenfunction can not be acceptable. This writer
has not found one as yet, however. Therefore, we shall content ourselves
with the form of w, prescribed by Eq. (33) and restrict the present analysis

to eigensolutions of this form.

Equation (10) can be used to represent W, in the z-plane as

6 = E - 2Eg

c b[cos Y _% (; +%)] i b(g - eiY)(; - e‘iY)

. (34)

*Private Communication (March 1985).

{
g

c. l‘ l" l"
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In the g-plane wc(O) = 0 and when g is real, w, is real. Moreover, wc(c)
is an analytic function which is regular inside the unit circle and which
has simple poles at [ = etiy. Note from Eq. (34) that on the "nose cavity"
ec + 0+ as { » - 0 and on the "tail cavity” ec + 0-as g+ +0, as
illustrated in Fig. 1 also. From Eq. (l4), v, = Ue-imc and we see that

the structure of mc leads to an essential singularity in wc at the

stagnation point 0. The complex velocity wc is bounded at this point

however®, and a smooth foil contour will pass through z = 0 as will be
iB

shown below. At points on the unit circle, § = e =, we have
T =0 . (35)
c
and
E - E
e (B) = - = — . (36)
c blcos Y = cos B] 2 sin X ; 8 sin X - B

*For points on the unit circle very near the stagnation point, B = y, let

B =v -¢ with € <K 1. Then

E

w (y,€) =
¢ eb[sin y + %—cos Y]
and to O(e-l) v, = exp - 1E/eb sin y. Therefore lwc| =q <1lase+0.

1y

Next consider an interior point, = re"'. Now let r = 1 - p with
-1 - iE
0 < p << 1. Then to O(p ), mc(y,p) - b sin € ilnqc/U. Consequently,

qc/U = exp - E/pb sin y and qc/U + 0 as p + 0. Appropriate linear
combinations of these two cases can be used to consider other limiting

paths but these give no new information about the boundedness of qc/U.

A LA AT P A AT B T A
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Since Tc = 0 on the wetted surface, we expect w to make no contribution
to the lift although the singularity at the stagnation point should lead to
a drag force.

Making use of Eqs. (22), (23) and (34), we find that

CL a Q
c
and
2
E
ch 21’ E 3

From Eq. (36) we see that the flow direction is not defined at the
stagnation point, 8 = Y.

If B < Yy however,

E
ec " ~ blcos B - cos Y] <0

along the arc OAj. If B > y

E
ec * blcos Y - cos B] >0

along the arc OAj. Therefore ec changes sign at B = y and as noted

previously, the real part of wc has a jump of % as it passes through O.

In view of Eq. (15) which requires that t = &nq/U, this situation suggests
a strong similarity between Fabula's "step-profile” solution for the

linearized theory [15] and the present eigensolution. The present
. application and those of Refs. [13] and [15] are different, however.

F Simple Eigensolution Geometry

The shape of the wetted and cavity surfaces follows from the
relationships of Eq. (14) which can be expressed as

iw T2 F
az = 4 M . d(.l/JF ) JE/F

= i oA S
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If we put t = E/YF, we find for a profile of unit chord that

c
2 D
dz = - Lot - - = Lo gt
t t
which has the indefinite integral,
(
E2 eit eit eit
Z'F—- :2—-+1T+f—t—dt . (37)

Completion of this integration can be carried out in four parts starting from
either side of the stagnation point where z = 0 and t + =,
For example, on the arc OA] we recall that 8 » yo Put t =¢t], Y =7 ~§

and B8] = 7w - &) then

E
b b(cos El - cos §)

t

Because 0 € £} < §, we have

E
b(l - cos §) < t e .

