
RD-RI60 423 CONTROLLING PRODUCTION FIRING: THE FCL LRNUUAE(U) /
UNIVERSITY OF SOUTHERN CALIFORNIA MARINA DEL REY
INFOR"ATION SCIENCES INST L FRIEDMAN SEP 85

UNCLASSIFIED ISI/RS-85-159ND 9 6381C-83 3F/ 9/2 NL7 EEEEEE
!monsoo...

~ A.

1.2 16

MICROCPY RESLUINTSCHRNATiIOA BUREA OF SA A-140 -

%11

F

ISI Reprint Series
ISIRS-85-159

September 1985

S Leonard Friedman (
.. Controlling Production Firing:

* The FCL Language

Reprinted from the Pro edings of the Ninth International
Joint Conference on Artificial Intelligence, held at the
University of California, Los Angeles, August 18-24, 1985.

*1 B PTIC
~OCT1 1f95

* LUj

INFOR MATION
SCIENCES 213/822-1511

INST!ITUTE=
467 Adiralty Way/Mfarina del Rev/California 90292-66Q5

Alt -T-

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE BFRE COMPRLTINORM

I. REPORT NUMB3ER 2. GOVT ACCESSION No. 3. RECIPIENT'S CATALOG NUMBER

ISI/RS-.05-159 -______________

4. TITLE (and Subtitle) S. TYPE OF REPORT A PERIOD COVERED

*Controlling Production Firing: The FOL Language Research Report

S. PERFORMING ORG. REPORT NUMBER

7. AUmRs . CONTRACT OR GRANT MUMBER(s)

Leonard Friedman MDA903 81 C 03

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT.PROJECT. TASK

USC/Information Sciences Institute AREA I WORK UNIT NUMBERS

4676 Admiralty Way
Marina del Rey, CA 90292-48695 _____________

1I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Defense Advanced Research Projects Agency September 1985
1400 Wilson Blvd. IS. NUMBER OF PAGES

Arlington, VA 22209 19
14.I MONITORING AGENCY NAME & ADDRESS(II different from Controlling 0Office) IS. SECURITY CLASS. (of this report)

Unclassified

S.8. DECL ASSIFICATION/ DOWNGRADING
SCHEDU LE

IS. DISTRIBUTION STATEMENT (of this Report)

This document is approved for public release; distribution is unlimited.

* 17. DISTRIBUT 4N STATEMENT (of the ahatract entered li Block 20, It differmnt from Rteport)

* IS. SUPPLEMENTARY PIOTES

* The research described in this report was performed by the Jet Propulsion Laboratory, California
Institute of Technology, under contract with the National Aeronautics and Space Administration.

19. KEY WORDS (Continue on revere, aide it necemy and Identify' by block rmmbo)

control language, declarative knowledge, diagnostics, productions

20. ABSTRACT (Continue on revere aide It necessary mid Idetifyl by Weoek "mambr)

-While implementing a diagnostic expert system, FAITH; we have dvop'anelnggFCL, for

*controlling the firing of productions. FCL greatly simplifies the task of the user to direct this firing a
coherent and purposeful way without sacrificing some of the main advantages enjoyed by production
systems. One of the interesting features of the language Is the use of declarative forms to direct the
firing of proper production sequences in a diagnostic expert system. Declarative forms which)

(OVER)

DD I'JON".. 1473 EDITION OF I NOV 65 IS OBSOLETE Unclassified
S/N 0102-014- 6601

SECURITY CLAWFICAIIOM OF THIS PAGE (Was. NOleWIM410

a " q .*e

Unclassified
SCURITY CLASSIFICATION OF THIS PAGIt9tIa, Data goted

20. ABSTRACT (continued)

represent circuit diagrams and problem families control goal-directed processes like tracing through
circuits and searching for symptoms to confirm or deny closely related problems. Because we have
the FCL facility at our disposal, we have been able to incorporate a larger than usual number of
diagnostic strategies in FAITH, with the assurance that they will be employed under the right
circumstances.

o,

Unclassified
SICURITY CLASSIFICATION OP THIS PAGUMR DOS11en

* IS! Reprint Series
ISIRS-85-159

Septembher 1985

U~niversity
of Southern
Caifornia

Leonard Friedman

............ Controlling Production Firing:
The FCL Language

Reprinted from the Proceedings of the Ninth International
Joint Conference on Artificial Intelligence, held at the
University of California, Los Angeles, August 18-24, 1985.