After separating Eq. (37) into real and imaginary parts, we find for this

part of the wetted surface, the coordinates

and

2
cos tl

t

1

p—

2 |8in tl

|

+

sin tl
— + ci(e,)
1
. (38)
cos tl x
- + 31(c1) -3
1
R B SR R O R GRS D Ok
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On the rest of the wetted surface, that is, on arc 0OAj between the stagnation
point and the tail, we know that B < Yy and we put t = - t), y =% - § and

B2 = ® - £2. Then

E

t2 ® Blcos 6 - cos 52] *

In this case, § < §3 < w and it follows that

E
2 “B5(1 # cos 8) °

ot

Then we have

)
. -ﬁlzostz_sint2+c(t)
2 U I_ 2 t i‘th2
t 2
2
and F . (39)
2 [sin t cos t
E 2 2 b |
yz"F"_ ot i) - 3
t 2
2
7/

On the cavity surface Alo' the integration starts at §{ = - 1 and ends
somewhere between £ = - 1 and £ = 0. Note that the value of t at g = = 1
equals that of t} when 8 = 0. So that if we put t =t3, Yy =% - § and

g = -3, we have

E

b[% (;3 + ;—3] - cos Y]

t3=

»

then the upper cavity joins the nose arc of the wetted surface and its

coordinates are
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Xy = %i co::a - Si:3t3 + Ci(c3)
and E
Y3 ',%2' [1:;3 * c0:3t3 +5i(ty) -3
In this case
E

0< te € b(l - cos §)
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. (40)

Finally, the cavity surface from the trailing edge is obtained by

putting t = - t4, y =7 - § and § = g4, where 0 € 4 < 1.

E
1 1
blcos § -5 (g, + ?D]

t =

and

E

0<t, ST ¥cos &) °

Then we have

2 ‘:os t4 sin ta
L 2t + Ci(tlo)
t4 4

and
{;in t cos t

4 4
2 M
4

=---Ei +si(t,) - %
Y4 U 4 T2

4

Therefore

[ . (41)

As we found for the upper cavity, the lower cavity surface starts smoothly

from the wetted surface.
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Equations (38), (39), (40) and (41) will provide the shape of the
wetted surface and the cavity surfaces for the simple complementary function
of Eq. (34). These equations contain the undetermined ratio EZ/U, however.
We shall consider the ratio E/b, which determines the strength of the
complementary solution, as a parameter which we can prescribe -- at least
for the time being. We also consider the value of y (or 6} to be known.
Therefore, we need to "scale” our results in order to obtain a profile of
unit chord. Since we anticipate that the complementary function can
produce a rounding of the wetted surface nose, the scaling procedure must
account for this possibility. Accordingly, we shall need to determine
explicitly the location of the apex of the wetted surface nose with respect
to the profile chordline.

Figure 1 shows the chordline for the sharp-nose or for the round-nose
case when the upper cavity separates at the leading edge with respect to
the hydrofoil chord. The geometry for the rounded nose with the separation

point on the upper wetted surface behind the apex of the wetted surface

contour is illustrated in Fig. 7. The apex is located at the origin of

0
ST AEA

¢, n coordinates in this illustration with the n axis being tangent to

Lo’

-

b the contour at this point. Denote the x, y coordinates of this point by

e Xa, Ya. Then since the c-axis is normal to the n axis, we see that at the
' apex the slope of the contour is

7 dy

[ ] a n

= Ha—-tan (3-4a) =cota . (42)

P
%"

4

[}
L)

We will restrict our attention to those cases in which the apex is on the
arc OAj., Let t =t) = ty at the apex. Then from the equations preceding

Eq. (38), which define t;, we have
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E

ta = b(cos Ea -cos §) °

0<ga<6, (43)

and Eq. (43) can then be used in Eqs. (38) to define x, and y, once the value
of £, (or B3) has been found. Thus, we must determine the unknowns E2/U and
€3 in terms of the prescribed quantities E/b and §(or Y). Two conditions

are available for this purpose. The first is given by Eq. (42). The second
will be that :he profile has a unit chord.

An alternate form of Eq. (42) is

cos a = sgin t
a

and . : (44)

sin a = cos ta

which follows from the complex equation just above Eq. (37) when we put
t = ty. We will use Eq. (43) as the appropriate expression for the slope

of the foil contour at the apex. Now let us differentiate Eq. (1) so

that

d(g + in) = eiadz .
Then from the complex equation just preceding Eq. (37) we have

ZEZ it
U

195¢o + in) = - 1—3-e dt . (45)
t

Starting from O where (o,n) = (co,no), we integrate Eq. (45) to Ay, where

(o,n) = (1,0). This step gives

B et et et Wt et
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y 2 cos t sin t

-ia E t t
L e (1 g, ino) T 5 T + Ci(tt)
ol t t
N L t
) sin t cos tt ) i

-1 + +si(t ) -5 .

t2 tt 4 2
t
where
¢ E

t  b(l + cos 8) °’
corresponding to ty with §2 = 7 in Eqs. (39). Next we can use Eqs. (38) with
§1 = &3 and t] =ty or

E
t. ~ b(cos g, - cos 3)

at the apex in order to integrate Eq. (45) from O to the apex along the arc

0A). This step results in

-ia 2 cos ta sin ta
-e (oo + ino) =-ﬁ— 2 - T + Ci(ta)
ta a
A
sin ta cos t “
+1 — + — + Si(ta) -3 .
ta a

R AR St SR R St AR
R RGOS PR Iy
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Eliminating the sum o5 + ing from these two equations, we get

H-E-cos a=F -~ f(ta) 3

E
and r ° (46)*
U
—5sina =6 - g(ta) J
E
In Eqs. (46) we have
x U cos t sin t 3
Foeo =t - — =+ c1(t,)
E t t
t
and ‘ 47
"y U sin t cos t
t t t n
G = = + +8i(t ) - =
EZ tf tt t 2 ,

which contain known quantities because ty is known. The remaining pair of

functions,
cos t sin t )
£(t,) = % 2. e +ci(e,)
a
and [y (48)
sin t cos t
g(t,) = ~ 2+ e 2+ si(t,) -1:',_—
a J

contains t; which depends upon the unknown, B3 = ® - §3. Thus, Eqs. (46) are
two simultaneous equations containing the quantities U/E2, a and Ba which

must be determined. Therefore, Eqs. (44) and (46) form a determinate system

*The F introduced here is not to be confused with F = ¢ + iy from Eq. (2).
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which can be solved by iteration. In order to do this, we can write the

complete system as

G - g(ta)
tana=F—-_T-(taT ’ (49)
cot t = tan a (50)
a
and
F-£(t) 6-g(t)
U a . a_ . (51)

E2 cos a sin a

In the derivation of this system we have assumed that the apex, 2z, is
on the arc 0OAj. On the other hand, we specify the quantities E/b and
Y =7 - d. We must now determine whether or not our assumption regarding
the location of z, can restrict possible choices for the parameters E/b and
6. In particular, we recall that, as is true for the quantity €1, we must
also require that 0 < §, < §, as noted in Eq. (45). The limiting condition,
corresponding to the coincidence of the apex and cavity separation point at
the nose of the profile corresponds to £; = 0. In this case, the smallest

value of t) for any choice of E/b will be found when

E

a min b(l - cos §)

t

g
»
»

On the other hand, by inspection of Eqs. (47) and (48), we see that the

N largest values of f and g are found for ty = tpijn. The values of F and G
LN

. are also obtained from the smallest value of t) because ty is calculated
’.

E from ty with £ = v, namely:

7.
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- E
t b(l +cos §) °

t

Let us compare the values of F with f and G with g. Suppose that E/b is

selected so that cos ty; » cos ty » 1, sin ty; ~ t; and sin ty ~ t¢. Let

§ < 1. In this case we can see that

a 4
;-_ii = (—2-) 1 —% and g:

F.
;

For example, if & = .1, we would estimate F/f ~ (20)% and G/g ~ (20)2, These
estimates imply that both E/b and § are significantly smaller than unity.

In the applications contemplated, E/b will probably be less than unity
although 6 might conceivably approach or exceed unity. Therefore, we shall

consider the ratio,

min 1 + cos §
—=n=———

t ]l —cos 6 * © > 1,

which permits us to consider roughly the ratios of F to £ and of G to g

for various values of 8. In particular, we can solve for cos § and obtain

cos § =B 1
o8 n+1 °
which permits us to plot a curve of n = (t,| /t ) versus § as shown in

min
Fig. 8. This curve illustrates the effect that the choice of stagnation

point location has on the ratio, n. The value of n in turn gives a rough

indication of how large the ratios F/f and G/g will be.
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It appears for most cases that these ratios will be very large and
Instead one can

one need not solve Eqs. (49) and (50) by iteration.

obtain an accurate value of a from

tan a §-g (49a)
and he can then determine U/E2 from
25" F (51a)
E cos a

Should cases arise in which Eqs. (49a) and (5la) are not accurate, they can

be used advantageously to start the iteration. In order to illustrate these

points and in order to show a profile shape derived from the complementary
solution, we have prepared the following numerical example.
We started the calculation by selecting § = 70° and E/b = .0l.