* ~Acce9S7 l ~

F~~c'A&to

1:712U~f T.'116AmrlyWylaiadlRy1ftona92269
Ths eeac 6f*PW YftDfes Avncd..eac............ otrc N.MDSW8 CO. W* n

c~c" " cnandI ft1WN h uVsadsol ntb neprWarpeeligteof1atoiino olc fDRA
the .S.Govenntnt, r ay pw oragecy cnneted ithth3

IS! Reprint Series

This report is one in a series of reprints of articles and papers written by ISI

research staff and published in professional journals and conference

proceedings. For a complete list of ISI reports, write to

Document Distribution
USC/Information Sciences Institute
4676 Admiralty Way
Marina del Rey. CA 90292-6695
USA

ro

Introduction*
Ever since the advent of production systems, one of the key issues in using them has been the

difficulty experienced in controlling the firing of sequences of productions. Davis and King offer an

extended discussion of the subject which is still relevant [Davis 77]. They mention many control

methods. like ordering rules, tags, and meta-rules. With the growing popularity of expert systems

organized around thousands of production rules, the issue of control has become even more

pressing. Recently both Davis and Genesereth have introduced diagnostic production systems that

employ still other control strategies [Davis 82, Genesereth 82]. Genesereth has used the "linear input

strategy", and the "unit preference strategy" for controlling a resolution-based diagnostician, terms

defined in [Nilsson 80]. All of these methods have been more or less ad hoc, and the need for a more

systematic and orderly way to specify firings has remained.

During the course of implementing an expert system diagnostician, FAITH, we have developed a

more orderly method, a language we are calling the FAITH Control Language or FCL. One element in

the operation of FCL is the use of extended declarative forms which represent circuit diagrams and

system block diagrams, to enable the reasoning engine to choose rules and direct the correct

instantiation of variables embedded in rule statements. "

We shall call these extended declarative forms relational maps. In FCL, the use of declarative

knowledge for control purposes is combined with a number of other devices to permit the design of

coherent strategies that direct whole sequences of production firings. Having this power, we are able

to employ many diverse diagnostic strategies in a single system and are assured that they will be used

in controlled circumstances.

Other control elements of the FCL include:

the use of predicate keywords in literals to identify subsets of rules
related to a given firing sequence. An example would be "OutputFault",
used to characterize rules pertaining to upstream tracing through a
circuit.

special forms, "PreferredFor"s, to assert constraints and direct rule
choice. They are embedded in the rules themselves. A constraint might
be that the subsystem under suspicion should be identified as an adder
for the rule to apply.

special forms, "Modes", which name firing sequences directed in an
orderly fashion by a relational map. "Tracing" is an example of a Mode.

'The research described in this paper was performed by the Jet Propulsion Laboratory. Californis Institute of Technology,
under contract with the National Aeronautics and Space Administration.

**This form of control is the equivalent of the linear input strategy used by Genesereth. He emPloys circuit diagrams "to
avoid drawing unwarranted conclusions". Circuit diagrams srve this purpose in FCL. but have another Important control
function explained below.

..-.........................-....-..... ;-..-......! .,, ,, *d ,. . J,, '." ** ..',*. p .,.* , _,..*J ::,p'. * ,.., ., ; , .., , .,. . -,-,

2

the use of typed predicates, called Given Predicates, to signify that a
well formed formula (wff) in a rule is to be taken as true if it has a
ground instance counterpart embedded somewhere in the relational maps.
For design facts like "Part A is connected to Part B", Connected would
be a Given Predicate. Rules which cannot be consistently instantiated
when they contain such statements are rejected.

The elements mentioned above can be put in one-to-one correspondence with some of the
elements of a procedural language. A Mode maps into a function. A PreferredFor with constraints
maps into a function call. Keywords identify the scope of a Mode by indicating to the reasoning

- engine which rules are to be considered when in that Mode. The relational maps provide a context in
an execution sequence that spans across individual rule firings, thus controlling which production is
to fire next. This is analogous to the way ordinary programming languages execute a sequence of

* statements. The process of composing a specific relational map and associated rules related to its
* use is the equivalent of coding a function in other languages.

Due to the very nature of production systems, there is no explicit expression of a conditional. The
effect is obtained by composing the right set of rules to fire in the given domain contingencies.

* Although elements corresponding to a procedural language are present, we emphasize that we are
not sacrificing the advantage that production systems provide, flexibility and the avoidance of FIXED

- sequences of executed statements. The production firings are still driven by the problem itself.

* For a relational map to provide the context in a firing sequence, a certain style of rule composition
must be adopted by the user. When this style is adopted, the system will either fire rules in the desired

* order, or fire the same rule many times with correctly altered instantiations. One aspect of the user
* style is to embed in a rule one or more Given Predicate formulas whose syntax corresponds exactly to

selected statements in the relational map.

During execution, the reasoning engine can use partially instantiated Given Predicate formulas
* within the rule to find the match with a specific statement in the relational map. The engine completes
- the remaining instantiations, from the matched knowledge. For example, if the relational map has

defined a set of predecessor-successor relationships between objects in a signal path, then a rule
under consideration which has instantiated a particular predecessor will find the correct successr.

* In explaining the above rather abstract statements, we shall use examples from FAITH's operation.
This will serve to make clear why we have introduced the various devices, and their functions. The
knowledge bases from several domains will be introduced, and FAITH's application to the diagnosis
of ailing spacecraft will be included. To make these examples easier to follow, we give a brief
overview of FAITH. The concepts underlying FCL are general and we will discuss briefly their
possible extension to the control of a planner.

INV

3
p.,

p

The Basic FAITH Operation Cycle
FAITH employs predicate logic in its reasoning engine, and alternates between two phases of a

basic diagnostic cycle. These phases are Explanation (Backward Chaining), and

Confirmation/Denial (Forward Chaining). During explanation we are searching for consequent

matches of production rules with the literal to be explained. Rules whose consequents match are

used to establish a subset of the antecedents as hypotheses. Only literals whose predicates are

untyped are chosen. Examples of untyped predicates are "Fault", "OutputFault", etc. The rule is

*- chosen for further consideration if and only if the remaining literals in the antecedent, the constraints,

* can either be evaluated true or matched and consistently instantiated with literals in the relational
maps taken to be true. Once a set of possible hypotheses has been determined, the confirmation

phase is entered.

During confirmation/denial we examine each of the selected hypotheses in turn, seeking to confirm

one. We now search among the rules for antecedent matches to the untyped predicates that are the

hypotheses to be confirmed. Any rule may be used which chains forward to specify one or more

consequent predicates with the type "measurable". Such predicates are linked to the antecedent
hypothesis because they tend to ccnfirm it if true or within defined bounds, and deny it if false or

outside defined bounds. These consequents constitute predictions about what should be measured if

" the antecedent is true. Their truth can only be established by comparing the prediction with an actual

measurement, which has to be supplied by an outside agency.***

If a hypothesis is denied, the next one on the stack of hypotheses is examined until either all
hypotheses are exhausted, or one is confirmed. If confirmation occurs, say at level.of -explanation 1,

we reenter the cycle, seeking to explain the confirmed hypothesis. Confirmation may occur for one of

the hypotheses at level 1 while others on the stack remain unexamined. If this is the case, we may go

through several more cycles of explanation and confirmation at levels 2, 3, etc. Still later we may

encounter a contradiction between predicted and measured test variables, that fires an inference

contradicting the hypothesis at level 1. FAITH then backtracks, and activates the next unexamined
hypothesis on the level 1 stack.

This is an oversimplified description, omitting complications such as measurements not being

available, the hypothesis to be confirmed is itself a measurable, terminating the cycle, etc.
Nevertheless, it does explain the main features of FAITH's operation.

"-During the development phae of FAITH. the outside agency has been the programmer. FAITH's initial application is to
the troubleshooting of spacecraft by monitoring the telemetry Stream transmitted to earth. This telemetry stream contains the
test measurements from a wide variety of subsystems. We have developed a module, the EXECUTION MONITOR, to read the
telemetry data stream, detect errors or out-of-bounds measurements, and automatically supply requested measurements to
FAITH.