Figure 8 shows that n £ 2. The values t = ,01520 and t, = .00745

min

follow from the formulae for these quantities. From Eqs. (47) we find that

F = 18,004 and G = 266.83. Equations (49a) and (51la) lead to tan a = .01482

and U/EZ = 18,006. From the formulae just after Eq. (36) we have for the

cavity drag due to a profile of unit chord

EZ
CDc = 2% T .00035

as the contribution for this point-drag profile. The value of t; can now

be found from Eq. (50). It is t; = 1.556. Equation (43) can now be used

to find that §; = 69.61°. Note that for this case the apex is almost

coinc dient with the stagnation point.

Because Eq. (35a) shows the
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complementary function to be at the stagnation point this result is
expected. The fact that the apex is not exactly at § = 70° is due only
to the inclination, a = .85°, between the chord line and the x axis.
Once U/E2 has been found, the values of Xy and y¢ can be found from
Eqs. (47). The values are x = .99989 and y; = - .01482. Now one can
use the conditions that in Eqs. (1), (xt,yt) > (o=1,n=0) and

(xa,ya) «*+ (0=0,n=0). These lead to a system of equations from which

Oy and ng can be eliminated and one finds that

X =X = Cos a
t

x =-sint ’
a t a

= + sin a + cos t .
ya yt yt a

When the above values of x. and a were used in these equations, the values of
X, and y5 were found to be zero to within five decimal places. This result
is consistent with the location of £; noted previously. Contiming with

Eqs. (1), we can use the fact that x; = y; = 0 to see that it must also
follow that o5 = ng = 0., Accordingly, the form of Eqs. (1) for the present

calculations is

o = .9998%x - .014796y ,

The next phase of the calculations is the evaluation of the equations
for the wetted surface and cavity contours in accordance with Eqs. (38),
(39) and (40). The result of these calculations is shown in Fig. 9. 1In
this figure, the chordline distance, ¢, has been labeled as X and the
ordinate, n, has been labeled as Y. Note that the Y-scale is magnified

five times compared to that of the X-scale. The trailing edge of the
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wetted surface is at X = 1. The upper surface separation point is at

o =X = ,240. The cavity thickness at X = 1 is Y = T = .02980. This

point is marked to the same scale as the X-scale by the dot and the line

at X = 1 in order to give an idea of the actual thickness of this example

of a point-drag profile. Finally we can calculate the value of Z.(1)

in this example in order to compare it with the values found previously for

the flat-plate. It is found from the value of t = (E/b)/[(cc + 1/g )/2 cos Y]
at 0 = l. The calculations indicated give cc(l) = .3290 which is roughly two

times the value from Table 1.

The Eigensolution

Our desire to retain as much simplicity as possible in the preceding
analysis of the complementary function has caused us to place the point-drag
singularity at the stagnation point, and that is why we call it the simple
eigensolution. This restriction on the location of the point of application
has allowed us to show that such a solution exists, that it definitely leads
to a smoothly rounded profile nose and that it will cause an incremental
thickening of the cavity depending on its strength, E. Of course, we need
not restrict ourselves to the stagnation point as being the location of the

point—drag singularity.

For example, suppose we choose some other point C on the wetted surface.

¥

@ T

Such a point is illustrated in Fig. 5 and it happens to be located between

J—

the upper cavity separation point and the stagnation point, although C could

just as well be at some other wetted-surface location., The main idea is that

Tt Ak 4
P AP
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now B = Yc at the location of the point-drag singularity and if we simply

replace Eq. (34) by the modified expression,
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E - 2Eg
mc(C) = 1 1 = iy -1y
b[cos Y. -3 (¢ + EJ] bz -e S)(zg-e ©

c

iE ]
— ’
iyc

- [—=
b sin ¥y iy
L -e L —-e

(34a)

we still have a function which satisfies those conditions needed for a
complementary solution. It is ciear that in the {-plane, wc(O) = (0 is in
agreement with Eq. (16). Moreover, when 7 1s real w, is real and on the
unit circle Tc = () everywhere except possibly at the simple poles,

iy
T =e €. From Eqs. (22) and (23) it follows that

C = 21 — (52)

as before. On the other hand, because of the displacement of the point C
away from 0, a 1lift force is produced and we find that now