..:.'',.... '..........*.' ; .. ,.... ..- ,-,, ,,.---,-;-,-". ";..". .: - ',"""

4

The FAITH Control Language (FCL)

Control of a Simple Firing Sequence: Traversing a Tree Structure
We shall consider a system requiring diagnosis whose top level organization can be represented as

a tree of subsystems. A typical block diagram is shown in Figure 1. This is a simplified representation
of the organization of parts of the VOYAGER spacecraft and ground system. Suppose the
"presenting symptom", say "No Telemetry", causes the error detection mechanism of the

EXECUTION MONITOR to trigger. This symptom has a multiplicity of possible causes scattered
* through the entire VOYAGER system. A human troubleshooter would want to systematically traverse
* the tree, top down, eliminating the largest and most likely blocks or subsystems, until he has found

one that, from test measurements, indicates evidence of possible malfunction. How do we instruct

FAITH to accomplish the same thing?

DSS GCS IT RECEIVERSTRNMrE INTUESPlFO UPLS

U KING AMPLIIERROTE CFLO STAGES US

wF

Figure 1: VOYAGER System Block Diagram

F Recall that the presence of a Given Predicate within a rule literal indicates that a match is to be

found in a relational map. Let us declare a predicate, "Contains", as a Given Predicate. where

(Contains A B C) means "A contains B and C". Next we represent the tree structure of Figure 1 with

statements such as those of Figure 2, forming one relational map.

(Contains System GARoundSystem SpaceCraft)
(Contains GroundSystem DSS1 GCSI TTSi)
(Contains OSSI AntSSI GReceiverl SOAl SSA1 TPA1 Ct4F1 DISi)

(Contains SpaceCraft SReceiverl SReceiver2 STransmitterl Instruments
ScanPlatformi PowerSupplies).

(Contins SReceiverl TrackingLoopl AmpliflerStagesi RPCI Limiter5 Fus*27)
Figure 2: A Relational Map of a Tree Structure -VOYAGER System Blocks

The statements In Figure 2 are not in the form of literals needed for unification with those literals

contained in the production rules being processed by the reasoning engine. In the Initial version of

!

.. P.STA(..

-" 5

FAITH we have written a translator which creates selected subsets of proper literals on demand from
the statements in the relational map. For example, the first statement in Figure 2 is translated into two
literals, (Contains System GroundSystem) and (Contains System SpaceCraft).

Each of the predicates that requires expansion has been declared as an expansion type and the
type is placed on its property list. From this information, the translator can select the correct
translation parse. Later versions will have a more sophisticated marker device in each expression so
that expansion types need not be used.

Suppose, then, we write a rule of the form shown in Figure 3. Note the correspondence of the
Contains literal in the rule to the syntax of the expressions translated from the relational map.
Assume that we can start the rule firing properly at the top of the tree. Then, once it got started,
FAITH would process each subsystem at the VOYAGER top level (shown in Figure 2) in the order in
which they were listed, declaring a Vault in each until one of these hypotheses was confirmed as

described in Basic Operation. Assuming one hypothesis was confirmed, say (Fault GroundSystem),
*this in turn would be asserted s requiring an explanation by backward chaining, and the next level of

.. subsystems directly attached to or contained in the Ground System would be successively declared at
. fault, because only those subsystems are present in the Contains ground instances wth the term

GroundSystem in the second position,

(<=SwitchToFocus Inference
((Contains ?System ?Subsystem)
(Fault ?Subsystem))

((Fault ?System))

(PreferredFor ((Fault ?system)
(COND ((MEMBER ?System FocusList)

(SETQ Mode 'Focus)))))

[Terms beginning with "?" are variables.]

Figu re 3: Rule for Traversing a Tree

The controlled firing of this rule would continue to any depth, provided there were a Fault confirmed
at each level. We shall shortly describe ways to terminate this sequence appropriately. Thus we see

that we have formed a plan for a complete production firing sequence employing only a single rule.
This was accomplished by writing the relational map of Contains statements. We call this pattern of
firings that traverses a tree structure of subsystems "focusing" and refer to it as the Focus Mode.
Note that we have taken pains to make the user represention a form equivalent to that ordinarily used

by humans to describe system organization. Thus it is particularly easy for humans to supply it.

We turn our attention now to how we initially steer the firing to the top of the tree. The mechanism

.. , *

6

used is the "PreferredFor" with constraints." °" The constraint applied here is list membership, with
the objects we know are going to be encountered in diagnosing the system declared in advance in the

knowledge base as members of an appropriate Mode list.

A PreferredFor is present in Figure 3, with the constraint that the instantiation of the variable

"?System" be a member of the Focus list. Since GroundSystem is on this list, this rule will fire if (Fault

GroundSystem) is declared. An idiosyncratic rule to do this is easily supplied and relates the initially
presented symptom (No Telemetry) with two hypotheses (Fault GroundSystem) and (Fault

SpaceCraft). Note that the Focus mode will be invoked whenever an object at any level that is a

member of the Focus list is asserted to be at fault.