Y+y Y-Y
- 8nbE c c . 8nbE sin gin =< , (53)

ch Uc_ sin =5 sin —; Te 3 3

where vy =7 - § and Ye = % = 8. in accordance with previous convention. The
profile chord, c, should be set at unity in Eqs. (52) and (53). Equation (53)
shows that Cj, = 0 when §; = §. But §. < § when the point C moves toward

the point A} and a negative 1ift results. In the limit as §c + 0, we have

8nbE 24
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If C is between O and Ay a positive 1lift is produced and in the limit when C

is coincident with A we have

o 8nbE sZ [
L, Ue °% 7 -

If one were to let E be negative the sign of the foregoing trends with
respect to CL would be reversed. We must insist however, that E > 0 because
this function produces a thickening of the cavity and because then
m;(O) = — 2E/b. Similarly, we have also found that w;(O) = - 2 sin v.

Thus, the effect of adding ®, and w, increases the net drag. Neither of these
functions can act to reduce it. Accordingly, we shall take Eq. (34a) as the
appropriate form of the eigensolution which has been sought. Since both of
Eqs. (34) have simple poles on the contour |c| = 1, they can be thought of as

elementary solutions. But as we have seen in the case of the simple eigen-

solution, the pole at g = Yc does not lead to an unbounded value of qc/U.

s Indeed, 0 < qc/U < 1 in the neighborhood of B = £ Yos which can be taken to

be at any point on the wetted surface when 8 = + Y.

Some Profile Geometry and the Flow

In any inverse design procedure, one starts the calculation by
prescribing the pressure distribution or the magnitude of the velocity
5 along the periphery of the profile. Of course, that is almost like
having the solution at the outset; but not quite, because one does not
know the relationship between points along the hydrofoil arc length, s,
. and corresponding points on the semi-circle in the  plane.
Nevertheless, referring to Fig. 7, we can measure the arc length s from
the point A2 at the cavity~trailing edge separation point. Then the

arc length increases from A2 until one reaches the stagnation point O in
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in Fig. 7. At O the arc length will be designated by 8, Continuing along
the periphery, one rounds the nose of the foil and arrives at the separation
point Al' At this point, the arc length is 8- Finally we proceed along
the upper surface of the cavity until we arrive at the point Sy, @ distance
T directly above the trailing edge, A2. The distance T is measured

perpendicularly to the profile chordline. Thus, it is parallel to the n
axis in Fig. 7. Clearly, 0 < S, < ) < S,

A schematic diagram showing the flow speed on the wetted-surface arc
and the upper surface of the cavity is illustrated in Fig. 10. This figure
shows rather clearly that the designer does not have as much freedom with

regard to the pressure distribution prescription as he might wish. For

example, we know that |q/U| =] ats =0, s =g and in the interval,

1
8, < s« Sye Moreover we take the values of q/U < 0 in the interval
0<s ¢« s, because the flow direction on the wetted surface points in the

direction opposite to the positive sense of s. Between S, < s <s, the

2
opposite situation holds and we count q/U > 0 in this interval. At no

point in the flow can q/U > 1.

Since we prescribe the magnitude of q/U everywhere this is the same as

prescribing the 1lift coefficient CL. The prescribed value of C. can be

L
used to fix the relative position of the stagnation point s, with respect
to point 8, if the distribution q(s)/U is not too firmly fixed. One need

only use the well-known Kutta-Joukowsky formula,

82

%‘CCL = %-- [ (q/uds ,
0
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where ¢ is the profile chord and T is the circulation. But we can write

where
%

. 1Yo U
§ 0
S |
- and !
. s |
i A(ss)sflﬂﬁlds+(s-s)
3 27072 s U 2 1 °
. o

Generally one will need to solve for the ratios so/s2 and slls2 numerically,

ia starting the iteration by supposing that possibly A1 and that part of A2
- between s, and 8, are triangular areas. Indeed, we will see below that tte

area A2 must be rather closely specified in advance so that the chief freedom

to be exercised by the designer is associated with A

1 The thought behind

these observations is that whatever the approach, the design CL and the

distribution q(s)/U must be consistently prescribed.