The method of terminating a mode is to declare (Fault <object>). All PreferredFors start with this

literal or a similar keyword. The convention enables the user to select the next mode by determining
the object's list membership. This has the effect of throwing open the choice of Mode, rather than the

choice of all production rules. By sacrificing the complete freedom to choose any rule after each
firing, we have gained a great deal of control and speed.

Transitions Between Firing Patterns: Mode Calls

Focusing is a diagnostic pattern particularly appropriate for top level subsystems that have relatively
little interaction with each other. Eventually, we will reach a system with internal signal flows and

chains of dependency among its subsystems. Faults may best be localized in such a system by

tracing. In FAITH, tracing includes a number of Modes in which the internal structure of subsystems

is ignored, with only the input/output relations described by a transfer function. The path to be

followed is that of causal dependency. Normally this is defined by design signal paths, and those

paths are initially assumed by humans to still hold in a malfunction. We make the same assumptions

in FAITH. Of course, we are not limited to such design paths, and are presently implementing thermal

causal pathways involved in failures of a VOYAGER instrument.

We call the UpstreamTrace Mode by using the PreferredFor mechanism with the constraint that the

suspected system be on the UpstreamTrace list. Figure 4 shows the rule that accomplishes this. Note

that what has happened in our consideration of various systems during firing of the Focus rule is that

eventually one of them which is confirmed at fault is a member of a different Mode list. When this

happens Focus mode is terminated and the different Mode entered.

Here we have introduced a new predicate, OutputFault. OutputFault is a keyword that enables

FAITH to restrict rules that are candidates for firing to those related to tracing in the upstream

direction, against the signal flow. All rules related to upstream tracing contain the keyword predicate

OutputFault.

.. PreferredFor without constraints was used in the planres, DEVISER, to choose among several actions that might
accomplish the same goal (Vere $3].

e.., :,-.-. . . .,.- . , -.. . . , . , ,

7

(<=SwitchToTrace Inference
((OutputFault ?Subsystem)
(Ports ?System (OutputPort ?Port))
(Connected (Out (?Pin ?Subsystem)) (OutputPort ?Port)))

((Fault ?System))

(PreferredFor ((Fault ?System)
(COND ((MEMBER ?System UpstreamTraceList)

(SETQ Mode 'UpTrace))))))

Figure 4: Selecting a Trace Mode

Control of Simple Tracing; A Linear Chain

If we add declarations in a new relational map defining the input and output ports, and the signal

flow, we can control the firing of simple upstream or downsteam tracing which halts whenever a fault

is found with input ok and bad output. InputOK serves for scoping downstream tracing. We

introduce a design predicate, (Connected A B), which is defined by the property that a signal value

appearing at A will be shared by B. This can represent either electrical wires or higher level signals

passing between subsystems.

Figure 5 shows the Deep Space Station or DSS. which receives transmissions from the spacecraft.

The DSS may be represented by a group of subsystems starting with the Antenna SubSystem, feeding

into the Ground Receiver which feeds in turn into a subsystem designated the SDA. Signal flow may

be considered good or bad depending on whether the synchronization of the telemetry stream is
locked or unlocked.

S IGNAL PATH THROUGH DSS

SIGNAL ANT SS GRECEIVER SDA SIGNAL

I NPUT IIOUTPUT
PORT PORT

FIgure 5: The Deep Space Station (DSS)

The station may be represented in a relational map as in Figure 6.

Two of the rules that are used in the tracing of this linear chain are shown in Figure 7 and Figure ,

. . .-' ,- - ..

8

(Ports DSSI (InputPort Dl) (OutputPort 02))
(Ports AntSS1 (InputPort Al) (OutputPort 02))
(Ports GReceiverl (InputPort GI) (OutputPort G2))
(Ports SDA1 (InputPort Sl)(OutputPort S2))

" (Connected (InputPort Dl) (In (Al AntSSI)))
(Connected (Out (A2 AntSS)) (In (G1 GReceiveri)))
(Connected (Out (G2 GReceiverl)) (In (Si SOA1)))

* (Connected (Out (S2 SDA1)) (OutputPort 02))

Figure 6: Relational Map of DSS

(<=TraceUpstream Inference
((OutputFault ?Predecessor)

(Connected (Out (?PinP ?Predecessor)) (In (?PinS ?Successor))))

((OutputFault ?Successor)))

Figure 7: Rule that Propagates a Faulty Signal Upstream

(<=UpstreamTerminatorl Inference
((InputOK ?Subsystem)
(Fault ?Subsystem))

((OutputFault ?Subsystem)))

Figure 8: Rule that Detects a Possible Fault

6 Four rules are required for backward chaining to trace through the DSS in the upstream direction

using the connection information of Figure 6.

V" The Potential Problem Mode

The diagnostic goal of the firing sequences described to this point is to localize the malfunction to
the smallest subsystem possible. Once this has been accomplished, we may be able to characterize

the problem within that unit more precisely than simply "Fault". A great deal of diagnostic knowledge
-.exists about various units such as receivers and transmitters, and this can be incorporated in the
. Problem knowledge base as another tree structure. Such knowledge is taught in medical school as

disease families. Figure 9 shows a simple representation of this kind of knowledge.

(PotentialProblem Receiver AmplifierStageProblems Oscillations
TrackingLoopFailures Shorts PowerSupplyFallures)

" (PotentialProblem Transmitter AmplifierStageProblems SpacecraftMispointed
Shorts PowerSupplyFailures)

(PotentialProblem Shorts ShortsWithFuse ShortsWithLimiter/Fuse)

Figure 9: Potential Problems of Typical Units, and a Problem Family

"PotentialProblem" is a Given Predicate, and "Problem" an untyped predicate subject to

confirmation. If we introduce the following rule, we insure making the proper transition when the
appropriate systems are encountered.

F&Z

-9

(<=ProblemClassificationl Inference
((Problem ?Class Problem)
(ValueOf ?Class (ClassMember ?System))
(PotentialProblem ?Class ?Problem))

((Fault ?System))

(PreferredFor ((Fault ?System)

(MEMBER ?System PotentialProblemList))))

"ValueOf" causes the function "ClassMember" to be EVAL'ed. ClassMember is an inverse indexing

function that retrieves the class name such as "Receiver" when given a specific instance such as

"GReceiverl ". With an additional rule similar to the one introduced in Figure 3 we can now traverse

the potential problem tree, and in many instances can pin down the nature of the problem.

Control of Complex Tracing
We present a non-VOYAGER problem as a last example of the power of this method of controlling

production system firing. The problem posed is a digital subsystem discussed in [Davis, et al 82],
which also uses design knowledge extensively, but applied to generate tests rather than to explicitly

control production firing. It is easy to see that if a subsystem of this type were present in a VOYAGER

system, FAITH might declare it at fault by the methods of focussing or tracing. We now consider the

control of productinn firings in the attempt to localize the problem to a component within the

subsystem.

Davis employed procedural methods to represent the design and simulate the workings of the

complex circuit of multipliers and adders shown in Figure 10.

We represent this circuit diagram as shown in Figure 11. A rule for representing the transfer

function of an adder is given in Figure 12. An assumption we make is that only the input ports and

output ports are available for measurement, so that indirect inferencing is required to determine

possible candidate faulty components. The assumptions that there is only a single fault, and no
intermittent faults are also being made in this case.

To perform this diagnosis in FAITH, we introduced some seventeen rules and additional firing

modes. One of these additional modes is simulation, introduced by a PreferredFor. With rules that

define transfer functions for the adders and multipliers (Figure 12), using repeated forward chaining
in the simulation mode, and guided by our wiring diagram (Figure 11), we can generate predicted

normal outputs from measured inputs. We are thus simulating the normal circuit operation, and can

detect errors by measuring different output values than those predicted.