We now turn to the properties of the flow in the neighborhoods of s,
and S because at S the flow on the wetted surface is a stagnation flow and
at 8 it is constrained by the requirement for smooth separation. For

simplicity's sake we shall shift our reference point from A, to the point O

2

and measure the arc length s from 0. This means that the distance along the

arc from 0 to A1 is sl - so and we will nomalize all intermediate distances

s by writing x = s/(s1 - so).
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Then it is known for a potential-flow stagnation point on a flat wall
that the streamlines are equilateral hyperbolas having their separatrices
as the straight wall and the normal to the wall through the stagnation point.
It is also known from linearized theory [9], and it can also be shown for the
exact theory, that if x = 1 is a separation point then Cp(x) ~/1 -x. A
specific example of this general behavior can be seen by referring to the
various formulae for the flat-plate velocity and pressure distributions
given above in the discussion surrounding wo. In particular, it is easily
seen that dz/dg = 0 at the separation points g = l. Consequently curves
of q/U and Cp will have vertical tangents at the separation points. In
response to these requirements we shall consider a one-parameter family of

speed distributions on the forward part of the wetted surface; namely,

ax)/U=x[1-aV1 - x? (1-Y1- xz)] , (0¢x< 1) . (54)

Although this is a rather special class of velocity distributions, it

probably contains as much generality as one usually needs because most of ten

the arc length from s, to 8 is very small compared to the total arc length
S,e Therefore the curves of q(x)/U will be very steep and the shape of one

choice of distribution would hardly be discernible from some other choice,

YTV VT Y

provided that the required conditions at x = 0 and x = 1 are satisfied.

Plots of Eq. (54) are given for a highly stretched length scale in Fig. 11.

Pt ae I S 4

This specification and cavity surface velocity for 8, < s < S, makes

the entire pressure distribution on the upper surface of the profile fairly

TRV YT T

well defined. In order that these results can be used conveniently in the

process of reconciling the design C_ with q(s)/U, Eq. (54) should be

L
expressed in terms of the arc-length coordinates defined in Fig. 10.

Normalizing all distances by s, we can write

T VY Y Ve

C e

T

T
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= A=Y - (55)

Having prescribed the velocity distribution for points on the periphery
of the profile, one can now use Eq. (20) in order %o derive the circle-to-
profile correlation between s° and 82 albeit with some degree of ambiguity
until the entire problem has been formulated and solved. For this

correlation, we will write Eq. (20) in the form,

(s) b2 b 2
ﬂﬁg—-ds =25 (cos ¥ - cos B)sin B dB = ﬁ—-d[(cos Y - cos B)] , (56)

where Eq. (54) defines q(s)/U in the interval, s, <8 <s,,and in the
2 interval, s,

that when s = so, B = y and when 8 = g

<8 < 32, we have q(s)/U = 1, Moreover, at this point we know

1 B = v. From Eq. (55) we can put
(s1 - so)dx = ds

and we can integrate Eq. (56) from so(x = 0) to x and the right-hand side of

Eq. (56) from B = vy to B. Therefore the integral of Eq. (56) is

3/2
x2 (1 - - x2) 2

4 2
(sl - so){i_ -a 3

)] -<%- (cos ¥ =~ cos 8)2 « (57)

IN

+

\
NIN

£

When B = v and x = 1, Eq. (57) becomes

b2 2
(s -8, )(1-3) =2 g (1 + cos )< . (58)
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Proceeding to the arc 8, <8 < s, along the upper surface of the cavity

one may start at the point 8 = w on the circle || = 1 and move along the
negative real axis toward £ = - r = 0. The velocity q/U = 1 everywhere
along this arc and Eqs. (19) can be used to find the differential arc-length

correlation,

2

b d
dS'-U—[ L3

(F+7) *cos ¥](3 - 1)

N

’ (59)

where we have taken the positive square root in view of the fact that r has
been defined as a positive quantity. Starting the integration at s = 8 and
r =1, we find

2

s -8, = %— {f; - 1)[ (— + 1) 4+ cos v] - (1 - r)[z (1 +1) + cos Y]} . (60)

If r = r, when s = s2 we can sum this special case of Eq. (60) and Eq. (58)

in order to get expressions for A, in the profile and z planes. As implied

2
from the outset, the considerations of this section apply to the inverse
problem as a whole and we could extend the above considerations to deduce

a correlation like (57) for the interval between A2 and 0. We shall not

complete the analysis here, however.