Having accomplished this, still another firing mode is required. Th,: mode propagates back from a

detected error, guided by the wiring diagram, to find the possible sources of error among the adders

V

10

E MULT-3 (6)

Ce 2 _.-, MULT-2 6 Y
D =

Z A DD-2 G [1(2)

.. E* - UL - EXPECTED)

_XP CTEACTUAL I I

Figure 10: ADigitalCircuit

" (Contains Digil Multi Mult2 Mult3 Addi Add2)
(Multiplier Multl Mul2 Mult3)
(Adder Addl Add2)
(Ports Digil (InputPort A B C 0 E) (OutputPort F G))
(Connected (InputPort A) (In (I Multi)))

* (Connected (InputPort B) (In (1 Mult2)))
- (Connected (InputPort C) (In (2 Multi)) (In (I Mult3)))

(Connected (InputPort 0) (In (2 Mult2)))
(Connected (InputPort E) (In (2 Mult3)))
(Connected (Out (1 Multi) (In (1 Addi)))
(Connected (Out (1 Mult2) (In (2 Addl) (In (1 Add2)))
(Connected (Out (I Mult3) (In (2 Add2)))
(Connected (Out (1 Addl)) (Outport F))
(Connected (Out (I Add2)) (Outport G))

Figure 11: FAITH representation of Digil circuit diagram

(Additions> Event
((OK ?a)
(Adder ?a)
(MeasuredValue (1 ?a) ?x) (MeasuredValue (2 ?a) ?y)
(ValueOf ?z (plus ?x ?y)))

((Out (1 ?a) ?z)))

Figure 12: Rule Representing Adder Transfer Function

and multipliers. Each time such a source of error is located, an error is hypothesized in that source
and propagated forward to all possible output ports. The pattern of errors produced by the error
hypothesis is then compared with the actual pattern produced, and, if the patterns match, the
hypothesized source is added to the list of candidates for further analysis. (These methods will not
work for circuits containing feedback loops.)

.~

~11

All of these complex production rule firing sequences and transitions are successfully controlled by

the use of the methods described. The great advantage is that FCL's control mechanisms are quite

general, and we can analyze other circuits by altering only the rules that represent the transfer

functions of the subsystems. Thus we have made available to the user a file of rules that are always

read into FAITH and sufficiently general purpose as to be useful for many different diagnoses. These

include all of the modes discussed above.

Altering Relational Maps

Until now we have been considering the relational maps as given and unchangeable fact. The

diagnostic performance this produces is often quite inconvenient and clumsy compared with an

experienced human troubleshooter. For example, a list of potential problems is processed by the

reasoning engine in a fixed order, whereas a human would alter the order of consideration based on

measured evidence. Changing the order of consideration of problems on the basis of newly

confirmed evidence is an important feature of many medical diagnostic systems, such as PIP

[Szolovits 78].

To understand how this control feature is implemented in FAITH, we have to describe another

aspect of its operation. FAITH permits making forward-chaining inferences on the basis of confirmed

test measurements. The rules that are employed for these inferences are segregated from other

rules, so that these rules will not fire in normal forward or backward chaining. This makes it possible

to infer, from evidence gathered in a particular context, that the most likely cause of a problem is

something other than the current line of inquiry.

Using such an inference, we have included a rule in a VOYAGER knowledge base whose effect is to

change the order of items in a list to make the most likely cause first, and to abandon the current line

of inquiry. The list is one pertaining to potential problems. This car. be generalized so that

declarative knowledge about symptoms can be consulted using "symptom" predicates rather than

design predicates to instantiate variables in formulas about symptoms.

This suggests the possibility of implementing in FAITH the kind of declarative tree structures used in

CASNET [Weiss 78] to relate symptoms to intermediate states (pathophysiological states). In turn, the

intermediate states are grouped into a disease category as part of the diagnostic process for the

various forms of glaucoma. This is the inverse of the reasoning process employed in FAITH of

hypothesizing a disease cause and then looking for a set of symptoms to confirm it. The inverse,

using symptomatic patterns and groupings to suggest a diagnosis is emlloyed as readily by

physicians and troubleshooters as is the hypothetical method.

The FCL feature of being able to modify the relational maps greatly extends the power of this

diagnostician. For example, we can hypothesize that a short has occurred and determine its location.

If that is confirmed, we can alter the original circuit diagram to include a connection that represents

" . • " " "" .' " * " - .. . • . " °- °° " a-
.•.. .. .,,., , ,.. , -.,,-...--.... .. .; ..-..,, .,,.. .- .. %. , .- .. -,. A..,X- .%;%,'... •%,

7V- - -

12

the short, and even run a simulation of the changed circuit to determine the state changes it produces
with expected inputs. The state changes resulting from the use of the altered circuit can then be
simulated to determine its behavior.