The Role of the Eigensolution

Returning to the eigensolution as given by Eq. (34a), we recall that
iy
except for the simple poles at § = e c’ the imaginary part of w, is zero
everywhere on the unit circle and the real part suffers a jump of magnitude

m at ¢t Yc on the unit circle. On the other hand, we have found that the

complex velocity has an isolated essential singularity at these poles (see

. Se et
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p. 22 above). Moreover, because of this fact we observed that qC/U is
bounded, being in the interval [0,1]. Therefore by appealing to a theorem
of Weirestrass*, we shall assign the value qc/U = ] at the points Yc =% ]
on |c| = ], We have also seen from an exploration of the flow due to an
isolated eigensolution that the resulting profile is smooth and that its
wetted surface is smooth. When the flat plate function W, and eigenfunction
w,  are combined, the resulting profile will also héve a stagnation point at
B =y, as we shall discuss below.

As we have remarked above, our plan is to write the logarithmic
hodograph as the sum of the flat plate function s the eiggnfunction W,

and a regular function w Thus

1-

L
0

q
- o c 1l
w(g) = w to two =8 +6 +8 +iin [U T T ] . (61)
Consequently,
9.9 q
4.,.0¢cl . (62)
U U3

The composite function, q/U, is prescribed from the outset. Equation (54)
which has been defined over the arc length s in the interval [so,sl]

corresponding to the normalized variable x in the interval [0,1], provides

*See for example, Copson, E. T., Theory of Functions of a Complex Variable

Oxford University Press, 1946, p. 81; or Tichmarsh, The Theory of Functions,
2nd Edition, Oxford, 1949, pp. 93—94.
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an example of such a composite function. The flat plate function, qo/U, has

been worked out on p. 17. Here it will be written as

0

o _ 2(- cos B + cos Y)
v (~ cos B + cos 7)2 + (sin B + sin 7)2

’ (63)

where the absolute sign in the numerator from p. 16 has been replaced by
ordinary brackets and we have made other changes which apply in the interval

Y < B < w. Since qc/U =1on |g| = 1 the function ql/U follows from Eq. (62)
rewritten as ql/U = (q/U)/(qo/U). For the example at hand, the result of this
transposition can not be used until we transform Eq. (63) from the 7 plane
into the arc lehgth in the interval [so,sll with the help of Eq. (57). 1In

particular, we find that

sin2 B8 =1~ (R - cos 7)2 - sin’ Y + 2R cos Yy - r? s (64)
where
3/2
2 2 4
2.0 - X _a((l-a-x7) _x° x
R b2(51 o)l -a 3 7+ -

Equation (64) enables us to write Eq. (63) in terms of arc length as

¥

o _ 2R ] (65)

2

L V sin?
R +s8in vy + Vsin" vy + 2R cos Y - R
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Then it follows from Eq. (62) that

Lo, ms 1 -aVi-x2(1-Vi-h s

{2R/[R2 + sin vy +3Vr§in2 Y + 2R cos [ - Rz]} . (66)

As 1is true of qO/U and qc/U, the function ql/U when represented in the [ plane
can be continued to the arc of the unit circle in the lower half of the
t-plane in accordance with the formulas at the bottom of p. 13.

Now that the well behaved function q1/U has been found along the arc OAI’
we may return to Eq. (61) and note that the real part of w(z) is not yet

known completely even in this interval. It will be known however, if we can

find 6,. But its complex conjugate T

1 has just been found. Of course, we do

1
not know Tl at all points of the unit circle because in this example we have
have not prescribed the entire pressure distribution on the wetted surface,
although the way in which this can be done is certainly clear. Once that

step has been carried out, T, will be known on the unit circle and its

1

conjugate 91 can be calculated using the customary representation of

wl(c) as a Laurent expansion, as employed by Yoshihara [8] for example.
Procedures which are preferable for practical engineering calculations are
usually based on the Poisson integral formula or related methods. Examples
of interest for the present inverse theory are given by Theodorsen and

Garrick [16] and by Parkin and Peebles [17], among others. Further

discussion of these matters is beyond the scope of this report.

. .
.....
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In the course of designing a profile, the quantities which one specifies
from the start are the design lift coefficient CL’ the pressure (velocity)
distribution on the wetted surface, the cavity thickness at the trailing edge
and perhaps the separation point of the upper surface of the cavity near the
nose. The purpose of the eigensolution 1s to provide the necessary degrees
of freedom which will permit the control of the cavity geometry as indicated.
Added degrees of freedom can be incorporated in the prescribed pressure
distribution if a parametric approach is used. It might be possible to lower
the cavity drag somewhat by adjusting them although the prescription of
cavity thickness is probably more important in this regard. The outcome of
the design process will be coordinates of thé profile and cavity shape,
including the separation point; the attack angle, a; and the drag coefficient

CD. The eigensolution strength, E/b, will also be determined in the course

of the calculations.

Conclusions

The chief finding of this paper is that one can construct many singular
eigensolutions for the exact inverse problem of two-dimensional cavity flow at
zero cavitation number. From among these, we have chosen that single
eigensolution which provides the correct branching of the flow at its
singularity, it also appears to offer the least disturbance to the upstream
flow field inclination of any cavity flow which does not already include a
point-drag solution as one of its elements. This particular choice also seems
to of fer the greatest analytical convenience. The physical conditions

satisfied by this eigensolution are:

Pl
Ca
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(1) At points on the cavity and on the wetted surface of the
profile, the flow velocity is equal in magnitude to the
free-stream velocity. Consequently, except for the
singular point the pressure coefficient is zero on the
wetted and cavity surfaces.

(2) The point-drag solution vanishes at infinity, but it
does have a bounded essential singularity on the wetted
surface and it produces no singular velocities or
pressures in the flow.

(3) This function produces no additional flow inclination
on the entire upstream stagnation streamline.

A specific example of the flow geometry represented by an isolated
eigensolution has been given above to show how this function can produce
round-nosed profiles. In general, it is found that the point-drag solution
produces a widening of the cavity which is directly proportional to its
strength. An incremental cavity drag accompanies this widening and this
drag is proportional to the square of the eigensolution strength. No lift
is produced by the point-drag functiom when its location coincides with
that of the stagnation point on the profile surface. 1In contrast to the
linearized theory, the complementary function singularity need not be at
the stagnation point. In these cases, the incremental cavity drag is
not changed from its value when the singularity is at the stagnation point.
But when the singularity is located between the stagnation point and the
upper separation point a negative incremental lift is produced. If the

singularity is on the lower surface, downstream of the stagnation point,
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Ql a positive lift increment is found. Whether or not it is better to position
ko the eigensolution at some point on the profile instead of at the stagnation
E.:.

- point remains to be studied.

As a result of these findings, it appears that an eigensolution exists
for the nonlinear theory of cavity flow at zero cavitation number and that
it is now most likely that a similar eigensolution can be found for such
fully cavitating flows at cavitation numbers which are greater than zero.
The results found so far suggest that the nonlinearized theory and the
linearized theories parallel one another very closely as far as the nature
of their point drag solutions are concerned. But the present results exhibit

some featues which are lost in the process of linearization.
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Figure 1. Profile and cavity geometry in the physical
or z-plane at zero cavitation number.
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Figure 3. The mapping W = /F maps the flow outside the cut in
the F plane into the upper half W plane.
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Figure 4. The wetted surface lies between -1 and +1 in the
complex Z plane.
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Figure 5. The Joukowski transformation maps the flow from the
upper half of the Z-plane into the interior of the
upper unit semi-circle with the point at infinity
at the origin.
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Figure 6. Schematic diagram of the complex logarithmic hodograph
in the w-plane.
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The geometry of a round-nosed profile of unit chord
showing the origin of 0 - n coordinates at the apex

of the wetted surface corresponding to (xa,ya) in
z-plane coordinates.
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