Planning
* We have just begun to consider the application of FCL to the control of our planners, DEVISER

[Vere 83] and SWITCH [Porta 85]. Two examples that we have implemented are the planning of a trip,
- and a problem in avoiding inefficient backtracking in a VOYAGER setting. The trip planner uses
* cartographic map information represented as a number of "Connected" statements to define the

routes, very much in the manner of the circuit diagrams employed in diagnosis. By contrast, the
inefficient backtracking problem requires a somewhat different approach than those we have

* described, although we still employ additional declarative knowledge to render the backtracking
efficient. More extensive investigation is needed to determine whether we shall have to incorporate

* many new features in FCL and make corresponding changes in the planner's reasoning engine to
have the desired degree of control over the planning process.

Non-Monotonic Logic: Changing Axioms and Removing Rules
* As in any expert system, diagnosis is limited by the assumptions underlying the causal models
* employed. These underlying assumptions often are not explicitly stated, but are used to support the

validity of many of the rules. Thus a particular line of inquiry may lead to a single logical conclusion
based on the current axioms, and subsequent testing of the conclusion (for example, by actually
replacing a suspected unit) may reveal that the conclusion was wrong. In this case we infer that at
least one of the current axioms is wrong.

We are currently altering FAITH so that we can relate given rule sets to their underlying axioms, and
* make it possible to retract axioms and substitute others. Concomitantly, we will be able to withdraw

rules from consideration that were linked to the retracted axioms and bring up for consideration new
* sets of rules linked to newly substituted axioms. The effect is to redefine the Modes, which depend on

the rules available for their execution. This permits us to consider successively less likely causes for
the problems encountered which require new rule sets to pursue, while keeping the often
contradictory rules segregated. Note that the order of consideration of the less likely causes is
susceptible to dynamic reordering on the basis of evidence, as explained earlier.

We are also using meta-rules that depend on some of our axioms. For example, we have a nule that
says, "When we assume that a fault is located in a subsystem, prefer rules that mention the
subsystems explicitly." These too will become inactive as their supporting axioms are withdrawn.

13

Discussion
We have presented the presently implemented features of a new control language, FCL, which

greatly simplifies the task of the user to direct the firing of productions in a coherent and purposeful
way without sacrificing some of the main advantages enjoyed by production systems. Several users,
knowledgable in Al, who were unacquainted with the internal coding of FAITH, have been able to

code extensive VOYAGER relational maps and many rules in a matter of weeks for an actual
VOYAGER instrument in much greater detail than the simplified examples used in this paper. FAITH
has produced the desired diagnoses and duplicated satisfactorily the performance of the expert. The
training the Al users required was minimal. There have even been users with minimal Al knowledge
who have successfully used FCL.

Because we have this facility at our disposal, we have been able to incorporate a larger than usual
number of diagnostic strategies into FAITH, with the assurance that they will be employed under the
right circumstances, and we expect to continue to enlarge the scope of diagnostic techniques

available in a quite general manner. Because it possesses many diagnostic strategies, FAITH is
approaching operational usefulness in a real engineering environment, and is undergoing testing in
that environment. The philosophy underlying FCL is certainly not limited to diagnosis. It may be
applied fruitfully to other production systems and we are beginning to do so.

References
Davis, R., and King, J., "An Overview of Production Systems," Machine Intelligence 8, ed. Elcock

and Michie, John Wiley, 1977.

Davis, R., Shrobe, H., Hamscher, W., Wieckert, K., Shirley, M., and Polit, S., "Diagnosis Based on
Description of Structure and Function," Proc. Nat. Conf. on Al, Aug. 18-20, 1982.

Genesereth, M. R., "Diagnosis Using Hierarchical Design Models," Proc. Nat. Conf. on Al, Aug.
18-20, 1982.

Nilsson, N., "Principles of Artificial Intelligence," Tioga Publishing Company, 1960.

Porta, H., "Dynamic Replanning," JPL Report, January 1985.

Szolovits, P., and Pauker, S. G., "Categorical and Probabilistic Reasoning in Medical Diagnosis,"

Artificial Intelligence, Vol. 11, August 1978.

Weiss, S. M., Kulikowski, C. A., Amarel, S., and Safir, A., "A Model-Based Method for Computer-
Aided Medical Decision Making," Artificial Intelligence, Vol. 11, August 1978.

Vere, S. A., "Planning in Time: Windows and Durations for Activities and Goals," IEEE Trans. on
Pattern Analysis and Machine Intelligence, Vol. PAMI.5, 3, May 1983.

.

F ILMED

12-85

DTIC

